WO2023170891A1 - Insulating resin composition, cured object, wire coil, and rotating machine - Google Patents

Insulating resin composition, cured object, wire coil, and rotating machine Download PDF

Info

Publication number
WO2023170891A1
WO2023170891A1 PCT/JP2022/010721 JP2022010721W WO2023170891A1 WO 2023170891 A1 WO2023170891 A1 WO 2023170891A1 JP 2022010721 W JP2022010721 W JP 2022010721W WO 2023170891 A1 WO2023170891 A1 WO 2023170891A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating resin
resin composition
vinyl monomer
curing
coil
Prior art date
Application number
PCT/JP2022/010721
Other languages
French (fr)
Japanese (ja)
Inventor
あずさ 大澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024505783A priority Critical patent/JPWO2023170891A1/ja
Priority to PCT/JP2022/010721 priority patent/WO2023170891A1/en
Publication of WO2023170891A1 publication Critical patent/WO2023170891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present disclosure relates to an insulating resin composition, a cured product, a wire-wound coil, and a rotating machine.
  • Patent Document 1 discloses an example of a solvent-free varnish composition used as an insulating varnish.
  • a monofunctional vinyl monomer such as 2-hydroxyethyl methacrylate (2-HEMA) is added as a reactive diluent to adjust the viscosity. After impregnating the coil with the solvent-free varnish composition, it is heated and cured.
  • 2-HEMA 2-hydroxyethyl methacrylate
  • an insulating resin composition such as the solvent-free varnish composition of Patent Document 1
  • a part of the monofunctional vinyl monomer may volatilize into the curing furnace during curing heating.
  • 2-hydroxyethyl methacrylate used as a monofunctional vinyl monomer has high hydrophilicity due to its molecular structure, that is, it has a hydroxyl group with a high degree of freedom in a relatively short hydrocarbon main chain. Therefore, 2-hydroxyethyl methacrylate easily reacts with moisture in the air and can redeposit on the surface of the cured product. This may leave stickiness on the surface of the cured product.
  • there is an increasing need for insulating resins that use fewer raw materials derived from petroleum for example, in order to comply with environmental regulations that have tended to be tightened due to recent international concerns about environmental issues.
  • the present disclosure relates to solving such problems.
  • the present disclosure provides an insulating resin composition that uses biomass material as a raw material and can further improve surface tactility of the cured product, a cured product thereof, a wound coil with good surface tactility, and a rotating machine using the same. do.
  • the insulating resin composition according to the present disclosure includes a thermosetting resin having both an epoxy group and a meth (acryloyl) group, a radical polymerization reaction initiator and a curing agent for the epoxy group, and a polyfunctional resin composition made from a biomass material. and a monofunctional vinyl monomer made from a biomass material, the monofunctional vinyl monomer having an isobornyl skeleton and a cyclic ether skeleton of a saturated hydrocarbon. It contains both vinyl monomers and has a biomass degree of 60% or more and 84% or less.
  • the cured product according to the present disclosure is obtained by curing the above-mentioned insulating resin composition.
  • a wire-wound coil according to the present disclosure is impregnated with the above-mentioned insulating resin composition.
  • a rotating machine is a rotating machine used for a hoisting machine that drives a car of a rope elevator, and includes a stator using the above-described wire-wound coil.
  • the surface touchability of the cured product can be further improved while using biomass material as a raw material. Furthermore, the surface touchability of the wire-wound coil using the biomass material as a raw material is further improved.
  • FIG. 2 is a conceptual diagram showing an example of a situation where an insulating resin is hardened.
  • 1 is a sectional view of a hoisting machine according to Embodiment 1.
  • FIG. 1 is a sectional view of a hoisting machine according to Embodiment 1.
  • Embodiment 1 Embodiment 1
  • the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments or modifications of any constituent elements of the embodiments may be made without departing from the spirit of the present disclosure. Can be omitted. Further, the embodiments and examples in this disclosure are illustrative in all respects and should not be interpreted in a restrictive manner.
  • Embodiment 1 a liquid insulating resin composition (X) and its cured product (Y) will be described. Further, a winding coil for a rotating machine using the insulating resin composition (X) and a rotating machine using the same for a stator will also be described.
  • Insulating resin composition (X) and its cured product (Y) The insulating resin composition (X) of Embodiment 1 is used, for example, to maintain insulation and mechanical strength in a coil of a rotating machine.
  • a coil is formed, for example, by winding a winding such as enameled wire around an iron core.
  • the device to which the coil is applied is not limited to a specific device.
  • the coil is applied to, for example, an electric motor such as a motor, or a rotating machine such as a generator.
  • the coil is applied to, for example, an elevator hoist or an electric compressor.
  • the coil is impregnated with the insulating resin composition (X), for example, by a dipping method in which the coil is immersed in an impregnating tank filled with the insulating resin composition (X).
  • the insulating resin composition (X) becomes a cured product (Y) by being heated and cured in a curing furnace.
  • the insulating resin that is impregnated to ensure the insulation and mechanical strength of the coil of a rotating machine is generally of high viscosity, and in that case, the insulating resin penetrates between the windings to the inside of the coil. It's difficult to make it happen. In particular, in large rotating machines, the length of the coil is long and the thickness thereof is large, making it more difficult for high-viscosity insulating resin to penetrate.
  • Methods for filling insulating resin between the windings of a coil of a rotating machine include a dipping method and a dripping method.
  • a dipping method for example, in a coil that is relatively small in size and has a low winding density, such as is applied to a compressor, either the dipping method or the dripping method can be adopted.
  • large rotating machines such as generators or hoisting machines, it is difficult to apply the insulating resin uniformly between the windings to the inside of the coil using the dripping method. For this reason, in large rotating machines, an immersion method in the atmosphere or in a vacuum is generally adopted.
  • the immersion method is a method in which the coil is immersed in a tank or impregnating tank filled with insulating resin in the atmosphere or under vacuum, thereby infiltrating the insulating resin between the wound wires.
  • a large amount of excess insulating resin adheres to the windings, core, and other components of the coil.
  • the coils are pulled out of the immersion tank and placed in a curing furnace for curing heating, often with excess insulating resin still attached.
  • the excess insulating resin adhering to the coil may harden as it is, forming a lumpy cured material on, for example, the lower part of the coil, the recess of the iron core, or other constituent members. Further, the insulating resin whose viscosity decreases due to curing heating and drips down the coil may form a large resin pool in the curing furnace.
  • Hardened lumps formed on the bottom of the coil, in the recesses of the core, or on other structural members may damage the windings and components due to thermal stress such as curing shrinkage, which may cause a decrease in insulation properties. sell. Furthermore, since the lump-like cured material obstructs the work of assembling the coil into the fixing member, it is necessary to remove the lump-like cured material. Furthermore, resin puddles formed in the curing furnace may generate smoke due to curing heat. Since the resin pool becomes a huge cured product formed on the hearth of the curing furnace, regular cleaning of the curing furnace is essential. Such problems are particularly noticeable in large rotating machines, and there is an increasing need for low-viscosity insulating resins that can suppress the formation of lumpy cured products and resin pools.
  • FIG. 1 is a conceptual diagram showing an example of a situation where the insulating resin is hardened.
  • FIG. 1 an example of an insulating resin 2 hardening on the surface of a winding of a coil 1 is shown.
  • a portion 3 of the reactive diluent evaporates and fills the inside of the curing furnace.
  • moisture 4 is contained in the air inside the furnace.
  • a thin film 5 made of paraffin may be formed on the surface of the hardened insulating resin 2.
  • 2-Hydroxyethyl methacrylate has high hydrophilicity due to its molecular structural characteristics, namely, having a hydroxyl group with a high degree of freedom in a relatively short hydrocarbon main chain. Therefore, when 2-hydroxyethyl methacrylate is used as a reactive diluent, a part of the volatilized part easily reacts with moisture in the air and can re-deposit on the surface of the cured product. This may leave stickiness on the surface of the cured product. Since stickiness on the surface of the cured product hinders assembly work, which is a post-impregnation process, insulating resins are required to eliminate stickiness on the surface of the cured product and improve touchability.
  • the insulating resin composition (X) of Embodiment 1 includes a thermosetting resin (A) having both an epoxy group and a meth (acryloyl) group, a radical polymerization reaction initiator, and a curing agent for the epoxy group (B). , a polyfunctional vinyl monomer (C) made from a biomass material, and a monofunctional vinyl monomer (D) made from a biomass material.
  • the monofunctional vinyl monomer (D) has a cyclic structure in its molecule.
  • the monofunctional vinyl monomer (D) includes both a vinyl monomer (D-1) having an isobornyl skeleton and a vinyl monomer (D-2) having a saturated hydrocarbon cyclic ether skeleton.
  • the meth (acryloyl) group represents an acryloyl group or a methacryloyl group.
  • a numerical range expressed using "x to y" represents a numerical range including a lower limit value x and an upper limit value y.
  • the insulating resin composition (X) preferably has a low viscosity and good drainage so as to suppress excessive adhesion to the coil pulled up from the dipping tank after impregnation by the dipping method.
  • the overall viscosity of the insulating resin composition (X) is desirably 10 mPa ⁇ s to 200 mPa ⁇ s, preferably 10 mPa ⁇ s to 100 mPa ⁇ s, more preferably 15 mPa ⁇ s to 50 mPa ⁇ s.
  • Thermosetting resin (A) includes a resin having both an epoxy group and a meth (acryloyl) group in one molecule.
  • the thermosetting resin (A) may be a resin used alone, or a second resin containing one or both of an epoxy group and a meth (acryloyl) group in one molecule in addition to the resin. A mixture of resins and the like may be used.
  • the second resin may be a mixture of a plurality of resins.
  • thermosetting resin (A) undergoes an addition reaction via free radicals generated from an organic peroxide with a meth (acryloyl) group as a reactive group, and a ring-opening polymerization reaction with an epoxy group as a reactive group.
  • the three-dimensional crosslinking reaction by both is promoted. This accelerates the curing reaction and increases the heat resistance and mechanical strength of the cured product.
  • the thermosetting resin (A) preferably has a number average molecular weight (Mn) of 15,000 or less, preferably 1,000 to 10,000, and a viscosity of 10,000 mPa ⁇ s or less at 60°C, for ease of viscosity adjustment.
  • Mn number average molecular weight
  • the epoxy equivalent of the thermosetting resin (A) blended into the insulating resin composition (X) is preferably 500 to 5,000, more preferably 1,000 to 4,000. By controlling the epoxy equivalent within the above range, it is possible to improve the curing rate without impairing the pot life of the insulating resin composition (X), and further improve the crosslinking density of the cured product (Y). You will be able to do this.
  • Radical polymerization reaction initiator and curing agent for epoxy groups (B) In order to cure thermosetting resins (A) and monofunctional vinyl monomers (D), organic peroxides are used as radical polymerization reaction initiators that mainly act on meth (acryloyl) groups and epoxy groups. A curing catalyst is used in combination.
  • Organic peroxides are mainly used as reaction initiators for meth (acryloyl) groups, and those known in the art can be used.
  • the organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40°C or higher, but from the viewpoint of shortening the curing time and adjusting the curing temperature, the 10-hour half-life temperature should be 100°C to 170°C. is preferred.
  • Examples of these organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, peroxydicarbonate-based peroxides, etc. can be used. These organic peroxides may be used alone or in combination of two or more types.
  • organic peroxides with such 10 hour half-life temperatures include 1,1-di(t-butylperoxy)cyclohexane; -di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di-( butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate, t-Butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-butylperoxyisopropyl monocarbonate, t-butylperoxybenzoate,
  • the blending amount of the organic peroxide in the insulating resin composition (X) is not particularly limited, but the amount of the thermosetting resin (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D) is The amount is preferably 0.1 parts by mass to 10 parts by mass, more preferably 0.5 parts by mass to 5 parts by mass, based on a total of 100 parts by mass. If the amount of organic peroxide is less than 0.1 part by mass, the crosslinking density will be low and the required mechanical strength will not be obtained. On the other hand, if the amount of organic peroxide blended is more than 10 parts by mass, the pot life of the insulating resin composition tends to be significantly shortened.
  • curing agent for epoxy group examples include amine compounds, boric acid ester compounds, organometallic compounds, organophosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amine complexes, imidazole compounds, titanium and cobalt.
  • curing agents for epoxy groups include amine compounds, boric acid ester compounds, organometallic compounds, organophosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amine complexes, imidazole compounds, titanium and cobalt.
  • transition metals such as, acid anhydrides, imidazole compounds, polymercaptan compounds, phenols, Lewis acid compounds, isocyanate compounds, and the like. These may be used alone or in combination of two or more.
  • amine curing agents include tertiary amines and tertiary amine salts.
  • tertiary amine salts include the above-mentioned tertiary amine carboxylates, sulfonates, and inorganic acid salts.
  • carboxylates include salts of carboxylic acids having 1 to 30 carbon atoms (especially 1 to 10 carbon atoms) such as octylates (especially salts of fatty acids).
  • sulfonates include p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, and the like.
  • Typical specific examples of tertiary amine salts include salts of 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) (e.g., p-toluenesulfonate, octylate), etc. Can be mentioned. However, these are just examples. Use of amine curing agents other than these does not depart from the scope of the present disclosure.
  • DBU 1,8-diazabicyclo[5.4.0]undecene-7
  • borate esters examples include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate compounds. However, these are just examples. The use of boric acid esters other than these does not depart from the scope of the present disclosure.
  • organometallic compounds include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, aluminum acetylacetone complex, and the like. However, these are just examples. Use of organometallic compounds other than these does not depart from the scope of this disclosure.
  • organic phosphorus compounds examples include tetraphenylphosphonium tetraphenylborate, triphenylphosphine, and the like. However, these are just examples. The use of organic phosphorous compounds other than these does not depart from the scope of the present disclosure.
  • quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, and tetrabutyl bromide.
  • Examples include ammonium, tetrabutylammonium iodide, triethylbenzylammonium chloride, triethylbenzylammonium bromide, triethylbenzylammonium iodide, triethylphenethylammonium chloride, triethylphenethylammonium bromide, and the like.
  • Examples of quaternary phosphonium salts include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, Ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride
  • Examples include phosphonium, butyltriphenylphosphonium bromide, but
  • amine complexes include boron halide amine complexes, which are complexes of boron halides such as boron trifluoride, boron trichloride, and boron tribromide, and amine compounds.
  • examples of amine compounds include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N,N-dimethyloctylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, etc.
  • aromatic tertiary amines such as substituted or unsubstituted imidazole or pyridine with alkylation at position 1
  • aliphatic primary amines such as monoethylamine and n-hexylamine, benzylamine, etc.
  • examples include aliphatic primary amines containing an aromatic ring, aromatic primary amines such as aniline, and secondary amines such as piperidine.
  • boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, and boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, Examples include N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, and boron trichloride N,N-diethyldioctylamine complex. However, these are
  • imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Benzyl-2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole , 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole, 2,4-diamino-6(2'-methylimidazole(1'))ethyl-s-triazine, 2,4-diamino-6( 2'-undecylimidazole (1')) ethyl-s-s
  • acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and the like. However, these are just examples. The use of acid anhydride curing agents other than these does not depart from the scope of the present disclosure.
  • the amount of the above-mentioned curing agent for epoxy group can be adjusted as appropriate depending on the type of thermosetting resin (A), the type of curing agent, etc.
  • the blending amount of the curing agent is preferably about 0.5 equivalent or more and 2 equivalents or less with respect to the epoxy equivalent of the thermosetting resin (A). If the amount of the curing agent is less than 0.5 equivalent, curing of the thermosetting resin (A) may not proceed sufficiently. If the amount of the curing agent exceeds 2 equivalents, the heat resistance, mechanical properties, etc. of the cured product may deteriorate.
  • a curing accelerator may be used in combination to accelerate or control the curing reaction.
  • the curing accelerator include tertiary amines and salts thereof, quaternary ammonium compounds, imidazole, and alkali metal alkoxides.
  • the blending amount of the curing accelerator is preferably about 0.01% by mass or more and 30% by mass or less (more preferably about 0.05% by mass or more and 20% by mass or less) based on the mass of the thermosetting resin (A). It is. If the amount is less than 0.01% by mass, the promoting effect may be small. If the blending amount exceeds 30% by mass, the storage stability of the insulating resin composition (X) and the moldability of the cured product may deteriorate.
  • the polyfunctional vinyl monomer (C) uses biomass material as a part of its raw material.
  • the polyfunctional vinyl monomer (C) is optionally blended as one of the reactive diluents in the insulating resin composition (X).
  • the polyfunctional vinyl monomer (C) is not limited to a specific one as long as it contributes to the radical polymerization reaction, but it has two meth (acryloyl) groups or allyl groups in one molecule, which are reactive groups. It is desirable to include those who have. Since such a polyfunctional vinyl monomer (C) has two active groups that contribute to the reaction in one molecule, it is polymerized and completely incorporated during the curing process of the insulating resin composition (X).
  • the blending amount of the polyfunctional vinyl monomer (C) may be within a range that can ensure the blending amount of the monofunctional vinyl monomer (D), and from the viewpoint of mechanical strength and heat resistance, the thermosetting resin It is desirable that the amount is within the range of 3 wt% to 20 wt% of the total of (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D).
  • Monofunctional vinyl monomer (D) uses biomass material as a part of its raw material.
  • the monofunctional vinyl monomer (D) is used mainly for adjusting the viscosity of the insulating resin composition (X) in addition to adjusting the crosslinked structure.
  • the monofunctional vinyl monomer (D) is desirably a monofunctional one in which the number of functional groups contributing to the reaction is one per molecule.
  • the monofunctional vinyl monomer (D) a low-viscosity monomer having an ether bond or an ester bond and a cyclic structure is used.
  • a vinyl monomer (D-1) having an isobornyl skeleton and a vinyl monomer (D-2) having a cyclic ether skeleton of a saturated hydrocarbon are used together.
  • the vinyl monomer (D-1) having an isobornyl skeleton include isobornyl methacrylate and isobornyl acrylate.
  • the vinyl monomer (D-2) having a saturated hydrocarbon cyclic ether skeleton include tetrahydrofurfuryl methacrylate and tetrahydrofurfuryl acrylate.
  • the blending amount of the monofunctional vinyl monomer (D) is determined from the viewpoint of increasing the biomass content of the insulating resin composition (X) and increasing the environmental load reduction effect, and from the viewpoint of increasing the biomass content of the insulating resin composition (X) and increasing the environmental load reduction effect when the coil is pulled up from the immersion tank. ) is preferably as large as possible from the viewpoint of improving liquid drainage and suppressing the formation of lumpy cured products on the coil and other structural members.
  • the monofunctional vinyl monomer (D) contributes to increasing the number of crosslinking points, it is a low molecular weight and part of it evaporates during curing heating, so the entire amount does not contribute to the curing reaction, so the blending amount If the amount is too large, the mechanical strength of the cured product (Y) will be reduced. That is, the blending amount of the monofunctional vinyl monomer (D) should be set within a range that can achieve both of the contradictory required functions, namely, improving the degree of biomass and suppressing the formation of a lumpy cured product, and increasing the mechanical strength of the cured product (Y).
  • the blending amount of the monofunctional vinyl monomer (D) may be 60 wt% or more, preferably 65 wt% or more of the total amount of the insulating resin composition (X). desirable.
  • the blending amount of the monofunctional vinyl monomer (D) is 85 wt% or less, preferably 75% or less, more preferably 75% or less of the total amount of the insulating resin composition (X). is desirably 70 wt% or less.
  • the blending amount of the monofunctional vinyl monomer (D) is preferably 60 to 85 wt% of the total amount of the insulating resin composition (X). It is 60 to 85 wt%, more preferably 65 to 85 wt%.
  • a monofunctional vinyl monomer having one meta (acryloyl) group or allyl group in one molecule A vinyl monomer may also be blended.
  • these monofunctional vinyl monomers include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, lauryl methacrylate, ethoxydiethylene glycol methacrylate, 4-hydroxybutyl methacrylate, n-octyl acrylate, and the like. These monofunctional vinyl monomers may be used singly or in combination.
  • Insulating resin composition (X) can be manufactured by the following manufacturing method.
  • the blending amounts of (A) to (D) are as described in Examples and Comparative Examples.
  • the mixing method is not particularly limited as long as it can be mixed uniformly, and any method known in the technical field can be used.
  • thermosetting resin (a) Mixing of thermosetting resin, polyfunctional vinyl monomer, and monofunctional vinyl monomer
  • the thermosetting resin (A) and the polyfunctional vinyl monomer (C) are mixed to have fluidity from a semi-solid state. Heat to approximately 50°C and weigh to obtain a viscosity that will give .
  • a monofunctional vinyl monomer (D) is added thereto, and the mixture is stirred using a rotation-revolution stirrer until a homogeneous solution is obtained.
  • the cured product (Y) is a cured product of the insulating resin composition (X).
  • the cured product (Y) is typically produced by heating the insulating resin composition (X).
  • the cured product (Y) is used in various forms and shapes depending on the purpose.
  • the cured product (Y) can be molded into a desired shape by various molding methods such as impregnation, coating, casting, and sheet molding.
  • the cured product (Y) has excellent insulation performance and heat resistance. Therefore, the cured product (Y) is suitable for applications requiring at least one of insulation performance and heat resistance.
  • the cured product (Y) is suitable, for example, for insulating members of heavy electrical equipment such as rotating machines and power transmission and transformation equipment. Examples of the insulating member include varnish, insulating paint, cable covering material, insulating sheet, and sealing material.
  • the step of impregnating the coil is not particularly limited.
  • a manufacturing method consisting of a total of five steps including a preheating step and an air cooling step before impregnation, followed by an impregnation step, a drip removal step, and a heat curing step will be described.
  • the preheating step is a step in which annealing treatment is performed for the purpose of improving the crazing resistance of the coil winding such as enameled wire.
  • the coil is heated to a predetermined temperature.
  • the heating temperature in the preheating step is not particularly limited as long as it can improve the crazing property, but the treatment is performed at, for example, 150°C.
  • the air cooling step is a step of cooling the coil to a predetermined temperature in order to suppress the temperature rise of the insulating resin composition (X).
  • the temperature of the coil after cooling is not particularly limited as long as it is within a temperature range that does not affect the pot life of the insulating resin composition (X), but for example, 30° C. to 50° C. is suitable.
  • impregnation treatment methods known in the technical field such as dipping, dripping, pressure impregnation, and vacuum impregnation can be used; however, in the case of coils for large rotating machines, impregnation treatment by dipping or pressure/vacuum impregnation is generally used. It will be done.
  • the immersion treatment is performed by immersion impregnation, the coil is gently immersed in an impregnation bath filled with the insulating resin composition (X).
  • the soaking time is not particularly limited, but especially in coils that are tightly wound in an aligned manner, the air that adheres between the enamelled wires and on the component parts becomes bubbles and floats to the surface, so the generation of these bubbles can be avoided.
  • the time it takes for bubble generation to settle down varies depending on the size of the coil, but for large rotating machines it takes about 10 to 60 minutes, and from the perspective of improving the efficiency (shortening of time) of the manufacturing process, it takes about 15 to 30 minutes. is desirable. If the immersion time is less than 10 minutes, the insulating resin composition (X) will not penetrate into the entire coil, and even if it is immersed for more than 60 minutes, at which time bubble generation will stop, the amount of insulating resin composition (X) that will penetrate into the coil will be This is because it does not increase.
  • the impregnation temperature that is, the temperature of the insulating resin composition (X) in the impregnation bath, is not particularly limited as long as it does not begin to thicken due to curing.
  • the room temperature is set at 25°C to 60°C. Since the insulating resin composition (X) has a low viscosity, it can be impregnated at room temperature of 25°C.
  • the insulating resin composition (X) impregnated into the coil in the impregnation step is heated and cured in a curing furnace to become a cured product (Y).
  • the heating temperature in the heat curing step is not particularly limited as long as it is higher than the reaction start temperature (half-life temperature) of the reaction initiator added to the insulating resin composition (X), and is generally 130 ° C. to 180 ° C., preferably The temperature is 140°C to 170°C.
  • the heating time of the heat curing step is influenced by the curing speed of the insulating resin composition (X) and the amount of adhesion to the coil, and also changes depending on the raw material composition.
  • the heating temperature and heating time in the heat curing step are set to the temperature and time necessary for complete curing, depending on the composition of the insulating resin composition (X).
  • the heating temperature or heating time is insufficient, the insulating resin composition (X) may not be completely cured, and uncured portions may occur.
  • various properties such as electrical properties, mechanical properties, and heat resistance may deteriorate in the cured product (Y).
  • the heating temperature or heating time is excessive, the balance of the crosslinking reaction due to curing heating may be lost, which may cause cracks to occur in the cured product (Y).
  • the heating temperature and heating time are set within a range that does not cause these problems.
  • the insulating resin composition (X) of the present disclosure is completely cured in 30 minutes to 8 hours at 130 to 180°C. A curing time of less than 30 minutes will not result in complete curing.
  • the mechanical strength (adhesion strength of the electric wire) of the cured product (Y) gradually develops and improves after curing, and tends to converge after a predetermined time, here 4 hours. Therefore, from the viewpoint of complete curing and strength convergence, the heating time in the heat curing step is preferably 1 to 4 hours, more preferably 1 to 2 hours.
  • FIG. 2 is a sectional view of the hoist 10 according to the first embodiment.
  • the hoisting machine 10 shown in FIG. 2 includes a rotating section 11, a brake section 12, and a motor section 13.
  • the rotating part 11 includes a sheave 14, a rotor 15, a brake disc 16, and a rotating shaft 17.
  • the sheave 14, rotor 15, and brake disc 16 are coaxially connected by a rotating shaft 17.
  • a main rope (not shown) is wound around the sheave 14.
  • An elevator car (not shown) supported by the main rope is driven by the friction between the main rope and the sheave 14.
  • the brake section 12 includes a movable brake shoe (not shown).
  • the brake part 12 generates a force for braking the rotating part 11 by the friction generated by pressing the brake shoe against the brake disc 16.
  • the motor section 13 includes a frame 18 and a stator 19.
  • the stator 19 is fixed to the frame 18 by press fitting or shrink fitting.
  • the stator 19 includes an annular iron core 20 .
  • a winding 21 is wound around each tooth of the iron core 20. Further, the winding 21 and the iron core 20 are insulated by an insulator 22. Further, the winding 21 is fixed by an insulator 22.
  • the windings 21 wound around each tooth are connected to each other in a set order, and generate magnetic flux when energized.
  • the stator 19 is manufactured, for example, by a method including the following steps.
  • a wire coated with enamel is prepared.
  • the wire has conductivity.
  • the material of the wire is, for example, copper, aluminum, silver, etc.
  • the type of enamel is not particularly limited, but combinations of polyesterimide, polyamideimide, polyamide, etc. are used. These enamel insulation coating layers may contain an inorganic filler to improve dielectric strength.
  • commercially available wires for motor coils can be used.
  • Such an insulated enameled wire is wound around each tooth of the iron core 20 to form a winding 21. Thereafter, the winding 21 is impregnated with the insulating resin composition (X) by the above-described impregnation process, and the insulating resin composition (X) is cured by the heat curing process.
  • a low molecular weight monofunctional vinyl monomer (D) is used as a reactive diluent that lowers the viscosity in order to improve impregnation into the coil. Therefore, even if the coil of a large rotating machine has a long coil length and a thick coil thickness, the insulating resin composition (X) is easily impregnated into the inside. Moreover, since the viscosity of the insulating resin composition (X) is low, the formation of excess clumped cured material is suppressed. This improves the manufacturability of large rotating machines.
  • thermosetting resin that has both an epoxy group and a meth (acryloyl) group in one molecule, a number average molecular weight of about 2000, and a viscosity at 60°C of about 3900 mPa ⁇ s, a curing agent for epoxy groups, and radical polymerization.
  • Curing agent Zinc octylate Reaction initiator: 2,5-dimethyl-2,5-di(t-butylperoxy)hexane/polyfunctional vinyl monomer
  • C Bis A type epoxy acrylate monofunctional vinyl monomer (D) with a weight average molecular weight of about 500 (D-1) Biomass-derived isobornyl methacrylate (D-2) Biomass-derived tetrahydrofurfuryl methacrylate (D-3) 2-hydroxyethyl methacrylate (2-HEMA)
  • thermosetting resin (A) and the polyfunctional vinyl monomer (C) are heated to 40°C in advance so that they have a viscosity that is easy to stir, and the thermosetting resin (A) is mixed according to the blending amounts shown in Table 1 below.
  • a polyfunctional vinyl monomer (C), and a monofunctional vinyl monomer (D) were weighed.
  • the weighed thermosetting resin (A), polyfunctional vinyl monomer (C), and monofunctional vinyl monomer (D) are all mixed and stirred using a rotation-revolution type stirrer to make a uniform mixture.
  • a mixed solution was obtained.
  • a curing agent for epoxy groups and a radical polymerization reaction initiator (B) were added to this mixed solution in the ratios shown in Table 1 below to obtain an insulating resin composition (X).
  • the weight percentage (wt%) of the reaction initiator represents the weight ratio of the thermosetting resin (A) and the monofunctional vinyl monomer (D) to the total weight.
  • 1 phr means 1 part by mass of curing for a total of 100 parts by mass of the thermosetting resin (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D). represents the amount of the agent to be mixed.
  • “(D-1), (D-2)” means that the monofunctional vinyl monomer (D) is an isovolume.
  • (D-3) means that the monofunctional vinyl monomer (D) is 2-HEMA (D) instead of isobornyl methacrylate (D-1) and tetrahydrofurfuryl methacrylate (D-2). -3) is used.
  • (D-1) indicates that the monofunctional vinyl monomer (D) contains isobornyl methacrylate (D-1) and does not contain tetrahydrofurfuryl methacrylate (D-2).
  • (D-2) indicates that the monofunctional vinyl monomer (D) contains tetrahydrofurfuryl methacrylate (D-2) and does not contain isobornyl methacrylate (D-1). .
  • Comparative example 1 to comparative example 4 Insulating resin compositions were produced in the same manner as in Examples 1 to 9 according to the blending amounts shown in Table 1. As shown in Table 1, in Comparative Example 1 and Comparative Example 2, the total amount of (D-1) and (D-2) was 85 wt% of the total amount of the insulating resin composition (X). Over. In Comparative Example 3 and Comparative Example 4, the total amount of (D-1) and (D-2) is less than 60 wt% of the total amount of the insulating resin composition (X).
  • Comparative example 5 to comparative example 6 According to the blending amounts shown in Table 1, 2-HEMA (D-3) was used as the monofunctional vinyl monomer (D) in place of isobornyl methacrylate (D-1) and tetrahydrofurfuryl methacrylate (D-2).
  • An insulating resin composition (X) was prepared in the same manner as in Example 3 except that the following was used.
  • Comparative example 7 An insulating resin composition (X) was prepared in the same manner as in Example 3, except that only isobornyl methacrylate (D-1) was used as the monofunctional vinyl monomer (D) according to the blending amounts shown in Table 1. Prepared.
  • Comparative example 8 An insulating resin composition (X) was prepared in the same manner as in Example 3, except that only tetrahydrofurfuryl methacrylate (D-2) was used as the monofunctional vinyl monomer (D) according to the blending amounts shown in Table 1. Prepared.
  • Biomass degree The biomass degree of the insulating resin composition (X) was calculated from the number of 14 C atoms.
  • the measurement method used was a method based on ASTM D6866, and the prepared insulating resin composition (X) was oxidized to carbon dioxide or graphite, then dissolved in a scintillator liquid, and used as a liquid scintillation counter (LSC) measurement sample. did.
  • LSC liquid scintillation counter
  • the number of radioactive carbon 14C in this sample was measured using a liquid scintillation counter, and the number was determined from the proportion of 14C in the total carbon ( 12C , 13C , 14C ) constituting the insulating resin composition (X).
  • the biomass degree of the insulating resin composition (X) was determined. The obtained results are shown in the "Biomass degree" column of Table 1. Note that the method for measuring 14 C is not limited to the above method, and for example, accelerator mass spectrometry (AMS) may be used.
  • AMS accelerator
  • Viscosity The viscosity of the insulating resin composition (X) was measured using an E-type viscometer. The results of the measurements at room temperature are shown in the "Total viscosity" column of Table 1.
  • a helical coil as a test piece was prepared using a linear 1 mm magnet wire (KMK-20E manufactured by Hitachi Metals) in accordance with JISC3216-1 and 6. Next, this helical coil was preheated by heating at 150° C. for 120 minutes, and then cooled to room temperature. These helical coils were gently immersed in the insulating resin composition (X), left to stand for 1 minute, then pulled up, and suspended in a heating furnace with an appropriate interval maintained. These coils were heated for a predetermined period of time to cure the insulating resin composition (X). The heating conditions were 170°C for 2 hours.
  • the helical coil obtained by heating and curing was subjected to a three-point bending test using an autograph (strength testing machine).
  • the evaluation results are shown in the "Strength" column of Table 1. In this evaluation, it is desirable that the adhesion force is 100N or more, and if the adhesion force is 100N or more, it is +, if the adhesion force does not reach 100N, it is -, and if the adhesion force exceeds 120N, it is considered as -. ++.
  • a sample simulating the stator 19 shown in FIG. 2 was prepared and impregnated with the insulating resin composition (X) listed in Table 1 and cured. The thickness of the cured mass formed on the coil end) and the insulator was measured. The evaluation results are shown in the "Icicle" column of Table 1. In this evaluation, the necessity of removal processing is used as the standard for thicknesses of 10 mm or more that require cutting and shaving, thicknesses of 5 mm or more but less than 10 mm that do not require cutting but require shaving, and 2 mm that require shaving depending on the location. A thickness of less than 5 mm was defined as +, and a thickness of less than 2 mm that required no cutting was defined as ++.
  • the insulating resin composition (X) is required to have both mechanical strength and suppression of clumped cured product formation, as well as good touchability and a biomass degree of 60% or more.
  • the results of such comprehensive evaluation are shown in the "Judgment" column of Table 1.
  • the final judgment results are shown as + for those that can satisfy all of these requirements, and - for those that do not satisfy any one or more of the requirements.
  • Examples 1 to 9 have improved tactility compared to Comparative Examples 5 and 6. This is because the monofunctional vinyl monomers (D-1) and (D-2), which do not have a highly flexible hydroxyl group in their molecules and have a cyclic skeleton, can suppress moisture adsorption in the air. It is thought that this was due to an accident.
  • the total amount of monofunctional vinyl monomers (D-1) and (D-2) was 82 wt% to 84 wt% for Examples 1 and 2, 65 wt% to 78 wt% for Examples 3 to 6, and 65 wt% to 78 wt% for Examples 3 to 6.
  • Examples 7 to 9 are 60 wt% to 64 wt%.
  • the thickness of the cured lumps was 2 mm or less, which made removal unnecessary, and the mechanical strength was also a good value exceeding 100 N, which is a standard.
  • the mechanical strength exceeded 120N.
  • the mechanical strength exceeded 100N, and the thickness of the cured lumps was 2 mm to 5 mm.
  • Examples 7 to 9 although the step of removing the clumped cured material cannot be completely eliminated, it is possible to significantly reduce the process time and the number of locations required for processing, resulting in the effect of improving productivity.
  • the overall viscosity of the insulating resin composition (X) was 10 mPa ⁇ s to 80 mPa ⁇ s. Further, in Examples 1 to 9, good results were obtained in terms of touchability after curing.
  • the monofunctional vinyl monomer (D) reduces the viscosity of the insulating resin composition (X), thereby contributing to improving drainage properties and suppressing the formation of lumpy cured products.
  • Example 3 contains isobornyl methacrylate (D-1) having a cyclic skeleton and tetrahydrofurfuryl methacrylate (D-2).
  • Comparative Example 5 is an example in which 2-HEMA (D-3) was used instead of these, and the blending amount of the monofunctional vinyl monomer (D) was the same.
  • Example 3 using a monofunctional vinyl monomer having a cyclic structure, the mechanical strength exceeds 120N and the touchability to the fingers is also good.
  • Comparative Example 5 using 2-HEMA not only the mechanical strength was less than 100N, but also no improvement in tactility was observed. This is because the molecular skeleton of a monofunctional vinyl monomer with a cyclic skeleton is stronger than 2-HEMA, which has a chain structure, and the monofunctional vinyl monomer with a cyclic skeleton has a high degree of freedom in hydroxyl groups. This is thought to be due to the fact that it has high hydrophobicity (hydrophilicity is suppressed) because it does not have.
  • Example 3 contains both isobornyl methacrylate (D-1) having a cyclic skeleton and tetrahydrofurfuryl methacrylate (D-2).
  • Comparative Example 7 and Comparative Example 8 contain only either isobornyl methacrylate (D-1) or tetrahydrofurfuryl methacrylate (D-2).
  • the mechanical strength exceeded 100N, which was a good result, whereas in Comparative Examples 7 and 8, it was revealed that the mechanical strength was less than 100N, although it was slightly.
  • the insulating resin composition (X) in the present disclosure can obtain biomass mark certification (contains 10% or more of biomass materials) from the government or a third-party organization based on its blending ratio, and contributes to the creation of a recycling-oriented society. I can do it.
  • the monofunctional vinyl monomer (D) lowers the viscosity of the insulating resin composition (X) and improves the drainability of the insulating resin composition (X) when the coil is pulled up from the immersion tank. This prevents excess insulating resin composition (X) from adhering to the inside of the coil and to the constituent members, and provides the effect of suppressing the formation of a lumpy cured product.
  • a vinyl monomer having an isobornyl skeleton (D-1) and a vinyl monomer having a cyclic ether skeleton (D-1) contains a cyclic skeleton in its molecule, so it has superior heat resistance and strength compared to vinyl monomers with a chain skeleton.
  • the addition of reactive diluents is effective in reducing the viscosity of insulating resins, but monofunctional monomers with chain structures and small molecular weights are difficult to add in large amounts to achieve the required viscosity. Reduces heat resistance and mechanical strength of cured products.
  • the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton used in the present disclosure are monomers with a chain structure due to the effect of the cyclic structure in the molecule. It has superior thermal and mechanical properties compared to Therefore, even if a large amount of these monomers is blended, the heat resistance and strength characteristics of the cured product (Y) are not reduced, and the effect of improving the heat resistance and strength characteristics can be obtained.
  • the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton do not have a highly flexible hydroxyl group in their molecules, so they can be used as reactive diluents. It has lower hydrophilicity than the 2-HEMA used. That is, since the insulating resin composition (X) has a low affinity with moisture in the air, re-adhesion to the surface of the cured product (Y) of the insulating resin composition (X) is prevented, and the effect of improving the surface tactility can be obtained.
  • the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton in the present disclosure are biomass materials, and these are mainly composed of the monofunctional vinyl monomer (D). It is contained as a component in an amount of about 60 wt% to 84 wt%. Therefore, the biomass degree of the insulating resin composition (X) is 60% due to the blending amount of the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton. 84% or less.
  • an insulating resin composition (X) that can further improve the surface touchability of a cured product while using a biomass material as a raw material.
  • the rotating machine according to the present disclosure can be applied to a hoisting machine for a rope elevator.
  • the winding coil according to the present disclosure can be applied to the rotating machine.
  • the insulating resin composition and its cured product according to the present disclosure can be applied to maintaining the insulation properties and mechanical strength of the coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided are: an insulating resin composition which contains a biomass material as a starting material and nevertheless can give cured objects having a better surface touch; a cured object obtained from the insulating resin composition; a wire coil having a satisfactory surface touch; and a rotating machine including the wire coil. The insulating resin composition comprises a heat-curable resin having both an epoxy group and a (meth)acryloyl group, a free-radical polymerization initiator, a hardener for epoxy groups, a polyfunctional vinyl monomer produced from a biomass material as a starting material, and monofunctional vinyl monomers produced from a biomass material as a starting material. The monofunctional vinyl monomers comprise both a vinyl monomer having an isobornyl skeleton and a vinyl monomer having the skeleton of a cyclic ether of a saturated hydrocarbon. The insulating resin composition has a biomass ratio of 60-84%.

