WO2022162805A1 - Insulating resin composition, cured product, rotary machine coil, and rotary machine - Google Patents

Insulating resin composition, cured product, rotary machine coil, and rotary machine Download PDF

Info

Publication number
WO2022162805A1
WO2022162805A1 PCT/JP2021/002915 JP2021002915W WO2022162805A1 WO 2022162805 A1 WO2022162805 A1 WO 2022162805A1 JP 2021002915 W JP2021002915 W JP 2021002915W WO 2022162805 A1 WO2022162805 A1 WO 2022162805A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
insulating resin
curing
coil
liquid paraffin
Prior art date
Application number
PCT/JP2021/002915
Other languages
French (fr)
Japanese (ja)
Inventor
あずさ 大澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/002915 priority Critical patent/WO2022162805A1/en
Priority to JP2022577895A priority patent/JPWO2022162805A1/ja
Priority to CN202180086498.6A priority patent/CN116648479A/en
Publication of WO2022162805A1 publication Critical patent/WO2022162805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present disclosure relates to insulating resin compositions, cured products, coils for rotating machines, and rotating machines.
  • Patent Document 1 discloses an example of a solventless varnish composition.
  • the solvent-free varnish composition includes a thermosetting resin having two or more meth(acryloyl) groups in one molecule, and a thermosetting resin having both an epoxy group and a meth(acryloyl) group in one molecule. , and a monofunctional vinyl monomer.
  • Solvent-free varnish compositions are used to maintain insulation and mechanical strength in coils of rotating machines.
  • the solvent-free varnish composition is immersed in the coil by, for example, an immersion method in which the coil is immersed in an impregnation tank containing the solvent-free varnish composition.
  • a monofunctional vinyl-based monomer is used as a reactive diluent that lowers the viscosity of the insulating resin composition in order to improve impregnation of the coil.
  • the insulating resin composition with which the coil is impregnated is heated in a curing furnace to be cured to form a cured product.
  • part of the monofunctional vinyl monomer may volatilize during heating in the curing furnace.
  • the volatilized monofunctional vinyl-based monomer that fills the curing oven may redeposit on the surface of the cured product. As a result, stickiness may remain on the surface of the cured product.
  • the present disclosure relates to solving such problems.
  • the present disclosure provides an insulating resin composition and a cured product thereof, which can further enhance surface touchability of a cured product, a coil for a rotating machine with good surface touchability, and a rotating machine using the same.
  • the insulating resin composition according to the present disclosure is an insulating resin composition that cures at a curing heating temperature, a thermosetting resin having both an epoxy group and a meth (acryloyl) group in one molecule, and the curing heating temperature It contains a varnish component containing a monofunctional vinyl-based monomer that volatilizes as described above, a curing agent and a reaction initiator, and liquid paraffin.
  • the cured product according to the present disclosure is obtained by curing the above insulating resin composition.
  • a coil for a rotating machine according to the present disclosure is impregnated with the insulating resin composition.
  • a rotating machine according to the present disclosure is a rotating machine used for a hoist that drives a car of a rope elevator, and includes a stator that uses the rotating machine coil described above.
  • the touchability of the surface of the cured product is further enhanced.
  • the tactile feel of the surface of the rotating machine coil is further enhanced.
  • FIG. 2 is a conceptual diagram showing an example of a state in which the insulating resin composition according to Embodiment 1 is cured; 1 is a cross-sectional view of a hoist according to Embodiment 1; FIG.
  • Embodiment 1 modes for implementing the subject of the present disclosure will be described. It should be noted that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments, or modifications of any constituent elements of the embodiments, within the scope of the present disclosure. It can be omitted. In addition, the embodiments and examples in the present disclosure are illustrative in all respects and should not be construed as restrictive.
  • Embodiment 1 the curable insulating resin composition (X) and its cured product (Y) will be described.
  • a rotating machine coil using the insulating resin composition (X) and a rotating machine using this as a stator will also be described.
  • the insulating resin composition (X) of Embodiment 1 contains a varnish component (Z), a curing agent and a reaction initiator (C), and liquid paraffin (D).
  • the varnish component (Z) contains a thermosetting resin (A) having both an epoxy group and a meth(acryloyl) group, and a monofunctional vinyl-based monomer (B) that volatilizes at a curing heating temperature or higher.
  • a meth(acryloyl) group represents an acryloyl group or a methacryloyl group.
  • a numerical range expressed using “x to y” in the present disclosure represents a numerical range including a lower limit value x and an upper limit value y.
  • the insulating resin composition (X) is used, for example, to maintain insulation and mechanical strength in coils.
  • Devices to which the coil is applied are not limited to specific devices.
  • the coil is applied to, for example, an electric motor such as a motor, or a rotating machine such as a generator.
  • the coil is applied to, for example, an elevator hoist or an electric compressor.
  • the insulating resin composition (X) is immersed in the coil by, for example, an immersion method in which the coil is immersed in an impregnation bath containing the insulating resin composition (X).
  • the insulating resin composition (X) with which the coil is impregnated is heated and cured in a curing furnace to form a cured product (Y).
  • FIG. 1 is a conceptual diagram showing an example of a state in which the insulating resin composition (X) according to Embodiment 1 is cured.
  • FIG. 1 an example of an insulating resin composition 2 cured on the surface of a coil 1 is shown.
  • the liquid paraffin forms a thin film 3 on the surface of the insulating resin composition 2 that is curing.
  • reattachment of the monofunctional vinyl-based monomer 4 which has volatilized and filled the curing furnace, to the cured product is suppressed.
  • the coil when the coil is impregnated with the insulating resin composition in the impregnation tank, the coil pulled up from the impregnation tank, the iron core of the coil, and other constituent members are covered with excess insulating resin composition. . If excess insulating resin composition remains adhered during the curing process, the excess insulating resin composition may cure as it is to form a hardened mass on the lower portion of the coil and other components. In addition, excess insulating resin composition may drip into the curing furnace due to a decrease in viscosity during heating for curing. The dripped insulating resin composition forms a hardened mass in the hardening furnace.
  • a hardened mass formed on a component such as a coil may damage the enameled wire of the coil and other members due to thermal stress such as curing shrinkage, resulting in a decrease in insulation.
  • the hardened lumps formed on the constituent members interfere with the work of assembling the coil or the like into the housing or the fixing member, it is necessary to remove the hardened lumps formed on the constituent members.
  • periodic cleaning is required periodically to remove lumps of hardened material that have formed in the curing oven.
  • the insulating resin composition (X) according to Embodiment 1 drain well from the coil so as not to adhere excessively to the coil pulled up from the impregnation tank.
  • the overall viscosity of the insulating resin composition (X) is from 10 mPa ⁇ s to 200 mPa ⁇ s from the viewpoint of improving the drainage of the insulating resin composition (X) from the coil or the like and suppressing the formation of excessive lump-shaped cured products. s, preferably 10 mPa ⁇ s to 100 mPa ⁇ s, more preferably 15 mPa ⁇ s to 50 mPa ⁇ s.
  • thermosetting resin (A) The thermosetting resin (A) is not limited to a specific resin as long as it has both one or more epoxy groups and one or more meta(acryloyl) groups in one molecule as reactive groups.
  • the thermosetting resin (A) uses a meta(acryloyl) group as a reactive group and undergoes both an addition reaction via a free radical generated from an organic peroxide and a ring-opening polymerization using an epoxy group as a reactive group. dimension cross-linking reaction is promoted. This can accelerate the curing reaction and enhance the heat resistance and mechanical strength of the cured product (Y).
  • the thermosetting resin (A) may be a single resin containing both an epoxy group and a meta(acryloyl) group as reactive groups.
  • the thermosetting resin (A) may be used in combination with other resins having either or both of an epoxy group and a meth(acryloyl) group.
  • Other resins used in combination may contain both epoxy groups and meth(acryloyl) groups in one molecule.
  • Other resins used in combination may contain only either one of an epoxy group or a meth(acryloyl) group in one molecule.
  • the thermosetting resin (A) preferably has a number average molecular weight (Mn) of 15,000 or less, preferably 1,000 to 10,000, and a viscosity of 10,000 mPa ⁇ s or less at 60°C, for ease of viscosity adjustment.
  • Mn number average molecular weight
  • the epoxy equivalent of the thermosetting resin (A) mixed in the insulating resin composition (X) is preferably 500-5000, more preferably 1000-4000. By controlling the epoxy equivalent within the above range, it is possible to improve the curing rate without impairing the pot life of the insulating resin composition (X), and further improve the crosslink density of the cured product (Y). can.
  • Monofunctional vinyl monomer (B) The monofunctional vinyl-based monomer (B) is used mainly for adjusting the viscosity of the insulating resin composition (X) in addition to adjusting the crosslinked structure.
  • the monofunctional vinyl-based monomer (B) is desirably a monofunctional one having one functional group per molecule in order to maintain the pot life of the insulating resin composition (X).
  • a low-viscosity one having an ether bond or an ester bond is used as the monofunctional vinyl-based monomer (B).
  • the monofunctional vinyl-based monomer (B) preferably used in the insulating resin composition (X) is a hydroxyalkyl, alkyl, alicyclic, aromatic monomer having a vinyl group, an allyl group, a methacryloyl group, or an acryloyl group. of the family, or of the ether class.
  • a low-viscosity methacrylic monomer or acrylic monomer having a viscosity of 20 mPa ⁇ s or less at room temperature (25° C.) is preferable in order to adjust the viscosity.
  • monofunctional vinyl-based monomers having one methacryloyl group or one acryloyl group are more preferable from the viewpoint of achieving both high reactivity during curing and pot life.
  • monofunctional vinyl monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, lauryl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, 4-hydroxybutyl ( meth)acrylate, n-octyl acrylate and the like.
  • these monofunctional vinyl monomers may be used singly or in combination of multiple types.
  • the amount of the monofunctional vinyl-based monomer (B) to be blended is preferably as large as possible, from the viewpoint of improving the drainage of the insulating resin composition (X) from the coil or the like and suppressing the formation of excessive lump-like cured products. .
  • the monofunctional vinyl-based monomer (B) contributes to increase the number of cross-linking points, it does not contribute to the curing reaction because it is a low-molecular monomer and partly volatilizes when heated for curing. Therefore, if the amount of the monofunctional vinyl monomer (B) is too large, the mechanical strength of the cured product (Y) may decrease.
  • the amount of the monofunctional vinyl-based monomer (B) to be blended must be adjusted within a range that achieves the two functions required for both suppression of excessive cured lumps and mechanical strength.
  • the amount of the monofunctional vinyl monomer (B) is 45 wt% or more, preferably 50 wt% or more, more preferably 55 wt% or more of the total amount of the varnish component (Z). It is desirable to On the other hand, from the viewpoint of mechanical strength, the amount of the monofunctional vinyl monomer (B) is 85 wt% or less, preferably 75 wt% or less, more preferably 70 wt% or less of the total amount of the varnish component (Z). desirable.
  • the amount of the monofunctional vinyl monomer (B) is desirably 45 wt% to 85 wt%, preferably 50 wt% of the total amount of the varnish component (Z). ⁇ 75 wt%, more preferably between 55 wt% and 70 wt%.
  • a polyfunctional vinyl having two or more meta(acryloyl) groups or allyl groups in one molecule A system monomer may be blended.
  • the polyfunctional vinyl-based monomer as a reactive diluent, makes it possible to lower the viscosity of the insulating resin composition (X).
  • the polyfunctional vinyl monomer contains a plurality of meth (acryloyl) groups or allyl groups, which are reactive groups, in one molecule, so that the insulating resin composition (X) contributes to polymerization in the curing reaction of , and generally reacts completely.
  • polyfunctional vinyl-based monomers volatilize less during curing. This suppresses redeposition due to volatile matter. Furthermore, the addition of the polyfunctional vinyl-based monomer has the effect of promoting three-dimensional cross-linking of the cured product (Y) and increasing the heat resistance and mechanical strength of the cured product (Y).
  • the blending amount of the polyfunctional vinyl monomer may be within a range that can guarantee the blending amount of the monofunctional vinyl monomer (B), and from the viewpoint of mechanical strength and heat resistance, It is desirable to be within the range of 2 wt % to 20 wt %.
  • Curing agent and initiator (C) A curing agent and a reaction initiator (C) are used to cure the thermosetting resin (A) and the monofunctional vinyl monomer (B).
  • the curing agent and reaction initiator (C) an organic peroxide that mainly acts on meth(acryloyl) groups and a curing agent for epoxy groups are used in combination.
  • Organic peroxides are mainly used as reaction initiators for meth(acryloyl) groups, and those known in the art are used.
  • the organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40° C. or higher. 170° C. is preferred.
  • Examples of these organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, and peroxydicarbonate-based peroxides. etc. can be used. These organic peroxides may be used alone or in combination of two or more.
  • organic peroxides having such a 10-hour half-life temperature include 1,1-di(t-butylperoxy)cyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di- (Butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate , t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-
  • the amount of the organic peroxide compounded in the insulating resin composition (X) is not particularly limited. Preferably, it is 0.5 parts by mass to 5 parts by mass. If the amount of the organic peroxide is less than 0.1 part by mass, the crosslink density will be low and the mechanical strength required for the cured product will not be obtained. On the other hand, if the amount of the organic peroxide is more than 10 parts by mass, the pot life of the insulating resin composition (X) tends to be significantly shortened.
  • Curing Agent for Epoxy Group those known in the art are used. , quaternary phosphonium salts, amine complexes, imidazole compounds, compounds containing transition metals such as titanium and cobalt, acid anhydrides, imidazole compounds, polymercaptan compounds, phenols, Lewis acid compounds, isocyanate compounds, etc. is mentioned. These may be used alone or in combination of two or more.
  • amine curing agents include tertiary amines and tertiary amine salts.
  • tertiary amine salts include carboxylates, sulfonates, and inorganic acid salts of the tertiary amines described above.
  • carboxylates include salts of carboxylic acids (especially salts of fatty acids) having 1 to 30 carbon atoms (especially 1 to 10 carbon atoms) such as octylate.
  • Sulfonates include p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, and the like.
  • tertiary amine salts include salts of 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) (eg, p-toluenesulfonate, octylate), and the like. mentioned. However, these are merely examples. The use of amine-based curing agents other than these does not depart from the gist of the present disclosure.
  • DBU 1,8-diazabicyclo[5.4.0]undecene-7
  • borate esters examples include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate ester compounds. However, these are merely examples. The use of borate esters other than these does not depart from the spirit of the present disclosure.
  • organometallic compounds include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, and aluminum acetylacetone complexes. However, these are merely examples. The use of organometallic compounds other than these does not depart from the spirit of the present disclosure.
  • organic phosphorus compounds examples include tetraphenylphosphonium/tetraphenylborate and triphenylphosphine. However, these are merely examples. The use of organophosphorus compounds other than these does not depart from the gist of the present disclosure.
  • quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, tetrabutyl bromide.
  • quaternary phosphonium salts include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, bromine ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride phosphonium, butyltriphenylphosphonium bromide, butyltri
  • amine complexes include boron halide-amine complexes, which are complexes of boron halides such as boron trifluoride, boron trichloride and boron tribromide, and amine compounds.
  • examples of amine compounds include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N,N-dimethyloctylamine and N,N-dimethylbenzylamine, and N,N-dimethylaniline.
  • heterocyclic tertiary amines such as substituted or unsubstituted imidazole or pyridine alkylated at the 1-position, aliphatic primary amines such as monoethylamine and n-hexylamine, benzylamine, etc. aliphatic primary amines containing an aromatic ring, aromatic primary amines such as aniline, secondary amines such as piperidine, and the like.
  • boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, boron trichloride N,N-diethyldioctylamine complex and the like. However, these are merely
  • imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl- 4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole , 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole, 2,4-diamino-6 (2′-methylimidazole (1′))ethyl-s-triazine, 2,4-diamino-6 ( 2'-undecylimidazole (1'))ethyl-s-triazine
  • acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnadic anhydride. However, these are merely examples. The use of acid anhydride curing agents other than these does not depart from the gist of the present disclosure.
  • the blending amount of the epoxy group curing agent can be appropriately adjusted according to the type of the thermosetting resin (A), the type of the curing agent, and the like.
  • the blending amount of the curing agent is preferably about 0.5 equivalent or more and 2 equivalent or less with respect to the epoxy equivalent of the thermosetting resin (A). If the amount of the curing agent is less than 0.5 equivalents, curing of the thermosetting resin (A) may not progress sufficiently. If the blending amount of the curing agent exceeds 2 equivalents, the heat resistance, mechanical properties, etc. of the cured product may deteriorate.
  • a curing accelerator may be used in combination to accelerate or control the curing reaction.
  • Curing accelerators include, for example, tertiary amines and salts thereof, quaternary ammonium compounds, imidazoles, alkali metal alkoxides and the like. However, these are merely examples. The use of curing accelerators other than these does not depart from the gist of the present disclosure.
  • the amount of the curing accelerator is preferably about 0.01% by mass or more and 30% by mass or less (more preferably about 0.05% by mass or more and 20% by mass or less) relative to the mass of the thermosetting resin (A). is. If the blending amount is less than 0.01% by mass, the promotion effect may be small. If the blending amount exceeds 30% by mass, the storage stability of the insulating resin composition (X) and the moldability of the cured product (Y) may deteriorate.
  • liquid paraffin (D) The liquid paraffin (D) forms a thin film on the surface of the cured product (Y) during the curing reaction of the insulating resin composition (X), volatilizes, and fills the curing furnace with the monofunctional vinyl monomer (B). is added to exhibit the effect of preventing adhesion to the surface of the cured product (Y).
  • Liquid paraffin (D) is not particularly limited as long as it is liquid at room temperature.
  • Liquid paraffin (D) consists of a chain saturated hydrocarbon compound represented by, for example, C n H 2n+2 where n is an integer. The integer n is, for example, 20 or more.
  • the melting point of liquid paraffin (D) is, for example, 30° C. or lower.
  • Liquid paraffin (D) does not completely volatilize even at the boiling point of monofunctional vinyl monomer (B). That is, the liquid paraffin (D) remains to the extent that a thin film can be formed on the surface of the insulating resin composition (X) and its cured product (Y) even at the boiling point of the monofunctional vinyl monomer (B). I wish I had.
  • the boiling point of liquid paraffin (D) is higher than the boiling point of monofunctional vinyl monomer (B).
  • Examples of liquid paraffin (D) include liquid paraffin, mineral oil, liquid paraffin, white mineral oil, and the like.
  • the liquid paraffin (D) may be directly added to the mixture of the thermosetting resin (A) and the monofunctional vinyl monomer (B). is preferably dispersed in advance as a dispersion medium and then mixed.
  • the liquid paraffin (D) preferably has a viscosity of 10 mPa ⁇ s to 200 mPa ⁇ s at room temperature of 25°C.
  • the content of liquid paraffin (D) is 5 wt% or less, preferably 3 wt% or less, more preferably 0.01 wt% to 1 wt% of the total amount of varnish component (Z). If the blending amount is less than 0.01 wt %, it is difficult to form a sufficient coating film to prevent re-adhesion of the monofunctional vinyl monomer (B). On the other hand, if the blending amount exceeds 5 wt %, the mechanical strength and heat resistance of the cured product (Y) are affected.
  • Insulating resin composition (X) can be produced by the following production method.
  • the blending amounts of (A) to (D) are the amounts described in Examples and Comparative Examples.
  • the mixing method is not particularly limited as long as it can utilize a method known in the art and can be uniformly mixed.
  • Liquid paraffin (D) is added to the whole amount or a fractionated portion of monofunctional vinyl monomer (B) and uniformly dispersed by ultrasonic waves.
  • the polyfunctional vinyl-based monomer is, for example, a thermosetting resin together with the liquid paraffin solution in (b) above. (A) is mixed.
  • the cured product (Y) is a cured product of the insulating resin composition (X).
  • the cured product (Y) is typically produced by heating the insulating resin composition (X).
  • the cured product (Y) is used in various forms and shapes depending on the application.
  • the cured product (Y) can be molded into a desired shape by various molding methods such as impregnation, coating, casting, or sheet molding.
  • the cured product (Y) has excellent insulation performance and heat resistance. Therefore, the cured product (Y) is suitable for applications requiring at least one of insulation performance and heat resistance.
  • the cured product (Y) is suitable, for example, as an insulating member for heavy electrical equipment such as rotary machines and power transmission and transformation equipment. Examples of the insulating member include varnish, insulating paint, cable coating material, insulating sheet, and sealing material.
  • the step of impregnating the coil with the insulating resin composition (X) adjusted in the adjusting step is carried out.
  • the impregnation method in the impregnation step is not particularly limited, but a preheating step and an air cooling step are carried out before the impregnation step. Further, after the impregnation process, the heat-curing process is performed through the drip removal process.
  • the preheating process is a process of performing annealing treatment for the purpose of improving the crazing resistance of coil windings such as enameled wires.
  • the coil is heated to a predetermined temperature.
  • the heating temperature in the preheating step is not particularly limited as long as it can improve the crazing property, but the treatment is performed at, for example, 150°C.
  • the air cooling step is a step of cooling the coil to a predetermined temperature in order to suppress the temperature rise of the insulating resin composition (X).
  • the temperature after cooling is not particularly limited as long as it is within a temperature range that does not affect the pot life of the insulating resin composition (X).
  • the coil is impregnated with the insulating resin composition (X) by a treatment method known in the art, such as immersion, dripping, pressure impregnation, and vacuum impregnation.
  • a treatment method known in the art such as immersion, dripping, pressure impregnation, and vacuum impregnation.
  • immersion or pressure/vacuum impregnation is generally performed in order to impregnate the inside of the coil with the insulating resin composition (X).
  • immersion impregnation is performed, the coil is gently immersed in an impregnation tank filled with the insulating resin composition (X).
  • the immersion time is not particularly limited, but since the air adhering between the wound enameled wires and in the constituent members rises to the surface as bubbles during immersion, the immersion should be continued until these bubbles disappear. is desirable.
  • the immersion time is preferably about 10 to 60 minutes, and about 15 to 45 minutes from the viewpoint of improving the efficiency of the manufacturing process, that is, shortening the time. This is because if the immersion time is less than 10 minutes, the resin does not permeate the entire coil, and even if the immersion exceeds 60 minutes at which air bubbles converge, the amount of the insulating resin composition (X) permeating into the coil does not increase. be.
  • the impregnation temperature that is, the temperature of the insulating resin composition (X) in the impregnation bath, is not particularly limited as long as it does not start thickening due to curing, and is generally set at room temperature of 25°C to 60°C. Since the insulating resin composition (X) according to Embodiment 1 has a low viscosity, impregnation at room temperature of 25° C. is also possible.
  • the coil is brought into a state in which the insulating resin composition (X) enters between windings.
  • the insulating resin composition (X) impregnated in the coil in the impregnation step is heated and cured in a curing furnace to form a cured product (Y).
  • the curing heating temperature in the heat curing step is not particularly limited as long as it is equal to or higher than the reaction initiation temperature (half-life temperature) of the reaction initiator added to the insulating resin composition (X), and is generally 130° C. to 180° C., preferably. is between 140°C and 170°C.
  • the curing heating time required in the heat-curing step varies depending on the curing speed of the resin, the amount of resin adhered to the coil, the raw material composition, and the like.
  • the curing heating time required for curing depends on the temperature, and generally the higher the temperature, the shorter the time until curing. Therefore, the curing heating temperature and the curing heating time are set to the temperature and time necessary for complete curing according to the composition of the insulating resin composition (X).
  • the insulating resin composition (X) may not be completely cured and an uncured portion may occur. At this time, various properties such as electrical properties and mechanical properties may deteriorate.
  • the curing heating temperature or the curing heating time is excessive, the balance of the cross-linking reaction due to the curing heating may be lost, which may cause cracks in the cured product (Y).
  • Curing heating temperature and curing heating time are set within a range that does not cause these problems.
  • the insulating resin composition (X) according to Embodiment 1 is completely cured when the curing heating temperature is 130° C. to 180° C. and the curing heating time is 30 minutes to 8 hours. If the curing heating time is less than 30 minutes, the insulating resin composition (X) will not be completely cured.
  • the mechanical strength that is, the wire fixing strength, gradually develops and improves after curing, and tends to converge after a predetermined time, here 4 hours or later. Therefore, from the viewpoint of complete curing and convergence of mechanical strength, the curing heating time is preferably 1 to 4 hours, more preferably 1 to 2 hours.
  • FIG. 2 is a cross-sectional view of the hoist according to Embodiment 1.
  • the hoist 10 shown in FIG. 2 includes a rotating section 11, a brake section 12, and a motor section 13.
  • the rotating part 11 includes a sheave 14 , a rotor 15 , a brake disc 16 and a rotating shaft 17 .
  • the sheave 14 , rotor 15 and brake disc 16 are coaxially coupled by a rotating shaft 17 .
  • a main rope (not shown) is wound around the sheave 14 .
  • An elevator car, not shown, supported on the main ropes is driven by friction between the main ropes and sheaves 14 .
  • the brake part 12 has a movable brake shoe (not shown).
  • the brake portion 12 generates a force for braking the rotating portion 2 by friction generated by pressing the brake shoe against the brake disc 16 .
  • the motor section 13 includes a frame 18 and a stator 19.
  • the stator 19 is fixed to the frame 18 by press fitting or shrink fitting.
  • the stator 19 has an annular iron core 20 .
  • a winding 21 is wound around each tooth of the iron core 20 .
  • the winding 21 and the iron core 20 are insulated by the insulator 22 .
  • the winding 21 is fixed by an insulator 22 .
  • the windings 21 wound around each tooth are connected to each other in the order set, and generate magnetic flux when energized.
  • the stator 19 is manufactured, for example, by a method including the following procedures. First, prepare a wire that is insulated and coated with enamel.
  • the strand has electrical conductivity.
  • the material of the wire is, for example, copper, aluminum, silver, or the like.
  • the type of enamel is not particularly limited, but polyesterimide, polyamideimide, polyamide and the like are used in combination. These enamel insulating coating layers may contain an inorganic filler for improving dielectric strength.
  • These enameled wires commercially available ones for motor coils can be used.
  • the enameled wire coated with such insulation is wound around each tooth of the iron core 20 to form the winding 21 .
  • the wire 21 is impregnated with the insulating resin composition (X) by the method of the impregnation step described above, and the insulating resin composition (X) is cured by the heat curing step.
  • the low-molecular-weight monofunctional vinyl-based monomer (B) is used as a reactive diluent that lowers the viscosity in order to improve the impregnation of the insulating resin composition (X) into the coil, the coil length is long.
  • the insulating resin composition (X) is easily impregnated into even the coil of a large rotating machine having a large thickness.
  • the low viscosity of the insulating resin composition (X) suppresses the formation of excess lumpy cured product, and the thin film formed by the liquid paraffin (B) further enhances the surface texture of the cured product (Y). This improves the manufacturability of a large rotating machine.
  • thermosetting resin A thermosetting resin having both an epoxy group and a meta(acryloyl) group in one molecule and having a number average molecular weight of about 2000 and a viscosity of about 3900 mPa s at 60°C
  • Monofunctional vinyl-based monomer B) 2-hydroxyethyl methacrylate (2-HEMA) - Polyfunctional vinyl-based monomer Polyfunctional vinyl-based monomer having two or more meta(acryloyl) groups or allyl groups in one molecule (neopentyl glycol dimethacrylate having a viscosity of 5 mPa s at 25°C) ⁇ Curing agent and initiator
  • Curing agent zinc octylate Reaction initiator: 2,5-dimethyl-2,5-di(t-butylperoxy)hexane Liquid paraffin (D) Liquid paraffin, solid paraffin (comparative example)
  • Table 1 shows the compounding amounts of Examples 1 to 26.
  • the weight percentages (wt%) of the liquid paraffin (D) and the reaction initiator are the thermosetting resin (A), the monofunctional vinyl monomer (B), and the polyfunctional vinyl monomer varnish. Represents the weight ratio of component (Z) as a whole.
  • 1 phr represents the blending amount of 1 part by mass of curing agent per 100 parts by mass of thermosetting resin (A) and monofunctional vinyl-based monomer (B).
  • thermosetting resin (A), monofunctional vinyl monomer (B), polyfunctional vinyl monomer, curing agent and reaction initiator (C) were weighed according to the blending amounts shown in Table 1.
  • the blending amount of the curing agent was 1 phr, and the blending amount of the reaction initiator was 0.4 wt %.
  • the liquid paraffin (D) was weighed according to the compounding amount shown in Table 1 and dispersed in the monofunctional vinyl monomer (B) to prepare a liquid paraffin solution.
  • thermosetting resin (A), the polyfunctional vinyl-based monomer, the curing agent and the reaction initiator (C), and the prepared liquid paraffin solution are all mixed and uniformly stirred to form an insulating resin composition.
  • a product (X) was obtained.
  • Comparative example 1 Insulating resin compositions were prepared according to the blending amounts shown in Table 1 in the same manner as in Examples 1 to 26. As shown in Table 1, Comparative Example 1 is an example in which the blending of materials was the same as in Example 7, except that the liquid paraffin (D) was not included.
  • Comparative example 2 Insulating resin compositions were prepared according to the blending amounts shown in Table 1 in the same manner as in Examples 1 to 26. As shown in Table 1, Comparative Example 2 is an example in which the composition of materials was the same as in Example 7 except that 1 wt % of solid paraffin was included instead of liquid paraffin (D). As the solid paraffin, a paraffin that takes a solid form at a room temperature of 25° C., that is, has a melting point higher than 25° C. is used. In Comparative Example 2, pulverized solid paraffin was used in order to uniformly disperse it in the monofunctional vinyl monomer (B).
  • D liquid paraffin
  • Viscosity The viscosity of the insulating resin composition (X) was measured with an E-type viscometer. Table 1 shows the results of measurements at room temperature.
  • the curing heating time was 1 hour for Examples 1 to 21 and Comparative Examples 1 and 2, 25 minutes for Example 25, 30 minutes for Example 23, 120 minutes for Example 24, and 180 minutes for Example 25. minutes, and 240 minutes in Example 26.
  • the helical coil obtained by heat curing was subjected to a three-point bending test using an autograph (strength tester). The results of the evaluation are shown in the "Strength" column of Table 1. In Table 1, .DELTA.
  • Examples 1 to 26 have improved tactile properties compared to Comparative Examples 1 and 2. This is because the liquid paraffin (D) forms a thin film on the surface of the cured product (Y) and is distributed from the surface to the inside while having a concentration gradient, thereby filling the curing furnace with the monofunctional vinyl monomer (B ) is thought to be due to the suppression of re-adhesion.
  • Example 7 Based on the results of Example 7 and Comparative Example 1, the influence of the presence or absence of liquid paraffin (D) will be considered. Since Comparative Example 1 does not contain liquid paraffin (D), a thin film of liquid paraffin (D) is not formed on the surface of the cured product (Y), and the volatilized monofunctional vinyl monomer (B) is cured at the curing heating temperature. It is considered that the adhesion to the surface of the object was not suppressed. In addition, 2-HEMA used as the monofunctional vinyl-based monomer (B) in Example 7 and Comparative Example 1 has water absorbing properties.
  • Comparative Example 1 not only the reattachment of the volatilized 2-HEMA is not suppressed, but also the 2-HEMA reattached to the surface adsorbs the moisture in the air after cooling. is considered to have deteriorated.
  • the concentration of the paraffin solution of Comparative Example 2 is the same as that of the paraffin solution of Example 7, but in Comparative Example 2 solid paraffin that takes a solid form at room temperature of 25° C. is used.
  • pulverized solid paraffin is used, but unlike liquid paraffin (D), it is difficult to uniformly disperse it. For this reason, in Comparative Example 2, the formation of the paraffin thin film on the surface of the cured product became non-uniform, and the expected effect of improving touchability was not obtained.
  • Example 14 Based on the results of Examples 1 to 14, the influence of the compounding amount of the monofunctional vinyl monomer (B) will be discussed.
  • the amount of the monofunctional vinyl-based monomer (B) blended was less than 45 wt% of the total amount of the varnish component (Z) in Examples 1 to 3 and Example 13, Example 4, Example 5, and Example 10. 50 wt % to 75 wt % in Example 11, Example 12, and Example 14 is 84 wt % or more.
  • the mechanical strength was evaluated as excellent, but the thickness of the hardened block exceeded 10 mm.
  • Example 11, Example 12, and Example 14 the thickness of the block-like cured product was good at 2 mm or less, but the mechanical strength was lowered, resulting in a ⁇ evaluation.
  • the amount of the monofunctional vinyl monomer (B) should be 44 wt% to 84 wt% of the total amount of the varnish component (Z), preferably 51 wt%. % to 72 wt%, more preferably 58 wt% to 68 wt%.
  • the amount of liquid paraffin (D) is less than 0.01 wt% of the total amount of varnish component (Z) in Example 15, 1 wt% to 3 wt% in Examples 16 and 17, and 3 wt% in Examples 18 and 19. % to 6 wt%, and greater than 6 wt% in Examples 20 and 21.
  • the cured product (Y) in any case also exhibits excellent tactile properties compared to those of Comparative Examples 1 and 2. On the other hand, in Example 15, tackiness was felt even though there was no adhesion to the finger after being touched with the finger.
  • the amount of liquid paraffin (D) is 5.3 wt% or less, preferably 2.9 wt% or less, more preferably 0.008 wt% to 1.2 wt% of the total amount of varnish component (Z). % was found to be desirable.
  • the curing heating time was 25 minutes in Example 22, 30 minutes in Example 23, 120 minutes in Example 24, 180 minutes in Example 25, and 240 minutes in Example 26.
  • the results corresponding to those of Example 7, in which the same formulation was used and the heating time for curing was 60 minutes, are shown side by side in Examples 22 to 26 in Table 1.
  • a mechanical strength of 100 N or more is obtained in any of the examples.
  • the mechanical strength reaches about 200 N from the curing heating time of 60 minutes, and the increase in the mechanical strength is saturated with the curing heating time longer than that.
  • the curing heating time is preferably 1 hour to 4 hours, more preferably 1 hour to 2 hours.
  • a rotating machine according to the present disclosure can be applied to a hoisting machine for a rope elevator.
  • a coil according to the present disclosure can be applied to the rotating machine.
  • the insulating resin processed product and the cured product thereof according to the present disclosure can be applied to maintaining the insulating properties and mechanical strength of the coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Insulating Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention provides: an insulating resin composition which improves the surface tactility of a cured object; a cured product of the composition; a rotary machine coil having favorable surface tactility; and a rotary machine using the coil. The insulating resin composition is an insulating resin composition which cures at a curing heating temperature. The insulating resin composition includes: a heat-curing resin having, in one molecule, both an epoxy group and a meth(acryloyl) group; a varnish component including a monofunctional vinyl monomer that volatilizes at or above the curing heating temperature; a curing agent and reaction initiator; and a liquid paraffin.

