WO2022162795A1 - 油圧ショベル - Google Patents
油圧ショベル Download PDFInfo
- Publication number
- WO2022162795A1 WO2022162795A1 PCT/JP2021/002885 JP2021002885W WO2022162795A1 WO 2022162795 A1 WO2022162795 A1 WO 2022162795A1 JP 2021002885 W JP2021002885 W JP 2021002885W WO 2022162795 A1 WO2022162795 A1 WO 2022162795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed
- target
- bucket
- target surface
- jack
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 41
- 239000002689 soil Substances 0.000 claims abstract description 40
- 238000010276 construction Methods 0.000 claims abstract description 35
- 238000012937 correction Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 description 24
- 230000036544 posture Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 238000009412 basement excavation Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000010720 hydraulic oil Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2203—Arrangements for controlling the attitude of actuators, e.g. speed, floating function
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/08—Superstructures; Supports for superstructures
- E02F9/10—Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
- E02F9/12—Slewing or traversing gears
- E02F9/121—Turntables, i.e. structure rotatable about 360°
- E02F9/123—Drives or control devices specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2246—Control of prime movers, e.g. depending on the hydraulic load of work tools
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2264—Arrangements or adaptations of elements for hydraulic drives
- E02F9/2271—Actuators and supports therefor and protection therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
- E02F9/262—Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
- E02F9/265—Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/40—Special vehicles
- B60Y2200/41—Construction vehicles, e.g. graders, excavators
- B60Y2200/412—Excavators
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/32—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
Definitions
- the present invention relates to a hydraulic excavator used for road work, construction work, civil engineering work, dredging work, and the like.
- a revolving body As a hydraulic excavator used for road construction, construction work, civil engineering work, dredging work, etc., a revolving body is attached to the upper part of the traveling body that runs by the power system, and a multi-joint type work front can be moved up and down on the revolving body. It is known to mount each front member so as to be able to swing in any direction, and to drive each front member constituting the work front by a cylinder.
- the work front consists of, for example, a boom, an arm, a bucket, and the like.
- Some hydraulic excavators of this type have a so-called machine control function that provides an operable area and semi-automatically operates the work front within that area.
- the operator sets the target surface for construction, and when the boom is operated, the boom operation speed is restricted according to the distance between the target surface and the bucket so that the bucket does not enter the target surface for construction, and the boom decelerates to a stop. Also, when the arm is operated, the boom and bucket can be moved semi-automatically along the construction target surface.
- Patent Document 1 discloses a technique for time-integrating the distance between the construction target surface and the bucket and correcting the boom operating speed in order to perform accurate excavation using machine control.
- the operating speed of the boom is corrected so that the bucket approaches the work target surface.
- the excavation reaction force acting on the bucket exceeds the maximum excavation force of the excavator, the excavator is jacked up. That is, according to the technique disclosed in Patent Document 1, if the state where the distance between the work target surface and the bucket continues, the operating speed of the boom is corrected, and the hydraulic excavator is gradually jacked up.
- a hydraulic excavator comprises a traveling body that can travel, a revolving body that is rotatably attached to the running body, a work front that is rotatably attached to the revolving body and has a boom, an arm, and a bucket, An actuator for driving the boom, the arm, and the bucket, respectively; an operation amount detection device for detecting an operation amount of an operation device for operating the actuator; and an attitude for detecting the attitude of the work front and the attitude of the swing body.
- a detection device a target plane management device that sets a construction target plane and calculates a distance between the set construction target plane and the bucket as a target plane distance; a drive control device for calculating a target operation speed of the actuator so that the bucket excavates along the construction target surface based on the base, and generating an operation command value for the actuator; and a drive control device for the actuator based on the operation command value.
- the drive control device determines a target jack-up speed when the hydraulic excavator jacks up based on the target surface distance, and the determined target jack-up speed It is characterized in that the target operating speed is corrected based on.
- the drive control device determines a target jack-up speed when the hydraulic excavator jacks up based on the target surface distance, and corrects the target operating speed based on the determined target jack-up speed. Therefore, it is possible to quickly jack up near the construction target surface.
- FIG. 5 is a diagram showing a table for determining target jack-up speed based on target surface distance;
- FIG. 10 is a diagram showing a table for determining target jack-up speed based on bucket-to-target surface angle;
- FIG. 10 is a diagram showing a table for determining a target jackup speed based on bucket-to-running object distance;
- FIG. 10 is a diagram showing a table for determining a target jack-up speed based on the tilt angle of the traveling body;
- FIG. 10 is a diagram showing a table for determining a target jack-up speed based on the relative angle of the revolving body;
- FIG. 10 is a diagram showing temporal changes in the inclination angle of the traveling body when an excavation operation is performed;
- FIG. 10 is a diagram showing a time change of a boom speed command value when an excavation operation is performed;
- a hydraulic excavator 1 includes a traveling body 4 that travels by a power system, a revolving body 3 attached to the traveling body 4 so as to be able to turn in the left-right direction, and a revolving body 3 and a working front 2 attached to the .
- the traveling body 4 and the revolving body 3 are driven by hydraulic actuators, for example.
- the work front 2 is configured to be vertically swingable with respect to the revolving body 3 .
- the work front 2 includes a boom 20 connected to the revolving body 3, an arm 21 connected to the boom 20, a bucket 22 connected to the arm 21, and both ends connected to the boom 20 and the revolving body 3, respectively.
- Each of these members is configured to swing vertically around the connecting portion.
- the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A correspond to the "actuator" described in the claims. be able to.
- the bucket 22 can be arbitrarily replaced with a working tool (not shown) such as a grapple, breaker, ripper, magnet, or the like.
- the boom 20 incorporates a boom IMU (Inertial Measurement Unit) sensor 20S for detecting the attitude of the boom 20, and the arm 21 incorporates an arm IMU sensor 21S for detecting the attitude of the arm 21.
- a bucket IMU sensor 22S for detecting the attitude of the bucket 22 is built in the second link 22C.
- the boom IMU sensor 20S, the arm IMU sensor 21S, and the bucket IMU sensor 22S are each composed of an angular velocity sensor and an acceleration sensor.
- a boom bottom pressure sensor 20BP and a boom rod pressure sensor 20RP are attached to the boom cylinder 20A as cylinder pressure sensors.
- the rotating body 3 includes a rotating body IMU sensor 30S, a main frame 31, an operator's cab 32, an operation amount detection device 33, a drive control device 34, a driving device 35, a driving device 36, a turning angle sensor 37, and a target surface management device 100.
- the main frame 31 is a base portion of the revolving body 3 and is attached to the traveling body 4 so as to be rotatable.
- a revolving body IMU sensor 30S, an operator's cab 32, a drive control device 34, a drive device 35, and a prime mover 36 are arranged above the main frame 31. As shown in FIG.
- the revolving body IMU sensor 30S is composed of an angular velocity sensor and an acceleration sensor, and detects the inclination of the revolving body 3 with respect to the ground.
- the turning angle sensor 37 is, for example, a potentiometer, and is attached so as to detect the relative angle between the turning body 3 and the traveling body 4 .
- the operation amount detection device 33 is provided inside the operator's cab 32, and includes two operation levers (operation devices) 33A and 33B and an operation input amount sensor 33C (see FIG. 2) that detects the amount by which they are pushed down. It is composed by The operation input amount sensor 33C detects the amount of tilting of the operation levers 33A and 33B by the operator (that is, the operation amount R of the operation lever), thereby converting the requested speed requested by the operator to the work front desk 2 into an electric signal. configured to be able to Note that the operating levers 33A and 33B may be of a hydraulic pilot type.