Description

絶縁樹脂組成物、硬化物、巻線コイル、および回転機Insulating resin compositions, cured products, wire-wound coils, and rotating machines
 本開示は、絶縁樹脂組成物、硬化物、巻線コイル、および回転機に関する。 The present disclosure relates to an insulating resin composition, a cured product, a wire-wound coil, and a rotating machine.
 特許文献1は、絶縁ワニスとして用いられる無溶剤型ワニス組成物の例を開示する。無溶剤型ワニス組成物において、粘度調整のため反応性希釈剤として2-ヒドロキシエチルメタクリレート(2-HEMA)などの単官能性ビニル系モノマーが添加される。無溶剤型ワニス組成物は、コイルに含浸させた後に、加熱して硬化させられる。 Patent Document 1 discloses an example of a solvent-free varnish composition used as an insulating varnish. In a solvent-free varnish composition, a monofunctional vinyl monomer such as 2-hydroxyethyl methacrylate (2-HEMA) is added as a reactive diluent to adjust the viscosity. After impregnating the coil with the solvent-free varnish composition, it is heated and cured.
国際公開第2017/061006号International Publication No. 2017/061006
 しかしながら、特許文献1の無溶剤型ワニス組成物などの絶縁樹脂組成物において、硬化加熱中に単官能性ビニル系モノマーの一部は硬化炉内に揮発しうる。ここで、単官能性ビニル系モノマーとして用いられる2-ヒドロキシエチルメタクリレートは、その分子構造的な特徴、すなわち比較的短い炭化水素主鎖に自由度の高い水酸基を有することから、親水性が高い。このため、2-ヒドロキシエチルメタクリレートは、空気中の水分と容易に反応し、硬化物の表面に再付着しうる。これにより、硬化物の表面にべたつきが残ることがある。また、近年の国際的な環境問題への関心から強化される傾向にある環境規制に対応しうるように、例えば石油由来の原材料を削減した絶縁樹脂の必要性が高まっている。 However, in an insulating resin composition such as the solvent-free varnish composition of Patent Document 1, a part of the monofunctional vinyl monomer may volatilize into the curing furnace during curing heating. Here, 2-hydroxyethyl methacrylate used as a monofunctional vinyl monomer has high hydrophilicity due to its molecular structure, that is, it has a hydroxyl group with a high degree of freedom in a relatively short hydrocarbon main chain. Therefore, 2-hydroxyethyl methacrylate easily reacts with moisture in the air and can redeposit on the surface of the cured product. This may leave stickiness on the surface of the cured product. Furthermore, there is an increasing need for insulating resins that use fewer raw materials derived from petroleum, for example, in order to comply with environmental regulations that have tended to be tightened due to recent international concerns about environmental issues.
 本開示は、このような課題の解決に係るものである。本開示は、バイオマス材料を原料として用いながら硬化物の表面指触性をより高められる絶縁樹脂組成物およびその硬化物、ならびに表面指触性のよい巻線コイルおよびそれを用いた回転機を提供する。 The present disclosure relates to solving such problems. The present disclosure provides an insulating resin composition that uses biomass material as a raw material and can further improve surface tactility of the cured product, a cured product thereof, a wound coil with good surface tactility, and a rotating machine using the same. do.
 本開示に係る絶縁樹脂組成物は、エポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂と、ラジカル重合反応開始剤およびエポキシ基用の硬化剤と、バイオマス材料を原料とする多官能性ビニル系モノマーと、バイオマス材料を原料とする単官能性ビニル系モノマーと、を含み、前記単官能性ビニル系モノマーは、イソボルニル骨格を有するビニル系モノマー、および飽和炭化水素の環状エーテル骨格を有するビニル系モノマーの両方を含み、バイオマス度が60%以上84%以下である。 The insulating resin composition according to the present disclosure includes a thermosetting resin having both an epoxy group and a meth (acryloyl) group, a radical polymerization reaction initiator and a curing agent for the epoxy group, and a polyfunctional resin composition made from a biomass material. and a monofunctional vinyl monomer made from a biomass material, the monofunctional vinyl monomer having an isobornyl skeleton and a cyclic ether skeleton of a saturated hydrocarbon. It contains both vinyl monomers and has a biomass degree of 60% or more and 84% or less.
 本開示に係る硬化物は、上記の絶縁樹脂組成物を硬化させたものである。 The cured product according to the present disclosure is obtained by curing the above-mentioned insulating resin composition.
 本開示に係る巻線コイルは、上記の絶縁樹脂組成物を含浸させたものである。 A wire-wound coil according to the present disclosure is impregnated with the above-mentioned insulating resin composition.
 本開示に係る回転機は、ロープ式エレベーターのかごを駆動させる巻上機に用いられる回転機であり、上記の巻線コイルを用いた固定子を備える。 A rotating machine according to the present disclosure is a rotating machine used for a hoisting machine that drives a car of a rope elevator, and includes a stator using the above-described wire-wound coil.
 本開示に係る絶縁樹脂組成物であれば、バイオマス材料を原料として用いながら硬化物の表面指触性がより高められる。また、バイオマス材料を原料として用いた巻線コイルの表面指触性がより高められる。 With the insulating resin composition according to the present disclosure, the surface touchability of the cured product can be further improved while using biomass material as a raw material. Furthermore, the surface touchability of the wire-wound coil using the biomass material as a raw material is further improved.
絶縁樹脂が硬化している状況の例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a situation where an insulating resin is hardened. 実施の形態1に係る巻上機の断面図である。1 is a sectional view of a hoisting machine according to Embodiment 1. FIG.
 実施の形態1.
 以下、本開示の対象を実施するための形態について説明する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。また、本開示における実施の形態および実施例は、すべての点で例示であり、制限的に解釈されるべきものではない。
Embodiment 1.
Hereinafter, embodiments for implementing the subject matter of the present disclosure will be described. Note that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments or modifications of any constituent elements of the embodiments may be made without departing from the spirit of the present disclosure. Can be omitted. Further, the embodiments and examples in this disclosure are illustrative in all respects and should not be interpreted in a restrictive manner.
 実施の形態1において、液状の絶縁樹脂組成物(X)およびその硬化物(Y)を説明する。また、絶縁樹脂組成物(X)を用いた回転機用の巻線コイル、およびこれを固定子に用いた回転機についても説明する。 In Embodiment 1, a liquid insulating resin composition (X) and its cured product (Y) will be described. Further, a winding coil for a rotating machine using the insulating resin composition (X) and a rotating machine using the same for a stator will also be described.
 1.絶縁樹脂組成物(X)およびその硬化物(Y)
 実施の形態1の絶縁樹脂組成物(X)は、例えば回転機のコイルにおいて絶縁性の保持および機械的強度の維持などのために用いられる。コイルは、例えば鉄心にエナメル線などの巻線を巻き回すことで形成される。コイルが適用される機器は、特定の機器に限定されない。コイルは、例えばモーターなどの電動機、または発電機などの回転機に適用される。コイルは、例えばエレベーターの巻上機、または電動圧縮機などに適用される。絶縁樹脂組成物(X)は、例えば絶縁樹脂組成物(X)で満たされた含浸槽にコイルを浸漬する浸漬法などによってコイルに含浸させられる。絶縁樹脂組成物(X)は、硬化炉において加熱されて硬化することで硬化物(Y)となる。
1. Insulating resin composition (X) and its cured product (Y)
The insulating resin composition (X) of Embodiment 1 is used, for example, to maintain insulation and mechanical strength in a coil of a rotating machine. A coil is formed, for example, by winding a winding such as enameled wire around an iron core. The device to which the coil is applied is not limited to a specific device. The coil is applied to, for example, an electric motor such as a motor, or a rotating machine such as a generator. The coil is applied to, for example, an elevator hoist or an electric compressor. The coil is impregnated with the insulating resin composition (X), for example, by a dipping method in which the coil is immersed in an impregnating tank filled with the insulating resin composition (X). The insulating resin composition (X) becomes a cured product (Y) by being heated and cured in a curing furnace.
 ここで、回転機のコイルの絶縁性および機械的強度を確保するために含浸させる絶縁樹脂は、一般に高粘度であることが多く、その場合にコイルの内部まで巻線の間に絶縁樹脂を浸透させることは難しい。特に、大型の回転機においてはコイル長が長くその厚みが大きいため、高粘度な絶縁樹脂の浸透はより困難なものとなる。 The insulating resin that is impregnated to ensure the insulation and mechanical strength of the coil of a rotating machine is generally of high viscosity, and in that case, the insulating resin penetrates between the windings to the inside of the coil. It's difficult to make it happen. In particular, in large rotating machines, the length of the coil is long and the thickness thereof is large, making it more difficult for high-viscosity insulating resin to penetrate.
 特に、絶縁樹脂を大型の回転機に適用する場合に、大型の回転機のコイルに適した材料設計が求められる。回転機のコイルにおいて巻線の間に絶縁樹脂を充填する方法として、浸漬法または滴下法などがある。例えば圧縮機に適用されるような比較的サイズが小さく巻線密度の低いコイルにおいては、浸漬法および滴下法のいずれも採用しうる。一方、発電機または巻上機に適用されるような大型の回転機においては、滴下法では、コイルの内部まで巻線の間に均一に絶縁樹脂を付着させることが難しい。このため、大型の回転機においては、一般に大気下または真空下での浸漬法が採用される。 In particular, when applying insulating resin to large rotating machines, a material design suitable for the coils of large rotating machines is required. Methods for filling insulating resin between the windings of a coil of a rotating machine include a dipping method and a dripping method. For example, in a coil that is relatively small in size and has a low winding density, such as is applied to a compressor, either the dipping method or the dripping method can be adopted. On the other hand, in large rotating machines such as generators or hoisting machines, it is difficult to apply the insulating resin uniformly between the windings to the inside of the coil using the dripping method. For this reason, in large rotating machines, an immersion method in the atmosphere or in a vacuum is generally adopted.
 浸漬法は、絶縁樹脂を満たしたタンクまたは含浸槽などに大気下または真空下でコイルを浸漬することで、巻き回した巻線の間に絶縁樹脂を浸透させる方法である。ここで、浸漬法による含浸を行った後のコイルを浸漬槽から引き上げるとき、コイルの巻線、鉄心、およびその他の構成部材に多量の余分な絶縁樹脂が付着している。浸漬槽から引き上げられたコイルは、多くの場合余分な絶縁樹脂が付着したまま、硬化加熱のため硬化炉に投入される。このため、コイルに付着した余分な絶縁樹脂は、そのまま硬化して例えばコイル下部、鉄心の窪み、またはその他の構成部材上などに塊状硬化物を形成しうる。また、硬化加熱によって粘度が低下しコイルの下方に垂れ落ちた絶縁樹脂は、硬化炉内に大きな樹脂溜まりを形成することがある。 The immersion method is a method in which the coil is immersed in a tank or impregnating tank filled with insulating resin in the atmosphere or under vacuum, thereby infiltrating the insulating resin between the wound wires. Here, when the coil is pulled up from the dipping tank after being impregnated by the dipping method, a large amount of excess insulating resin adheres to the windings, core, and other components of the coil. The coils are pulled out of the immersion tank and placed in a curing furnace for curing heating, often with excess insulating resin still attached. Therefore, the excess insulating resin adhering to the coil may harden as it is, forming a lumpy cured material on, for example, the lower part of the coil, the recess of the iron core, or other constituent members. Further, the insulating resin whose viscosity decreases due to curing heating and drips down the coil may form a large resin pool in the curing furnace.
 コイル下部、鉄心の窪み、またはその他の構成部材上などに形成された塊状硬化物は、硬化収縮等の熱応力により巻線および部材を損傷する可能性があり、絶縁性の低下の要因になりうる。さらに、塊状硬化物はコイルの固定部材への組込み作業の妨げとなるため、塊状硬化物の除去作業が必要となる。また、硬化炉内に形成された樹脂溜まりは、硬化熱により発煙を生じることがある。樹脂溜まりは、硬化炉の炉床に形成された巨大な硬化物となるため、硬化炉の定期的な清掃作業が不可欠となる。このような問題は、大型の回転機で特に顕著であり、塊状硬化物および樹脂溜まりの形成を抑制できる低粘度の絶縁樹脂の必要性が高まっている。 Hardened lumps formed on the bottom of the coil, in the recesses of the core, or on other structural members may damage the windings and components due to thermal stress such as curing shrinkage, which may cause a decrease in insulation properties. sell. Furthermore, since the lump-like cured material obstructs the work of assembling the coil into the fixing member, it is necessary to remove the lump-like cured material. Furthermore, resin puddles formed in the curing furnace may generate smoke due to curing heat. Since the resin pool becomes a huge cured product formed on the hearth of the curing furnace, regular cleaning of the curing furnace is essential. Such problems are particularly noticeable in large rotating machines, and there is an increasing need for low-viscosity insulating resins that can suppress the formation of lumpy cured products and resin pools.
 このような絶縁樹脂の粘度を下げて浸透性などを改善するためには、スチレンまたはビニルトルエンなどの有機溶媒を絶縁樹脂に添加する手段が有効である。しかしながら、近年の環境問題への関心の高まりに伴い絶縁樹脂においても環境負荷低減の要求が大きくなっているため、これらの有機溶媒の使用は抑えられることが好ましい。このため、これらの有機溶媒を添加する代わりに、硬化反応に寄与できる活性基を有し硬化加熱による揮発物質を削減できる低分子の材料、すなわち反応性希釈剤を絶縁樹脂に添加して粘度調整を行う手段が採用されうる。このような反応性希釈剤としては、単官能性モノマー、特に2-ヒドロキシエチルメタクリレートが有効である。 In order to lower the viscosity of such an insulating resin and improve its permeability, it is effective to add an organic solvent such as styrene or vinyltoluene to the insulating resin. However, as interest in environmental issues has increased in recent years, there has been a growing demand for reducing the environmental impact of insulating resins, so it is preferable to suppress the use of these organic solvents. Therefore, instead of adding these organic solvents, low-molecular materials that have active groups that can contribute to the curing reaction and can reduce volatile substances caused by curing heating, that is, reactive diluents, are added to the insulating resin to adjust the viscosity. Means to do this may be adopted. Monofunctional monomers, particularly 2-hydroxyethyl methacrylate, are effective as such reactive diluents.
 図1は、絶縁樹脂が硬化している状況の例を示す概念図である。図1において、コイル1の巻線の表面上で硬化する絶縁樹脂2の例が示される。硬化反応中において、絶縁樹脂2に添加された反応性希釈剤の大部分は硬化物に取り込まれるものの、反応性希釈剤の一部3は揮発して硬化炉の炉内に充満する。ここで、炉内の空気中において、水分4が含まれている。なお、硬化している絶縁樹脂2の表面において、パラフィンからなる薄膜5が形成されていてもよい。 FIG. 1 is a conceptual diagram showing an example of a situation where the insulating resin is hardened. In FIG. 1, an example of an insulating resin 2 hardening on the surface of a winding of a coil 1 is shown. During the curing reaction, most of the reactive diluent added to the insulating resin 2 is incorporated into the cured product, but a portion 3 of the reactive diluent evaporates and fills the inside of the curing furnace. Here, moisture 4 is contained in the air inside the furnace. Note that a thin film 5 made of paraffin may be formed on the surface of the hardened insulating resin 2.
 2-ヒドロキシエチルメタクリレートは、その分子構造的な特徴、すなわち比較的短い炭化水素主鎖に自由度の高い水酸基を有することから、親水性が高い。このため、2-ヒドロキシエチルメタクリレートは、反応性希釈剤として用いられる場合に、揮発した一部が空気中の水分と容易に反応し、硬化物の表面に再付着しうる。これにより、硬化物の表面にべたつきが残ることがある。硬化物の表面のべたつきは含浸処理の後工程である組込み作業の妨げとなるため、絶縁樹脂には、硬化物表面のべたつきを解消し指触性を高めることが求められる。 2-Hydroxyethyl methacrylate has high hydrophilicity due to its molecular structural characteristics, namely, having a hydroxyl group with a high degree of freedom in a relatively short hydrocarbon main chain. Therefore, when 2-hydroxyethyl methacrylate is used as a reactive diluent, a part of the volatilized part easily reacts with moisture in the air and can re-deposit on the surface of the cured product. This may leave stickiness on the surface of the cured product. Since stickiness on the surface of the cured product hinders assembly work, which is a post-impregnation process, insulating resins are required to eliminate stickiness on the surface of the cured product and improve touchability.
 実施の形態1の絶縁樹脂組成物(X)は、エポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂(A)と、ラジカル重合反応開始剤およびエポキシ基用の硬化剤(B)と、バイオマス材料を原料とする多官能性ビニル系モノマー(C)と、バイオマス材料を原料とする単官能性ビニル系モノマー(D)と、を含む。単官能性ビニル系モノマー(D)は、分子中に環状構造を有する。単官能性ビニル系モノマー(D)は、イソボルニル骨格を有するビニル系モノマー(D-1)、および飽和炭化水素の環状エーテル骨格を有するビニル系モノマー(D-2)の両方を含む。ここで、メタ(アクリロイル)基とは、アクリロイル基またはメタクリロイル基を表す。また、本開示において「x~y」を用いて表される数値範囲は、下限値xおよび上限値yを含む数値範囲を表す。 The insulating resin composition (X) of Embodiment 1 includes a thermosetting resin (A) having both an epoxy group and a meth (acryloyl) group, a radical polymerization reaction initiator, and a curing agent for the epoxy group (B). , a polyfunctional vinyl monomer (C) made from a biomass material, and a monofunctional vinyl monomer (D) made from a biomass material. The monofunctional vinyl monomer (D) has a cyclic structure in its molecule. The monofunctional vinyl monomer (D) includes both a vinyl monomer (D-1) having an isobornyl skeleton and a vinyl monomer (D-2) having a saturated hydrocarbon cyclic ether skeleton. Here, the meth (acryloyl) group represents an acryloyl group or a methacryloyl group. Further, in the present disclosure, a numerical range expressed using "x to y" represents a numerical range including a lower limit value x and an upper limit value y.
 絶縁樹脂組成物(X)は、浸漬法による含浸を行った後に浸漬槽から引き上げられたコイルへの余分な付着を抑えるように、粘度が低く液切れがよいことが好ましい。絶縁樹脂組成物(X)の全体の粘度は、10mPa・s~200mPa・sであることが望ましく、好ましくは10mPa・s~100mPa・s、より好ましくは15mPa・s~50mPa・sである。 The insulating resin composition (X) preferably has a low viscosity and good drainage so as to suppress excessive adhesion to the coil pulled up from the dipping tank after impregnation by the dipping method. The overall viscosity of the insulating resin composition (X) is desirably 10 mPa·s to 200 mPa·s, preferably 10 mPa·s to 100 mPa·s, more preferably 15 mPa·s to 50 mPa·s.
 1.1.熱硬化性樹脂(A)
 熱硬化性樹脂(A)は、1分子の中にエポキシ基およびメタ(アクリロイル)基の両方を有する樹脂を含む。熱硬化性樹脂(A)は、当該樹脂を単独で用いるものであってもよいし、当該樹脂の他に1分子の中にエポキシ基およびメタ(アクリロイル)基の一方または両方を含む第2の樹脂などを混合して用いてもよい。第2の樹脂は、複数の樹脂を混合したものであってもよい。
1.1. Thermosetting resin (A)
The thermosetting resin (A) includes a resin having both an epoxy group and a meth (acryloyl) group in one molecule. The thermosetting resin (A) may be a resin used alone, or a second resin containing one or both of an epoxy group and a meth (acryloyl) group in one molecule in addition to the resin. A mixture of resins and the like may be used. The second resin may be a mixture of a plurality of resins.