Description

絶縁樹脂組成物、硬化物、回転機用コイル、および回転機Insulating resin composition, cured product, coil for rotating machine, and rotating machine
 本開示は、絶縁樹脂組成物、硬化物、回転機用コイル、および回転機に関する。 The present disclosure relates to insulating resin compositions, cured products, coils for rotating machines, and rotating machines.
 特許文献1は、無溶剤型ワニス組成物の例を開示する。無溶剤型ワニス組成物は、1分子中に2個以上のメタ(アクリロイル)基を有する熱硬化性樹脂と、1分子中にエポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂と、単官能性ビニル系モノマーと、を含む。無溶剤型ワニス組成物は、回転機のコイルにおいて絶縁性の保持および機械的強度の維持のために用いられる。無溶剤型ワニス組成物は、無溶剤型ワニス組成物が入れられた含浸槽にコイルを浸漬する浸漬法などによってコイルに浸漬させられる。単官能性ビニル系モノマーは、コイルへの含浸性を高めるために絶縁樹脂組成物の粘度を低下させる反応性希釈剤として用いられる。コイルに含浸させられた絶縁樹脂組成物は、硬化炉において加熱されて硬化することで硬化物となる。 Patent Document 1 discloses an example of a solventless varnish composition. The solvent-free varnish composition includes a thermosetting resin having two or more meth(acryloyl) groups in one molecule, and a thermosetting resin having both an epoxy group and a meth(acryloyl) group in one molecule. , and a monofunctional vinyl monomer. Solvent-free varnish compositions are used to maintain insulation and mechanical strength in coils of rotating machines. The solvent-free varnish composition is immersed in the coil by, for example, an immersion method in which the coil is immersed in an impregnation tank containing the solvent-free varnish composition. A monofunctional vinyl-based monomer is used as a reactive diluent that lowers the viscosity of the insulating resin composition in order to improve impregnation of the coil. The insulating resin composition with which the coil is impregnated is heated in a curing furnace to be cured to form a cured product.
日本特許第6532537号公報Japanese Patent No. 6532537
 しかしながら、特許文献1の無溶剤型ワニス組成物などの絶縁樹脂組成物において、硬化炉での加熱中に単官能性ビニル系モノマーの一部が揮発することがある。この場合に、揮発して硬化炉内に充満した単官能性ビニル系モノマーが硬化物の表面に再付着することがある。これにより、硬化物の表面にべたつきが残ることがある。 However, in the insulating resin composition such as the solventless varnish composition of Patent Document 1, part of the monofunctional vinyl monomer may volatilize during heating in the curing furnace. In this case, the volatilized monofunctional vinyl-based monomer that fills the curing oven may redeposit on the surface of the cured product. As a result, stickiness may remain on the surface of the cured product.
 本開示は、このような課題の解決に係るものである。本開示は、硬化物の表面指触性をより高められる絶縁性樹脂組成物およびその硬化物、表面指触性のよい回転機用コイルおよびそれを用いた回転機を提供する。 The present disclosure relates to solving such problems. The present disclosure provides an insulating resin composition and a cured product thereof, which can further enhance surface touchability of a cured product, a coil for a rotating machine with good surface touchability, and a rotating machine using the same.
 本開示に係る絶縁性樹脂組成物は、硬化加熱温度において硬化する絶縁樹脂組成物であり、1分子中にエポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂、ならびに前記硬化加熱温度以上で揮発する単官能性ビニル系モノマーを含むワニス成分と、硬化剤および反応開始剤と、液状パラフィンと、を含む。 The insulating resin composition according to the present disclosure is an insulating resin composition that cures at a curing heating temperature, a thermosetting resin having both an epoxy group and a meth (acryloyl) group in one molecule, and the curing heating temperature It contains a varnish component containing a monofunctional vinyl-based monomer that volatilizes as described above, a curing agent and a reaction initiator, and liquid paraffin.
 本開示に係る硬化物は、上記の絶縁樹脂組成物を硬化させたものである。 The cured product according to the present disclosure is obtained by curing the above insulating resin composition.
 本開示に係る回転機用コイルは、上記の絶縁樹脂組成物を含浸させたものである。 A coil for a rotating machine according to the present disclosure is impregnated with the insulating resin composition.
 本開示に係る回転機は、ロープ式エレベーターのかごを駆動させる巻上機に用いられる回転機であり、上記の回転機用コイルを用いた固定子を備える。 A rotating machine according to the present disclosure is a rotating machine used for a hoist that drives a car of a rope elevator, and includes a stator that uses the rotating machine coil described above.
 本開示に係る絶縁性樹脂組成物であれば、硬化物の表面指触性がより高められる。また、回転機用コイルの表面指触性がより高められる。 With the insulating resin composition according to the present disclosure, the touchability of the surface of the cured product is further enhanced. In addition, the tactile feel of the surface of the rotating machine coil is further enhanced.
実施の形態1に係る絶縁樹脂組成物が硬化している状況の例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a state in which the insulating resin composition according to Embodiment 1 is cured; 実施の形態1に係る巻上機の断面図である。1 is a cross-sectional view of a hoist according to Embodiment 1; FIG.
 実施の形態1.
 以下、本開示の対象を実施するための形態について説明する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。また、本開示における実施の形態および実施例は、すべての点で例示であり、制限的に解釈されるべきものではない。
Embodiment 1.
Hereinafter, modes for implementing the subject of the present disclosure will be described. It should be noted that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments, or modifications of any constituent elements of the embodiments, within the scope of the present disclosure. It can be omitted. In addition, the embodiments and examples in the present disclosure are illustrative in all respects and should not be construed as restrictive.
 実施の形態1において、硬化性の絶縁樹脂組成物(X)およびその硬化物(Y)を説明する。また、絶縁樹脂組成物(X)を用いた回転機用コイルおよびこれを固定子に用いた回転機の説明も行う。 In Embodiment 1, the curable insulating resin composition (X) and its cured product (Y) will be described. A rotating machine coil using the insulating resin composition (X) and a rotating machine using this as a stator will also be described.
 1.絶縁樹脂組成物(X)
 実施の形態1の絶縁樹脂組成物(X)は、ワニス成分(Z)と、硬化剤および反応開始剤(C)と、液状パラフィン(D)と、を含む。ワニス成分(Z)は、エポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂(A)と、硬化加熱温度以上で揮発する単官能性ビニル系モノマー(B)と、を含む。ここで、メタ(アクリロイル)基とは、アクリロイル基またはメタクリロイル基を表す。また、本開示において「x~y」を用いて表される数値範囲は、下限値xおよび上限値yを含む数値範囲を表す。
1. Insulating resin composition (X)
The insulating resin composition (X) of Embodiment 1 contains a varnish component (Z), a curing agent and a reaction initiator (C), and liquid paraffin (D). The varnish component (Z) contains a thermosetting resin (A) having both an epoxy group and a meth(acryloyl) group, and a monofunctional vinyl-based monomer (B) that volatilizes at a curing heating temperature or higher. Here, a meth(acryloyl) group represents an acryloyl group or a methacryloyl group. In addition, a numerical range expressed using “x to y” in the present disclosure represents a numerical range including a lower limit value x and an upper limit value y.
 絶縁性樹脂組成物(X)は、例えばコイルにおいて絶縁性の保持および機械的強度の維持のためなどに用いられる。当該コイルが適用される機器は、特定の機器に限定されない。当該コイルは、例えばモーターなどの電動機、または発電機などの回転機に適用される。当該コイルは、例えばエレベーターの巻上機、または電動圧縮機などに適用される。絶縁性樹脂組成物(X)は、例えば絶縁性樹脂組成物(X)が入れられた含浸槽にコイルを浸漬する浸漬法などによってコイルに浸漬させられる。コイルに含浸させられた絶縁樹脂組成物(X)は、硬化炉において加熱されて硬化することで硬化物(Y)となる。 The insulating resin composition (X) is used, for example, to maintain insulation and mechanical strength in coils. Devices to which the coil is applied are not limited to specific devices. The coil is applied to, for example, an electric motor such as a motor, or a rotating machine such as a generator. The coil is applied to, for example, an elevator hoist or an electric compressor. The insulating resin composition (X) is immersed in the coil by, for example, an immersion method in which the coil is immersed in an impregnation bath containing the insulating resin composition (X). The insulating resin composition (X) with which the coil is impregnated is heated and cured in a curing furnace to form a cured product (Y).
 図1は、実施の形態1に係る絶縁樹脂組成物(X)が硬化している状況の例を示す概念図である。図1において、コイル1の表面上で硬化する絶縁樹脂組成物2の例が示される。硬化炉において、液状パラフィンは、硬化している絶縁樹脂組成物2の表面上に薄膜3を形成する。これにより、揮発して硬化炉内に充満している単官能性ビニル系モノマー4の硬化物への再付着が抑制される。 FIG. 1 is a conceptual diagram showing an example of a state in which the insulating resin composition (X) according to Embodiment 1 is cured. In FIG. 1 an example of an insulating resin composition 2 cured on the surface of a coil 1 is shown. In the curing oven, the liquid paraffin forms a thin film 3 on the surface of the insulating resin composition 2 that is curing. As a result, reattachment of the monofunctional vinyl-based monomer 4, which has volatilized and filled the curing furnace, to the cured product is suppressed.
 一般に、絶縁樹脂組成物が含浸槽においてコイルに含浸される場合に、含浸槽から引き上げられたコイル、当該コイルの鉄心、およびその他の構成部材などにおいて、余分な絶縁樹脂組成物が付着している。硬化処理において余分な絶縁樹脂組成物が付着したままである場合に、余分な絶縁樹脂組成物は、そのまま硬化してコイルの下部およびその他の構成部材上に塊状硬化物を形成することがある。また、余分な絶縁樹脂組成物は、硬化処理の加熱において粘度が低下することで硬化炉内に垂れ落ちることがある。垂れ落ちた絶縁樹脂組成物は、硬化炉内に塊状硬化物を形成する。コイルなどの構成部材上に形成された塊状硬化物は、硬化収縮などの熱応力によりコイルのエナメル線およびその他の部材を損傷させて絶縁性を低下させる要因になりうる。また、構成部材上に形成された塊状硬化物はコイルなどをハウジングまたは固定部材などに組み込む作業の妨げとなるため、構成部材上に形成された塊状硬化物を除去する作業が必要となる。また、硬化炉内に形成された塊状硬化物を除去する定期的な清掃作業が定期的に必要となる。これらの問題は、例えばエレベーターの巻上機などに適用されるような大型の回転機では特に顕著であり、余分な塊状硬化物の形成は抑制されることが好ましい。これらの問題に対応する観点から、実施の形態1に係る絶縁樹脂組成物(X)は、含浸槽から引き上げられたコイルに余分に付着しないように、コイルからの液切れがよいことが好ましい。絶縁樹脂組成物(X)の全体の粘度は、コイルなどからの絶縁樹脂組成物(X)の液切れをよくし余分な塊状硬化物の形成を抑制する観点からすると、10mPa・s~200mPa・sであることが望ましく、好ましくは10mPa・s~100mPa・s、より好ましくは15mPa・s~50mPa・sである。 In general, when the coil is impregnated with the insulating resin composition in the impregnation tank, the coil pulled up from the impregnation tank, the iron core of the coil, and other constituent members are covered with excess insulating resin composition. . If excess insulating resin composition remains adhered during the curing process, the excess insulating resin composition may cure as it is to form a hardened mass on the lower portion of the coil and other components. In addition, excess insulating resin composition may drip into the curing furnace due to a decrease in viscosity during heating for curing. The dripped insulating resin composition forms a hardened mass in the hardening furnace. A hardened mass formed on a component such as a coil may damage the enameled wire of the coil and other members due to thermal stress such as curing shrinkage, resulting in a decrease in insulation. In addition, since the hardened lumps formed on the constituent members interfere with the work of assembling the coil or the like into the housing or the fixing member, it is necessary to remove the hardened lumps formed on the constituent members. In addition, periodic cleaning is required periodically to remove lumps of hardened material that have formed in the curing oven. These problems are particularly conspicuous in large-sized rotating machines such as elevator hoisting machines, and it is preferable to suppress the formation of excessive lump-like cured products. From the viewpoint of addressing these problems, it is preferable that the insulating resin composition (X) according to Embodiment 1 drain well from the coil so as not to adhere excessively to the coil pulled up from the impregnation tank. The overall viscosity of the insulating resin composition (X) is from 10 mPa·s to 200 mPa·s from the viewpoint of improving the drainage of the insulating resin composition (X) from the coil or the like and suppressing the formation of excessive lump-shaped cured products. s, preferably 10 mPa·s to 100 mPa·s, more preferably 15 mPa·s to 50 mPa·s.
 1.1.熱硬化性樹脂(A)
 熱硬化性樹脂(A)は、反応活性基として1分子中に1個以上のエポキシ基および1個以上のメタ(アクリロイル)基の両方を有するものを含めばよく、特定の樹脂に限定されない。熱硬化性樹脂(A)はメタ(アクリロイル)基を反応活性基とし、有機過酸化物から発生する遊離ラジカルを介した付加反応と、エポキシ基を反応活性基とした開環重合の両方による3次元架橋反応とが促進される。これにより、硬化反応を促進すること、ならびに硬化物(Y)の耐熱性および機械的強度を高めることができる。
1.1. Thermosetting resin (A)
The thermosetting resin (A) is not limited to a specific resin as long as it has both one or more epoxy groups and one or more meta(acryloyl) groups in one molecule as reactive groups. The thermosetting resin (A) uses a meta(acryloyl) group as a reactive group and undergoes both an addition reaction via a free radical generated from an organic peroxide and a ring-opening polymerization using an epoxy group as a reactive group. dimension cross-linking reaction is promoted. This can accelerate the curing reaction and enhance the heat resistance and mechanical strength of the cured product (Y).
 熱硬化性樹脂(A)は、反応活性基としてエポキシ基およびメタ(アクリロイル)基の両方を含む樹脂を単独で用いるものであってもよい。熱硬化性樹脂(A)は、エポキシ基およびメタ(アクリロイル)基の一方または両方を有するその他の樹脂と組み合わせて用いるものであってもよい。組み合わせて用いられるその他の樹脂は、1分子中にエポキシ基およびメタ(アクリロイル)基の両方を含むものであってもよい。組み合わせて用いられるその他の樹脂は、1分子中にエポキシ基またはメタ(アクリロイル)基のいずれか一方のみを含むものであってもよい。 The thermosetting resin (A) may be a single resin containing both an epoxy group and a meta(acryloyl) group as reactive groups. The thermosetting resin (A) may be used in combination with other resins having either or both of an epoxy group and a meth(acryloyl) group. Other resins used in combination may contain both epoxy groups and meth(acryloyl) groups in one molecule. Other resins used in combination may contain only either one of an epoxy group or a meth(acryloyl) group in one molecule.
 熱硬化性樹脂(A)は、粘度調整の容易さから、数平均分子量(Mn)が15000以下、好ましくは1000~10000であり、60℃での粘度が10000mPa・s以下であることが望ましい。 The thermosetting resin (A) preferably has a number average molecular weight (Mn) of 15,000 or less, preferably 1,000 to 10,000, and a viscosity of 10,000 mPa·s or less at 60°C, for ease of viscosity adjustment.
 絶縁樹脂組成物(X)に配合される熱硬化性樹脂(A)のエポキシ当量は、500~5000であることが好ましく、より好ましくは1000~4000である。エポキシ当量を上記の範囲に制御することにより、絶縁樹脂組成物(X)のポットライフを損なうことなく硬化速度を向上させることができ、さらには硬化物(Y)の架橋密度を向上させることができる。 The epoxy equivalent of the thermosetting resin (A) mixed in the insulating resin composition (X) is preferably 500-5000, more preferably 1000-4000. By controlling the epoxy equivalent within the above range, it is possible to improve the curing rate without impairing the pot life of the insulating resin composition (X), and further improve the crosslink density of the cured product (Y). can.
 1.2.単官能性ビニル系モノマー(B)
 単官能性ビニル系モノマー(B)は、架橋構造の調整の他、主に絶縁樹脂組成物の粘度調整(X)のために用いられる。単官能性ビニル系モノマー(B)は、絶縁樹脂組成物(X)のポットライフを維持するために1分子中の官能基数がひとつである単官能性のものが望ましい。
1.2. Monofunctional vinyl monomer (B)
The monofunctional vinyl-based monomer (B) is used mainly for adjusting the viscosity of the insulating resin composition (X) in addition to adjusting the crosslinked structure. The monofunctional vinyl-based monomer (B) is desirably a monofunctional one having one functional group per molecule in order to maintain the pot life of the insulating resin composition (X).