- the driving device 35 is composed of an electromagnetic control valve 35A and a direction switching valve 35B (see FIG. 2). , the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A, which are hydraulic actuators, are operated.
- the prime mover 36 is composed of an engine 36A and a hydraulic pump 36B (see FIG. 2), and generates hydraulic pressure necessary for driving the hydraulic excavator 1 as power.
- the target surface management device 100 is configured by a target surface management controller.
- the traveling body 4 has a track frame 40 , a front idler 41 , a sprocket 43 and crawler belts 45 .
- the front idler 41 and the sprocket 43 are arranged on the track frame 40, respectively, and the crawler belt 45 is arranged so as to be able to go around the track frame 40 via these members.
- the operator can adjust the rotational speed of the sprocket 43 by operating the operating levers 33A and 33B to make the hydraulic excavator 1 travel via the crawler belt 45 .
- the running body 4 is not limited to one having crawler belts 45, and may be one having running wheels or legs.
- the control system of the hydraulic excavator 1 will be described below with reference to FIG.
- the control system of the hydraulic excavator 1 is mainly composed of an operation amount detection device 33, an attitude detection device 38, a load detection device 39, a target surface management device 100, a drive device 35, a drive control device 34, and a prime mover 36. ing.
- the operation amount detection device 33 , the attitude detection device 38 , the load detection device 39 , and the target plane management device 100 are each electrically connected to the drive control device 34 .
- Hydraulic excavators are generally set so that the operating speed of each cylinder increases as the amount by which the operating lever is pushed down (that is, the operating amount R of the operating lever) increases. By changing the amount by which the operating lever is tilted, the operator changes the operating speed of each cylinder to operate the hydraulic excavator.
- the operation amount detection device 33 is composed of the operation levers 33A and 33B and the operation input amount sensor 33C, as described above.
- the operation input amount sensor 33C has a boom operation input amount sensor, an arm operation input amount sensor, and a bucket operation input amount sensor for electrically detecting the operation amounts R of the operation levers 33A and 33B.
- the senor for detecting the operation amount R is not limited to the one that directly detects the amount by which the operation lever is pushed down, and may be of a type that detects the operation pilot pressure.
- the posture detection device 38 is composed of a swinging body IMU sensor 30S, a boom IMU sensor 20S, an arm IMU sensor 21S, a bucket IMU sensor 22S, and a swing angle sensor 37. Since these IMU sensors each have an angular velocity sensor and an acceleration sensor, they can acquire angular velocity and acceleration signals at respective sensor positions. Since the boom 20, the arm 21, the bucket 22, the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, the first link 22B, the second link 22C, and the revolving body 3 are attached so as to be able to swing, the posture can be detected. The device 38 can detect the postures of the boom 20, the arm 21, the bucket 22, and the revolving body 3 from the mechanical link relationship.
- the turning angle sensor 37 is a potentiometer as described above, and detects the relative angle of the traveling body 4 with respect to the turning body 3 .
- the turning angle sensor 37 may be any device capable of measuring the turning angle, and may be a measuring device other than the potentiometer.
- the load detection device 39 is composed of a boom bottom pressure sensor 20BP and a boom rod pressure sensor 20RP as cylinder pressure sensors, and detects the load on the boom cylinder 20A (that is, the pressure applied to the boom cylinder 20A) via these sensors. to detect Note that the load detection method is not limited to this, and a load cell or the like may be used.
- the target surface management device 100 sets the construction target surface, and also calculates the inclination angle ⁇ p of the traveling body calculated by the inclination angle calculation unit 820 (described later) and the front attitude detection unit 830 (described later). Based on the detected posture of the work front 2 , the distance between the set work surface and the bucket 22 (hereinafter referred to as the target surface distance d) is calculated, and the calculated result is output to the drive control device 34 . In this embodiment, the target surface management device 100 calculates the shortest distance between the set construction target surface and the bucket 22 and outputs the calculated result to the drive control device 34 .
- the target surface management device 100 determines that the bottom surface of the bucket 22 and the construction target surface are aligned based on the traveling body inclination angle ⁇ p calculated by the inclination angle calculation unit 820 and the posture of the work front 2 detected by the front posture detection unit 830.
- An angle ⁇ b to be formed (hereinafter referred to as a bucket-to-target surface angle ⁇ b) is calculated.
- the construction target plane may be set by directly inputting by the operator, or may be set by inputting a design drawing prepared in advance.
- the driving device 35 is composed of the electromagnetic control valve 35A and the direction switching valve 35B, and is supplied to the hydraulic actuators that drive each part of the hydraulic excavator 1 according to the control command value issued from the drive control device 34. Controls the amount of pressurized oil. More specifically, the control current output from the drive control device 34 is converted into pilot pressure by the electromagnetic control valve 35A, and the pilot pressure drives the spool of the direction switching valve 35B. The hydraulic oil whose flow rate is adjusted by the direction switching valve 35B is supplied to the hydraulic actuators that drive each part of the hydraulic excavator 1 to drive each movable part.
- the driving device 35 is a hydraulic actuator that adjusts the flow rate and direction of hydraulic oil supplied from the driving device 36 and drives the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, the revolving body 3, and the traveling body 4, respectively. drive.
- the prime mover 36 is composed of the engine 36A and the hydraulic pump 36B as described above, and is necessary for driving the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, and the hydraulic actuators for driving the revolving structure 3 and the traveling structure 4. Produces pressurized oil. It should be noted that the driving device 36 is not limited to this configuration, and other power sources such as an electric pump may be used.
- the drive control device 34 is composed of, for example, a drive control controller, and processes signals from the operation amount detection device 33, the attitude detection device 38, the load detection device 39, and the target surface management device 100, and sends them to the drive device 35. Outputs operation commands.
- FIG. 3 is a diagram showing the configuration of the drive control device for the hydraulic excavator.
- the drive control device 34 mainly includes a target operating speed calculation unit 710, an operation command value generation unit 720, a drive command unit 730, a cylinder load calculation unit 810, a turning angle calculation unit 840, and an inclination angle calculation unit.
- a front posture detection unit 830 , a soil hardness determination unit 910 , a target jack-up speed determination unit 920 , and a target operation speed correction unit 930 are provided.
- the target motion speed calculation unit 710 calculates the operation amount R of the operation levers 33A and 33B detected by the operation input amount sensor 33C, the target surface distance d calculated by the target surface management device 100, and the work front surface detected by the front attitude detection unit 830. 2, the target operating speed Vt of at least one of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A is calculated so that the bucket 22 operates along the construction target plane.
- the target operation speed calculation unit 710 determines the operation direction and speed of the bucket toe so that the bucket toe moves along the construction target surface, and reaches that speed. Calculate and determine the target operating speeds of the boom, arm and bucket as follows.
- the operating command value generating unit 720 uses predetermined table data to generate the driving command value Pi required to operate the cylinder. Furthermore, the motion command value generator 720 generates the drive command value Pi based on the corrected speed Vc output from the target motion speed corrector 930 . It should be noted that the drive command value here corresponds to the "operation command value" described in the claims.
- the drive command unit 730 generates the control current I required to drive the electromagnetic control valve 35A based on the drive command value Pi generated by the operation command value generation unit 720.
- the cylinder load calculation unit 810 calculates the cylinder load (that is, the boom bottom side load P b and the boom rod side load P r ).
- the turning angle calculator 840 calculates the relative angle between the turning body 3 and the traveling body 4 (hereinafter referred to as turning body relative angle ⁇ s) based on the signal detected by the turning angle sensor 37 .