 熱硬化性樹脂(A)は、メタ(アクリロイル)基を反応活性基とした有機過酸化物から発生する遊離ラジカルを介した付加反応と、エポキシ基を反応活性基とした開環重合反応との両方による3次元架橋反応を促進させる。これにより、硬化反応が促進され、硬化物の耐熱性および機械的強度が高められる。 The thermosetting resin (A) undergoes an addition reaction via free radicals generated from an organic peroxide with a meth (acryloyl) group as a reactive group, and a ring-opening polymerization reaction with an epoxy group as a reactive group. The three-dimensional crosslinking reaction by both is promoted. This accelerates the curing reaction and increases the heat resistance and mechanical strength of the cured product.
 熱硬化性樹脂(A)は、粘度調整の容易さから、数平均分子量(Mn)が15000以下、好ましくは1000~10000であり、60℃での粘度が10000mPa・s以下であることが望ましい。 The thermosetting resin (A) preferably has a number average molecular weight (Mn) of 15,000 or less, preferably 1,000 to 10,000, and a viscosity of 10,000 mPa·s or less at 60°C, for ease of viscosity adjustment.
 絶縁樹脂組成物(X)に配合される熱硬化性樹脂(A)のエポキシ当量は、500~5000であることが好ましく、より好ましくは1000~4000である。エポキシ当量を上記の範囲に制御することにより、絶縁樹脂組成物(X)の可使時間を損なうことなく硬化速度を向上させることができ、さらには硬化物(Y)の架橋密度を向上させることができるようになる。 The epoxy equivalent of the thermosetting resin (A) blended into the insulating resin composition (X) is preferably 500 to 5,000, more preferably 1,000 to 4,000. By controlling the epoxy equivalent within the above range, it is possible to improve the curing rate without impairing the pot life of the insulating resin composition (X), and further improve the crosslinking density of the cured product (Y). You will be able to do this.
 1.2.ラジカル重合反応開始剤およびエポキシ基用の硬化剤(B)
 熱硬化性樹脂(A)および単官能性ビニル系モノマー(D)などを硬化させるために、主にメタ(アクリロイル)基に作用するラジカル重合反応開始剤としての有機過酸化物と、エポキシ基用の硬化触媒とが、併用される。
1.2. Radical polymerization reaction initiator and curing agent for epoxy groups (B)
In order to cure thermosetting resins (A) and monofunctional vinyl monomers (D), organic peroxides are used as radical polymerization reaction initiators that mainly act on meth (acryloyl) groups and epoxy groups. A curing catalyst is used in combination.
 1.2.1.有機過酸化物
 有機過酸化物は主にメタ(アクリロイル)基の反応開始剤として用いられ、当該技術分野において公知のものを用いることができる。有機過酸化物は、10時間半減期温度が40℃以上であれば特に限定されないが、硬化時間の短縮および硬化温度の調整の点から、10時間半減期温度が100℃~170℃であることが好ましい。これらの有機過酸化物の例として、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシエステル系、パーオキシジカーボネート系の過酸化物などを用いることができる。これらの有機過酸化物は、単独で用いてもよいし、2種類以上を混合して用いてもよい。
1.2.1. Organic peroxide Organic peroxides are mainly used as reaction initiators for meth (acryloyl) groups, and those known in the art can be used. The organic peroxide is not particularly limited as long as it has a 10-hour half-life temperature of 40°C or higher, but from the viewpoint of shortening the curing time and adjusting the curing temperature, the 10-hour half-life temperature should be 100°C to 170°C. is preferred. Examples of these organic peroxides include ketone peroxide-based, peroxyketal-based, hydroperoxide-based, dialkyl peroxide-based, diacyl peroxide-based, peroxyester-based, peroxydicarbonate-based peroxides, etc. can be used. These organic peroxides may be used alone or in combination of two or more types.
 このような10時間半減期温度を有する有機過酸化物の例としては、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、2,2-ジ(4,4-ジ-(ブチルパーオキシ)シクロヘキシル)プロパン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレラート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサン酸、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、p-メンタンハイドロパーオキサイド、t-ブチルパーオキシアリルモノカーボネート、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、クミンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドなどが挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of organic peroxides with such 10 hour half-life temperatures include 1,1-di(t-butylperoxy)cyclohexane; -di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 2,2-di(4,4-di-( butylperoxy)cyclohexyl)propane, n-butyl 4,4-di-(t-butylperoxy)valerate, 2,2-di-(t-butylperoxy)butane, t-hexylperoxyisopropyl monocarbonate, t-Butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoic acid, t-butylperoxylauric acid, t-butylperoxyisopropyl monocarbonate, t-butylperoxybenzoate, t- Butylperoxyacetate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxy 2-ethylhexyl monocarbonate, di(2-t-butylperoxy) isopropyl)benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butyl peroxide oxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, p-menthane hydroperoxide, t-butylperoxyallyl monocarbonate, methyl ethyl ketone peroxide, 1,1,3, Examples include 3-tetramethylbutyl hydroperoxide, t-butyl hydroperoxide, cumin hydroperoxide, and diisopropylbenzene hydroperoxide. These may be used alone or in combination of two or more.
 絶縁樹脂組成物(X)における有機過酸化物の配合量は特に限定されないが、熱硬化性樹脂(A)、多官能性ビニル系モノマー(C)、および単官能性ビニル系モノマー(D)の合計100質量部に対して、好ましくは0.1質量部~10質量部であり、より好ましくは、0.5質量部~5質量部である。有機過酸化物の配合量が0.1質量部未満であると、架橋密度が小さくなり、要求する機械的強度が得られない。一方、有機過酸化物の配合量が10質量部よりも多いと、絶縁樹脂組成物の可使時間が著しく短くなる傾向にある。 The blending amount of the organic peroxide in the insulating resin composition (X) is not particularly limited, but the amount of the thermosetting resin (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D) is The amount is preferably 0.1 parts by mass to 10 parts by mass, more preferably 0.5 parts by mass to 5 parts by mass, based on a total of 100 parts by mass. If the amount of organic peroxide is less than 0.1 part by mass, the crosslinking density will be low and the required mechanical strength will not be obtained. On the other hand, if the amount of organic peroxide blended is more than 10 parts by mass, the pot life of the insulating resin composition tends to be significantly shortened.
 1.2.2.エポキシ基用の硬化剤
 エポキシ基用の硬化剤は、当該技術分野で公知のものを用いることができる。エポキシ基用の硬化剤として、例えば、アミン系化合物、ホウ酸エステル化合物、有機金属化合物、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、アミン錯体、イミダゾール系化合物、チタン及びコバルトのような遷移金属を含む化合物、酸無水物、イミダゾール系化合物、ポリメルカプタン系化合物、フェノール類、ルイス酸系、イソシアネート系化合物等などが挙げられる。これらは、単独で用いてもよいし、2種以上を混合して用いてもよい。
1.2.2. Curing Agent for Epoxy Group As the curing agent for epoxy group, those known in the technical field can be used. Examples of curing agents for epoxy groups include amine compounds, boric acid ester compounds, organometallic compounds, organophosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amine complexes, imidazole compounds, titanium and cobalt. Examples include compounds containing transition metals such as, acid anhydrides, imidazole compounds, polymercaptan compounds, phenols, Lewis acid compounds, isocyanate compounds, and the like. These may be used alone or in combination of two or more.
 アミン系硬化剤の具体例としては、第三級アミン、第三級アミン塩が挙げられる。例えば、ラウリルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、(N,N-ジメチルアミノメチル)フェノール、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ジプロピレンジアミン、ポリエーテルジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチル)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、アミノエチルエタノールアミン、トリ(メチルアミノ)へキサン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロへキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジエチルジフェニルメタン、ジシアンジアミド、有機酸ジヒドラジドなどが挙げられる。第三級アミン塩の例としては、上記した第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩などが挙げられる。カルボン酸塩の例としては、オクチル酸塩などの炭素数1~30(特に、炭素数1~10)のカルボン酸の塩(特に、脂肪酸の塩)などが挙げられる。スルホン酸塩の例としては、p-トルエンスルホン酸塩、ベンゼンスルホン酸塩、メタンスルホン酸塩、エタンスルホン酸塩などが挙げられる。第三級アミン塩の代表的な具体例としては、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)の塩(例えば、p-トルエンスルホン酸塩、オクチル酸塩)などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のアミン系硬化剤を用いたからといって、本開示の範囲を逸脱するわけではない。 Specific examples of amine curing agents include tertiary amines and tertiary amine salts. For example, lauryldimethylamine, N,N-dimethylcyclohexylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, (N,N-dimethylaminomethyl)phenol, 2,4,6-tris(N, N-dimethylaminomethyl)phenol, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), ethylenediamine, 1, 3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, dipropylenediamine, polyetherdiamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis(hexamethyl)triamine , triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aminoethylethanolamine, tri(methylamino)hexane, dimethylaminopropylamine, diethylaminopropylamine, methyliminobispropylamine, menthendiamine, isophoronediamine, bis (4-Amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)-2,4,8,10 -tetraoxaspiro[5,5]undecane, m-xylene diamine, metaphenylene diamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiethyldiphenylmethane, dicyandiamide, organic acid dihydrazide, and the like. Examples of tertiary amine salts include the above-mentioned tertiary amine carboxylates, sulfonates, and inorganic acid salts. Examples of carboxylates include salts of carboxylic acids having 1 to 30 carbon atoms (especially 1 to 10 carbon atoms) such as octylates (especially salts of fatty acids). Examples of sulfonates include p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, and the like. Typical specific examples of tertiary amine salts include salts of 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) (e.g., p-toluenesulfonate, octylate), etc. Can be mentioned. However, these are just examples. Use of amine curing agents other than these does not depart from the scope of the present disclosure.
 ホウ酸エステルの例としては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、環状ホウ酸エステル化合物などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のホウ酸エステルを用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of borate esters include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate compounds. However, these are just examples. The use of boric acid esters other than these does not depart from the scope of the present disclosure.
 有機金属化合物の例としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛、アルミニウムアセチルアセトン錯体などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の有機金属化合物を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of organometallic compounds include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, aluminum acetylacetone complex, and the like. However, these are just examples. Use of organometallic compounds other than these does not depart from the scope of this disclosure.
 有機リン系化合物の例としては、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィンなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の有機リン系化合物を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of organic phosphorus compounds include tetraphenylphosphonium tetraphenylborate, triphenylphosphine, and the like. However, these are just examples. The use of organic phosphorous compounds other than these does not depart from the scope of the present disclosure.
 第四級アンモニウム塩の例としては、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、ヨウ化トリエチルベンジルアンモニウム、塩化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウムなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の第四級アンモニウム塩を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, and tetrabutyl bromide. Examples include ammonium, tetrabutylammonium iodide, triethylbenzylammonium chloride, triethylbenzylammonium bromide, triethylbenzylammonium iodide, triethylphenethylammonium chloride, triethylphenethylammonium bromide, and the like. However, these are just examples. The use of quaternary ammonium salts other than these does not depart from the scope of the present disclosure.
 第四級ホスホニウム塩の例としては、塩化テトラブチルホスホニウム、ヨウ化テトラブチルホスホニウム、酢酸テトラブチルホスホニウム、塩化テトラフェニルホスホニウム、臭化テトラフェニルホスホニウム、ヨウ化テトラフェニルホスホニウム、塩化エチルトリフェニルホスホニウム、臭化エチルトリフェニルホスホニウム、ヨウ化エチルトリフェニルホスホニウム、酢酸エチルトリフェニルホスホニウム、リン酸エチルトリフェニルホスホニウム、塩化プロピルトリフェニルホスホニウム、臭化プロピルトリフェニルホスホニウム、ヨウ化プロピルトリフェニルホスホニウム、塩化ブチルトリフェニルホスホニウム、臭化ブチルトリフェニルホスホニウム、ヨウ化ブチルトリフェニルホスホニウムなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の第四級ホスホニウム塩を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of quaternary phosphonium salts include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, Ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride Examples include phosphonium, butyltriphenylphosphonium bromide, butyltriphenylphosphonium iodide, and the like. However, these are just examples. The use of quaternary phosphonium salts other than these does not depart from the scope of this disclosure.
 アミン錯体の例としては、三フッ化ホウ素、三塩化ホウ素及び三臭化ホウ素のようなハロゲン化ホウ素とアミン化合物との錯体であるハロゲン化ホウ素アミン錯体などが挙げられる。ここで、アミン化合物の例としては、トリメチルアミン、トリ-n-プロピルアミン、N,N-ジメチルオクチルアミン、N,N-ジメチルベンジルアミンなどの脂肪族三級アミン類、N,N-ジメチルアニリンなどの芳香族三級アミン類、1位がアルキル化された置換もしくは無置換のイミダゾールまたはピリジンなどの複素環三級アミン類、モノエチルアミン、n-ヘキシルアミンなどの脂肪族一級アミン類、ベンジルアミンなどの芳香環を含む脂肪族一級アミン類、アニリンなどの芳香族一級アミン類、ピペリジンなどの二級アミン類などが挙げられる。ハロゲン化ホウ素アミン錯体の代表的な具体例としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素イソプロピルアミン錯体、三フッ化ホウ素クロロフェニルアミン錯体、三フッ化ホウ素-トリアリルアミン錯体、三フッ化ホウ素ベンジルアミン錯体、三フッ化ホウ素アニリン錯体、三塩化ホウ素モノエチルアミン錯体、三塩化ホウ素フェノール錯体、三塩化ホウ素ピペリジン錯体、三塩化ホウ素硫化ジメチル錯体、三塩化ホウ素N,N-ジメチルオクチルアミン錯体、三塩化ホウ素N,N-ジメチルドデシルアミン錯体、三塩化ホウ素N,N-ジエチルジオクチルアミン錯体などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のアミン錯体を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of amine complexes include boron halide amine complexes, which are complexes of boron halides such as boron trifluoride, boron trichloride, and boron tribromide, and amine compounds. Here, examples of amine compounds include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N,N-dimethyloctylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, etc. aromatic tertiary amines, heterocyclic tertiary amines such as substituted or unsubstituted imidazole or pyridine with alkylation at position 1, aliphatic primary amines such as monoethylamine and n-hexylamine, benzylamine, etc. Examples include aliphatic primary amines containing an aromatic ring, aromatic primary amines such as aniline, and secondary amines such as piperidine. Typical specific examples of boron trifluoride amine complexes include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, and boron trifluoride- triallylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, Examples include N-dimethyloctylamine complex, boron trichloride N,N-dimethyldodecylamine complex, and boron trichloride N,N-diethyldioctylamine complex. However, these are just examples. The use of amine complexes other than these does not depart from the scope of this disclosure.
 イミダゾール系化合物の例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールなどが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のイミダゾール系硬化剤を用いたからといって、本開示の範囲を逸脱するわけではない。 Examples of imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Benzyl-2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole , 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole, 2,4-diamino-6(2'-methylimidazole(1'))ethyl-s-triazine, 2,4-diamino-6( 2'-undecylimidazole (1')) ethyl-s-triazine, 2,4-diamino-6 (2'-ethyl, 4-methylimidazole (1')) ethyl-s-triazine, 2,4-diamino -6(2'-Methylimidazole(1'))ethyl-s-triazine isocyanuric acid adduct, 2:3 adduct of 2-methylimidazole isocyanuric acid, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl- Examples include 3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, and 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole. However, these are just examples. The use of imidazole curing agents other than these does not depart from the scope of the present disclosure.
 酸無水物系硬化剤の具体例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸などが挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の酸無水物系硬化剤を用いたからといって、本開示の範囲を逸脱するわけではない。 Specific examples of acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and the like. However, these are just examples. The use of acid anhydride curing agents other than these does not depart from the scope of the present disclosure.
 上記のエポキシ基用硬化剤の配合量は、熱硬化性樹脂(A)の種類、および硬化剤の種類等に応じて、適宜調整され得る。硬化剤の配合量は、熱硬化性樹脂(A)のエポキシ当量に対して、好ましくは0.5当量以上2当量以下程度である。硬化剤の配合量が0.5当量未満であると、熱硬化性樹脂(A)の硬化が十分進行しない可能性もある。硬化剤の配合量が2当量を超えると、硬化物の耐熱性、機械的特性等が低下する可能性もある。 The amount of the above-mentioned curing agent for epoxy group can be adjusted as appropriate depending on the type of thermosetting resin (A), the type of curing agent, etc. The blending amount of the curing agent is preferably about 0.5 equivalent or more and 2 equivalents or less with respect to the epoxy equivalent of the thermosetting resin (A). If the amount of the curing agent is less than 0.5 equivalent, curing of the thermosetting resin (A) may not proceed sufficiently. If the amount of the curing agent exceeds 2 equivalents, the heat resistance, mechanical properties, etc. of the cured product may deteriorate.
 1.2.3.エポキシ基用の硬化促進剤
 上記のエポキシ基用の硬化剤に加え、硬化反応を促進するために、または制御するために、硬化促進剤が併用されてもよい。硬化促進剤としては、例えば、第三級アミンおよびその塩、四級アンモニウム化合物、イミダゾール、アルカリ金属アルコキシドなどが挙げられる。ただし、これらはあくまで例示に過ぎない。これら以外の硬化促進剤を用いたからといって、本開示の範囲を逸脱するわけではない。
1.2.3. Curing Accelerator for Epoxy Groups In addition to the above-mentioned curing agents for epoxy groups, a curing accelerator may be used in combination to accelerate or control the curing reaction. Examples of the curing accelerator include tertiary amines and salts thereof, quaternary ammonium compounds, imidazole, and alkali metal alkoxides. However, these are just examples. The use of curing accelerators other than these does not depart from the scope of this disclosure.