 単官能性ビニル系モノマー(B)としては、エーテル結合またはエステル結合を有する低粘度のものが用いられる。絶縁樹脂組成物(X)に用いるのに好ましい単官能性ビニル系モノマー(B)は、ビニル基、アリル基、メタクリロイル基、またはアクリロイル基を有する、ヒドロキシアルキル類、アルキル類、脂環類、芳香族類、またはエーテル類のものである。特に、絶縁樹脂組成物(X)では、粘度を調整するため、室温(25℃)での粘度が20mPa・s以下の低粘度のメタクリルモノマーまたはアクリルモノマーが好ましい。特に、硬化時の高い反応性とポットライフとを両立させる観点から、メタクリロイル基またはアクリロイル基を1つ有する単官能性のビニル系モノマーがより好ましい。これらの単官能性のビニル系モノマーの例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、n-オクチルアクリレートなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のビニル系モノマーを用いたからといって、本開示の趣旨を逸脱するわけではない。これらの単官能性のビニル系モノマーは、単独の種類が用いられてもよいし、複数の種類が混合されて用いられてもよい。 A low-viscosity one having an ether bond or an ester bond is used as the monofunctional vinyl-based monomer (B). The monofunctional vinyl-based monomer (B) preferably used in the insulating resin composition (X) is a hydroxyalkyl, alkyl, alicyclic, aromatic monomer having a vinyl group, an allyl group, a methacryloyl group, or an acryloyl group. of the family, or of the ether class. In particular, in the insulating resin composition (X), a low-viscosity methacrylic monomer or acrylic monomer having a viscosity of 20 mPa·s or less at room temperature (25° C.) is preferable in order to adjust the viscosity. In particular, monofunctional vinyl-based monomers having one methacryloyl group or one acryloyl group are more preferable from the viewpoint of achieving both high reactivity during curing and pot life. Examples of these monofunctional vinyl monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, lauryl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, 4-hydroxybutyl ( meth)acrylate, n-octyl acrylate and the like. However, these are merely examples. The use of vinyl monomers other than these does not depart from the gist of the present disclosure. These monofunctional vinyl-based monomers may be used singly or in combination of multiple types.
 単官能性ビニル系モノマー(B)の配合量は、コイルなどからの絶縁樹脂組成物(X)の液切れをよくし余分な塊状硬化物の形成を抑制する観点からすると、なるべく多い方が好ましい。一方、単官能性ビニル系モノマー(B)は架橋点の増加に寄与するものの、低分子でありその一部が硬化加熱によって揮発することから、その全量は硬化反応に寄与しない。このため、単官能性ビニル系モノマー(B)の配合量が多すぎると硬化物(Y)の機械的強度は低下しうる。すなわち、単官能性ビニル系モノマー(B)の配合量は、余分な塊状硬化物の抑制および機械的強度の両方について要求される2つの機能を達成できる範囲内に調製する必要がある。余分な塊状硬化物の形成を抑制する観点から、単官能性ビニル系モノマー(B)の配合量は、ワニス成分(Z)全量の45wt%以上、好ましくは50wt%以上、より好ましくは55wt%以上とすることが望ましい。一方、機械的強度の観点から、単官能性ビニル系モノマー(B)の配合量は、ワニス成分(Z)全量の85wt%以下、好ましくは75wt%以下、より好ましくは70wt%以下とすることが望ましい。したがって、要求される2つの機能を両立するために、単官能性ビニル系モノマー(B)の配合量は、ワニス成分(Z)全量の45wt%~85wt%であることが望ましく、好ましくは50wt%~75wt%、より好ましくは55wt%~70wt%である。 The amount of the monofunctional vinyl-based monomer (B) to be blended is preferably as large as possible, from the viewpoint of improving the drainage of the insulating resin composition (X) from the coil or the like and suppressing the formation of excessive lump-like cured products. . On the other hand, although the monofunctional vinyl-based monomer (B) contributes to increase the number of cross-linking points, it does not contribute to the curing reaction because it is a low-molecular monomer and partly volatilizes when heated for curing. Therefore, if the amount of the monofunctional vinyl monomer (B) is too large, the mechanical strength of the cured product (Y) may decrease. That is, the amount of the monofunctional vinyl-based monomer (B) to be blended must be adjusted within a range that achieves the two functions required for both suppression of excessive cured lumps and mechanical strength. From the viewpoint of suppressing the formation of excessive lump-shaped cured products, the amount of the monofunctional vinyl monomer (B) is 45 wt% or more, preferably 50 wt% or more, more preferably 55 wt% or more of the total amount of the varnish component (Z). It is desirable to On the other hand, from the viewpoint of mechanical strength, the amount of the monofunctional vinyl monomer (B) is 85 wt% or less, preferably 75 wt% or less, more preferably 70 wt% or less of the total amount of the varnish component (Z). desirable. Therefore, in order to satisfy the two required functions, the amount of the monofunctional vinyl monomer (B) is desirably 45 wt% to 85 wt%, preferably 50 wt% of the total amount of the varnish component (Z). ~75 wt%, more preferably between 55 wt% and 70 wt%.
 絶縁樹脂組成物(X)のワニス成分(Z)において、単官能性ビニル系モノマー(B)とあわせて、1分子中に2個以上のメタ(アクリロイル)基またはアリル基を有する多官能性ビニル系モノマーを配合してもよい。多官能性ビニル系モノマーは、反応性希釈剤として絶縁樹脂組成物(X)の低粘度化を可能にする。また、多官能性ビニル系モノマーは、単官能性ビニル系モノマー(B)と異なり反応活性基であるメタ(アクリロイル)基またはアリル基を1分子中に複数含むため、絶縁樹脂組成物(X)の硬化反応において重合に寄与し、概ね完全に反応する。このため、多官能性ビニル系モノマーは、硬化中の揮発が少ない。これにより、揮発分による再付着が抑制される。さらに、多官能性ビニル系モノマーの配合は、硬化物(Y)の3次元架橋化を促進させ、硬化物(Y)の耐熱性及び機械的強度を高める効果も有する。多官能性ビニル系モノマーの配合量は、単官能性ビニル系モノマー(B)の配合量を担保できる範囲内であればよく、機械的強度と耐熱性の観点から、ワニス成分(Z)全量の2wt%~20wt%の範囲内であることが望ましい。 In the varnish component (Z) of the insulating resin composition (X), together with the monofunctional vinyl-based monomer (B), a polyfunctional vinyl having two or more meta(acryloyl) groups or allyl groups in one molecule A system monomer may be blended. The polyfunctional vinyl-based monomer, as a reactive diluent, makes it possible to lower the viscosity of the insulating resin composition (X). In addition, unlike the monofunctional vinyl monomer (B), the polyfunctional vinyl monomer contains a plurality of meth (acryloyl) groups or allyl groups, which are reactive groups, in one molecule, so that the insulating resin composition (X) contributes to polymerization in the curing reaction of , and generally reacts completely. Therefore, polyfunctional vinyl-based monomers volatilize less during curing. This suppresses redeposition due to volatile matter. Furthermore, the addition of the polyfunctional vinyl-based monomer has the effect of promoting three-dimensional cross-linking of the cured product (Y) and increasing the heat resistance and mechanical strength of the cured product (Y). The blending amount of the polyfunctional vinyl monomer may be within a range that can guarantee the blending amount of the monofunctional vinyl monomer (B), and from the viewpoint of mechanical strength and heat resistance, It is desirable to be within the range of 2 wt % to 20 wt %.
 1.3.硬化剤および反応開始剤(C)
 熱硬化性樹脂(A)および単官能性ビニル系モノマー(B)を硬化させるために、硬化剤および反応開始剤(C)が用いられる。実施の形態1において、硬化剤および反応開始剤(C)として、主にメタ(アクリロイル)基に作用する有機過酸化物と、エポキシ基用の硬化剤とが、併用される。
1.3. Curing agent and initiator (C)
A curing agent and a reaction initiator (C) are used to cure the thermosetting resin (A) and the monofunctional vinyl monomer (B). In Embodiment 1, as the curing agent and reaction initiator (C), an organic peroxide that mainly acts on meth(acryloyl) groups and a curing agent for epoxy groups are used in combination.
 1.3.1.有機過酸化物
 有機過酸化物は、主にメタ(アクリロイル)基の反応開始剤として用いられ、当該技術分野において公知のものが用いられる。有機過酸化物は、10時間半減期温度が40℃以上のものであれば特に限定されないが、硬化加熱時間の短縮、および硬化加熱温度の調整の点から、10時間半減期温度が100℃~170℃であることが好ましい。これらの有機過酸化物の例としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシエステル系、パーオキシジカーボネート系の過酸化物などを用いることができる。これらの有機過酸化物は、単独で用いられてもよいし、2種類以上を混合して用いられてもよい。このような10時間半減期温度を有する有機過酸化物の具体例としては、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、2,2-ジ(4,4-ジ-(ブチルパーオキシ)シクロヘキシル)プロパン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレラート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサン酸、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、p-メンタンハイドロパーオキサイド、t-ブチルパーオキシアリルモノカーボネート、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、クミンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の有機過酸化物を用いたからといって、本開示の趣旨を逸脱するわけではない。これらは、単独で用いられてもよいし、2種類以上を混合して用いられてもよい。
1.3.1. Organic Peroxides Organic peroxides are mainly used as reaction initiators for meth(acryloyl) groups, and those known in the art are used. The organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40° C. or higher. 170° C. is preferred. Examples of these organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, and peroxydicarbonate-based peroxides. etc. can be used. These organic peroxides may be used alone or in combination of two or more. Specific examples of organic peroxides having such a 10-hour half-life temperature include 1,1-di(t-butylperoxy)cyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di- (Butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate , t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-butylperoxyisopropylmonocarbonate, t-butylperoxybenzoate, t -butyl peroxyacetate, t-hexyl peroxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butyl peroxy 2-ethylhexyl monocarbonate, di(2-t-butyl peroxy) oxyisopropyl)benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-hexyl peroxide, t-butyl cumin Ruperoxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, p-menthane hydroperoxide, t-butyl peroxyallyl monocarbonate, methyl ethyl ketone peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-butyl hydroperoxide, cumin hydroperoxide, diisopropylbenzene hydroperoxide and the like. However, these are merely examples. The use of organic peroxides other than these does not depart from the spirit of the present disclosure. These may be used alone or in combination of two or more.
 絶縁樹脂組成物(X)における有機過酸化物の配合量は特に限定されないが、ワニス成分(Z)の合計100質量部に対して、好ましくは0.1質量部~10質量部であり、より好ましくは、0.5質量部~5質量部である。有機過酸化物の配合量が0.1質量部未満であると、架橋密度が小さくなり、硬化物に要求される機械的強度が得られない。一方、有機過酸化物の配合量が10質量部よりも多いと、絶縁樹脂組成物(X)のポットライフが著しく短くなる傾向にある。 The amount of the organic peroxide compounded in the insulating resin composition (X) is not particularly limited. Preferably, it is 0.5 parts by mass to 5 parts by mass. If the amount of the organic peroxide is less than 0.1 part by mass, the crosslink density will be low and the mechanical strength required for the cured product will not be obtained. On the other hand, if the amount of the organic peroxide is more than 10 parts by mass, the pot life of the insulating resin composition (X) tends to be significantly shortened.
 1.3.2.エポキシ基用の硬化剤
 エポキシ基用の硬化剤は、当該技術分野で公知のものが用いられ、例えば、アミン系化合物、ホウ酸エステル化合物、有機金属化合物、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、アミン錯体、イミダゾール系化合物、チタンおよびコバルトのような遷移金属を含む化合物、酸無水物、イミダゾール系化合物、ポリメルカプタン系化合物、フェノール類、ルイス酸系、イソシアネート系化合物などが挙げられる。これらは、単独で用いられてもよいし、2種類以上を混合して用いられてもよい。
1.3.2. Curing Agent for Epoxy Group As the curing agent for epoxy group, those known in the art are used. , quaternary phosphonium salts, amine complexes, imidazole compounds, compounds containing transition metals such as titanium and cobalt, acid anhydrides, imidazole compounds, polymercaptan compounds, phenols, Lewis acid compounds, isocyanate compounds, etc. is mentioned. These may be used alone or in combination of two or more.
 アミン系硬化剤の具体例としては、第三級アミン、第三級アミン塩が挙げられる。例えば、ラウリルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、(N,N-ジメチルアミノメチル)フェノール、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ジプロピレンジアミン、ポリエーテルジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチル)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、アミノエチルエタノールアミン、トリ(メチルアミノ)へキサン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロへキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジエチルジフェニルメタン、ジシアンジアミド、有機酸ジヒドラジドなどが挙げられる。第三級アミン塩の例としては、上記した第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩などが挙げられる。カルボン酸塩としては、オクチル酸塩などの炭素数1~30(特に、炭素数1~10)のカルボン酸の塩(特に、脂肪酸の塩)などが挙げられる。スルホン酸塩としては、p-トルエンスルホン酸塩、ベンゼンスルホン酸塩、メタンスルホン酸塩、エタンスルホン酸塩などが挙げられる。第三級アミン塩の代表的な具体例としては、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)の塩(例えば、p-トルエンスルホン酸塩、オクチル酸塩)などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のアミン系硬化剤を用いたからといって、本開示の趣旨を逸脱するわけではない。 Specific examples of amine curing agents include tertiary amines and tertiary amine salts. For example, lauryldimethylamine, N,N-dimethylcyclohexylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, (N,N-dimethylaminomethyl)phenol, 2,4,6-tris(N, N-dimethylaminomethyl)phenol, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), ethylenediamine, 1, 3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, dipropylenediamine, polyetherdiamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis(hexamethyl)triamine , triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aminoethylethanolamine, tri(methylamino)hexane, dimethylaminopropylamine, diethylaminopropylamine, methyliminobispropylamine, menzenediamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)-2,4,8,10 -tetraoxaspiro[5,5]undecane, m-xylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiethyldiphenylmethane, dicyandiamide, organic acid dihydrazide and the like. Examples of tertiary amine salts include carboxylates, sulfonates, and inorganic acid salts of the tertiary amines described above. Examples of carboxylates include salts of carboxylic acids (especially salts of fatty acids) having 1 to 30 carbon atoms (especially 1 to 10 carbon atoms) such as octylate. Sulfonates include p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, and the like. Representative specific examples of tertiary amine salts include salts of 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) (eg, p-toluenesulfonate, octylate), and the like. mentioned. However, these are merely examples. The use of amine-based curing agents other than these does not depart from the gist of the present disclosure.
 ホウ酸エステルの例としては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、環状ホウ酸エステル化合物などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のホウ酸エステルを用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of borate esters include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate ester compounds. However, these are merely examples. The use of borate esters other than these does not depart from the spirit of the present disclosure.
 有機金属化合物の例としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛、アルミニウムアセチルアセトン錯体などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の有機金属化合物を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of organometallic compounds include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, and aluminum acetylacetone complexes. However, these are merely examples. The use of organometallic compounds other than these does not depart from the spirit of the present disclosure.
 有機リン系化合物の例としては、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィンなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の有機リン系化合物を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of organic phosphorus compounds include tetraphenylphosphonium/tetraphenylborate and triphenylphosphine. However, these are merely examples. The use of organophosphorus compounds other than these does not depart from the gist of the present disclosure.
 第四級アンモニウム塩の例としては、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、ヨウ化トリエチルベンジルアンモニウム、塩化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウムなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の第四級アンモニウム塩を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, tetrabutyl bromide. ammonium, tetrabutylammonium iodide, triethylbenzylammonium chloride, triethylbenzylammonium bromide, triethylbenzylammonium iodide, triethylphenethylammonium chloride, triethylphenethylammonium bromide, triethylphenethylammonium bromide and the like. However, these are merely examples. Use of other quaternary ammonium salts does not depart from the spirit of this disclosure.