- the revolving body relative angle ⁇ s is based on the traveling direction of the traveling body 4 .
- the traveling direction of the traveling body 4 indicates the left side of the paper surface in FIGS. 1 and 4 .
- the tilt angle calculation unit 820 calculates the tilt angle of the revolving superstructure 3 based on the acceleration signal and the angular velocity signal obtained from the revolving superstructure IMU sensor 30S attached to the revolving superstructure 3 .
- the inclination angle of the revolving structure 3 obtained by calculation is the inclination angle of the traveling body 4 (hereinafter referred to as the inclination angle of the traveling body ⁇ p ).
- the front posture detection unit 830 detects the postures of the boom 20, arm 21, and bucket 22 based on acceleration signals and angular velocity signals obtained from the boom IMU sensor 20S, arm IMU sensor 21S, and bucket IMU sensor 22S.
- the soil hardness determination unit 910 determines the soil hardness of the location where the work front 2 excavates.
- a method using the soil hardness H and a method using the thrust force F of the boom cylinder 20A can be used to determine the hardness of the soil.
- the soil hardness determination unit 910 first determines the working front 2 based on the results of the front posture detection unit 830 and the cylinder load calculation unit 810, that is, the front posture and the load of the boom cylinder.
- the soil hardness H is calculated as the hardness of the soil being excavated.
- the soil hardness determination unit 910 determines soil hardness by comparing the calculated soil hardness H with a predetermined hardness threshold. For example, when the calculated soil hardness H is greater than the hardness threshold, the soil hardness determination unit 910 determines that the soil is hard.
- the hardness threshold is determined, for example, based on the empirical value of hardness of each soil.
- the soil hardness determination unit 910 first obtains the thrust F of the boom cylinder 20A based on the following formula (1).
- Sb is the boom bottom side pressure receiving area
- Pb is the boom bottom side load
- Sr is the boom rod side pressure receiving area
- Pr is the boom rod side load.
- F S b ⁇ P b ⁇ S r ⁇ P r
- the soil hardness determination unit 910 determines a threshold corresponding to the posture of the work front 2, and compares the thrust force F of the boom cylinder 20A obtained by the equation (1) with the threshold to determine the soil hardness. judge.
- the threshold value in this case may be determined by a value calculated from the weight of the work front 2, or may be determined by using an experimental value obtained by actually jacking up the hydraulic excavator 1.
- a target jack-up speed determining unit 920 calculates the target surface distance d and the bucket-to-target surface angle ⁇ b calculated by the target surface management device 100, the bucket-to-running object distance db, and the running object inclination angle calculated by the inclination angle calculating unit 820. Based on ⁇ p and the swing body relative angle ⁇ s calculated by the swing angle calculator 840, a target jack-up speed ⁇ at which the traveling body 4 is jacked up is calculated and determined. As shown in FIG. 4, the target surface distance d is the shortest distance between the construction target surface and the bucket 22, and the bucket-to-target surface angle ⁇ b is the angle between the bottom surface of the bucket 22 and the construction target surface.
- the bucket-to-running body distance db is the distance between the bucket 22 and the running body 4 in the traveling direction of the hydraulic excavator 1 and is calculated by the target jack-up speed determining section 920 .
- jacking up means a state in which the rear portion of the traveling body 4 and the bucket 22 are in contact with the ground and the front portion of the traveling body 4 is floating in the air.
- the angle formed by the bottom surface of the traveling body 4 and the ground is called a jack-up angle ⁇ .
- the jack-up speed is the time change of the jack-up angle ⁇ , and indicates the angular velocity of the traveling body 4 centering on the point of contact between the traveling body 4 and the ground.
- the directions of the revolving body 3 and the traveling body 4 may be opposite to those shown in the drawings or laterally.
- the contact point of the traveling body 4 with the ground and the angle formed with the ground are called the jack-up angle ⁇ .
- the traveling body 4 is long in the direction of travel and has a small width in the lateral direction perpendicular to the direction of travel. Therefore, when the boom 20 is lowered at a constant speed without changing the posture of the arm 21, the traveling body 4 contacts the ground when the traveling body 4 is lateral to the swinging body 3. Since the distance of the bucket 22 is reduced, the jack-up speed is faster than when the traveling body 4 is in the traveling direction with respect to the revolving body 3. - ⁇
- the target jack-up speed .omega. is determined based on the target surface distance d, the bucket-to-target surface angle .theta.b, the bucket-to-running body distance db, the running body inclination angle .theta.p, and the rotating body relative angle .theta.s. Determined by selecting the minimum value of the target jackup speed table.
- the speed of, for example, the boom cylinder 20A is calculated according to the posture of the work front 2 so as to achieve the target jack-up speed. Since the calculation method is a simple geometric calculation, its detailed explanation is omitted.
- the minimum value is selected so as not to exceed the speed R' requested by the operator, and is output as the corrected speed Vc.
- the correction speed Vc is selected instead of the target operation speed Vt calculated by the target operation speed calculation unit 710, and the drive command value conversion is performed.
- Drive command value Pi is calculated based on the table.
- the speed limit of the boom cylinder 20A with respect to the target surface distance d is as shown by the dotted line in FIG. ).
- the control of the present embodiment when the control of the present embodiment is performed, it becomes as indicated by the solid line in FIG. 6 (that is, an example in which the target jack-up speed is instructed).
- the slope of the dotted line is relatively gentle, so the speed limit of the boom cylinder 20A is not relaxed, and the boom lowering operation is relatively slow. .
- the slope of the solid line is relatively steep, and the speed limit of the boom cylinder 20A increases in a short period of time.
- the speed limit of the boom cylinder 20A is relaxed when the work surface is close to the work target surface, so that the boom can be lowered quickly, and the excavator 1 can be jacked up in a short time.
- the target jack-up speed ⁇ is determined based on the target surface distance d, bucket-to-target surface angle ⁇ b, bucket-to-running body distance db, running body inclination angle ⁇ p, and rotating body relative angle ⁇ s.
- the values in these tables are represented by linear functions, but they may be represented by quadratic functions, etc., and the format and values may be determined based on experimental values and design concepts.
- the target jack-up speed determining section 920 preferably determines the target jack-up speed ⁇ to be smaller as the target surface distance d is smaller (see FIG. 7). If the target jack-up speed ⁇ is determined to be smaller as the target surface distance d is smaller in this way, the bucket 22 moves toward the construction target surface slowly (for example, at a speed limited so as not to excavate the construction target surface too much). Therefore, over-digging of the construction target surface can be prevented.
- the target jack-up speed determining unit 920 preferably determines the target jack-up speed ⁇ to be greater as the bucket-to-target surface angle ⁇ b is smaller (see FIG. 8). When the bucket-to-target surface angle ⁇ b is small, the work target surface is not over-excavated.
- the target jack-up speed determining unit 920 determines the target jack-up speed ⁇ to be greater as the bucket-to-running object distance db increases (see FIG. 9).
- the bucket-to-running object distance db is large, it is the time to start digging. In other words, when the target surface distance d is small, it is time to finish digging, so there is no need for a quick jack-up.
- the digging force of the bucket 22 increases due to the weight balance, so the possibility of over-digging the construction target surface increases. From the viewpoint of preventing such over-digging, it is necessary to set the target jack-up speed ⁇ low when the bucket-to-running object distance db is small.
- the target jack-up speed determination unit 920 determines the target jack-up speed ⁇ to be smaller as the traveling object inclination angle ⁇ p is larger (see FIG. 10).