 硬化促進剤の配合量は、熱硬化性樹脂(A)の質量に対して、好ましくは0.01質量%以上30質量%以下程度(より好ましくは0.05質量%以上20質量%以下程度)である。配合量が0.01質量%未満であると、促進効果が小さいこともある。配合量が30質量%を超えると、絶縁樹脂組成物(X)の保存安定性、および硬化物の成形性などが低下する可能性もある。 The blending amount of the curing accelerator is preferably about 0.01% by mass or more and 30% by mass or less (more preferably about 0.05% by mass or more and 20% by mass or less) based on the mass of the thermosetting resin (A). It is. If the amount is less than 0.01% by mass, the promoting effect may be small. If the blending amount exceeds 30% by mass, the storage stability of the insulating resin composition (X) and the moldability of the cured product may deteriorate.
 1.3.多官能性ビニル系モノマー(C)
 多官能性ビニル系モノマー(C)は、バイオマス材料をその原料の一部に用いたものである。多官能性ビニル系モノマー(C)は、絶縁樹脂組成物(X)の反応性希釈剤のひとつとして任意に配合される。多官能性ビニル系モノマー(C)は、ラジカル重合反応に寄与するものであれば特定のものに限定されないが、反応活性基であるメタ(アクリロイル)基またはアリル基を、1分子中に2個有するものを含むことが望ましい。このような多官能性ビニル系モノマー(C)は、反応に寄与する活性基が1分子中に2個存在するため絶縁樹脂組成物(X)の硬化処理中に重合して完全に取り込まれ、硬化処理中の揮発も著しく少ない。このため、反応性希釈剤として添加することで絶縁樹脂組成物(X)の低粘度化が可能であり、また、硬化加熱の際の揮発による再吸着も抑制される。また、多官能性ビニル系モノマー(C)は、反応活性基が複数あることにより、絶縁樹脂組成物(X)の重合反応に積極的に関与し、絶縁樹脂組成物(X)の3次元架橋化を促進させることができる。このため、硬化物(Y)の耐熱性および機械的強度を高めることもできる。
1.3. Polyfunctional vinyl monomer (C)
The polyfunctional vinyl monomer (C) uses biomass material as a part of its raw material. The polyfunctional vinyl monomer (C) is optionally blended as one of the reactive diluents in the insulating resin composition (X). The polyfunctional vinyl monomer (C) is not limited to a specific one as long as it contributes to the radical polymerization reaction, but it has two meth (acryloyl) groups or allyl groups in one molecule, which are reactive groups. It is desirable to include those who have. Since such a polyfunctional vinyl monomer (C) has two active groups that contribute to the reaction in one molecule, it is polymerized and completely incorporated during the curing process of the insulating resin composition (X). Volatization during the curing process is also extremely low. Therefore, by adding it as a reactive diluent, it is possible to lower the viscosity of the insulating resin composition (X), and re-adsorption due to volatilization during curing and heating is also suppressed. Furthermore, since the polyfunctional vinyl monomer (C) has a plurality of reactive groups, it actively participates in the polymerization reaction of the insulating resin composition (X) and three-dimensional crosslinking of the insulating resin composition (X). It is possible to promote the Therefore, the heat resistance and mechanical strength of the cured product (Y) can also be increased.
 多官能性ビニル系モノマー(C)の配合量は、単官能性ビニル系モノマー(D)の配合量を担保できる範囲内であればよく、機械的強度および耐熱性の観点から、熱硬化性樹脂(A)、多官能性ビニル系モノマー(C)、および単官能性ビニル系モノマー(D)の合計の3wt%~20wt%の範囲内であることが望ましい。 The blending amount of the polyfunctional vinyl monomer (C) may be within a range that can ensure the blending amount of the monofunctional vinyl monomer (D), and from the viewpoint of mechanical strength and heat resistance, the thermosetting resin It is desirable that the amount is within the range of 3 wt% to 20 wt% of the total of (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D).
 1.4.単官能性ビニル系モノマー(D)
 単官能性ビニル系モノマー(D)はバイオマス材料をその原料の一部に用いたものである。単官能性ビニル系モノマー(D)は、架橋構造の調整の他、主に絶縁樹脂組成物(X)の粘度調整のために用いられる。単官能性ビニル系モノマー(D)は、絶縁樹脂組成物(X)の可使時間を維持するため、反応に寄与する官能基数が1分子中にひとつである単官能性のものが望ましい。
1.4. Monofunctional vinyl monomer (D)
The monofunctional vinyl monomer (D) uses biomass material as a part of its raw material. The monofunctional vinyl monomer (D) is used mainly for adjusting the viscosity of the insulating resin composition (X) in addition to adjusting the crosslinked structure. In order to maintain the usable life of the insulating resin composition (X), the monofunctional vinyl monomer (D) is desirably a monofunctional one in which the number of functional groups contributing to the reaction is one per molecule.
 単官能性ビニル系モノマー(D)として、エーテル結合またはエステル結合と環状構造とを有する低粘度のものが用いられる。ここでは、イソボルニル骨格を有するビニル系モノマー(D-1)、および飽和炭化水素の環状エーテル骨格を有するビニル系モノマー(D-2)が併用される。イソボルニル骨格を有するビニル系モノマー(D-1)の例としては、イソボルニルメタクリレート、イソボルニルアクリレートが挙げられる。飽和炭化水素の環状エーテル骨格を有するビニル系モノマー(D-2)の例としては、テトラヒドロフルフリルメタクリレート、テトラヒドロフルフリルアクリレートが挙げられる。 As the monofunctional vinyl monomer (D), a low-viscosity monomer having an ether bond or an ester bond and a cyclic structure is used. Here, a vinyl monomer (D-1) having an isobornyl skeleton and a vinyl monomer (D-2) having a cyclic ether skeleton of a saturated hydrocarbon are used together. Examples of the vinyl monomer (D-1) having an isobornyl skeleton include isobornyl methacrylate and isobornyl acrylate. Examples of the vinyl monomer (D-2) having a saturated hydrocarbon cyclic ether skeleton include tetrahydrofurfuryl methacrylate and tetrahydrofurfuryl acrylate.
 単官能性ビニル系モノマー(D)の配合量は、絶縁樹脂組成物(X)のバイオマス度を高めて環境負荷低減効果を高める観点、および浸漬槽からコイルを引き上げる際に絶縁樹脂組成物(X)の液切れを良くしてコイルおよびその他の構成部材上での塊状硬化物の形成を抑制する観点から、なるべく多い方が好ましい。一方、単官能性ビニル系モノマー(D)は、架橋点の増加には寄与するものの、低分子であり硬化加熱の際に一部が揮発することから全量が硬化反応に寄与しないため、配合量が多すぎると硬化物(Y)の機械的強度を低下させる。すなわち、単官能性ビニル系モノマー(D)の配合量は、相反する要求機能、すなわちバイオマス度向上および塊状硬化物の形成抑制と、硬化物(Y)の機械的強度との両方を達成できる範囲内に調製する必要がある。バイオマス度向上および塊状硬化物の形成抑制の観点から、単官能性ビニル系モノマー(D)の配合量は、絶縁樹脂組成物(X)全量の60wt%以上、好ましくは65wt%以上とすることが望ましい。一方、硬化物(Y)の機械的強度の観点から、単官能性ビニル系モノマー(D)の配合量は、絶縁樹脂組成物(X)全量の85wt%以下、好ましくは75%以下、より好ましくは70wt%以下とすることが望ましい。したがって、要求される2つの機能を両立するためには、単官能性ビニル系モノマー(D)の配合量は、絶縁樹脂組成物(X)全量の60~85wt%であることが望ましく、好ましくは60~85wt%、より好ましくは65~85wt%である。 The blending amount of the monofunctional vinyl monomer (D) is determined from the viewpoint of increasing the biomass content of the insulating resin composition (X) and increasing the environmental load reduction effect, and from the viewpoint of increasing the biomass content of the insulating resin composition (X) and increasing the environmental load reduction effect when the coil is pulled up from the immersion tank. ) is preferably as large as possible from the viewpoint of improving liquid drainage and suppressing the formation of lumpy cured products on the coil and other structural members. On the other hand, although the monofunctional vinyl monomer (D) contributes to increasing the number of crosslinking points, it is a low molecular weight and part of it evaporates during curing heating, so the entire amount does not contribute to the curing reaction, so the blending amount If the amount is too large, the mechanical strength of the cured product (Y) will be reduced. That is, the blending amount of the monofunctional vinyl monomer (D) should be set within a range that can achieve both of the contradictory required functions, namely, improving the degree of biomass and suppressing the formation of a lumpy cured product, and increasing the mechanical strength of the cured product (Y). It must be prepared within From the viewpoint of improving the degree of biomass and suppressing the formation of clumped cured products, the blending amount of the monofunctional vinyl monomer (D) may be 60 wt% or more, preferably 65 wt% or more of the total amount of the insulating resin composition (X). desirable. On the other hand, from the viewpoint of mechanical strength of the cured product (Y), the blending amount of the monofunctional vinyl monomer (D) is 85 wt% or less, preferably 75% or less, more preferably 75% or less of the total amount of the insulating resin composition (X). is desirably 70 wt% or less. Therefore, in order to achieve both of the two required functions, the blending amount of the monofunctional vinyl monomer (D) is preferably 60 to 85 wt% of the total amount of the insulating resin composition (X). It is 60 to 85 wt%, more preferably 65 to 85 wt%.
 単官能性ビニル系モノマー(D)において、上記のビニル系モノマー(D-1)および(D-2)と併せて、1分子中にひとつのメタ(アクリロイル)基またはアリル基を有する単官能性ビニル系モノマーを配合してもよい。これらの単官能性ビニル系モノマーの例としては、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、ラウリルメタクリレート、エトキシジエチレングリコールメタクリレート、4-ヒドロキシブチルメタクリレート、n-オクチルアクリレートなどが挙げられる。これらの単官能性ビニル系モノマーは、単独の種類を用いてもよいし、複数の種類を混合して用いてもよい。 In the monofunctional vinyl monomer (D), in addition to the above vinyl monomers (D-1) and (D-2), a monofunctional vinyl monomer having one meta (acryloyl) group or allyl group in one molecule A vinyl monomer may also be blended. Examples of these monofunctional vinyl monomers include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, lauryl methacrylate, ethoxydiethylene glycol methacrylate, 4-hydroxybutyl methacrylate, n-octyl acrylate, and the like. These monofunctional vinyl monomers may be used singly or in combination.
 2.絶縁樹脂組成物(X)およびその硬化物(Y)の製造方法
 2.1.絶縁樹脂組成物(X)
 絶縁樹脂組成物(X)は、以下の製造方法により製造することができる。(A)~(D)の配合量は、実施例および比較例に記載の量とする。また、混合方法は当該技術分野において公知のものを活用でき、均一に混合できるものであれば特に限定されない。
2. Method for producing insulating resin composition (X) and cured product thereof (Y) 2.1. Insulating resin composition (X)
The insulating resin composition (X) can be manufactured by the following manufacturing method. The blending amounts of (A) to (D) are as described in Examples and Comparative Examples. Furthermore, the mixing method is not particularly limited as long as it can be mixed uniformly, and any method known in the technical field can be used.
 (a)熱硬化性樹脂、多官能性ビニル系モノマー、および単官能性ビニル系モノマーの混合
 熱硬化性樹脂(A)および多官能性ビニル系モノマー(C)を、半固体状からの流動性を付与できる粘度になるよう約50℃に加温し計量する。ここに単官能性ビニル系モノマー(D)を添加し、自転公転式撹拌機で均一溶液になるまで撹拌する。
(a) Mixing of thermosetting resin, polyfunctional vinyl monomer, and monofunctional vinyl monomer The thermosetting resin (A) and the polyfunctional vinyl monomer (C) are mixed to have fluidity from a semi-solid state. Heat to approximately 50°C and weigh to obtain a viscosity that will give . A monofunctional vinyl monomer (D) is added thereto, and the mixture is stirred using a rotation-revolution stirrer until a homogeneous solution is obtained.
 (b)絶縁樹脂組成物(X)の調整
 上記(a)で調整した(A)、(C)および(D)の混合溶液に、ラジカル重合反応開始剤およびエポキシ基用の硬化剤(B)を均一に混合する。
(b) Preparation of insulating resin composition (X) Add a radical polymerization reaction initiator and a curing agent for epoxy groups (B) to the mixed solution of (A), (C), and (D) prepared in (a) above. Mix evenly.
 2.2.硬化物(Y)
 硬化物(Y)は、絶縁樹脂組成物(X)の硬化物である。硬化物(Y)は、典型的には、絶縁樹脂組成物(X)を加熱することにより、生成される。硬化物(Y)は、用途に応じて、様々な形態、形状で使用される。硬化物(Y)は、例えば、含浸、塗布、注型、シート成形などの各種成形方法により、所望の形状に成形されうる。
2.2. Cured product (Y)
The cured product (Y) is a cured product of the insulating resin composition (X). The cured product (Y) is typically produced by heating the insulating resin composition (X). The cured product (Y) is used in various forms and shapes depending on the purpose. The cured product (Y) can be molded into a desired shape by various molding methods such as impregnation, coating, casting, and sheet molding.
 硬化物(Y)は、絶縁性能および耐熱性に優れる。そのため硬化物(Y)は、絶縁性能および耐熱性の少なくとも一方が必要とされる用途に好適である。硬化物(Y)は、例えば、回転機、送変電機器などの重電機器の絶縁部材に好適である。絶縁部材としては、例えば、ワニス、絶縁塗料、ケーブル被覆材料、絶縁シート、封止材料などが挙げられる。 The cured product (Y) has excellent insulation performance and heat resistance. Therefore, the cured product (Y) is suitable for applications requiring at least one of insulation performance and heat resistance. The cured product (Y) is suitable, for example, for insulating members of heavy electrical equipment such as rotating machines and power transmission and transformation equipment. Examples of the insulating member include varnish, insulating paint, cable covering material, insulating sheet, and sealing material.
 硬化物(Y)を回転機などのコイルに絶縁樹脂組成物(X)を含浸させて硬化させたものとする場合に、コイルへの含浸工程は特に限定されない。ここでは、含浸前に予熱工程および空冷工程を含み、その後、含浸工程を行った後、除滴工程を経て加熱硬化工程に至る全5工程からなる製造方法の例を説明する。 When the cured product (Y) is obtained by impregnating a coil of a rotating machine or the like with the insulating resin composition (X) and curing it, the step of impregnating the coil is not particularly limited. Here, an example of a manufacturing method consisting of a total of five steps including a preheating step and an air cooling step before impregnation, followed by an impregnation step, a drip removal step, and a heat curing step will be described.
 予熱工程は、エナメル線などのコイルの巻線の耐クレージング性向上を目的としたアニール処理を行う工程である。予熱工程において、コイルは、所定の温度で加熱される。予熱工程における加熱温度はクレージング性を向上できる温度であれば特に限定されないが、例えば150℃で処理が行われる。 The preheating step is a step in which annealing treatment is performed for the purpose of improving the crazing resistance of the coil winding such as enameled wire. In the preheating step, the coil is heated to a predetermined temperature. The heating temperature in the preheating step is not particularly limited as long as it can improve the crazing property, but the treatment is performed at, for example, 150°C.
 空冷工程は、絶縁樹脂組成物(X)の温度上昇を抑制するため、所定の温度までコイルを冷却する工程である。絶縁樹脂組成物(X)の可使時間に影響のない温度範囲であれば冷却後のコイルの温度は特に限定されないが、例えば30℃~50℃が適している。 The air cooling step is a step of cooling the coil to a predetermined temperature in order to suppress the temperature rise of the insulating resin composition (X). The temperature of the coil after cooling is not particularly limited as long as it is within a temperature range that does not affect the pot life of the insulating resin composition (X), but for example, 30° C. to 50° C. is suitable.
 含浸工程において、浸漬、滴下、加圧含浸、真空含浸など、当該技術分野で公知の処理方法が使用できるが、一般に大型回転機のコイルの場合には浸漬または加圧・真空含浸による含浸処理が行われる。浸漬含浸によって浸漬処理が行われる場合に、絶縁樹脂組成物(X)を満たした含浸槽にコイルが静かに浸漬される。浸漬時間は特に限定されないが、特に整列密巻で巻線されたコイルなどでは、エナメル線間および構成部材に付着した空気が気泡となって表面に浮上してくるので、これらの気泡の発生がなくなるまで浸漬していることが望ましい。気泡発生が落ち着くまでの時間はコイルのサイズによって異なるが、大型の回転機では10分~60分程度であり、製造工程の効率化(短時間化)の観点からは、約15~30分程度が望ましい。浸漬時間が10分未満ではコイル全体に絶縁樹脂組成物(X)が浸透せず、気泡発生の収束する60分以上浸漬しても、コイル内に浸透する絶縁樹脂組成物(X)の量は増えないためである。含浸温度、すなわち含浸槽中の絶縁樹脂組成物(X)の温度は、硬化による増粘が始まらない温度域であれば特に限定されない。多くの絶縁樹脂においては室温25℃~60℃に設定される。絶縁樹脂組成物(X)は粘度が低いため、室温25℃での含浸も可能である。 In the impregnation process, treatment methods known in the technical field such as dipping, dripping, pressure impregnation, and vacuum impregnation can be used; however, in the case of coils for large rotating machines, impregnation treatment by dipping or pressure/vacuum impregnation is generally used. It will be done. When the immersion treatment is performed by immersion impregnation, the coil is gently immersed in an impregnation bath filled with the insulating resin composition (X). The soaking time is not particularly limited, but especially in coils that are tightly wound in an aligned manner, the air that adheres between the enamelled wires and on the component parts becomes bubbles and floats to the surface, so the generation of these bubbles can be avoided. It is desirable to soak it until it runs out. The time it takes for bubble generation to settle down varies depending on the size of the coil, but for large rotating machines it takes about 10 to 60 minutes, and from the perspective of improving the efficiency (shortening of time) of the manufacturing process, it takes about 15 to 30 minutes. is desirable. If the immersion time is less than 10 minutes, the insulating resin composition (X) will not penetrate into the entire coil, and even if it is immersed for more than 60 minutes, at which time bubble generation will stop, the amount of insulating resin composition (X) that will penetrate into the coil will be This is because it does not increase. The impregnation temperature, that is, the temperature of the insulating resin composition (X) in the impregnation bath, is not particularly limited as long as it does not begin to thicken due to curing. For many insulating resins, the room temperature is set at 25°C to 60°C. Since the insulating resin composition (X) has a low viscosity, it can be impregnated at room temperature of 25°C.