 第四級ホスホニウム塩の例としては、塩化テトラブチルホスホニウム、ヨウ化テトラブチルホスホニウム、酢酸テトラブチルホスホニウム、塩化テトラフェニルホスホニウム、臭化テトラフェニルホスホニウム、ヨウ化テトラフェニルホスホニウム、塩化エチルトリフェニルホスホニウム、臭化エチルトリフェニルホスホニウム、ヨウ化エチルトリフェニルホスホニウム、酢酸エチルトリフェニルホスホニウム、リン酸エチルトリフェニルホスホニウム、塩化プロピルトリフェニルホスホニウム、臭化プロピルトリフェニルホスホニウム、ヨウ化プロピルトリフェニルホスホニウム、塩化ブチルトリフェニルホスホニウム、臭化ブチルトリフェニルホスホニウム、ヨウ化ブチルトリフェニルホスホニウムなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の第四級ホスホニウム塩を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of quaternary phosphonium salts include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, bromine ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride phosphonium, butyltriphenylphosphonium bromide, butyltriphenylphosphonium iodide, and the like. However, these are merely examples. The use of quaternary phosphonium salts other than these does not depart from the spirit of the present disclosure.
 アミン錯体の例としては、三フッ化ホウ素、三塩化ホウ素及び三臭化ホウ素のようなハロゲン化ホウ素とアミン化合物との錯体であるハロゲン化ホウ素アミン錯体などが挙げられる。ここで、アミン化合物の例としては、トリメチルアミン、トリ-n-プロピルアミン、N,N-ジメチルオクチルアミン、N,N-ジメチルベンジルアミンなどの脂肪族三級アミン類、N,N-ジメチルアニリンなどの芳香族三級アミン類、1位がアルキル化された置換又は無置換のイミダゾールあるいはピリジンなどの複素環三級アミン類、モノエチルアミン、n-ヘキシルアミンなどの脂肪族一級アミン類、ベンジルアミンなどの芳香環を含む脂肪族一級アミン類、アニリンなどの芳香族一級アミン類、ピペリジンなどの二級アミン類などが挙げられる。ハロゲン化ホウ素アミン錯体の代表的な具体例としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素イソプロピルアミン錯体、三フッ化ホウ素クロロフェニルアミン錯体、三フッ化ホウ素-トリアリルアミン錯体、三フッ化ホウ素ベンジルアミン錯体、三フッ化ホウ素アニリン錯体、三塩化ホウ素モノエチルアミン錯体、三塩化ホウ素フェノール錯体、三塩化ホウ素ピペリジン錯体、三塩化ホウ素硫化ジメチル錯体、三塩化ホウ素N,N-ジメチルオクチルアミン錯体、三塩化ホウ素N,N-ジメチルドデシルアミン錯体、三塩化ホウ素N,N-ジエチルジオクチルアミン錯体などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のアミン錯体を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of amine complexes include boron halide-amine complexes, which are complexes of boron halides such as boron trifluoride, boron trichloride and boron tribromide, and amine compounds. Here, examples of amine compounds include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N,N-dimethyloctylamine and N,N-dimethylbenzylamine, and N,N-dimethylaniline. heterocyclic tertiary amines such as substituted or unsubstituted imidazole or pyridine alkylated at the 1-position, aliphatic primary amines such as monoethylamine and n-hexylamine, benzylamine, etc. aliphatic primary amines containing an aromatic ring, aromatic primary amines such as aniline, secondary amines such as piperidine, and the like. Representative specific examples of boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, boron trichloride N,N-diethyldioctylamine complex and the like. However, these are merely examples. The use of amine complexes other than these does not depart from the spirit of the present disclosure.
 イミダゾール系化合物の例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のイミダゾール系硬化剤を用いたからといって、本開示の趣旨を逸脱するわけではない。 Examples of imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl- 4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole , 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole, 2,4-diamino-6 (2′-methylimidazole (1′))ethyl-s-triazine, 2,4-diamino-6 ( 2'-undecylimidazole (1'))ethyl-s-triazine, 2,4-diamino-6(2'-ethyl, 4-methylimidazole (1'))ethyl-s-triazine, 2,4-diamino -6(2'-methylimidazole (1'))ethyl-s-triazine isocyanuric acid adduct, 2:3 adduct of 2-methylimidazole isocyanuric acid, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl- 3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole and the like. However, these are merely examples. The use of imidazole-based curing agents other than these does not depart from the gist of the present disclosure.
 酸無水物系硬化剤の具体例としては、たとえば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の酸無水物系硬化剤を用いたからといって、本開示の趣旨を逸脱するわけではない。 Specific examples of acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnadic anhydride. However, these are merely examples. The use of acid anhydride curing agents other than these does not depart from the gist of the present disclosure.
 上記のエポキシ基用の硬化剤の配合量は、熱硬化性樹脂(A)の種類、および硬化剤の種類などに応じて、適宜調整されうる。硬化剤の配合量は、熱硬化性樹脂(A)のエポキシ当量に対して、好ましくは0.5当量以上2当量以下程度である。硬化剤の配合量が0.5当量未満であると、熱硬化性樹脂(A)の硬化が十分進行しない可能性もある。硬化剤の配合量が2当量を超えると、硬化物の耐熱性、機械的特性等が低下する可能性もある。 The blending amount of the epoxy group curing agent can be appropriately adjusted according to the type of the thermosetting resin (A), the type of the curing agent, and the like. The blending amount of the curing agent is preferably about 0.5 equivalent or more and 2 equivalent or less with respect to the epoxy equivalent of the thermosetting resin (A). If the amount of the curing agent is less than 0.5 equivalents, curing of the thermosetting resin (A) may not progress sufficiently. If the blending amount of the curing agent exceeds 2 equivalents, the heat resistance, mechanical properties, etc. of the cured product may deteriorate.
 1.3.3.エポキシ基用の反応促進剤
 上記のエポキシ基用の硬化剤に加え、硬化反応を促進するため、あるいは制御するため、硬化促進剤が併用されてもよい。硬化促進剤としては、たとえば、第三級アミンおよびその塩、四級アンモニウム化合物、イミダゾール、アルカリ金属アルコキシドなどが挙げられる。ただし、これらはあくまで例示に過ぎない。これら以外の硬化促進剤を用いたからといって、本開示の趣旨を逸脱するわけではない。
1.3.3. Reaction Accelerator for Epoxy Group In addition to the curing agent for epoxy group described above, a curing accelerator may be used in combination to accelerate or control the curing reaction. Curing accelerators include, for example, tertiary amines and salts thereof, quaternary ammonium compounds, imidazoles, alkali metal alkoxides and the like. However, these are merely examples. The use of curing accelerators other than these does not depart from the gist of the present disclosure.
 硬化促進剤の配合量は、熱硬化性樹脂(A)の質量に対して、好ましくは0.01質量%以上30質量%以下程度(より好ましくは0.05質量%以上20質量%以下程度)である。配合量が0.01質量%未満であると、促進効果が小さいこともある。配合量が30質量%を超えると、絶縁樹脂組成物(X)の保存安定性、および硬化物(Y)の成形性などが低下する可能性もある。 The amount of the curing accelerator is preferably about 0.01% by mass or more and 30% by mass or less (more preferably about 0.05% by mass or more and 20% by mass or less) relative to the mass of the thermosetting resin (A). is. If the blending amount is less than 0.01% by mass, the promotion effect may be small. If the blending amount exceeds 30% by mass, the storage stability of the insulating resin composition (X) and the moldability of the cured product (Y) may deteriorate.
 1.4.液状パラフィン(D)
 液状パラフィン(D)は、絶縁樹脂組成物(X)の硬化反応中に硬化物(Y)の表面に薄膜を形成し、揮発して硬化炉内に充満した単官能性ビニル系モノマー(B)の硬化物(Y)表面への付着を防止する効果を発現させるために添加される。
1.4. liquid paraffin (D)
The liquid paraffin (D) forms a thin film on the surface of the cured product (Y) during the curing reaction of the insulating resin composition (X), volatilizes, and fills the curing furnace with the monofunctional vinyl monomer (B). is added to exhibit the effect of preventing adhesion to the surface of the cured product (Y).
 液状パラフィン(D)は、室温において液状のものであれば特に限定されない。液状パラフィン(D)は、例えばnを整数としてC2n+2で表される鎖状飽和炭化水素化合物からなる。整数nは、例えば20以上である。液状パラフィン(D)の融点は、例えば30℃以下である。液状パラフィン(D)は、単官能性ビニル系モノマー(B)の沸点でも完全には揮発しない。すなわち、液状パラフィン(D)は、単官能性ビニル系モノマー(B)の沸点においても、絶縁樹脂組成物(X)およびその硬化物(Y)の表面に薄膜を形成できる程度に残留するものであればよい。例えば、液状パラフィン(D)の沸点は、単官能性ビニル系モノマー(B)の沸点より高い。液状パラフィン(D)の例として、流動パラフィン、ミネラルオイル、リキッドパラフィン、ホワイトミネラルオイルなどが挙げられる。 Liquid paraffin (D) is not particularly limited as long as it is liquid at room temperature. Liquid paraffin (D) consists of a chain saturated hydrocarbon compound represented by, for example, C n H 2n+2 where n is an integer. The integer n is, for example, 20 or more. The melting point of liquid paraffin (D) is, for example, 30° C. or lower. Liquid paraffin (D) does not completely volatilize even at the boiling point of monofunctional vinyl monomer (B). That is, the liquid paraffin (D) remains to the extent that a thin film can be formed on the surface of the insulating resin composition (X) and its cured product (Y) even at the boiling point of the monofunctional vinyl monomer (B). I wish I had. For example, the boiling point of liquid paraffin (D) is higher than the boiling point of monofunctional vinyl monomer (B). Examples of liquid paraffin (D) include liquid paraffin, mineral oil, liquid paraffin, white mineral oil, and the like.
 液状パラフィン(D)は、熱硬化性樹脂(A)および単官能性ビニル系モノマー(B)の混合物に直接添加してもよいが、分散性の観点から、単官能性ビニル系モノマー(B)を分散媒として予め分散させてから混合することが好ましい。なお、液状パラフィン(D)は、室温25℃における粘度が10mPa・s~200mPa・sのものが好ましい。 The liquid paraffin (D) may be directly added to the mixture of the thermosetting resin (A) and the monofunctional vinyl monomer (B). is preferably dispersed in advance as a dispersion medium and then mixed. The liquid paraffin (D) preferably has a viscosity of 10 mPa·s to 200 mPa·s at room temperature of 25°C.
 液状パラフィン(D)の配合量は、ワニス成分(Z)全量の5wt%以下、好ましくは3wt%以下、より好ましくは0.01wt%~1wt%が望ましい。配合量が0.01wt%未満では、単官能性ビニル系モノマー(B)の再付着を防ぐに十分な塗膜を形成することが難しい。一方、配合量が5wt%を超えると硬化物(Y)の機械的強度および耐熱性に影響を与える。 The content of liquid paraffin (D) is 5 wt% or less, preferably 3 wt% or less, more preferably 0.01 wt% to 1 wt% of the total amount of varnish component (Z). If the blending amount is less than 0.01 wt %, it is difficult to form a sufficient coating film to prevent re-adhesion of the monofunctional vinyl monomer (B). On the other hand, if the blending amount exceeds 5 wt %, the mechanical strength and heat resistance of the cured product (Y) are affected.
 2.絶縁樹脂組成物(X)およびその硬化物(Y)の製造方法
 2.1.絶縁樹脂組成物(X)
 絶縁樹脂組成物(X)は、以下の製造方法により製造することができる。(A)~(D)の配合量は、実施例および比較例に記載された量とする。また、混合方法は、当該技術分野において公知のものを活用でき、均一に混合できるものであれば特に限定されない。
2. Method for producing insulating resin composition (X) and its cured product (Y) 2.1. Insulating resin composition (X)
The insulating resin composition (X) can be produced by the following production method. The blending amounts of (A) to (D) are the amounts described in Examples and Comparative Examples. Moreover, the mixing method is not particularly limited as long as it can utilize a method known in the art and can be uniformly mixed.
 (a)液状パラフィン溶液の調整
 単官能性ビニル系モノマー(B)の全量または分取した一部に液状パラフィン(D)を添加し、超音波により均一分散する。
(a) Preparation of Liquid Paraffin Solution Liquid paraffin (D) is added to the whole amount or a fractionated portion of monofunctional vinyl monomer (B) and uniformly dispersed by ultrasonic waves.
 (b)絶縁樹脂組成物(X)の調整
 上記(a)で調整した液状パラフィン溶液および熱硬化性樹脂(A)を混合し、これに硬化剤および反応開始剤(C)を均一に混合する。
(b) Preparation of insulating resin composition (X) The liquid paraffin solution prepared in (a) above and the thermosetting resin (A) are mixed, and the curing agent and the reaction initiator (C) are uniformly mixed. .
 なお、絶縁樹脂組成物(X)のワニス成分(Z)に多官能性ビニル系モノマーを配合する場合に、多官能性ビニル系モノマーは、例えば上記(b)において液状パラフィン溶液とともに熱硬化性樹脂(A)に混合される。 When a polyfunctional vinyl-based monomer is blended with the varnish component (Z) of the insulating resin composition (X), the polyfunctional vinyl-based monomer is, for example, a thermosetting resin together with the liquid paraffin solution in (b) above. (A) is mixed.
 2.2.硬化物(Y)
 硬化物(Y)は、絶縁樹脂組成物(X)の硬化物である。硬化物(Y)は、典型的には、絶縁樹脂組成物(X)を加熱することにより生成される。硬化物(Y)は、用途に応じて、様々な形態、形状で使用される。硬化物(Y)は、例えば、含浸、塗布、注型、またはシート成形などの各種成形方法により、所望の形状に成形されうる。
2.2. Cured product (Y)
The cured product (Y) is a cured product of the insulating resin composition (X). The cured product (Y) is typically produced by heating the insulating resin composition (X). The cured product (Y) is used in various forms and shapes depending on the application. The cured product (Y) can be molded into a desired shape by various molding methods such as impregnation, coating, casting, or sheet molding.
 硬化物(Y)は、絶縁性能および耐熱性に優れる。そのため硬化物(Y)は、絶縁性能および耐熱性の少なくとも一方が必要される用途に好適である。硬化物(Y)は、たとえば、回転機、送変電機器などの重電機器の絶縁部材に好適である。絶縁部材としては、たとえば、ワニス、絶縁塗料、ケーブル被覆材料、絶縁シート、封止材料などが挙げられる。 The cured product (Y) has excellent insulation performance and heat resistance. Therefore, the cured product (Y) is suitable for applications requiring at least one of insulation performance and heat resistance. The cured product (Y) is suitable, for example, as an insulating member for heavy electrical equipment such as rotary machines and power transmission and transformation equipment. Examples of the insulating member include varnish, insulating paint, cable coating material, insulating sheet, and sealing material.
 硬化物(Y)を回転機のコイルに絶縁樹脂組成物(X)を含浸させて硬化させたものとする場合に、調整工程により調整された絶縁樹脂組成物(X)のコイルへの含浸工程が実施される。含浸工程における含浸方法は特に限定されないが、含浸工程の前に予熱工程および空冷工程が実施される。また、含浸工程の後に除滴工程を経て加熱硬化工程が実施される。 When the cured product (Y) is obtained by impregnating the coil of a rotating machine with the insulating resin composition (X) and curing it, the step of impregnating the coil with the insulating resin composition (X) adjusted in the adjusting step is carried out. The impregnation method in the impregnation step is not particularly limited, but a preheating step and an air cooling step are carried out before the impregnation step. Further, after the impregnation process, the heat-curing process is performed through the drip removal process.
 予熱工程は、エナメル線などのコイルの巻線の耐クレージング性向上を目的としたアニール処理を行う工程である。予熱工程において、コイルは所定の温度で加熱される。予熱工程における加熱温度はクレージング性を向上できる温度であれば特に限定されないが、例えば150℃で処理が行われる。 The preheating process is a process of performing annealing treatment for the purpose of improving the crazing resistance of coil windings such as enameled wires. In the preheating step, the coil is heated to a predetermined temperature. The heating temperature in the preheating step is not particularly limited as long as it can improve the crazing property, but the treatment is performed at, for example, 150°C.
 空冷工程は、絶縁樹脂組成物(X)の温度上昇を抑制するため、所定の温度までコイルを冷却する工程である。絶縁樹脂組成物(X)のポットライフに影響のない温度範囲であれば冷却後の温度は特に限定されないが、例えば40℃~60℃の温度範囲が適している。 The air cooling step is a step of cooling the coil to a predetermined temperature in order to suppress the temperature rise of the insulating resin composition (X). The temperature after cooling is not particularly limited as long as it is within a temperature range that does not affect the pot life of the insulating resin composition (X).