- the traveling body inclination angle ⁇ p is large, the hydraulic excavator 1 tends to become unstable, and quick jacking up tends to make the operator feel uneasy. can be done.
- the target jack-up speed determination unit 920 determines the target jack-up speed ⁇ to be smaller as the relative angle ⁇ s of the rotating body is larger (see FIG. 11).
- the revolving body relative angle ⁇ s is large, it means that the work front 2 is oriented laterally with respect to the traveling body 4, and therefore the hydraulic excavator 1 tends to become unstable, and quick jacking up tends to make the operator feel uneasy. Therefore, it is possible to ensure good operability by jacking up slowly.
- examples of temporal changes in the running object tilt angle ⁇ p when the target jack-up speed ⁇ is instructed and when not instructed are shown by solid and dotted lines, respectively.
- the target jack-up speed ⁇ is instructed and the start time is t1
- jacking up of the hydraulic excavator 1 is completed by time t2.
- the target jack-up speed ⁇ is not specified
- the jack - up is completed at time t3 later than time t2. Therefore, when the target jack-up speed ⁇ is instructed, the traveling body inclination angle ⁇ p changes rapidly with time, and the jack-up operation can be performed in a short time compared to when the target jack-up speed ⁇ is not instructed.
- FIG. 12B examples of changes over time in the boom speed command value when the target jack-up speed ⁇ is instructed and when it is not instructed are shown by solid and dotted lines, respectively.
- the boom speed command value when the target jack-up speed ⁇ is instructed, if the start time is t1, the boom speed command value suddenly increases immediately after time t1, and the jack - up of the hydraulic excavator 1 is completed at time t2. The boom speed command value becomes zero at On the other hand, if the target jack-up speed ⁇ is not specified, the boom speed command value gradually increases from time t1 , and becomes zero at time t3 when the jack-up of the hydraulic excavator 1 is completed.
- FIG. 13 shows an example of a table for conversion into a drive command value for driving the boom based on the required speed (for example, corrected speed Vc).
- the operation command value generator 720 refers to the conversion table shown in FIG. 13 and generates the drive command value Pi based on the corrected speed Vc.
- the target operating speed correction unit 930 corrects the boom cylinder 20A based on the front attitude and the operator's operation amount R so as to achieve the target jacking speed ⁇ of the traveling object 4 determined by the target jacking speed determination unit 920. Calculate the velocity Vc. As for the method of calculating the corrected speed Vc, an already known method can be used. Furthermore, the target motion speed correction unit 930 outputs the calculated result to the motion command value generation unit 720 .
- step S110 the running body inclination angle ⁇ p is calculated.
- the inclination angle calculation unit 820 calculates the inclination angle of the revolving superstructure 3 based on the acceleration signal and the angular velocity signal obtained from the revolving superstructure IMU sensor 30S attached to the revolving superstructure 3, and calculates the calculated inclination of the revolving superstructure 3.
- the angle is defined as the traveling body inclination angle ⁇ p.
- step S120 following step S110 the front posture is detected.
- the front posture detection unit 830 detects the postures of the boom 20, the arm 21 and the bucket 22 of the work front 2 based on the acceleration signal and the angular velocity signal obtained from the boom IMU sensor 20S, the arm IMU sensor 21S and the bucket IMU sensor 22S. are detected respectively. The front attitude is thereby detected.
- step S130 the target operating speeds Vt of the boom 20, arm 21 and bucket 22 are calculated.
- the target motion speed calculation unit 710 combines the front attitude detected in step S120 with the operation amount R of the operation levers 33A and 33B detected by the operation input amount sensor 33C and the target surface distance d calculated by the target surface management device 100.
- the target operating speed Vt of at least one of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A is calculated so that the bucket 22 moves along the construction target plane.
- the target operating speed calculation unit 710 calculates the target operating speed Vt of the boom cylinder 20A based on the front posture, the target surface distance d, and the operation amount R of the operating levers 33A and 33B so as not to excavate too much from the construction target surface.
- step S140 the bucket-to-target surface angle ⁇ b is calculated.
- the target surface management device 100 calculates the angle formed by the bottom surface of the bucket 22 and the construction target surface.
- step S150 the bucket-to-running object distance db is calculated.
- the target jack-up speed determining unit 920 calculates the bucket-to-running body distance db based on the posture of the work front detected in step S120.
- step S160 the revolving body relative angle ⁇ s is calculated.
- the turning angle calculator 840 calculates the turning body relative angle ⁇ s based on the signal detected by the turning angle sensor 37 .
- the target jack-up speed ⁇ is calculated.
- the target jack-up speed determination unit 920 determines the running object inclination angle ⁇ p calculated in step S110, the bucket-to-target surface angle ⁇ b calculated in step S140, the bucket-to-running object distance db calculated in step S150, and step S160.
- the target surface distance d is added to the revolving body relative angle ⁇ s calculated in 1, and the target jack-up speed ⁇ when the traveling body 4 is jacked up is calculated and determined based on these.
- step S180 following step S170 the corrected speed of the boom is calculated.
- the target operating speed correction unit 930 calculates the corrected speed Vc of the boom cylinder 20A based on the front attitude and the operator's operation amount R so as to achieve the target jack-up speed ⁇ calculated in step S170.
- the soil hardness determination unit 910 calculates the thrust force F of the boom cylinder 20A based on the above equation (1).
- step S200 the soil hardness determination unit 910 determines whether the soil is hard by comparing the calculated thrust of the boom cylinder 20A with a predetermined threshold. Then, when the calculated thrust of the boom cylinder 20A is equal to or less than the threshold, it is determined that the soil is not hard. Therefore, the drive control device 34 does not correct the target operating speed (see step S210). In step S210, the drive control device 34 directly adopts the target operating speed Vt of the boom cylinder 20A calculated in step S130, for example. Then, after step S210 ends, the control process proceeds to step S250, and the motion command value generation unit 720 generates the drive command value Pi based on the target motion speed Vt.
- step S200 determines whether the thrust is greater than the threshold, it is determined that the soil is hard, and the control process proceeds to step S220.
- step S220 the drive control device 34 determines whether or not the operator requested speed R' corresponding to the operation amount R of the operating levers 33A and 33B is greater than the corrected speed Vc of the boom cylinder 20A calculated in step S180. Note that the operator requested speed R' corresponding to the operation amount R is calculated by the target operating speed calculator 710. FIG. Then, when it is determined that the operator requested speed R' corresponding to the operation amount R is not larger than the corrected speed Vc of the boom cylinder 20A, the drive control device 34 sets the target operating speed to the operator requested speed R' corresponding to the operation amount R. (see step S230). After step S230, the control process proceeds to step S250, and the operation command value generator 720 generates the drive command value Pi based on the corrected target operation speed (that is, the operator requested speed R' corresponding to the operation amount R). Generate.
- step S220 when it is determined in step S220 that the operator requested speed R' corresponding to the operation amount R is greater than the corrected speed Vc of the boom cylinder 20A calculated in step S180, the drive control device 34 does not limit the target operating speed.
- the target operating speed is corrected (see step S240).
- the drive control device 34 corrects the target operating speed so that the corrected speed Vc of the boom cylinder 20A calculated in step S180 becomes the target operating speed of the boom cylinder 20A.
- step S250 following step S240, a drive command value is generated.
- operation command value generation unit 720 generates drive command value Pi based on the corrected target operation speed (that is, corrected speed Vc of boom cylinder 20A calculated in step S180).
- step S260 following step S250 the control current is generated.
- the drive command unit 730 generates the control current I necessary for driving the electromagnetic control valve 35A based on the drive command value Pi generated in step S250. This completes a series of control processes.