 加熱硬化工程において、含浸工程でコイルに含浸させられた絶縁樹脂組成物(X)は、硬化炉において加熱されて硬化することで硬化物(Y)となる。加熱硬化工程における加熱温度は、絶縁樹脂組成物(X)に添加した反応開始剤の反応開始温度(半減期温度)以上であれば特に限定されず、一般に130℃~180℃であり、好ましくは140℃~170℃である。一般に、加熱硬化工程の加熱時間は絶縁樹脂組成物(X)硬化速度およびコイルへの付着量による影響を受け、原料組成によっても変化する。また、硬化に必要な時間は加熱温度に依存し、一般に高温である方が完全硬化に至るまでの時間は短い。このため、加熱硬化工程における加熱温度および加熱時間は、絶縁樹脂組成物(X)の組成に応じて、完全硬化するのに必要な温度および時間に設定される。ここで、加熱温度または加熱時間が不十分である場合に、絶縁樹脂組成物(X)は完全硬化に至らず、未硬化部分が発生しうる。このとき、硬化物(Y)において、電気的特性、機械的特性、耐熱性などの種々の特性が低下しうる。一方、加熱温度または加熱時間が過剰である場合に、硬化加熱による架橋反応のバランスがくずれ、硬化物(Y)に発生するクラックの原因となることがある。加熱温度および加熱時間は、これらの問題が生じない範囲で設定される。本開示の絶縁樹脂組成物(X)は、130~180℃のとき、30分~8時間で完全硬化する。30分未満の硬化時間では完全硬化に至らない。一方、硬化物(Y)の機械的強度(電線の固着強度)は、硬化後、徐々に発現・向上し、所定の時間、ここでは4時間以降で収束する傾向にある。したがって、完全硬化および強度収束の観点からは、加熱硬化工程における加熱時間は、好ましくは1~4時間、より好ましくは1~2時間である。 In the heat curing step, the insulating resin composition (X) impregnated into the coil in the impregnation step is heated and cured in a curing furnace to become a cured product (Y). The heating temperature in the heat curing step is not particularly limited as long as it is higher than the reaction start temperature (half-life temperature) of the reaction initiator added to the insulating resin composition (X), and is generally 130 ° C. to 180 ° C., preferably The temperature is 140°C to 170°C. Generally, the heating time of the heat curing step is influenced by the curing speed of the insulating resin composition (X) and the amount of adhesion to the coil, and also changes depending on the raw material composition. Further, the time required for curing depends on the heating temperature, and generally the higher the temperature, the shorter the time required for complete curing. Therefore, the heating temperature and heating time in the heat curing step are set to the temperature and time necessary for complete curing, depending on the composition of the insulating resin composition (X). Here, if the heating temperature or heating time is insufficient, the insulating resin composition (X) may not be completely cured, and uncured portions may occur. At this time, various properties such as electrical properties, mechanical properties, and heat resistance may deteriorate in the cured product (Y). On the other hand, if the heating temperature or heating time is excessive, the balance of the crosslinking reaction due to curing heating may be lost, which may cause cracks to occur in the cured product (Y). The heating temperature and heating time are set within a range that does not cause these problems. The insulating resin composition (X) of the present disclosure is completely cured in 30 minutes to 8 hours at 130 to 180°C. A curing time of less than 30 minutes will not result in complete curing. On the other hand, the mechanical strength (adhesion strength of the electric wire) of the cured product (Y) gradually develops and improves after curing, and tends to converge after a predetermined time, here 4 hours. Therefore, from the viewpoint of complete curing and strength convergence, the heating time in the heat curing step is preferably 1 to 4 hours, more preferably 1 to 2 hours.
 2.3.回転機用の巻線コイル、およびこれを用いた固定子
 実施の形態1の絶縁樹脂組成物(X)は、例えばロープ式エレベーターの巻上機用の大型の回転機などに適用される。
 図2は、実施の形態1に係る巻上機10の断面図である。
2.3. Winding coil for rotating machine and stator using the same The insulating resin composition (X) of Embodiment 1 is applied to, for example, a large rotating machine for a hoisting machine of a rope elevator.
FIG. 2 is a sectional view of the hoist 10 according to the first embodiment.
 図2に示される巻上機10は、回転部11と、ブレーキ部12と、モーター部13と、を備える。 The hoisting machine 10 shown in FIG. 2 includes a rotating section 11, a brake section 12, and a motor section 13.
 回転部11は、綱車14と、回転子15と、ブレーキディスク16と、回転軸17と、を備える。綱車14、回転子15、およびブレーキディスク16は、回転軸17によって同軸上に結合されている。綱車14において、図示されない主索が巻き掛けられる。主索に支持される図示されないエレベーターのかごは、主索および綱車14の摩擦によって駆動させられる。 The rotating part 11 includes a sheave 14, a rotor 15, a brake disc 16, and a rotating shaft 17. The sheave 14, rotor 15, and brake disc 16 are coaxially connected by a rotating shaft 17. A main rope (not shown) is wound around the sheave 14. An elevator car (not shown) supported by the main rope is driven by the friction between the main rope and the sheave 14.
 ブレーキ部12は、図示されない可動なブレーキシューを備える。ブレーキ部12は、ブレーキシューをブレーキディスク16に押し当てることにより発生する摩擦によって、回転部11を制動する力を発生させる。 The brake section 12 includes a movable brake shoe (not shown). The brake part 12 generates a force for braking the rotating part 11 by the friction generated by pressing the brake shoe against the brake disc 16.
 モーター部13は、フレーム18と、固定子19と、を備える。固定子19は、圧入または焼嵌めによりフレーム18に固定されている。固定子19は、円環状の鉄芯20を備える。鉄芯20の各々のティースにおいて、巻線21が巻かれている。また、巻線21および鉄芯20は、インシュレーター22によって絶縁されている。また、巻線21は、インシュレーター22によって固定される。各々のティースに巻かれた巻線21は、設定された順に互いに接続され、通電によって磁束を発生させる。 The motor section 13 includes a frame 18 and a stator 19. The stator 19 is fixed to the frame 18 by press fitting or shrink fitting. The stator 19 includes an annular iron core 20 . A winding 21 is wound around each tooth of the iron core 20. Further, the winding 21 and the iron core 20 are insulated by an insulator 22. Further, the winding 21 is fixed by an insulator 22. The windings 21 wound around each tooth are connected to each other in a set order, and generate magnetic flux when energized.
 固定子19は、例えば次の手順を含む方法などによって製造される。まず、エナメルで絶縁被覆された素線を用意する。素線は導電性を有する。素線の材質は、例えば、銅、アルミニウム、銀などである。エナメルの種類は、特に限定されないが、ポリエステルイミド、ポリアミドイミド、ポリアミドなどが組み合わせて使用される。これらのエナメルによる絶縁被覆の層において、絶縁耐圧を向上させるための無機フィラーが含まれていてもよい。これらのエナメル線は一般に市販されているモーターコイル用のものを用いることができる。このような絶縁被覆されたエナメル線を鉄芯20の各々のティースに巻き回して巻線21とする。その後、前述の含浸工程の方法によって巻線21に絶縁樹脂組成物(X)を含浸し、加熱硬化工程によって絶縁樹脂組成物(X)を硬化させる。 The stator 19 is manufactured, for example, by a method including the following steps. First, a wire coated with enamel is prepared. The wire has conductivity. The material of the wire is, for example, copper, aluminum, silver, etc. The type of enamel is not particularly limited, but combinations of polyesterimide, polyamideimide, polyamide, etc. are used. These enamel insulation coating layers may contain an inorganic filler to improve dielectric strength. As these enamelled wires, commercially available wires for motor coils can be used. Such an insulated enameled wire is wound around each tooth of the iron core 20 to form a winding 21. Thereafter, the winding 21 is impregnated with the insulating resin composition (X) by the above-described impregnation process, and the insulating resin composition (X) is cured by the heat curing process.
 絶縁樹脂組成物(X)において、コイルへの含浸性を高めるために粘度を低下させる反応性希釈剤として低分子量の単官能性ビニル系モノマー(D)が用いられている。このため、コイル長が長くコイルの厚みが厚い大型の回転機のコイルであっても、絶縁樹脂組成物(X)は内部まで含浸しやすい。また、絶縁樹脂組成物(X)の粘度が低いため余分な塊状硬化物の形成が抑制される。これにより、大型の回転機の製造性が向上する。 In the insulating resin composition (X), a low molecular weight monofunctional vinyl monomer (D) is used as a reactive diluent that lowers the viscosity in order to improve impregnation into the coil. Therefore, even if the coil of a large rotating machine has a long coil length and a thick coil thickness, the insulating resin composition (X) is easily impregnated into the inside. Moreover, since the viscosity of the insulating resin composition (X) is low, the formation of excess clumped cured material is suppressed. This improves the manufacturability of large rotating machines.
 3.実施例
 以下、実施例を挙げて説明する。なお、以下の実施例は本開示の対象を限定するものではない。
3. Examples Examples will be described below. Note that the following examples do not limit the scope of the present disclosure.
 3.1.絶縁樹脂組成物(X)およびその硬化物(Y)の製造
 各実施例および各比較例の絶縁樹脂組成物(X)およびその硬化物(Y)を以下のように製造した。
3.1. Production of insulating resin composition (X) and its cured product (Y) The insulating resin composition (X) and its cured product (Y) of each Example and each comparative example were produced as follows.
 3.1.1.材料の準備
 以下の材料を準備した。
3.1.1. Preparation of materials The following materials were prepared.
・熱硬化性樹脂(A)
 1分子中にエポキシ基およびメタ(アクリロイル)基の両方を有し、数平均分子量が約2000で60℃における粘度が約3900mPa・sである熱硬化性樹脂
・エポキシ基用の硬化剤およびラジカル重合反応開始剤(B)
 硬化剤:オクチル酸亜鉛
 反応開始剤:2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン
・多官能性ビニル系モノマー(C)
 重量平均分子量が約500のビスA型エポキシアクリレート
・単官能性ビニル系モノマー(D)
 (D-1)バイオマス由来のイソボルニルメタクリレート
 (D-2)バイオマス由来のテトラヒドロフルフリルメタクリレート
 (D-3)2-ヒドロキシエチルメタクリレート(2-HEMA)
・Thermosetting resin (A)
A thermosetting resin that has both an epoxy group and a meth (acryloyl) group in one molecule, a number average molecular weight of about 2000, and a viscosity at 60°C of about 3900 mPa・s, a curing agent for epoxy groups, and radical polymerization. Reaction initiator (B)
Curing agent: Zinc octylate Reaction initiator: 2,5-dimethyl-2,5-di(t-butylperoxy)hexane/polyfunctional vinyl monomer (C)
Bis A type epoxy acrylate monofunctional vinyl monomer (D) with a weight average molecular weight of about 500
(D-1) Biomass-derived isobornyl methacrylate (D-2) Biomass-derived tetrahydrofurfuryl methacrylate (D-3) 2-hydroxyethyl methacrylate (2-HEMA)
 3.1.1.1.実施例1~実施例9
 熱硬化性樹脂(A)および多官能性ビニル系モノマー(C)は撹拌しやすい粘度になるよう、あらかじめ40℃に加温し、下記の表1に示す配合量に従って熱硬化性樹脂(A)、多官能性ビニル系モノマー(C)、および単官能性ビニル系モノマー(D)を秤量した。次いで、秤量した熱硬化性樹脂(A)、多官能性ビニル系モノマー(C)、および単官能性ビニル系モノマー(D)を全て混合し、自転公転式撹拌機を用いて撹拌することで均一な混合溶液を得た。この混合溶液に、下記の表1に示した比率になるようにエポキシ基用の硬化剤およびラジカル重合反応開始剤(B)を添加し、絶縁樹脂組成物(X)を得た。
3.1.1.1. Examples 1 to 9
The thermosetting resin (A) and the polyfunctional vinyl monomer (C) are heated to 40°C in advance so that they have a viscosity that is easy to stir, and the thermosetting resin (A) is mixed according to the blending amounts shown in Table 1 below. , a polyfunctional vinyl monomer (C), and a monofunctional vinyl monomer (D) were weighed. Next, the weighed thermosetting resin (A), polyfunctional vinyl monomer (C), and monofunctional vinyl monomer (D) are all mixed and stirred using a rotation-revolution type stirrer to make a uniform mixture. A mixed solution was obtained. A curing agent for epoxy groups and a radical polymerization reaction initiator (B) were added to this mixed solution in the ratios shown in Table 1 below to obtain an insulating resin composition (X).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、反応開始剤の重量百分率(wt%)は、熱硬化性樹脂(A)および単官能性ビニル系モノマー(D)の全体に対する重量の比率を表す。また、表1において、1phrは、熱硬化性樹脂(A)、多官能性ビニル系モノマー(C)、および単官能性ビニル系モノマー(D)の合計100質量部に対して1質量部の硬化剤を配合する配合量を表す。また、表1の単官能性ビニル系モノマー(D)の「主成分」の欄において、「(D-1)、(D-2)」は、単官能性ビニル系モノマー(D)がイソボルニルメタクリレート(D-1)およびテトラヒドロフルフリルメタクリレート(D-2)の両方を含んでいることを表す。同欄において、「(D-3)」は、単官能性ビニル系モノマー(D)がイソボルニルメタクリレート(D-1)およびテトラヒドロフルフリルメタクリレート(D-2)の代わりに2-HEMA(D-3)が用いられていることを表す。同欄において、「(D-1)」は、単官能性ビニル系モノマー(D)がイソボルニルメタクリレート(D-1)を含み、テトラヒドロフルフリルメタクリレート(D-2)を含まないことを表す。同欄において、「(D-2)」は、単官能性ビニル系モノマー(D)がテトラヒドロフルフリルメタクリレート(D-2)を含み、イソボルニルメタクリレート(D-1)を含まないことを表す。 In Table 1, the weight percentage (wt%) of the reaction initiator represents the weight ratio of the thermosetting resin (A) and the monofunctional vinyl monomer (D) to the total weight. In addition, in Table 1, 1 phr means 1 part by mass of curing for a total of 100 parts by mass of the thermosetting resin (A), the polyfunctional vinyl monomer (C), and the monofunctional vinyl monomer (D). represents the amount of the agent to be mixed. In addition, in the "Main component" column of the monofunctional vinyl monomer (D) in Table 1, "(D-1), (D-2)" means that the monofunctional vinyl monomer (D) is an isovolume. This indicates that it contains both nil methacrylate (D-1) and tetrahydrofurfuryl methacrylate (D-2). In the same column, "(D-3)" means that the monofunctional vinyl monomer (D) is 2-HEMA (D) instead of isobornyl methacrylate (D-1) and tetrahydrofurfuryl methacrylate (D-2). -3) is used. In the same column, "(D-1)" indicates that the monofunctional vinyl monomer (D) contains isobornyl methacrylate (D-1) and does not contain tetrahydrofurfuryl methacrylate (D-2). . In the same column, "(D-2)" indicates that the monofunctional vinyl monomer (D) contains tetrahydrofurfuryl methacrylate (D-2) and does not contain isobornyl methacrylate (D-1). .
 3.1.1.2.比較例1~比較例4
 表1に示す配合量に従って、実施例1~実施例9と同様の手法で絶縁樹脂組成物を作製した。なお、表1に示されるように、比較例1および比較例2において、(D-1)および(D-2)の配合量の合計は、絶縁樹脂組成物(X)の全量の85wt%を超えている。比較例3および比較例4において、(D-1)および(D-2)の配合量の合計は、絶縁樹脂組成物(X)の全量の60wt%を下回る。
3.1.1.2. Comparative example 1 to comparative example 4
Insulating resin compositions were produced in the same manner as in Examples 1 to 9 according to the blending amounts shown in Table 1. As shown in Table 1, in Comparative Example 1 and Comparative Example 2, the total amount of (D-1) and (D-2) was 85 wt% of the total amount of the insulating resin composition (X). Over. In Comparative Example 3 and Comparative Example 4, the total amount of (D-1) and (D-2) is less than 60 wt% of the total amount of the insulating resin composition (X).
 3.1.1.3.比較例5~比較例6
 表1に示す配合量に従って、単官能性ビニル系モノマー(D)として、イソボルニルメタクリレート(D-1)およびテトラヒドロフルフリルメタクリレート(D-2)の代わりに2-HEMA(D-3)を用いた以外は、実施例3と同様にして絶縁樹脂組成物(X)を調製した。
3.1.1.3. Comparative example 5 to comparative example 6
According to the blending amounts shown in Table 1, 2-HEMA (D-3) was used as the monofunctional vinyl monomer (D) in place of isobornyl methacrylate (D-1) and tetrahydrofurfuryl methacrylate (D-2). An insulating resin composition (X) was prepared in the same manner as in Example 3 except that the following was used.
 3.1.1.4.比較例7
 表1に示す配合量に従って、単官能性ビニル系モノマー(D)として、イソボルニルメタクリレート(D-1)のみを用いた以外は、実施例3と同様にして絶縁樹脂組成物(X)を調製した。
3.1.1.4. Comparative example 7
An insulating resin composition (X) was prepared in the same manner as in Example 3, except that only isobornyl methacrylate (D-1) was used as the monofunctional vinyl monomer (D) according to the blending amounts shown in Table 1. Prepared.
 3.1.1.5.比較例8
 表1に示す配合量に従って、単官能性ビニル系モノマー(D)として、テトラヒドロフルフリルメタクリレート(D-2)のみを用いた以外は、実施例3と同様にして絶縁樹脂組成物(X)を調製した。
3.1.1.5. Comparative example 8
An insulating resin composition (X) was prepared in the same manner as in Example 3, except that only tetrahydrofurfuryl methacrylate (D-2) was used as the monofunctional vinyl monomer (D) according to the blending amounts shown in Table 1. Prepared.
 3.2.評価
 以下のようにして、絶縁樹脂組成物(X)およびその硬化物(Y)を評価した。
3.2. Evaluation The insulating resin composition (X) and its cured product (Y) were evaluated as follows.
 3.2.1.バイオマス度
 絶縁樹脂組成物(X)のバイオマス度は、14Cの個数から算出した。測定方法はASTM D6866に準拠した方法を用い、調製した絶縁樹脂組成物(X)を酸化処理して二酸化炭素またはグラファイト化した後、シンチレーター液に溶解させ、Liquid Scintillation Counter(LSC)計測用試料とした。次いで、液体シンチレーションカウンターを用い、本試料中の放射性炭素14Cの数を計測し、絶縁樹脂組成物(X)を構成する全炭素(12C、13C、14C)に占める14Cの割合から絶縁樹脂組成物(X)のバイオマス度を求めた。求めた結果を表1の「バイオマス度」の欄に示す。なお、14Cの計測方法は上記の方法に特定されず、例えば加速器質量分析(AMS)を用いてもよい。
3.2.1. Biomass degree The biomass degree of the insulating resin composition (X) was calculated from the number of 14 C atoms. The measurement method used was a method based on ASTM D6866, and the prepared insulating resin composition (X) was oxidized to carbon dioxide or graphite, then dissolved in a scintillator liquid, and used as a liquid scintillation counter (LSC) measurement sample. did. Next, the number of radioactive carbon 14C in this sample was measured using a liquid scintillation counter, and the number was determined from the proportion of 14C in the total carbon ( 12C , 13C , 14C ) constituting the insulating resin composition (X). The biomass degree of the insulating resin composition (X) was determined. The obtained results are shown in the "Biomass degree" column of Table 1. Note that the method for measuring 14 C is not limited to the above method, and for example, accelerator mass spectrometry (AMS) may be used.
 3.2.2.粘度
 E型粘度計により、絶縁樹脂組成物(X)の粘度を測定した。室温における測定の結果を表1の「全体粘度」の欄に示す。
3.2.2. Viscosity The viscosity of the insulating resin composition (X) was measured using an E-type viscometer. The results of the measurements at room temperature are shown in the "Total viscosity" column of Table 1.
 3.2.3.機械的強度(ヘリカルコイル固着力)
 線形1mmのマグネットワイヤ(日立金属製KMK-20E)を用い、JISC3216-1および6に準拠した方法で、試験片とするヘリカルコイルを作製した。次いで、このヘリカルコイルを150℃で120分間加熱することで予熱処理し、室温まで冷却した。これらのヘリカルコイルを絶縁樹脂組成物(X)中に静かに浸漬し、1分間静置した後引き上げ、加熱炉内に適度な間隔を保って吊下した。これらのコイルを所定の時間加熱し、絶縁樹脂組成物(X)を硬化させた。加熱条件は170℃で2時間とした。加熱硬化して得られたヘリカルコイルにつき、オートグラフ(強度試験機)にて3点曲げ試験を実施した。評価の結果を表1の「強度」の欄に示す。本評価において、固着力は100N以上であることが望ましく、固着力が100N以上のものを+、固着力が100Nに達しないものを-とし、さらに固着力が120Nを超える値を得られるものを++とした。
3.2.3. Mechanical strength (helical coil fixing force)
A helical coil as a test piece was prepared using a linear 1 mm magnet wire (KMK-20E manufactured by Hitachi Metals) in accordance with JISC3216-1 and 6. Next, this helical coil was preheated by heating at 150° C. for 120 minutes, and then cooled to room temperature. These helical coils were gently immersed in the insulating resin composition (X), left to stand for 1 minute, then pulled up, and suspended in a heating furnace with an appropriate interval maintained. These coils were heated for a predetermined period of time to cure the insulating resin composition (X). The heating conditions were 170°C for 2 hours. The helical coil obtained by heating and curing was subjected to a three-point bending test using an autograph (strength testing machine). The evaluation results are shown in the "Strength" column of Table 1. In this evaluation, it is desirable that the adhesion force is 100N or more, and if the adhesion force is 100N or more, it is +, if the adhesion force does not reach 100N, it is -, and if the adhesion force exceeds 120N, it is considered as -. ++.
 3.2.4.塊状硬化物形成状態
 図2に示される固定子19を模擬したサンプルを用意し、表1に記載の絶縁樹脂組成物(X)に含浸・硬化させた後、巻回したコイル部の下側(コイルエンド)およびインシュレーターに形成される塊状硬化物の厚みを測定した。評価の結果を表1の「ツララ」の欄に示す。本評価において、除去加工の要否を基準とし、切断および削りを要する10mm以上の厚みを--、切断は不要だが削りが必要な5mm以上10mm未満の厚みを-、箇所により削りが必要な2mm以上5mm未満の厚みを+、削り不要となる2mm未満の厚みを++とした。