 含浸工程において、浸漬、滴下、加圧含浸、真空含浸などの当該技術分野で公知の処理方法によって絶縁樹脂組成物(X)がコイルに含浸させられる。例えばコイルが大型の回転機に適用されるものである場合に、コイルの内部まで絶縁樹脂組成物(X)を含浸させるため、一般に浸漬、または加圧・真空含浸による含浸が行われる。浸漬含浸が行われる場合に、絶縁樹脂組成物(X)を満たした含浸槽にコイルが静かに浸漬される。浸漬時間は特に限定されないが、巻線されたエナメル線間および構成部材中に付着した空気が浸漬中に気泡となって表面に浮上してくるので、これらの気泡の発生がなくなるまで浸漬することが望ましい。気泡発生が落ち着くまでの時間はコイルのサイズによって異なるが、浸漬時間は10分~60分程度、製造工程の効率化すなわち短時間化の観点からは、約15分~45分程度が望ましい。浸漬時間が10分未満ではコイルの全体に樹脂が浸透せず、気泡発生の収束する60分を超えて浸漬してもコイル内に浸透する絶縁樹脂組成物(X)の量は増えないためである。含浸温度、すなわち含浸槽中の絶縁樹脂組成物(X)の温度は、硬化による増粘が始まらない温度域であれば特に限定されず、一般に室温25℃~60℃に設定される。実施の形態1に係る絶縁樹脂組成物(X)は粘度が低いため、室温25℃での含浸も可能である。含浸工程によって、コイルは、巻線の間などに絶縁樹脂組成物(X)が入り込んだ状態となる。 In the impregnation step, the coil is impregnated with the insulating resin composition (X) by a treatment method known in the art, such as immersion, dripping, pressure impregnation, and vacuum impregnation. For example, when the coil is applied to a large rotating machine, impregnation by immersion or pressure/vacuum impregnation is generally performed in order to impregnate the inside of the coil with the insulating resin composition (X). When immersion impregnation is performed, the coil is gently immersed in an impregnation tank filled with the insulating resin composition (X). The immersion time is not particularly limited, but since the air adhering between the wound enameled wires and in the constituent members rises to the surface as bubbles during immersion, the immersion should be continued until these bubbles disappear. is desirable. Although the time required for bubble generation to subside varies depending on the size of the coil, the immersion time is preferably about 10 to 60 minutes, and about 15 to 45 minutes from the viewpoint of improving the efficiency of the manufacturing process, that is, shortening the time. This is because if the immersion time is less than 10 minutes, the resin does not permeate the entire coil, and even if the immersion exceeds 60 minutes at which air bubbles converge, the amount of the insulating resin composition (X) permeating into the coil does not increase. be. The impregnation temperature, that is, the temperature of the insulating resin composition (X) in the impregnation bath, is not particularly limited as long as it does not start thickening due to curing, and is generally set at room temperature of 25°C to 60°C. Since the insulating resin composition (X) according to Embodiment 1 has a low viscosity, impregnation at room temperature of 25° C. is also possible. By the impregnation step, the coil is brought into a state in which the insulating resin composition (X) enters between windings.
 加熱硬化工程において、含浸工程でコイルに含浸させられた絶縁樹脂組成物(X)は、硬化炉において加熱されて硬化することで硬化物(Y)となる。加熱硬化工程の硬化加熱温度は、絶縁樹脂組成物(X)に添加した反応開始剤の反応開始温度(半減期温度)以上であれば特に限定されず、一般に130℃~180℃であり、好ましくは140℃~170℃である。一般に、加熱硬化工程において必要な硬化加熱時間は、樹脂の硬化速度、コイルへの付着量、および原料組成などによって変化する。また、硬化に必要な硬化加熱時間は温度に依存し、一般に高温である方が硬化に至るまでの時間が短い。このため、硬化加熱温度および硬化加熱時間は、絶縁樹脂組成物(X)の組成に応じて完全硬化するのに必要な温度および時間に設定される。ここで、硬化加熱温度または硬化加熱時間が不十分である場合に、絶縁樹脂組成物(X)は完全硬化に至らず未硬化部分が発生することがある。このとき、電気的特性、および機械的特性などの種々の特性が低下することがある。一方、硬化加熱温度または硬化加熱時間が過剰である場合に、硬化加熱による架橋反応のバランスがくずれ、硬化物(Y)にクラックが発生する原因となることがある。硬化加熱温度および硬化加熱時間は、これらの問題が生じない範囲で設定される。実施の形態1に係る絶縁樹脂組成物(X)は、硬化加熱温度が130℃~180℃のとき、硬化加熱時間が30分~8時間で完全硬化する。硬化加熱時間が30分未満の場合に、絶縁樹脂組成物(X)は完全硬化に至らない。一方、機械的強度すなわち電線の固着強度は、硬化後徐々に発現および向上し、所定の時間、ここでは4時間以降で収束する傾向にある。したがって、完全硬化および機械的強度の収束の観点からは、硬化加熱時間は好ましくは1時間~4時間、より好ましくは1時間~2時間である。加熱硬化工程によって、コイルは、巻線の間などにおいて硬化物(Y)が硬化した状態となる。 In the heating and curing step, the insulating resin composition (X) impregnated in the coil in the impregnation step is heated and cured in a curing furnace to form a cured product (Y). The curing heating temperature in the heat curing step is not particularly limited as long as it is equal to or higher than the reaction initiation temperature (half-life temperature) of the reaction initiator added to the insulating resin composition (X), and is generally 130° C. to 180° C., preferably. is between 140°C and 170°C. In general, the curing heating time required in the heat-curing step varies depending on the curing speed of the resin, the amount of resin adhered to the coil, the raw material composition, and the like. In addition, the curing heating time required for curing depends on the temperature, and generally the higher the temperature, the shorter the time until curing. Therefore, the curing heating temperature and the curing heating time are set to the temperature and time necessary for complete curing according to the composition of the insulating resin composition (X). Here, if the curing heating temperature or the curing heating time is insufficient, the insulating resin composition (X) may not be completely cured and an uncured portion may occur. At this time, various properties such as electrical properties and mechanical properties may deteriorate. On the other hand, if the curing heating temperature or the curing heating time is excessive, the balance of the cross-linking reaction due to the curing heating may be lost, which may cause cracks in the cured product (Y). Curing heating temperature and curing heating time are set within a range that does not cause these problems. The insulating resin composition (X) according to Embodiment 1 is completely cured when the curing heating temperature is 130° C. to 180° C. and the curing heating time is 30 minutes to 8 hours. If the curing heating time is less than 30 minutes, the insulating resin composition (X) will not be completely cured. On the other hand, the mechanical strength, that is, the wire fixing strength, gradually develops and improves after curing, and tends to converge after a predetermined time, here 4 hours or later. Therefore, from the viewpoint of complete curing and convergence of mechanical strength, the curing heating time is preferably 1 to 4 hours, more preferably 1 to 2 hours. Through the heat curing process, the coil is in a state where the cured product (Y) is cured between windings.
 2.3.回転機用コイルおよびこれを用いた回転機の固定子
 実施の形態1の絶縁樹脂組成物(X)は、例えばロープ式エレベーターの巻上機用の大型の回転機などに適用される。図2は、実施の形態1に係る巻上機の断面図である。
2.3. Coil for Rotating Machine and Stator for Rotating Machine Using the Same The insulating resin composition (X) of Embodiment 1 is applied to, for example, a large rotating machine for a hoist of a rope elevator. FIG. 2 is a cross-sectional view of the hoist according to Embodiment 1. FIG.
 図2に示される巻上機10は、回転部11と、ブレーキ部12と、モーター部13と、を備える。 The hoist 10 shown in FIG. 2 includes a rotating section 11, a brake section 12, and a motor section 13.
 回転部11は、綱車14と、回転子15と、ブレーキディスク16と、回転軸17と、を備える。綱車14、回転子15、およびブレーキディスク16は、回転軸17によって同軸上に結合されている。綱車14において、図示されない主ロープが巻き掛けられる。主ロープに支持される図示されないエレベーターのかごは、主ロープおよび綱車14の摩擦によって駆動させられる。 The rotating part 11 includes a sheave 14 , a rotor 15 , a brake disc 16 and a rotating shaft 17 . The sheave 14 , rotor 15 and brake disc 16 are coaxially coupled by a rotating shaft 17 . A main rope (not shown) is wound around the sheave 14 . An elevator car, not shown, supported on the main ropes is driven by friction between the main ropes and sheaves 14 .
 ブレーキ部12は、図示されない可動なブレーキシューを備える。ブレーキ部12は、ブレーキシューをブレーキディスク16に押し当てることにより発生する摩擦によって、回転部2を制動する力を発生させる。 The brake part 12 has a movable brake shoe (not shown). The brake portion 12 generates a force for braking the rotating portion 2 by friction generated by pressing the brake shoe against the brake disc 16 .
 モーター部13は、フレーム18と、固定子19と、を備える。固定子19は、圧入または焼嵌めによりフレーム18に固定されている。固定子19は、円環状の鉄芯20を備える。鉄芯20の各々のティースにおいて、巻線21が巻かれている。また、巻線21および鉄芯20は、インシュレーター22によって絶縁されている。また、巻線21は、インシュレーター22によって固定される。各々のティースに巻かれた巻線21は、設定された順に互いに接続され、通電によって磁束を発生させる。 The motor section 13 includes a frame 18 and a stator 19. The stator 19 is fixed to the frame 18 by press fitting or shrink fitting. The stator 19 has an annular iron core 20 . A winding 21 is wound around each tooth of the iron core 20 . Moreover, the winding 21 and the iron core 20 are insulated by the insulator 22 . Also, the winding 21 is fixed by an insulator 22 . The windings 21 wound around each tooth are connected to each other in the order set, and generate magnetic flux when energized.
 固定子19は、例えば次の手順を含む方法などによって製造される。まず、エナメルで絶縁被覆された素線を用意する。素線は導電性を有する。素線の材質は、例えば、銅、アルミニウム、銀などである。エナメルの種類は、特に限定されないが、ポリエステルイミド、ポリアミドイミド、ポリアミドなどが組み合わせて使用される。これらのエナメルによる絶縁被覆の層において、絶縁耐圧を向上させるための無機フィラーが含まれていてもよい。これらのエナメル線は一般に市販されているモーターコイル用のものを用いることができる。このような絶縁被覆されたエナメル線を鉄芯20の各々のティースに巻き回して巻線21とする。その後、前述の含浸工程の方法によって巻線21に絶縁樹脂組成物(X)を含浸し、加熱硬化工程によって絶縁樹脂組成物(X)を硬化させる。 The stator 19 is manufactured, for example, by a method including the following procedures. First, prepare a wire that is insulated and coated with enamel. The strand has electrical conductivity. The material of the wire is, for example, copper, aluminum, silver, or the like. The type of enamel is not particularly limited, but polyesterimide, polyamideimide, polyamide and the like are used in combination. These enamel insulating coating layers may contain an inorganic filler for improving dielectric strength. As these enameled wires, commercially available ones for motor coils can be used. The enameled wire coated with such insulation is wound around each tooth of the iron core 20 to form the winding 21 . After that, the wire 21 is impregnated with the insulating resin composition (X) by the method of the impregnation step described above, and the insulating resin composition (X) is cured by the heat curing step.
 絶縁樹脂組成物(X)のコイルへの含浸性を高めるために粘度を低下させる反応性希釈剤として低分子量の単官能性ビニル系モノマー(B)が用いられているため、コイル長が長くコイルの厚みが厚い大型の回転機のコイルであっても絶縁樹脂組成物(X)は内部まで含浸しやすい。絶縁樹脂組成物(X)の粘度が低いため余分な塊状硬化物の形成が抑制され、かつ、液状パラフィン(B)が形成する薄膜によって硬化物(Y)の表面指触性がより高められる。これにより、大型の回転機の製造性が向上する。 Since the low-molecular-weight monofunctional vinyl-based monomer (B) is used as a reactive diluent that lowers the viscosity in order to improve the impregnation of the insulating resin composition (X) into the coil, the coil length is long. The insulating resin composition (X) is easily impregnated into even the coil of a large rotating machine having a large thickness. The low viscosity of the insulating resin composition (X) suppresses the formation of excess lumpy cured product, and the thin film formed by the liquid paraffin (B) further enhances the surface texture of the cured product (Y). This improves the manufacturability of a large rotating machine.
 3.実施例
 以下、実施例を挙げて実施の形態1を説明する。なお、以下の例は本開示の対象を限定するものではない。
3. Examples Hereinafter, Embodiment 1 will be described with reference to examples. It should be noted that the following examples are not intended to limit the scope of the present disclosure.
 3.1.絶縁樹脂組成物(X)およびその硬化物(Y)の製造
 各実施例および各比較例の絶縁樹脂組成物(X)およびその硬化物(Y)を以下のように製造した。
3.1. Production of insulating resin composition (X) and its cured product (Y) The insulating resin composition (X) and its cured product (Y) of each example and each comparative example were produced as follows.
 3.1.1.材料の準備
 以下の材料を準備した。
 ・熱硬化性樹脂(A)
 1分子中にエポキシ基およびメタ(アクリロイル)基の両方を有し、数平均分子量が約2000で60℃における粘度が約3900mPa・sである熱硬化性樹脂
 ・単官能性ビニル系モノマー(B)
 2-ヒドロキシエチルメタクリレート(2-HEMA)
 ・多官能性ビニル系モノマー
 1分子中に2個以上のメタ(アクリロイル)基またはアリル基を有する多官能性ビニル系モノマー(25℃での粘度が5mPa・sであるネオペンチルグリコールジメタクリレート)
 ・硬化剤および反応開始剤(C)
 硬化剤:オクチル酸亜鉛
 反応開始剤:2,5-ジメチル-2,5-ジ(t-ブチルペロキシ)ヘキサン
 ・液状パラフィン(D)
 流動パラフィン、固形パラフィン(比較例)
3.1.1. Preparation of materials The following materials were prepared.
・Thermosetting resin (A)
A thermosetting resin having both an epoxy group and a meta(acryloyl) group in one molecule and having a number average molecular weight of about 2000 and a viscosity of about 3900 mPa s at 60°C Monofunctional vinyl-based monomer (B)
2-hydroxyethyl methacrylate (2-HEMA)
- Polyfunctional vinyl-based monomer Polyfunctional vinyl-based monomer having two or more meta(acryloyl) groups or allyl groups in one molecule (neopentyl glycol dimethacrylate having a viscosity of 5 mPa s at 25°C)
・Curing agent and initiator (C)
Curing agent: zinc octylate Reaction initiator: 2,5-dimethyl-2,5-di(t-butylperoxy)hexane Liquid paraffin (D)
Liquid paraffin, solid paraffin (comparative example)
 3.1.1.1.実施例1~実施例26
 実施例1~実施例26の配合量を表1に示す。表1において、液状パラフィン(D)および反応開始剤の重量百分率(wt%)は、熱硬化性樹脂(A)、単官能性ビニル系モノマー(B)、および多官能性ビニル系モノマーからなるワニス成分(Z)全体に対する重量の比率を表す。また、表1において、1phrは、熱硬化性樹脂(A)および単官能性ビニル系モノマー(B)の合計100質量部に対して1質量部の硬化剤を配合する配合量を表す。
3.1.1.1. Examples 1 to 26
Table 1 shows the compounding amounts of Examples 1 to 26. In Table 1, the weight percentages (wt%) of the liquid paraffin (D) and the reaction initiator are the thermosetting resin (A), the monofunctional vinyl monomer (B), and the polyfunctional vinyl monomer varnish. Represents the weight ratio of component (Z) as a whole. Further, in Table 1, 1 phr represents the blending amount of 1 part by mass of curing agent per 100 parts by mass of thermosetting resin (A) and monofunctional vinyl-based monomer (B).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される配合量に従って、熱硬化性樹脂(A)、単官能性ビニル系モノマー(B)、多官能性ビニル系モノマー、ならびに硬化剤および反応開始剤(C)を秤量した。実施例1~実施例26において、硬化剤の配合量は1phr、反応開始剤の配合量は0.4wt%である。次いで、表1に示される配合量に従い流動パラフィン(D)を秤量して単官能性ビニル系モノマー(B)に分散させ、液状パラフィン溶液を調製した。次いで、秤量した熱硬化性樹脂(A)、多官能性ビニル系モノマー、硬化剤および反応開始剤(C)、ならびに調整した液状パラフィン溶液を全て混合し、均一に撹拌することにより、絶縁樹脂組成物(X)を得た。 The thermosetting resin (A), monofunctional vinyl monomer (B), polyfunctional vinyl monomer, curing agent and reaction initiator (C) were weighed according to the blending amounts shown in Table 1. In Examples 1 to 26, the blending amount of the curing agent was 1 phr, and the blending amount of the reaction initiator was 0.4 wt %. Next, the liquid paraffin (D) was weighed according to the compounding amount shown in Table 1 and dispersed in the monofunctional vinyl monomer (B) to prepare a liquid paraffin solution. Next, the thermosetting resin (A), the polyfunctional vinyl-based monomer, the curing agent and the reaction initiator (C), and the prepared liquid paraffin solution are all mixed and uniformly stirred to form an insulating resin composition. A product (X) was obtained.
 3.1.1.2.比較例1
 表1に示される配合量に従って、実施例1~実施例26と同様の手法で絶縁樹脂組成物を調製した。表1に示されるように、比較例1は、液状パラフィン(D)を含まないこと以外の材料の配合を実施例7と同一にした例である。
3.1.1.2. Comparative example 1
Insulating resin compositions were prepared according to the blending amounts shown in Table 1 in the same manner as in Examples 1 to 26. As shown in Table 1, Comparative Example 1 is an example in which the blending of materials was the same as in Example 7, except that the liquid paraffin (D) was not included.
 3.1.1.3.比較例2
 表1に示される配合量に従って、実施例1~実施例26と同様の手法で絶縁樹脂組成物を調製した。表1に示されるように、比較例2は、液状パラフィン(D)の代わりに固形パラフィンを1wt%含むこと以外の材料の配合を実施例7と同一にした例である。固形パラフィンとして、室温25℃において固体の形状をとる、すなわち融点が25℃より高いパラフィンを用いている。比較例2では、単官能性ビニル系モノマー(B)に均一分散させるため、固形パラフィンを粉砕して用いている。
3.1.1.3. Comparative example 2