- the target jack-up speed determining unit 920 determines the target surface distance d, the bucket-to-target surface angle ⁇ b, the bucket-to-running body distance db, the running body inclination angle ⁇ p, and the rotating body relative angle ⁇ s. Then, the target jack-up speed ⁇ when the traveling body 4 is jacked up is calculated and determined. to calculate Therefore, when excavating hard soil that requires jacking up, the target operating speed can be corrected without depending on the limit value of the boom operating speed near the construction target surface. Therefore, since the speed at which the hydraulic excavator jacks up can be arbitrarily set, it is possible to quickly jack up near the work target surface.
- the speed at which the hydraulic excavator 1 jacks up can be set to zero, that is, correction of the operating speed of the boom cylinder 20A for jacking up can be limited. You can prevent overdosing.
- the operation command value generation unit 720 determines the target operation speed corrected by the target operation speed correction unit 930 (that is, the corrected speed Vc). to generate the drive command value.
- the target operating speed correction unit 930 adjusts the target operation speed so that the corrected speed calculated based on the target jack-up speed ⁇ does not exceed the operator requested speed R′ corresponding to the operation amount R calculated by the target operating speed calculation unit 710 . Correct the speed. If the operator jacks up faster than the operator requested speed R' corresponding to the operation amount R of the operation lever by the operator, the operator is likely to feel uneasy. By doing so, the operability can be further improved. As a result, it is possible to realize a quick jack-up in the vicinity of the construction target surface, and it is possible to improve the accuracy of excavation and the operability and workability of the operator.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Shovels (AREA)
- Earth Drilling (AREA)
Abstract
油圧ショベル1は、走行体4、旋回体3、ブーム20とアーム21とバケット22とを有する作業フロント2、操作量検出装置33、姿勢検出装置38、負荷検出装置39、駆動制御装置34及び駆動装置35を備える。駆動制御装置34は、操作量と作業フロントの姿勢と目標面距離に基づいてバケット22が施工目標面に沿って掘削するようにアクチュエータの目標動作速度を演算し、負荷検出装置39で検出した結果に基づいて掘削する場所の土壌硬さを判定し、土壌硬さに基づいて目標動作速度を補正して動作指令値を生成する。また、駆動制御装置34は、目標面距離に基づいて油圧ショベルがジャッキアップする際の目標ジャッキアップ速度を決定し、決定した目標ジャッキアップ速度に基づいて目標動作速度を補正する。
Description
本発明は、道路工事、建設工事、土木工事、浚渫工事等に使用される油圧ショベルに関する。
道路工事、建設工事、土木工事、浚渫工事等に使用される油圧ショベルとして、動力系により走行する走行体の上部に旋回体を旋回自在に取り付けると共に、旋回体に多関節型の作業フロントを上下方向に揺動自在に取り付け、作業フロントを構成する各フロント部材をシリンダで駆動するものが知られている。作業フロントは、例えばブーム、アーム、バケット等から構成されている。この種の油圧ショベルには、稼働可能な領域を設けてその範囲内で作業フロントを半自動的に動作させる、いわゆるマシンコントロール機能を有するものがある。マシンコントロールでは、オペレータが施工目標面を設定し、ブーム操作をすると施工目標面にバケットが侵入しないように施工目標面とバケットの距離に応じてブームの動作速度が制限されてブームが減速停止し、またアーム操作をすると施工目標面に沿うようにブームやバケットを半自動的に動作させることができる。
ところで、オペレータが油圧ショベルを用いて硬い土壌を掘削するときは、走行体後部と作業フロントが支点となって走行体前部が浮上った状態、いわゆるジャッキアップを行う(詳細は後述する)。油圧ショベルがジャッキアップするときに作業フロントの掘削力は最大となるため、オペレータは掘削する土壌の硬さ、施工目標面とバケットの距離、及び油圧ショベルのジャッキアップの状態を総合的に判断して操作レバーの操作量を微調整することで、硬い土壌を効率良く且つ精度良く掘削する。
特許文献1には、マシンコントロールを用いて精度良く掘削するために施工目標面とバケットの距離を時間積分し、ブーム動作速度を補正する技術が開示されている。これによって、掘削する土壌が硬く且つ施工目標面とバケットの距離が離れている状態が続く場合には、バケットが施工目標面に近づくようにブームの動作速度が補正される。このとき、バケットに働く掘削反力が油圧ショベルの最大掘削力を超えると油圧ショベルはジャッキアップする。すなわち、特許文献1の技術によれば、施工目標面とバケットの距離が離れる状態が継続するとブームの動作速度が補正され、油圧ショベルは徐々にジャッキアップする。
マシンコントロールを用いた掘削作業では、オペレータが手動で通常の掘削作業を行う時と同じように油圧ショベルが素早くジャッキアップできることが操作性および作業性の観点から必要である。また、上述したように、マシンコントロールを用いた掘削作業では、施工目標面にバケットが侵入しないように精度良く作業フロントを制御する必要がある。そこで、掘削の精度を維持したまま、オペレータの操作性と作業性を良好にすべく油圧ショベルがジャッキアップする速さを制御する必要がある。
しかしながら、特許文献1に記載の技術では、ブームの動作速度は施工目標面とバケットの距離が離れた状態が継続された時間が長いほど補正量が大きくなるため、油圧ショベルはゆっくりとジャッキアップする。すなわち、施工目標面とバケットの距離が離れた状態である程度の時間を継続しておかないと所定のジャッキアップ速度に達することができない。このため、施工目標面付近において素早いジャッキアップを行うことができない。