3.2.4. A sample simulating the stator 19 shown in FIG. 2 was prepared and impregnated with the insulating resin composition (X) listed in Table 1 and cured. The thickness of the cured mass formed on the coil end) and the insulator was measured. The evaluation results are shown in the "Icicle" column of Table 1. In this evaluation, the necessity of removal processing is used as the standard for thicknesses of 10 mm or more that require cutting and shaving, thicknesses of 5 mm or more but less than 10 mm that do not require cutting but require shaving, and 2 mm that require shaving depending on the location. A thickness of less than 5 mm was defined as +, and a thickness of less than 2 mm that required no cutting was defined as ++.
 3.2.5.指触性
 上記のヘリカルコイルおよび固定子19を模擬したサンプルのコイルまたは構成部材の表面に形成された絶縁樹脂組成物(X)の硬化物を指触し、指の付着の有無により指触性を評価した。評価の結果を表1の「指触性」の欄に示す。本評価において、指に絶縁樹脂組成物(X)が液状またはゲル状で付着するものを--、タック性は感じられるが指への付着はないものを-、タック性がなくサラサラで指への付着のないものを+とした。
3.2.5. Touchability with fingers The cured product of the insulating resin composition (X) formed on the surface of the sample coil or component simulating the helical coil and stator 19 described above is touched, and the touchability is determined by the presence or absence of finger attachment. was evaluated. The results of the evaluation are shown in the "Touchability" column of Table 1. In this evaluation, the insulating resin composition (X) adheres to the fingers in liquid or gel form, the tackiness is felt but it does not stick to the fingers, and the insulating resin composition (X) is non-tacky and sticks to the fingers. Those with no adhesion were rated +.
 3.2.6.総合評価
 絶縁樹脂組成物(X)においては、機械的強度および塊状硬化物形成抑制の両立の他、指触性が良好で、かつバイオマス度が60%以上であることが要求される。このような総合評価の結果を表1の「判定」の欄に示す。表1において、これらの全ての要求を満足しうるものを+、いずれか1つ以上の項目が満足されないものを-として、最終判定結果を示した。
3.2.6. Comprehensive Evaluation The insulating resin composition (X) is required to have both mechanical strength and suppression of clumped cured product formation, as well as good touchability and a biomass degree of 60% or more. The results of such comprehensive evaluation are shown in the "Judgment" column of Table 1. In Table 1, the final judgment results are shown as + for those that can satisfy all of these requirements, and - for those that do not satisfy any one or more of the requirements.
 3.3.結果と考察
 表1から分かるように、実施例1~実施例9は、比較例5および比較例6に比べて、指触性が改善されている。これは、分子中に自由度の高い水酸基がなく、環状骨格を有する単官能性ビニル系モノマー(D-1)および(D-2)の効果により、空気中の水分吸着の抑制効果が得られたためと考えられる。
3.3. Results and Discussion As can be seen from Table 1, Examples 1 to 9 have improved tactility compared to Comparative Examples 5 and 6. This is because the monofunctional vinyl monomers (D-1) and (D-2), which do not have a highly flexible hydroxyl group in their molecules and have a cyclic skeleton, can suppress moisture adsorption in the air. It is thought that this was due to an accident.
 続いて、実施例1~実施例9および比較例1~比較例4の結果に基づき、バイオマス材料由来の単官能性ビニル系モノマー(D-1)および(D-2)の配合量について議論する。 Next, based on the results of Examples 1 to 9 and Comparative Examples 1 to 4, we will discuss the amount of monofunctional vinyl monomers (D-1) and (D-2) derived from biomass materials. .
 単官能性ビニル系モノマー(D-1)および(D-2)配合量の合計は、実施例1および実施例2が82wt%~84wt%、実施例3~6が65wt%~78wt%、実施例7~実施例9が60wt%~64wt%である。実施例1~実施例6において、塊状硬化物の厚みは除去不要となる2mm以下であり、機械的強度も目安となる100Nを超える良好な値となった。特に実施例3~実施例6において、機械的強度は120Nを超える値を得た。実施例7~実施例9では、機械的強度は100Nを超える一方、塊状硬化物の厚みは2mm~5mmであった。実施例7~実施例9では、塊状硬化物の除去工程を完全に不要とすることはできないものの、工程時間および加工必要箇所を大幅に削減でき、生産性が向上する効果が得られる。実施例1~実施例9では、絶縁樹脂組成物(X)の全体の粘度は10mPa・s~80mPa・sであった。また、実施例1~実施例9では、硬化後の指触性についても良好な結果が得られた。 The total amount of monofunctional vinyl monomers (D-1) and (D-2) was 82 wt% to 84 wt% for Examples 1 and 2, 65 wt% to 78 wt% for Examples 3 to 6, and 65 wt% to 78 wt% for Examples 3 to 6. Examples 7 to 9 are 60 wt% to 64 wt%. In Examples 1 to 6, the thickness of the cured lumps was 2 mm or less, which made removal unnecessary, and the mechanical strength was also a good value exceeding 100 N, which is a standard. In particular, in Examples 3 to 6, the mechanical strength exceeded 120N. In Examples 7 to 9, the mechanical strength exceeded 100N, and the thickness of the cured lumps was 2 mm to 5 mm. In Examples 7 to 9, although the step of removing the clumped cured material cannot be completely eliminated, it is possible to significantly reduce the process time and the number of locations required for processing, resulting in the effect of improving productivity. In Examples 1 to 9, the overall viscosity of the insulating resin composition (X) was 10 mPa·s to 80 mPa·s. Further, in Examples 1 to 9, good results were obtained in terms of touchability after curing.
 一方、比較例1および比較例2は、単官能性ビニル系モノマー(D-1)および(D-2)配合量の合計が85wt%を超えている。塊状硬化物の厚みでは除去が完全に不要な2mm以下となるものの、機械的強度の必要な値100Nが達成されなくなる。さらに、指触性においても一部でべたつきが確認された。これは、単官能性ビニル系モノマーの配合量が極度に多く、その一部は硬化反応に寄与せずに硬化炉で揮発して炉内に充満し、コイルの表面に再付着したためと推測する。また、単官能性ビニル系モノマー(D-1)および(D-2)配合量の合計が57wt%以下となる比較例3および比較例4では、機械的強度では+判定となる一方、塊状硬化物の厚みが5mmまたは10mmを超え、-判定または--判定となった。 On the other hand, in Comparative Example 1 and Comparative Example 2, the total amount of monofunctional vinyl monomers (D-1) and (D-2) exceeds 85 wt%. Although the thickness of the cured mass is 2 mm or less, which makes removal completely unnecessary, the required mechanical strength of 100 N cannot be achieved. Furthermore, stickiness was confirmed in some areas when touchable to the fingers. We speculate that this is because the amount of monofunctional vinyl monomer blended is extremely large, and some of it evaporates in the curing furnace without contributing to the curing reaction, filling the furnace and re-adhering to the surface of the coil. . In addition, in Comparative Examples 3 and 4, in which the total amount of monofunctional vinyl monomers (D-1) and (D-2) is 57 wt% or less, mechanical strength was evaluated as +, but bulk hardening The thickness of the object exceeded 5 mm or 10 mm, resulting in a - or -- rating.
 これは、単官能性ビニル系モノマー(D)が、絶縁樹脂組成物(X)の粘度を低下させることで液切れ性の向上に寄与し、塊状硬化物の形成を抑制する効果を持つ一方、低分子量かつ硬化中に揮発する性質を持つため、硬化物(Y)の機械的強度の低下と指触性に影響するためである。すなわち、塊状硬化物の抑制と、機械的強度および指触性とが、単官能性ビニル系モノマー(D)の配合量に依存したトレードオフの関係にあることに起因する。本開示における鋭意検討の結果、これらの特性の両立には、単官能性ビニル系モノマー(D)の配合量、特に単官能性ビニル系モノマー(D-1)および(D-2)の配合量が60wt%~84wt%であればよく、より好ましくは65wt%~78wt%であることが明らかになった。 This is because the monofunctional vinyl monomer (D) reduces the viscosity of the insulating resin composition (X), thereby contributing to improving drainage properties and suppressing the formation of lumpy cured products. This is because it has a low molecular weight and a property of volatilizing during curing, which affects the reduction in mechanical strength and touchability of the cured product (Y). That is, this is due to the fact that suppression of clumpy cured products, mechanical strength and finger touchability are in a trade-off relationship depending on the blending amount of the monofunctional vinyl monomer (D). As a result of intensive studies in the present disclosure, in order to achieve both of these characteristics, the blending amount of the monofunctional vinyl monomer (D), especially the blending amount of the monofunctional vinyl monomers (D-1) and (D-2). It has become clear that it is sufficient that the amount is from 60 wt% to 84 wt%, and more preferably from 65 wt% to 78 wt%.
 続いて、実施例3と比較例5との比較から、環状構造を有する単官能性ビニル系モノマーの効果について議論する。実施例3は環状骨格を持つイソボルニルメタクリレート(D-1)、およびテトラヒドロフルフリルメタクリレート(D-2)を含む。比較例5は、これらの代わりに2-HEMA(D-3)を用いた例であり、単官能性ビニル系モノマー(D)の配合量は同じである。両者ともに塊状硬化物の厚みにおいては2mm以下の良好な結果が得られるが、機械的強度および指触性に違いが見られる。環状構造を有する単官能性ビニル系モノマーを用いた実施例3では、機械的強度が120Nを超え、指触性も良好である。一方、2-HEMAを用いた比較例5では、機械的強度が100Nを下回ることに加え、指触性の改善も見られない。これは、環状骨格を有する単官能性ビニル系モノマーの分子骨格が鎖状構造の2-HEMAに比べて高強度であること、および環状骨格を有する単官能性ビニル系モノマーが自由度の高い水酸基を有さないため疎水性が高い(親水性が抑制されている)ことに起因すると考えられる。 Next, from a comparison between Example 3 and Comparative Example 5, the effects of the monofunctional vinyl monomer having a cyclic structure will be discussed. Example 3 contains isobornyl methacrylate (D-1) having a cyclic skeleton and tetrahydrofurfuryl methacrylate (D-2). Comparative Example 5 is an example in which 2-HEMA (D-3) was used instead of these, and the blending amount of the monofunctional vinyl monomer (D) was the same. Although good results are obtained in both cases in terms of the thickness of the clumped cured product of 2 mm or less, there are differences in mechanical strength and touchability. In Example 3 using a monofunctional vinyl monomer having a cyclic structure, the mechanical strength exceeds 120N and the touchability to the fingers is also good. On the other hand, in Comparative Example 5 using 2-HEMA, not only the mechanical strength was less than 100N, but also no improvement in tactility was observed. This is because the molecular skeleton of a monofunctional vinyl monomer with a cyclic skeleton is stronger than 2-HEMA, which has a chain structure, and the monofunctional vinyl monomer with a cyclic skeleton has a high degree of freedom in hydroxyl groups. This is thought to be due to the fact that it has high hydrophobicity (hydrophilicity is suppressed) because it does not have.
 続いて、実施例3と、比較例7および比較例8との比較から、2種類の環状構造を有する単官能性ビニル系モノマーを併用する効果について考察する。実施例3は環状骨格を持つイソボルニルメタクリレート(D-1)、およびテトラヒドロフルフリルメタクリレート(D-2)の両方を含む。比較例7および比較例8は、イソボルニルメタクリレート(D-1)、またはテトラヒドロフルフリルメタクリレート(D-2)のいずれか一方のみを含む。実施例3では、機械的強度が100Nを超える良好な結果であるのに対し、比較例7および比較例8では、わずかではあるが100Nに満たないことが明らかになった。これは、イソボルニルメタクリレート(D-1)のみの場合、かさ高いイソボルニル骨格が架橋構造を阻害し、必要な機械的強度を得られないためと考える。一方、テトラヒドロフルフリルメタクリレート(D-2)のみの場合では、イソボルニル骨格よりも強度が低下するために、必要な機械的強度が得られないと考えられる。 Next, from a comparison between Example 3 and Comparative Examples 7 and 8, the effect of using the monofunctional vinyl monomers having two types of cyclic structures together will be discussed. Example 3 contains both isobornyl methacrylate (D-1) having a cyclic skeleton and tetrahydrofurfuryl methacrylate (D-2). Comparative Example 7 and Comparative Example 8 contain only either isobornyl methacrylate (D-1) or tetrahydrofurfuryl methacrylate (D-2). In Example 3, the mechanical strength exceeded 100N, which was a good result, whereas in Comparative Examples 7 and 8, it was revealed that the mechanical strength was less than 100N, although it was slightly. This is considered to be because, in the case of only isobornyl methacrylate (D-1), the bulky isobornyl skeleton inhibits the crosslinked structure and the necessary mechanical strength cannot be obtained. On the other hand, in the case of only tetrahydrofurfuryl methacrylate (D-2), it is considered that the required mechanical strength cannot be obtained because the strength is lower than that of the isobornyl skeleton.
 以上に説明したように、絶縁樹脂組成物(X)において、(C)多官能性ビニル系モノマーおよび(D)多官能性ビニル系モノマーは、その原材料に植物由来のバイオマス材料を用いているため、石油由来の原料からなる絶縁樹脂よりも環境負荷低減効果が高い。また、本開示における絶縁樹脂組成物(X)は、その配合比より国または第三者機関などによるバイオマスマーク認定(バイオマス材料を10%以上含む)を取得でき、循環型社会形成に貢献することができる。 As explained above, in the insulating resin composition (X), (C) the polyfunctional vinyl monomer and (D) the polyfunctional vinyl monomer use plant-derived biomass materials as their raw materials. , which has a higher environmental impact reduction effect than insulating resins made from petroleum-based raw materials. In addition, the insulating resin composition (X) in the present disclosure can obtain biomass mark certification (contains 10% or more of biomass materials) from the government or a third-party organization based on its blending ratio, and contributes to the creation of a recycling-oriented society. I can do it.
 また、単官能性ビニル系モノマー(D)は、絶縁樹脂組成物(X)の粘度を低下させ、コイルを浸漬槽から引き上げる際の絶縁樹脂組成物(X)の液切れ性を向上させる。これにより、コイル内部および構成部材への余分な絶縁樹脂組成物(X)の付着が防止され、塊状硬化物の形成を抑制する効果が得られる。 Furthermore, the monofunctional vinyl monomer (D) lowers the viscosity of the insulating resin composition (X) and improves the drainability of the insulating resin composition (X) when the coil is pulled up from the immersion tank. This prevents excess insulating resin composition (X) from adhering to the inside of the coil and to the constituent members, and provides the effect of suppressing the formation of a lumpy cured product.
 加えて、絶縁樹脂組成物(X)に含まれる単官能性ビニル系モノマー(D)のうちイソボルニル骨格を有するビニル系モノマー(D-1)および環状エーテル骨格を有するビニル系モノマー(D-1)は、分子中に環状骨格を含むため、鎖状骨格のビニル系モノマーと比較して耐熱性および強度に優れる。上述のように絶縁樹脂の低粘度化のためには反応性希釈剤の添加が有効であるが、鎖状構造で分子量の小さい単官能性モノマーは、必要粘度を実現するために多量に添加すると硬化物の耐熱性および機械的強度を低下させる。これに対し、本開示において用いたイソボルニル骨格を有するビニル系モノマー(D-1)および環状エーテル骨格を有するビニル系モノマー(D-1)は、分子中の環状構造の効果により鎖状構造のモノマーと比べて熱的・機械的特性に優れる。このため、これらのモノマーを多量に配合しても硬化物(Y)の耐熱・強度特性を低下させず、耐熱・強度特性を向上させる効果が得られる。 In addition, among the monofunctional vinyl monomers (D) contained in the insulating resin composition (X), a vinyl monomer having an isobornyl skeleton (D-1) and a vinyl monomer having a cyclic ether skeleton (D-1) contains a cyclic skeleton in its molecule, so it has superior heat resistance and strength compared to vinyl monomers with a chain skeleton. As mentioned above, the addition of reactive diluents is effective in reducing the viscosity of insulating resins, but monofunctional monomers with chain structures and small molecular weights are difficult to add in large amounts to achieve the required viscosity. Reduces heat resistance and mechanical strength of cured products. On the other hand, the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton used in the present disclosure are monomers with a chain structure due to the effect of the cyclic structure in the molecule. It has superior thermal and mechanical properties compared to Therefore, even if a large amount of these monomers is blended, the heat resistance and strength characteristics of the cured product (Y) are not reduced, and the effect of improving the heat resistance and strength characteristics can be obtained.
 さらに、イソボルニル骨格を有するビニル系モノマー(D-1)および環状エーテル骨格を有するビニル系モノマー(D-1)は、分子中に自由度の高い水酸基を有していないため、反応性希釈剤として用いられる2-HEMAと比べて親水性が低い。すなわち、空気中の水分との親和性が低いため、絶縁樹脂組成物(X)の硬化物(Y)の表面に再付着することが防止され、表面指触性を向上させる効果が得られる。 Furthermore, the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton do not have a highly flexible hydroxyl group in their molecules, so they can be used as reactive diluents. It has lower hydrophilicity than the 2-HEMA used. That is, since the insulating resin composition (X) has a low affinity with moisture in the air, re-adhesion to the surface of the cured product (Y) of the insulating resin composition (X) is prevented, and the effect of improving the surface tactility can be obtained.
 なお、本開示におけるイソボルニル骨格を有するビニル系モノマー(D-1)および環状エーテル骨格を有するビニル系モノマー(D-1)はバイオマス材料であり、これらは単官能性ビニル系モノマー(D)に主成分として60wt%~84wt%程度含まれている。このため、絶縁樹脂組成物(X)のバイオマス度は、イソボルニル骨格を有するビニル系モノマー(D-1)および環状エーテル骨格を有するビニル系モノマー(D-1)の配合量に起因し、60%以上84%以下となる。 Note that the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton in the present disclosure are biomass materials, and these are mainly composed of the monofunctional vinyl monomer (D). It is contained as a component in an amount of about 60 wt% to 84 wt%. Therefore, the biomass degree of the insulating resin composition (X) is 60% due to the blending amount of the vinyl monomer (D-1) having an isobornyl skeleton and the vinyl monomer (D-1) having a cyclic ether skeleton. 84% or less.
 したがって、以上に述べた効果により、バイオマス材料を原料として用いながら硬化物の表面指触性をより高められる絶縁樹脂組成物(X)が提供される。 Therefore, due to the effects described above, an insulating resin composition (X) is provided that can further improve the surface touchability of a cured product while using a biomass material as a raw material.
 なお、本開示の範囲は、以上に説明した例に限定されず、特許請求の範囲によって画定されるべきである。本開示の範囲には、特許請求の範囲と均等の意味での全ての変更が含まれる。また、本開示の範囲には、特許請求の範囲と均等の範囲内での全ての変更も含まれる。 Note that the scope of the present disclosure is not limited to the examples described above, but should be defined by the claims. The scope of the present disclosure includes all changes that are equivalent to the claims. Furthermore, the scope of the present disclosure includes all changes within the scope of equivalents to the claims.
 本開示に係る回転機は、ロープ式エレベーターの巻上機に適用できる。本開示に係る巻線コイルは、当該回転機に適用できる。本開示に係る絶縁樹脂組成物およびその硬化物は、当該コイルの絶縁性の保持および機械的強度の維持などに適用できる。 The rotating machine according to the present disclosure can be applied to a hoisting machine for a rope elevator. The winding coil according to the present disclosure can be applied to the rotating machine. The insulating resin composition and its cured product according to the present disclosure can be applied to maintaining the insulation properties and mechanical strength of the coil.
 1 コイル、 2 絶縁樹脂、 3 揮発した反応性希釈剤、4 水分、 5 薄膜、 10 巻上機、 11 回転部、 12 ブレーキ部、 13 モーター部、 14 綱車、 15 回転子、 16 ブレーキディスク、 17 回転軸、 18 フレーム、 19 固定子、 20 鉄芯、 21 巻線、 22 インシュレーター 1 Coil, 2 Insulating resin, 3 Volatile reactive diluent, 4 Moisture, 5 Thin film, 10 Hoisting machine, 11 Rotating part, 12 Brake part, 13 Motor part, 14 Sheave, 15 Rotor, 16 Brake disc, 17 Rotating shaft, 18 Frame, 19 Stator, 20 Iron core, 21 Winding, 22 Insulator