Insulating resin compositions were prepared according to the blending amounts shown in Table 1 in the same manner as in Examples 1 to 26. As shown in Table 1, Comparative Example 2 is an example in which the composition of materials was the same as in Example 7 except that 1 wt % of solid paraffin was included instead of liquid paraffin (D). As the solid paraffin, a paraffin that takes a solid form at a room temperature of 25° C., that is, has a melting point higher than 25° C. is used. In Comparative Example 2, pulverized solid paraffin was used in order to uniformly disperse it in the monofunctional vinyl monomer (B).
 3.2.評価
 以下のようにして、絶縁樹脂組成物(X)およびその硬化物(Y)を評価した。
3.2. Evaluation The insulating resin composition (X) and its cured product (Y) were evaluated as follows.
 3.2.1.粘度
 E型粘度計により、絶縁樹脂組成物(X)の粘度を測定した。室温における測定の結果を表1に示す。
3.2.1. Viscosity The viscosity of the insulating resin composition (X) was measured with an E-type viscometer. Table 1 shows the results of measurements at room temperature.
 3.2.2.機械的強度(ヘリカルコイル固着力)
 線径1mmのマグネットワイヤ(日立金属製KMK-20E)を用い、JISC3216-1および6に準拠した方法で、試験片とするヘリカルコイルを作製した。次いで、このヘリカルコイルを150℃で120分間加熱することで予熱処理し、室温まで冷却した。これらのヘリカルコイルを絶縁樹脂組成物(X)中に静かに浸漬し、1分間静置した後引き上げ、加熱炉内に適度な間隔を保って吊り下げた。これらのコイルを所定の時間加熱し、絶縁樹脂組成物(X)を硬化させた。硬化加熱温度は150℃とした。硬化加熱時間は、実施例1~実施例21ならびに比較例1および比較例2では1時間、実施例25では25分、実施例23では30分、実施例24では120分、実施例25では180分、実施例26では240分とした。加熱硬化して得られたヘリカルコイルにつき、オートグラフ(強度試験機)にて3点曲げ試験を実施した。評価の結果を表1の「強度」の欄に示す。表1において、100N未満を△、100N以上150N未満を〇、150N以上を◎とした。
3.2.2. Mechanical strength (Helical coil fixing force)
Using a magnet wire (KMK-20E manufactured by Hitachi Metals) with a wire diameter of 1 mm, a helical coil as a test piece was produced by a method conforming to JISC3216-1 and 6. The helical coil was then preheated by heating at 150° C. for 120 minutes and cooled to room temperature. These helical coils were gently immersed in the insulating resin composition (X), allowed to stand for 1 minute, pulled out, and suspended in a heating furnace at appropriate intervals. These coils were heated for a predetermined time to cure the insulating resin composition (X). The curing heating temperature was 150°C. The curing heating time was 1 hour for Examples 1 to 21 and Comparative Examples 1 and 2, 25 minutes for Example 25, 30 minutes for Example 23, 120 minutes for Example 24, and 180 minutes for Example 25. minutes, and 240 minutes in Example 26. The helical coil obtained by heat curing was subjected to a three-point bending test using an autograph (strength tester). The results of the evaluation are shown in the "Strength" column of Table 1. In Table 1, .DELTA.
 3.2.3.塊状硬化物の形成の抑制
 図2に示される固定子19を模擬したサンプルを用意し、絶縁樹脂組成物(X)に含浸および硬化させた後、巻き回した巻線21を模擬する部分の下側(コイルエンド)およびインシュレーター22を模擬する部分に形成される塊状硬化物の厚みを測定した。評価の結果を表1の「ツララ」の欄に示す。表1において、10mm以上を△、2mm以上10mm未満を○、2mm未満を◎とした。
3.2.3. Suppression of Formation of Lumpy Cured Material A sample simulating the stator 19 shown in FIG. The thickness of the hardened mass formed on the side (coil end) and the portion simulating the insulator 22 was measured. The evaluation results are shown in the "Icicle" column of Table 1. In Table 1, .DELTA.
 なお、機械的強度および塊状硬化物の形成の抑制の両立が求められることから、これら特性の両立性を評価した。評価の結果を表1の「両立性」の欄に示す。表1において、機械的強度および塊状硬化物の形成の抑制の特性の両方が◎のとき◎、これらの特性のいずれか一方が○のものを○、これらの特性のいずれか一方が△のものを△とした。 In addition, since both mechanical strength and suppression of the formation of lumpy cured products are required, the compatibility of these properties was evaluated. The evaluation results are shown in the "Compatibility" column of Table 1. In Table 1, when both the mechanical strength and the suppression of the formation of a lumpy cured product are marked with ◎, when one of these characteristics is ○, ○ when either one of these characteristics is △ was set as △.
 3.2.4.指触性
 上記のヘリカルコイルおよび固定子19を模擬したサンプルのコイルまたは構成部材の表面に形成された絶縁樹脂組成物(X)の硬化物(Y)を指触し、指の付着の有無により指触性を評価した。評価の結果を表1の「指触性」の欄に示す。表1において、指に絶縁樹脂組成物(X)が液状またはゲル状で付着するものを×、タック性は感じられるが指への付着はないものを△、タック性がなくサラサラで指への付着のないものを○とした。
3.2.4. Touchability The hardened product (Y) of the insulating resin composition (X) formed on the surface of the sample coil or component member simulating the helical coil and stator 19 was touched with a finger, and the presence or absence of finger adhesion Touchability was evaluated. The results of the evaluation are shown in the column of "touchability" in Table 1. In Table 1, X indicates that the insulating resin composition (X) adheres to the finger in a liquid or gel form, Δ indicates that the tackiness is felt but does not adhere to the finger, and △ indicates that the insulating resin composition (X) is not tacky and is smooth on the finger. Those with no adhesion were evaluated as ◯.
 3.3.結果と考察
 表1から分かるように、実施例1~実施例26は、比較例1および比較例2に比べて指触性が改善されている。これは、液状パラフィン(D)が硬化物(Y)の表面に薄膜を形成し、表面から内部にかけて濃度傾斜を持ちながら分布することにより、硬化炉内に充満した単官能性ビニル系モノマー(B)の再付着を抑制したことによると考えられる。
3.3. Results and Discussion As can be seen from Table 1, Examples 1 to 26 have improved tactile properties compared to Comparative Examples 1 and 2. This is because the liquid paraffin (D) forms a thin film on the surface of the cured product (Y) and is distributed from the surface to the inside while having a concentration gradient, thereby filling the curing furnace with the monofunctional vinyl monomer (B ) is thought to be due to the suppression of re-adhesion.
 実施例7および比較例1の結果に基づき、液状パラフィン(D)の有無の影響について考察する。比較例1は液状パラフィン(D)を含まないため硬化物(Y)の表面に液状パラフィン(D)の薄膜が形成されず、硬化加熱温度において揮発した単官能性ビニル系モノマー(B)の硬化物の表面への付着が抑制されなかったものと考えられる。また、実施例7および比較例1に単官能性ビニル系モノマー(B)として用いている2-HEMAは、吸水性の性質を有する。このため、比較例1においては、揮発した2-HEMAの再付着が抑制されないことのみならず、表面に再付着した2-HEMAが冷却後の空気中の水分の吸着することによっても指触性が悪化したものと考えられる。 Based on the results of Example 7 and Comparative Example 1, the influence of the presence or absence of liquid paraffin (D) will be considered. Since Comparative Example 1 does not contain liquid paraffin (D), a thin film of liquid paraffin (D) is not formed on the surface of the cured product (Y), and the volatilized monofunctional vinyl monomer (B) is cured at the curing heating temperature. It is considered that the adhesion to the surface of the object was not suppressed. In addition, 2-HEMA used as the monofunctional vinyl-based monomer (B) in Example 7 and Comparative Example 1 has water absorbing properties. Therefore, in Comparative Example 1, not only the reattachment of the volatilized 2-HEMA is not suppressed, but also the 2-HEMA reattached to the surface adsorbs the moisture in the air after cooling. is considered to have deteriorated.
 実施例7および比較例2の結果に基づき、パラフィンの形態の影響について考察する。比較例2のパラフィン溶液の濃度は実施例7のパラフィン溶液の濃度と同一であるが、比較例2においては室温25℃で固体の形状をとる固形パラフィンが用いられている。比較例2では固形パラフィンを粉砕して用いているが、液状パラフィン(D)と異なり均一分散させることが難しい。このため、比較例2においては硬化物の表面のパラフィン薄膜の形成が不均一となり、期待する指触性改善の効果が得られなかったものと考えられる。 Based on the results of Example 7 and Comparative Example 2, the influence of paraffin morphology will be considered. The concentration of the paraffin solution of Comparative Example 2 is the same as that of the paraffin solution of Example 7, but in Comparative Example 2 solid paraffin that takes a solid form at room temperature of 25° C. is used. In Comparative Example 2, pulverized solid paraffin is used, but unlike liquid paraffin (D), it is difficult to uniformly disperse it. For this reason, in Comparative Example 2, the formation of the paraffin thin film on the surface of the cured product became non-uniform, and the expected effect of improving touchability was not obtained.
 実施例1~実施例14の結果に基づき、単官能性ビニル系モノマー(B)の配合量の影響について議論する。単官能性ビニル系モノマー(B)の配合量は、実施例1~実施例3、および実施例13においてワニス成分(Z)全量の45wt%未満、実施例4、実施例5、および実施例10において50wt%~75wt%、実施例11、実施例12、および実施例14において84wt%以上である。実施例1~実施例3、および実施例13において、機械的強度は◎判定の良好な強度を得られる一方、塊状硬化物の厚みは10mmを超える。実施例11、実施例12、および実施例14において、塊状硬化物の厚みは2mm以下と良好である一方、機械的強度は低下し△判定となる。これらに対し、実施例4、実施例5、および実施例10において、機械的強度および塊状硬化物の形成の抑制のいずれにおいても○以上の特性が得られ、両者のバランスが最もよい結果となった。これは、上述のように、単官能性ビニル系モノマー(B)が絶縁樹脂組成物(X)の粘度を低下させ液切れ性の向上に寄与し塊状硬化物の形成を抑制する効果を持つ一方、低分子量でありかつ硬化加熱中に揮発する性質によって硬化物(Y)の機械的強度を低下させてしまうためである。すなわち、塊状硬化物の形成の抑制と機械的強度とが単官能性ビニル系モノマー(B)の配合量に依存したトレードオフの関係にあることに起因する。本開示における鋭意検討の結果、これらの両特性の両立には、単官能性ビニル系モノマー(B)の配合量はワニス成分(Z)全量の44wt%~84wt%であればよく、好ましくは51wt%~72wt%、より好ましくは58wt%~68wt%であることが明らかになった。 Based on the results of Examples 1 to 14, the influence of the compounding amount of the monofunctional vinyl monomer (B) will be discussed. The amount of the monofunctional vinyl-based monomer (B) blended was less than 45 wt% of the total amount of the varnish component (Z) in Examples 1 to 3 and Example 13, Example 4, Example 5, and Example 10. 50 wt % to 75 wt % in Example 11, Example 12, and Example 14 is 84 wt % or more. In Examples 1 to 3 and Example 13, the mechanical strength was evaluated as excellent, but the thickness of the hardened block exceeded 10 mm. In Example 11, Example 12, and Example 14, the thickness of the block-like cured product was good at 2 mm or less, but the mechanical strength was lowered, resulting in a Δ evaluation. On the other hand, in Examples 4, 5, and 10, both the mechanical strength and the suppression of the formation of a lumpy cured product were obtained as good or better, and the balance between the two was the best. rice field. This is because, as described above, the monofunctional vinyl-based monomer (B) reduces the viscosity of the insulating resin composition (X), contributes to the improvement of the liquid drainability, and has the effect of suppressing the formation of a block-shaped cured product. This is because it lowers the mechanical strength of the cured product (Y) due to its low molecular weight and the property of volatilizing during heating for curing. That is, this is due to the trade-off relationship between the inhibition of formation of the block cured product and the mechanical strength depending on the amount of the monofunctional vinyl monomer (B) blended. As a result of intensive studies in the present disclosure, in order to achieve both of these properties, the amount of the monofunctional vinyl monomer (B) should be 44 wt% to 84 wt% of the total amount of the varnish component (Z), preferably 51 wt%. % to 72 wt%, more preferably 58 wt% to 68 wt%.
 実施例15~実施例21の結果に基づき、液状パラフィン(D)の配合量について議論する。液状パラフィン(D)の配合量は、実施例15においてワニス成分(Z)全量の0.01wt%未満、実施例16および実施例17において1wt%~3wt%、実施例18および実施例19において3wt%~6wt%、実施例20および実施例21において6wt%を超える。いずれの場合の硬化物(Y)も、比較例1および比較例2と比べて優れた指触性を示している。一方、実施例15において、指触後に指への付着はないもののタック性が感じられた。これは配合量が少なすぎるため、タック性のない指触性を確保するのに十分なパラフィン薄膜が得られなかったためと推測できる。実施例20および実施例21において、指触性は良好であったが、機械的強度の低下と外観の不均一さ(まだら模様)が見られた。実施例18および実施例19のとき、指触性は良好ながら他の特性への影響がないことが明らかになった。本開示における鋭意検討の結果、液状パラフィン(D)の配合量は、ワニス成分(Z)全量の5.3wt%以下、好ましくは2.9wt%以下、より好ましくは0.008wt%~1.2wt%が望ましいことが明らかになった。 Based on the results of Examples 15 to 21, the blending amount of liquid paraffin (D) will be discussed. The amount of liquid paraffin (D) is less than 0.01 wt% of the total amount of varnish component (Z) in Example 15, 1 wt% to 3 wt% in Examples 16 and 17, and 3 wt% in Examples 18 and 19. % to 6 wt%, and greater than 6 wt% in Examples 20 and 21. The cured product (Y) in any case also exhibits excellent tactile properties compared to those of Comparative Examples 1 and 2. On the other hand, in Example 15, tackiness was felt even though there was no adhesion to the finger after being touched with the finger. It is presumed that this is because the compounded amount was too small, so that a paraffin thin film sufficient to secure touchability without tackiness was obtained. In Examples 20 and 21, the touchability was good, but the mechanical strength was lowered and the appearance was uneven (mottled pattern). In Examples 18 and 19, it was found that the touchability was good, but other properties were not affected. As a result of extensive studies in the present disclosure, the amount of liquid paraffin (D) is 5.3 wt% or less, preferably 2.9 wt% or less, more preferably 0.008 wt% to 1.2 wt% of the total amount of varnish component (Z). % was found to be desirable.
 実施例22~実施例26の結果に基づき、硬化加熱時間の影響について議論する。硬化加熱時間は、実施例22において25分、実施例23において30分、実施例24において120分、実施例25において180分、実施例26において240分とした。比較のため、同一の配合で硬化加熱時間を60分とした実施例7相当の結果を、表1において実施例22~実施例26に並べて示す。いずれの実施例においても、100N以上の機械的強度が得られている。一方、機械的強度の数値に着目すると、硬化加熱時間60分から機械的強度が約200Nに達し、それより長い硬化加熱時間において機械的強度の上昇は飽和している。製造工程および品質管理上の観点からは、高い機械的強度が発現してから機械的強度の上昇の飽和が確認できる時間に設定することが望ましい。本開示における鋭意検討の結果、硬化加熱時間は、好ましくは1時間~4時間、より好ましくは1時間~2時間であることが明らかになった。 Based on the results of Examples 22 to 26, the influence of curing heating time will be discussed. The curing heating time was 25 minutes in Example 22, 30 minutes in Example 23, 120 minutes in Example 24, 180 minutes in Example 25, and 240 minutes in Example 26. For comparison, the results corresponding to those of Example 7, in which the same formulation was used and the heating time for curing was 60 minutes, are shown side by side in Examples 22 to 26 in Table 1. A mechanical strength of 100 N or more is obtained in any of the examples. On the other hand, focusing on the numerical value of the mechanical strength, the mechanical strength reaches about 200 N from the curing heating time of 60 minutes, and the increase in the mechanical strength is saturated with the curing heating time longer than that. From the viewpoint of the manufacturing process and quality control, it is desirable to set the time at which the saturation of the increase in mechanical strength can be confirmed after the development of high mechanical strength. As a result of intensive studies in the present disclosure, it has become clear that the curing heating time is preferably 1 hour to 4 hours, more preferably 1 hour to 2 hours.
 本開示に係る回転機は、ロープ式エレベーターの巻上機に適用できる。本開示に係るコイルは、当該回転機に適用できる。本開示に係る絶縁樹脂加工物およびその硬化物は、当該コイルの絶縁性の保持および機械的強度の維持などに適用できる。 A rotating machine according to the present disclosure can be applied to a hoisting machine for a rope elevator. A coil according to the present disclosure can be applied to the rotating machine. The insulating resin processed product and the cured product thereof according to the present disclosure can be applied to maintaining the insulating properties and mechanical strength of the coil.
 1 コイル、 2 絶縁樹脂組成物、 3 薄膜、 4 単官能性ビニル系モノマー、 10 巻上機、 11 回転部、 12 ブレーキ部、 13 モーター部、 14 綱車、 15 回転子、 16 ブレーキディスク、 17 回転軸、 18 フレーム、 19 固定子、 20 鉄芯、 21 巻線、 22 インシュレーター 1 Coil, 2 Insulating resin composition, 3 Thin film, 4 Monofunctional vinyl-based monomer, 10 Hoist, 11 Rotating part, 12 Brake part, 13 Motor part, 14 Sheave, 15 Rotor, 16 Brake disc, 17 Rotating shaft, 18 Frame, 19 Stator, 20 Iron core, 21 Winding, 22 Insulator