本発明は上記課題を鑑みて、施工目標面付近において素早いジャッキアップを行うことができる油圧ショベルを提供することを目的とする。
本発明に係る油圧ショベルは、走行可能な走行体と、前記走行体に旋回自在に取り付けられる旋回体と、前記旋回体に揺動自在に取り付けられるとともにブーム、アーム及びバケットを有する作業フロントと、前記ブームと前記アームと前記バケットをそれぞれ駆動させるアクチュエータと、前記アクチュエータを操作する操作装置の操作量を検出する操作量検出装置と、前記作業フロントの姿勢と前記旋回体の姿勢をそれぞれ検出する姿勢検出装置と、施工目標面を設定し、設定した前記施工目標面と前記バケットの距離を目標面距離として演算する目標面管理装置と、前記操作量と前記作業フロントの姿勢と前記目標面距離に基づいて前記バケットが前記施工目標面に沿って掘削するように前記アクチュエータの目標動作速度を演算し、前記アクチュエータへの動作指令値を生成する駆動制御装置と、前記動作指令値に基づいて前記アクチュエータを駆動させる駆動装置と、を備える油圧ショベルにおいて、前記駆動制御装置は、前記目標面距離に基づいて前記油圧ショベルがジャッキアップする際の目標ジャッキアップ速度を決定し、決定した前記目標ジャッキアップ速度に基づいて前記目標動作速度を補正することを特徴としている。
本発明に係る油圧ショベルでは、駆動制御装置は、目標面距離に基づいて油圧ショベルがジャッキアップする際の目標ジャッキアップ速度を決定し、決定した目標ジャッキアップ速度に基づいて目標動作速度を補正するので、施工目標面付近において素早いジャッキアップを行うことができる。
本発明によれば、施工目標面付近において素早いジャッキアップを行うことができる。
以下、図面を参照して本発明に係る油圧ショベルの実施形態について説明する。以下の説明では、上下、左右、前後の方向及び位置は、油圧ショベルの通常の使用状態、すなわち油圧ショベルの走行体が地面に接地する状態を基準にする。
図1に示すように、本実施形態に係る油圧ショベル1は、動力系により走行する走行体4と、走行体4に対して左右方向に旋回自在に取り付けられた旋回体3と、旋回体3に取り付けられた作業フロント2とを備えている。走行体4及び旋回体3は、例えばそれぞれ油圧アクチュエータによって駆動されている。
<作業フロントについて>
作業フロント2は、旋回体3に対して上下方向に揺動自在に構成されている。この作業フロント2は、旋回体3に連結されたブーム20と、ブーム20に連結されたアーム21と、アーム21に連結されたバケット22と、両端がそれぞれブーム20と旋回体3に連結されたブームシリンダ20Aと、両端がそれぞれアーム21とブーム20に連結されたアームシリンダ21Aと、第1リンク22Bと、第2リンク22Cと、両端がそれぞれ第2リンク22Cとアーム21に連結されたバケットシリンダ22Aとを備えている。これらの部材はそれぞれ連結部分を中心に上下方向に揺動するように構成されている。
作業フロント2は、旋回体3に対して上下方向に揺動自在に構成されている。この作業フロント2は、旋回体3に連結されたブーム20と、ブーム20に連結されたアーム21と、アーム21に連結されたバケット22と、両端がそれぞれブーム20と旋回体3に連結されたブームシリンダ20Aと、両端がそれぞれアーム21とブーム20に連結されたアームシリンダ21Aと、第1リンク22Bと、第2リンク22Cと、両端がそれぞれ第2リンク22Cとアーム21に連結されたバケットシリンダ22Aとを備えている。これらの部材はそれぞれ連結部分を中心に上下方向に揺動するように構成されている。
ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22Aは、請求の範囲に記載の「アクチュエータ」に相当するものであり、例えばそれぞれ油圧アクチュエータからなり、伸縮によりそれぞれブーム20、アーム21、バケット22を駆動させることができる。なお、バケット22は、グラップル、ブレーカ、リッパ、マグネット等の図示しない作業具に任意に交換可能である。
ブーム20にはブーム20の姿勢を検出するためのブームIMU(Inertial Measurement Unit)センサ20S、アーム21にはアーム21の姿勢を検出するためのアームIMUセンサ21Sがそれぞれ内蔵されている。また、第2リンク22Cには、バケット22の姿勢を検出するためのバケットIMUセンサ22Sが内蔵されている。ブームIMUセンサ20S、アームIMUセンサ21S及びバケットIMUセンサ22Sは、それぞれ角速度センサと加速度センサによって構成されている。
また、ブームシリンダ20Aには、シリンダ圧センサとして、ブームボトム圧センサ20BPとブームロッド圧センサ20RPとが取り付けられている。
<旋回体について>
旋回体3は、旋回体IMUセンサ30S、メインフレーム31、運転室32、操作量検出装置33、駆動制御装置34、駆動装置35、原動装置36、旋回角度センサ37、及び目標面管理装置100を備えている。メインフレーム31は、旋回体3の基礎部分であり、走行体4に対して旋回自在に取り付けられている。旋回体IMUセンサ30S、運転室32、駆動制御装置34、駆動装置35及び原動装置36は、メインフレーム31の上方に配置されている。旋回体IMUセンサ30Sは、角速度センサと加速度センサから構成されており、旋回体3の地面に対する傾きを検出する。旋回角度センサ37は、例えばポテンショメータであり、旋回体3と走行体4の相対角度を検出できるように取り付けられている。
旋回体3は、旋回体IMUセンサ30S、メインフレーム31、運転室32、操作量検出装置33、駆動制御装置34、駆動装置35、原動装置36、旋回角度センサ37、及び目標面管理装置100を備えている。メインフレーム31は、旋回体3の基礎部分であり、走行体4に対して旋回自在に取り付けられている。旋回体IMUセンサ30S、運転室32、駆動制御装置34、駆動装置35及び原動装置36は、メインフレーム31の上方に配置されている。旋回体IMUセンサ30Sは、角速度センサと加速度センサから構成されており、旋回体3の地面に対する傾きを検出する。旋回角度センサ37は、例えばポテンショメータであり、旋回体3と走行体4の相対角度を検出できるように取り付けられている。
操作量検出装置33は、運転室32の内部に設けられており、2本の操作レバー(操作装置)33A,33Bとそれらが倒された量を検出する操作入力量センサ33C(図2参照)によって構成されている。操作入力量センサ33Cは、オペレータが操作レバー33A,33Bを倒す量(すなわち、操作レバーの操作量R)を検出することで、オペレータが作業フロント2に要求する要求速度をそれぞれ電気信号に変換することができるように構成されている。なお、操作レバー33A,33Bは、油圧パイロット方式によるものであっても良い。
駆動装置35は、電磁制御弁35Aと方向切替弁35Bによって構成され(図2参照)、駆動制御装置34から指示された制御指令値に従って、電磁制御弁35Aと方向切替弁35Bを駆動させることにより、油圧アクチュエータであるブームシリンダ20A、アームシリンダ21A、バケットシリンダ22Aを動作させる。
原動装置36は、エンジン36Aと油圧ポンプ36Bによって構成され(図2参照)、油圧ショベル1の運転に必要な油圧を動力として発生させる。目標面管理装置100は、目標面管理コントローラにより構成されている。
<走行体について>
一方、走行体4は、トラックフレーム40、フロントアイドラ41、スプロケット43、及び履帯45を備えている。フロントアイドラ41及びスプロケット43は、それぞれトラックフレーム40に配置され、履帯45はそれらの部材を介してトラックフレーム40を周回できるように配置されている。オペレータは、操作レバー33A,33Bを操作することによりスプロケット43の回転速度を調整し、履帯45を介して油圧ショベル1を走行させることができる。走行体4は、履帯45を備えたものに限定されることなく、走行輪や脚を備えたものであっても良い。
一方、走行体4は、トラックフレーム40、フロントアイドラ41、スプロケット43、及び履帯45を備えている。フロントアイドラ41及びスプロケット43は、それぞれトラックフレーム40に配置され、履帯45はそれらの部材を介してトラックフレーム40を周回できるように配置されている。オペレータは、操作レバー33A,33Bを操作することによりスプロケット43の回転速度を調整し、履帯45を介して油圧ショベル1を走行させることができる。走行体4は、履帯45を備えたものに限定されることなく、走行輪や脚を備えたものであっても良い。