Claims (5)

  1.  エポキシ基およびメタ(アクリロイル)基の両方を有する熱硬化性樹脂と、
     ラジカル重合反応開始剤およびエポキシ基用の硬化剤と、
     バイオマス材料を原料とする多官能性ビニル系モノマーと、
     バイオマス材料を原料とする単官能性ビニル系モノマーと、
     を含み、
     前記単官能性ビニル系モノマーは、
      イソボルニル骨格を有するビニル系モノマー、および
      飽和炭化水素の環状エーテル骨格を有するビニル系モノマー
     の両方を含み、
     バイオマス度が60%以上84%以下である、
     絶縁樹脂組成物。
    A thermosetting resin having both an epoxy group and a meth (acryloyl) group,
    a radical polymerization reaction initiator and a curing agent for epoxy groups;
    A polyfunctional vinyl monomer made from biomass material,
    A monofunctional vinyl monomer made from biomass material,
    including;
    The monofunctional vinyl monomer is
    Contains both a vinyl monomer having an isobornyl skeleton and a vinyl monomer having a saturated hydrocarbon cyclic ether skeleton,
    The biomass degree is 60% or more and 84% or less,
    Insulating resin composition.
  2.  粘度が10mPa・s以上80mPa・s以下である、
     請求項1に記載の絶縁樹脂組成物。
    The viscosity is 10 mPa・s or more and 80 mPa・s or less,
    The insulating resin composition according to claim 1.
  3.  請求項1または請求項2に記載の絶縁樹脂組成物を硬化させた、硬化物。 A cured product obtained by curing the insulating resin composition according to claim 1 or 2.
  4.  請求項1または請求項2に記載の絶縁樹脂組成物を含浸させた、巻線コイル。 A wire-wound coil impregnated with the insulating resin composition according to claim 1 or 2.
  5.  ロープ式エレベーターのかごを駆動させる巻上機に用いられる回転機であり、
     請求項4に記載の巻線コイルを用いた固定子
     を備える、回転機。
    A rotating machine used in the hoisting machine that drives the car of a rope elevator.
    A rotating machine comprising a stator using the wire-wound coil according to claim 4.
PCT/JP2022/010721 2022-03-10 2022-03-10 Insulating resin composition, cured object, wire coil, and rotating machine WO2023170891A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024505783A JPWO2023170891A1 (en) 2022-03-10 2022-03-10
PCT/JP2022/010721 WO2023170891A1 (en) 2022-03-10 2022-03-10 Insulating resin composition, cured object, wire coil, and rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010721 WO2023170891A1 (en) 2022-03-10 2022-03-10 Insulating resin composition, cured object, wire coil, and rotating machine