Claims (10)

  1.  硬化加熱温度において硬化する絶縁樹脂組成物であり、
     1分子中にエポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂、ならびに前記硬化加熱温度以上で揮発する単官能性ビニル系モノマーを含むワニス成分と、
     硬化剤および反応開始剤と、
     液状パラフィンと、
     を含む絶縁樹脂組成物。
    An insulating resin composition that cures at a curing heating temperature,
    A varnish component containing a thermosetting resin having both an epoxy group and a meta (acryloyl) group in one molecule, and a monofunctional vinyl-based monomer that volatilizes at the curing heating temperature or higher;
    a curing agent and an initiator;
    liquid paraffin;
    An insulating resin composition comprising:
  2.  前記液状パラフィンは、C2n+2で表される鎖状飽和炭化水素からなる
     請求項1に記載の絶縁樹脂組成物。
    2. The insulating resin composition according to claim 1, wherein the liquid paraffin comprises a chain saturated hydrocarbon represented by CnH2n +2 .
  3.  前記液状パラフィンは、前記単官能性ビニル系モノマーの沸点でも完全には揮発しない
     請求項1または請求項2に記載の絶縁樹脂組成物。
    3. The insulating resin composition according to claim 1, wherein the liquid paraffin does not completely volatilize even at the boiling point of the monofunctional vinyl monomer.
  4.  前記単官能性ビニル系モノマーは、前記液状パラフィンの分散媒として用いられ、
     前記液状パラフィンは、超音波によって分散媒中に均一分散されている
     請求項1から請求項3のいずれか一項に記載の絶縁樹脂組成物。
    The monofunctional vinyl monomer is used as a dispersion medium for the liquid paraffin,
    The insulating resin composition according to any one of claims 1 to 3, wherein the liquid paraffin is uniformly dispersed in the dispersion medium by ultrasonic waves.
  5.  前記液状パラフィンの配合量は、前記ワニス成分全体の0.008wt%以上5.3wt%以下である
     請求項1から請求項4のいずれか一項に記載の絶縁樹脂組成物。
    The insulating resin composition according to any one of claims 1 to 4, wherein the amount of the liquid paraffin compounded is 0.008 wt% or more and 5.3 wt% or less of the entire varnish component.
  6.  前記単官能性ビニル系モノマーの配合量は、前記ワニス成分全体の45wt%以上85wt%以下である
     請求項1から請求項5のいずれか一項に記載の絶縁樹脂組成物。
    The insulating resin composition according to any one of claims 1 to 5, wherein the amount of the monofunctional vinyl-based monomer compounded is 45 wt% or more and 85 wt% or less of the entire varnish component.
  7.  粘度が10mPa・s以上210mPa・s以下である
     請求項1から請求項6のいずれか一項に記載の絶縁樹脂組成物。
    The insulating resin composition according to any one of claims 1 to 6, wherein the viscosity is 10 mPa·s or more and 210 mPa·s or less.
  8.  請求項1から請求項7のいずれか一項に記載の絶縁樹脂組成物を硬化させた硬化物。 A cured product obtained by curing the insulating resin composition according to any one of claims 1 to 7.
  9.  請求項1から請求項7のいずれか一項に記載の絶縁樹脂組成物を含浸させた回転機用コイル。 A coil for a rotating machine impregnated with the insulating resin composition according to any one of claims 1 to 7.
  10.  ロープ式エレベーターのかごを駆動させる巻上機に用いられる回転機であり、
     請求項9に記載の回転機用コイルを用いた固定子
     を備える回転機。
    A rotating machine used in a hoist that drives the cage of a rope-type elevator,
    A rotating machine comprising a stator using the coil for a rotating machine according to claim 9 .
PCT/JP2021/002915 2021-01-27 2021-01-27 Insulating resin composition, cured product, rotary machine coil, and rotary machine WO2022162805A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/002915 WO2022162805A1 (en) 2021-01-27 2021-01-27 Insulating resin composition, cured product, rotary machine coil, and rotary machine
JP2022577895A JPWO2022162805A1 (en) 2021-01-27 2021-01-27
CN202180086498.6A CN116648479A (en) 2021-01-27 2021-01-27 Insulating resin composition, cured product, coil for rotary machine, and rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002915 WO2022162805A1 (en) 2021-01-27 2021-01-27 Insulating resin composition, cured product, rotary machine coil, and rotary machine