以下、図2を参照して油圧ショベル1の制御システムについて説明する。油圧ショベル1の制御システムは、主に、操作量検出装置33と、姿勢検出装置38、負荷検出装置39、目標面管理装置100、駆動装置35、駆動制御装置34、及び原動装置36によって構成されている。そして、操作量検出装置33、姿勢検出装置38、負荷検出装置39、及び目標面管理装置100は、それぞれ駆動制御装置34と電気的に接続されている。
<操作量検出装置について>
油圧ショベルでは、一般に操作レバーが倒された量(すなわち、操作レバーの操作量R)が大きくなると、各シリンダの動作速度が速くなるように設定されている。オペレータは、操作レバーを倒す量を変更することにより、各シリンダの動作速度を変更して油圧ショベルを動作させる。操作量検出装置33は、上述したように、操作レバー33A,33Bと操作入力量センサ33Cにより構成されている。操作入力量センサ33Cは、操作レバー33A,33Bの操作量Rを電気的に検出するためのブーム操作入力量センサ、アーム操作入力量センサ、及びバケット操作入力量センサを有する。このようにすることで、オペレータが要求するブームシリンダ20A、アームシリンダ21A、バケットシリンダ22Aの要求速度をそれぞれ検出することができる。なお、操作量Rを検出するためのセンサは、操作レバーが倒された量を直接検出するものに限らず、操作パイロット圧を検出する方式であっても良い。
油圧ショベルでは、一般に操作レバーが倒された量(すなわち、操作レバーの操作量R)が大きくなると、各シリンダの動作速度が速くなるように設定されている。オペレータは、操作レバーを倒す量を変更することにより、各シリンダの動作速度を変更して油圧ショベルを動作させる。操作量検出装置33は、上述したように、操作レバー33A,33Bと操作入力量センサ33Cにより構成されている。操作入力量センサ33Cは、操作レバー33A,33Bの操作量Rを電気的に検出するためのブーム操作入力量センサ、アーム操作入力量センサ、及びバケット操作入力量センサを有する。このようにすることで、オペレータが要求するブームシリンダ20A、アームシリンダ21A、バケットシリンダ22Aの要求速度をそれぞれ検出することができる。なお、操作量Rを検出するためのセンサは、操作レバーが倒された量を直接検出するものに限らず、操作パイロット圧を検出する方式であっても良い。
<姿勢検出装置について>
姿勢検出装置38は、旋回体IMUセンサ30S、ブームIMUセンサ20S、アームIMUセンサ21S、バケットIMUセンサ22S及び旋回角度センサ37によって構成されている。これらのIMUセンサは、それぞれ角速度センサ及び加速度センサを有するので、それぞれのセンサ位置での角速度及び加速度の信号を取得することができる。ブーム20、アーム21、バケット22、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A、第1リンク22B、第2リンク22C、及び旋回体3がそれぞれ揺動できるように取り付けられているので、姿勢検出装置38は機械的なリンク関係からブーム20、アーム21、バケット22、及び旋回体3の姿勢を検出することができる。
姿勢検出装置38は、旋回体IMUセンサ30S、ブームIMUセンサ20S、アームIMUセンサ21S、バケットIMUセンサ22S及び旋回角度センサ37によって構成されている。これらのIMUセンサは、それぞれ角速度センサ及び加速度センサを有するので、それぞれのセンサ位置での角速度及び加速度の信号を取得することができる。ブーム20、アーム21、バケット22、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A、第1リンク22B、第2リンク22C、及び旋回体3がそれぞれ揺動できるように取り付けられているので、姿勢検出装置38は機械的なリンク関係からブーム20、アーム21、バケット22、及び旋回体3の姿勢を検出することができる。
なお、ここで示した姿勢の検出方法は、一例であり、作業フロント2の各部の相対角度を直接計測するものや、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22Aのストロークを検出して油圧ショベル1の各部の姿勢を検出しても良い。旋回角度センサ37は、上述したようにポテンショメータであり、旋回体3に対する走行体4の相対角度を検出する。なお、旋回角度センサ37は、旋回角度を計測できるものあれば良く、ポテンショメータ以外の計測装置であっても良い。
<負荷検出装置について>
負荷検出装置39は、シリンダ圧センサとしてのブームボトム圧センサ20BPとブームロッド圧センサ20RPによって構成されており、これらのセンサを介してブームシリンダ20Aへの負荷(すなわち、ブームシリンダ20Aにかかる圧力)を検出する。なお、負荷の検出方法は、これに限らず、ロードセルなどを用いても良い。
負荷検出装置39は、シリンダ圧センサとしてのブームボトム圧センサ20BPとブームロッド圧センサ20RPによって構成されており、これらのセンサを介してブームシリンダ20Aへの負荷(すなわち、ブームシリンダ20Aにかかる圧力)を検出する。なお、負荷の検出方法は、これに限らず、ロードセルなどを用いても良い。
<目標面管理装置について>
目標面管理装置100は、図4に示すように、施工目標面を設定するとともに、傾斜角度演算部820(後述する)で演算した走行体傾斜角度θpとフロント姿勢検出部830(後述する)で検出した作業フロント2の姿勢とに基づいて、設定した施工目標面とバケット22の距離(以下、目標面距離dという)を演算し、演算した結果を駆動制御装置34に出力する。本実施形態では、目標面管理装置100は、設定した施工目標面とバケット22の最短距離を演算し、演算した結果を駆動制御装置34に出力する。また、この目標面管理装置100は、傾斜角度演算部820で演算した走行体傾斜角度θp及びフロント姿勢検出部830で検出した作業フロント2の姿勢に基づいて、バケット22の底面と施工目標面がなす角度θb(以下、バケット対目標面角度θbという)を演算する。なお、施工目標面は、オペレータが直接入力して設定しても良いし、予め作成した設計図面等を入力し設定しても良い。
目標面管理装置100は、図4に示すように、施工目標面を設定するとともに、傾斜角度演算部820(後述する)で演算した走行体傾斜角度θpとフロント姿勢検出部830(後述する)で検出した作業フロント2の姿勢とに基づいて、設定した施工目標面とバケット22の距離(以下、目標面距離dという)を演算し、演算した結果を駆動制御装置34に出力する。本実施形態では、目標面管理装置100は、設定した施工目標面とバケット22の最短距離を演算し、演算した結果を駆動制御装置34に出力する。また、この目標面管理装置100は、傾斜角度演算部820で演算した走行体傾斜角度θp及びフロント姿勢検出部830で検出した作業フロント2の姿勢に基づいて、バケット22の底面と施工目標面がなす角度θb(以下、バケット対目標面角度θbという)を演算する。なお、施工目標面は、オペレータが直接入力して設定しても良いし、予め作成した設計図面等を入力し設定しても良い。
<駆動装置について>
駆動装置35は、上述したように、電磁制御弁35Aと方向切替弁35Bによって構成され、駆動制御装置34から指令された制御指令値に従って、油圧ショベル1の各部を駆動する油圧アクチュエータに供給される圧油の量を制御する。より具体的には、駆動制御装置34から出力された制御電流は、電磁制御弁35Aによってパイロット圧に変換され、パイロット圧によって方向切替弁35Bのスプールが駆動される。そして、方向切替弁35Bによって流量が調整された作動油は、油圧ショベル1の各部を駆動する油圧アクチュエータに供給され、各可動部を駆動する。例えば、駆動装置35は、原動装置36から供給される作動油の流量と方向を調整し、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A、旋回体3、走行体4をそれぞれ駆動させる油圧アクチュエータを駆動する。