Publications (1)

Publication Number Publication Date
WO2023170891A1 true WO2023170891A1 (en) 2023-09-14

Family

ID=87936402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010721 WO2023170891A1 (en) 2022-03-10 2022-03-10 Insulating resin composition, cured object, wire coil, and rotating machine

Country Status (2)

Country Link
JP (1) JPWO2023170891A1 (en)
WO (1) WO2023170891A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235697A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Ink composition
JP2011208018A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Ink composition for inkjet recording, inkjet recording method, and printed product
JP2015098567A (en) * 2013-07-04 2015-05-28 東洋インキScホールディングス株式会社 Active energy ray-polymerizable adhesive, and laminate
JP2015120781A (en) * 2013-12-20 2015-07-02 東亞合成株式会社 Active energy ray-curable coating agent composition
JP2020105308A (en) * 2018-12-27 2020-07-09 日東電工株式会社 Adhesive composition
JP2021070738A (en) * 2019-10-30 2021-05-06 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed materials thereof
JP2021155645A (en) * 2020-03-30 2021-10-07 大成ファインケミカル株式会社 Biomass (meth)acryl copolymer, coating agent and ink composition comprising the same, and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235697A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Ink composition
JP2011208018A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Ink composition for inkjet recording, inkjet recording method, and printed product
JP2015098567A (en) * 2013-07-04 2015-05-28 東洋インキScホールディングス株式会社 Active energy ray-polymerizable adhesive, and laminate
JP2015120781A (en) * 2013-12-20 2015-07-02 東亞合成株式会社 Active energy ray-curable coating agent composition
JP2020105308A (en) * 2018-12-27 2020-07-09 日東電工株式会社 Adhesive composition
JP2021070738A (en) * 2019-10-30 2021-05-06 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed materials thereof
JP2021155645A (en) * 2020-03-30 2021-10-07 大成ファインケミカル株式会社 Biomass (meth)acryl copolymer, coating agent and ink composition comprising the same, and method for producing the same

Also Published As

Publication number Publication date
JPWO2023170891A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP2524011B2 (en) Thermosetting resin composition for high-voltage coil casting, mold coil and panel obtained by casting and curing with the composition
JP5738261B2 (en) Epoxy-vinyl copolymerization type liquid resin composition, cured product thereof, production method, insulating material using cured product, electronic / electrical device
JP6461475B2 (en) Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same
JP5663874B2 (en) Epoxy resin composition, cured product thereof and light-emitting diode
RU2704804C2 (en) Solid insulating material, use of solid insulating material and electric machine
JP5756082B2 (en) Direct overmolding
US4160178A (en) Method of coating an article with a solventless acrylic epoxy impregnating composition curable in a gas atmosphere without heat
CN112992406B (en) Insulating sheet, method for producing same, and rotating electrical machine
EP2198433A1 (en) Polymer concrete electrical insulation system
JP7094689B2 (en) Insulation components for electrical insulation systems and electromechanical fields
US3919348A (en) Epoxy-styrene resin system having improved shelf life
WO2015132990A1 (en) Epoxy resin composition, and electric appliance manufactured using same
JP2004075769A (en) Epoxy resin composition
EP2751161B1 (en) Process for the impregnation of air core reactors, impregnated air core reactor and use of an impregnation system
WO2023170891A1 (en) Insulating resin composition, cured object, wire coil, and rotating machine
JP3651729B2 (en) Impregnating resin composition
WO2017168880A1 (en) Curable composition, cured object obtained therefrom, and rotary device
WO2022162805A1 (en) Insulating resin composition, cured product, rotary machine coil, and rotary machine
JP2016204530A (en) Thermosetting resin composition, stator coil and rotary electric machine
JP2015002095A (en) Resin composition for electric insulation and manufacturing method of insulated electric appliance using the same
JP2015147918A (en) Unsaturated polyester resin composition, and resin composition for electric insulation using the same, and method for manufacturing electric equipment
JP2010138280A (en) Primer composition, cast article for electric insulation and method for producing the same
JP6759139B2 (en) Resin composition for coil impregnation and coil for automobile motor
JP2011246553A (en) Varnish composition and coil device
JP2011108476A (en) Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024505783

Country of ref document: JP

Kind code of ref document: A