Publications (1)

Publication Number Publication Date
WO2022162805A1 true WO2022162805A1 (en) 2022-08-04

Family

ID=82652747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002915 WO2022162805A1 (en) 2021-01-27 2021-01-27 Insulating resin composition, cured product, rotary machine coil, and rotary machine

Country Status (3)

Country Link
JP (1) JPWO2022162805A1 (en)
CN (1) CN116648479A (en)
WO (1) WO2022162805A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119949A (en) * 1977-03-29 1978-10-19 Hitachi Chem Co Ltd Thermoplastic resin composition
JPS568418A (en) * 1979-06-27 1981-01-28 Shinteesu Ab Unsaturated hardening polyester composition
JPH09239756A (en) * 1996-03-11 1997-09-16 Inax Corp Molding of acrylic artificial marble product
JP2006330301A (en) * 2005-05-25 2006-12-07 Shin Etsu Chem Co Ltd Sealing agent composition for liquid crystal display element
JP2008179796A (en) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc Compound having (meth)acryloyl group and glycydyl group, and polymerizable composition containing the same
JP2015168775A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
JP6532537B2 (en) * 2015-10-08 2019-06-19 三菱電機株式会社 Solventless varnish composition, insulating coil and method of manufacturing the same, rotary machine, and hermetic electric compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119949A (en) * 1977-03-29 1978-10-19 Hitachi Chem Co Ltd Thermoplastic resin composition
JPS568418A (en) * 1979-06-27 1981-01-28 Shinteesu Ab Unsaturated hardening polyester composition
JPH09239756A (en) * 1996-03-11 1997-09-16 Inax Corp Molding of acrylic artificial marble product
JP2006330301A (en) * 2005-05-25 2006-12-07 Shin Etsu Chem Co Ltd Sealing agent composition for liquid crystal display element
JP2008179796A (en) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc Compound having (meth)acryloyl group and glycydyl group, and polymerizable composition containing the same
JP2015168775A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
JP6532537B2 (en) * 2015-10-08 2019-06-19 三菱電機株式会社 Solventless varnish composition, insulating coil and method of manufacturing the same, rotary machine, and hermetic electric compressor

Also Published As

Publication number Publication date
CN116648479A (en) 2023-08-25
JPWO2022162805A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5738261B2 (en) Epoxy-vinyl copolymerization type liquid resin composition, cured product thereof, production method, insulating material using cured product, electronic / electrical device
JP5663874B2 (en) Epoxy resin composition, cured product thereof and light-emitting diode
JP6461475B2 (en) Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same
RU2648981C2 (en) Impregnating resin for electrical insulation body, electrical insulation body and method for producing the electrical insulation body
CN108137947B (en) Solvent-free varnish composition, insulated coil and method for producing same, rotary machine, and sealed electric compressor
CN112992406B (en) Insulating sheet, method for producing same, and rotating electrical machine
WO2015132990A1 (en) Epoxy resin composition, and electric appliance manufactured using same
JP6914309B2 (en) Sheet type insulating varnish and its manufacturing method, electrical equipment, and rotary electric machine
JP2019131629A (en) Insulation varnish, insulation varnish cured article, stator coil, and rotation electrical machinery
JP6279161B1 (en) Curable composition, cured product thereof and rotating machine
WO2022162805A1 (en) Insulating resin composition, cured product, rotary machine coil, and rotary machine
JP2016204530A (en) Thermosetting resin composition, stator coil and rotary electric machine
WO2023170891A1 (en) Insulating resin composition, cured object, wire coil, and rotating machine
JP2015002095A (en) Resin composition for electric insulation and manufacturing method of insulated electric appliance using the same
JP2022118734A (en) Adhesive set, structure and its manufacturing method
JP2018163744A (en) Resin composition for electric insulation and method for producing the same, and electric apparatus using resin composition and method for manufacturing the same
JP2005053874A (en) Cyclohexanetricarboxylic acid monoester and its use
JP2011108476A (en) Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same
JP2010138280A (en) Primer composition, cast article for electric insulation and method for producing the same
JP6759139B2 (en) Resin composition for coil impregnation and coil for automobile motor
JP2010244965A (en) Electrical insulation resin composition, and method of manufacturing electric equipment insulating material using the same
JP5202439B2 (en) Thermosetting resin composition
JP2007099890A (en) Resin mixture, resin composition for electric insulation using the resin mixture and manufacturing method of insulated product of electric equipment
JP2019026804A (en) Unsaturated polyester resin composition and method for manufacturing electric device insulation using the same
JP2005290023A (en) Resin composition for coil impregnation and coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577895

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086498.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922826

Country of ref document: EP

Kind code of ref document: A1