駆動装置35は、上述したように、電磁制御弁35Aと方向切替弁35Bによって構成され、駆動制御装置34から指令された制御指令値に従って、油圧ショベル1の各部を駆動する油圧アクチュエータに供給される圧油の量を制御する。より具体的には、駆動制御装置34から出力された制御電流は、電磁制御弁35Aによってパイロット圧に変換され、パイロット圧によって方向切替弁35Bのスプールが駆動される。そして、方向切替弁35Bによって流量が調整された作動油は、油圧ショベル1の各部を駆動する油圧アクチュエータに供給され、各可動部を駆動する。例えば、駆動装置35は、原動装置36から供給される作動油の流量と方向を調整し、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A、旋回体3、走行体4をそれぞれ駆動させる油圧アクチュエータを駆動する。
<原動装置について>
原動装置36は、上述したようにエンジン36Aと油圧ポンプ36Bによって構成され、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A及び旋回体3と走行体4を駆動させる油圧アクチュエータを駆動するために必要な圧油を生成する。なお、原動装置36は、この構成に限らず、電動ポンプなどの他の動力源を用いても良い。
原動装置36は、上述したようにエンジン36Aと油圧ポンプ36Bによって構成され、ブームシリンダ20A、アームシリンダ21A、バケットシリンダ22A及び旋回体3と走行体4を駆動させる油圧アクチュエータを駆動するために必要な圧油を生成する。なお、原動装置36は、この構成に限らず、電動ポンプなどの他の動力源を用いても良い。
<駆動制御装置について>
駆動制御装置34は、例えば駆動制御用コントローラにより構成されており、操作量検出装置33、姿勢検出装置38、負荷検出装置39、及び目標面管理装置100からの信号を処理し、駆動装置35に動作指令を出力する。
駆動制御装置34は、例えば駆動制御用コントローラにより構成されており、操作量検出装置33、姿勢検出装置38、負荷検出装置39、及び目標面管理装置100からの信号を処理し、駆動装置35に動作指令を出力する。
図3は油圧ショベルの駆動制御装置の構成を示す図である。図3に示すように、駆動制御装置34は、主に、目標動作速度演算部710、動作指令値生成部720、駆動指令部730、シリンダ負荷演算部810、旋回角度演算部840、傾斜角度演算部820、フロント姿勢検出部830、土壌硬さ判定部910、目標ジャッキアップ速度決定部920、及び目標動作速度補正部930を備えている。
目標動作速度演算部710は、操作入力量センサ33Cで検出した操作レバー33A,33Bの操作量R、目標面管理装置100で演算した目標面距離d、及びフロント姿勢検出部830で検出した作業フロント2の姿勢に基づいて、バケット22が施工目標面に沿って動作するようにブームシリンダ20A、アームシリンダ21A、及びバケットシリンダ22Aの少なくとも一つの目標動作速度Vtを演算する。
目標動作速度Vtの具体的な演算方法については、既に周知された方法を用いることができる。例えば特開2018-080510号公報に記載されるように、目標動作速度演算部710は、バケット爪先が施工目標面に沿って動くようにバケット爪先の動作方向と速度を決めて、その速度になるようにブーム、アーム及びバケットの目標動作速度を演算して決める。
動作指令値生成部720は、目標動作速度演算部710で演算した目標動作速度Vtに基づき、予め定められたテーブルデータを用いてシリンダを動作させるのに必要な駆動指令値Piを生成する。更に、動作指令値生成部720は、目標動作速度補正部930から出力された補正速度Vcに基づいて、駆動指令値Piを生成する。なお、ここでの駆動指令値は、請求の範囲に記載の「動作指令値」に相当するものである。
駆動指令部730は、動作指令値生成部720が生成した駆動指令値Piに基づいて、電磁制御弁35Aの駆動に必要な制御電流Iを生成する。
シリンダ負荷演算部810は、ブームシリンダ20Aに取り付けられたブームボトム圧センサ20BPとブームロッド圧センサ20RPの検出結果に基づいて、シリンダの負荷(すなわち、ブームボトム側負荷Pb及びブームロッド側負荷Pr)を演算する。
旋回角度演算部840は、旋回角度センサ37で検出した信号を基に旋回体3と走行体4の相対角度(以下、旋回体相対角度θsという)を演算する。旋回体相対角度θsは、走行体4の進行方向を基準とする。走行体4の進行方向は、図1及び図4においては紙面の左側を指す。
傾斜角度演算部820は、旋回体3に取り付けられた旋回体IMUセンサ30Sから得られる加速度信号と角速度信号に基づいて旋回体3の傾斜角度を演算する。本実施形態では、旋回体3の傾斜角度と走行体4の傾斜角度が同一であるため、演算で得られた旋回体3の傾斜角度を走行体4の傾斜角度(以下、走行体傾斜角度θpという)とする。
フロント姿勢検出部830は、ブームIMUセンサ20S、アームIMUセンサ21S、バケットIMUセンサ22Sから得られる加速度信号及び角速度信号に基づいて、ブーム20、アーム21、バケット22の姿勢をそれぞれ検出する。
土壌硬さ判定部910は、作業フロント2が掘削する場所の土壌硬さを判定する。土壌硬さの判定として、土壌硬さHを用いた手法と、ブームシリンダ20Aの推力Fを用いた手法とが挙げられる。土壌硬さHを用いた手法では、土壌硬さ判定部910は、まずフロント姿勢検出部830とシリンダ負荷演算部810の結果、すなわちフロント姿勢とブームシリンダの負荷とに基づいて、作業フロント2が掘削を行っている土壌の硬さを土壌硬さHとして演算する。次に、土壌硬さ判定部910は、演算した土壌硬さHを予め定められた硬さ閾値と比較することで土壌硬さを判定する。例えば演算した土壌硬さHが硬さ閾値よりも大きい場合、土壌硬さ判定部910は土壌が硬いと判定する。なお、硬さ閾値は、例えば各土壌の硬さの経験値に基づいて決定されている。
一方、ブームシリンダ20Aの推力Fを用いた手法では、土壌硬さ判定部910は、まず下記式(1)に基づいてブームシリンダ20Aの推力Fを求める。式(1)中のSbがブームボトム側受圧面積、Pbがブームボトム側負荷、Srがブームロッド側受圧面積、Prがブームロッド側負荷である。
F=Sb×Pb-Sr×Pr (1)
次に、土壌硬さ判定部910は、作業フロント2の姿勢に応じた閾値を決定しておき、式(1)で求めたブームシリンダ20Aの推力Fをその閾値と比較することで土壌硬さを判定する。例えばブームシリンダ20Aの推力がその閾値よりも大きいときは、土壌が硬いと判定される。なお、この場合の閾値は、作業フロント2の重量から計算した値によって決定されても良く、実際に油圧ショベル1をジャッキアップした実験値を用いて決定されても良い。
F=Sb×Pb-Sr×Pr (1)
次に、土壌硬さ判定部910は、作業フロント2の姿勢に応じた閾値を決定しておき、式(1)で求めたブームシリンダ20Aの推力Fをその閾値と比較することで土壌硬さを判定する。例えばブームシリンダ20Aの推力がその閾値よりも大きいときは、土壌が硬いと判定される。なお、この場合の閾値は、作業フロント2の重量から計算した値によって決定されても良く、実際に油圧ショベル1をジャッキアップした実験値を用いて決定されても良い。
目標ジャッキアップ速度決定部920は、目標面管理装置100で演算した目標面距離d及びバケット対目標面角度θbと、バケット対走行体距離dbと、傾斜角度演算部820で演算した走行体傾斜角度θpと、旋回角度演算部840で演算した旋回体相対角度θsに基づいて、走行体4がジャッキアップするときの目標ジャッキアップ速度ωを演算して決定する。なお、図4に示すように、目標面距離dは施工目標面とバケット22の最短距離であり、バケット対目標面角度θbはバケット22の底面と施工目標面のなす角度である。バケット対走行体距離dbは、油圧ショベル1の進行方向においてバケット22と走行体4の距離であり、目標ジャッキアップ速度決定部920によって演算される。
<ジャッキアップについて>
ここで、図4を基に油圧ショベル1のジャッキアップについて説明する。図4に示すように、ジャッキアップとは、走行体4の後部とバケット22とがそれぞれ地面に接地し、走行体4の前部が空中に浮きがっている状態をいう。このとき、走行体4の底面と地面がなす角度をジャッキアップ角度αという。ジャッキアップ角度αが零の場合は走行体4の底面全体が地面に接地している状態である。そして、ジャッキアップ速度とは、ジャッキアップ角度αの時間変化であり、走行体4と地面の接点を中心とした走行体4の角速度を示す。
ここで、図4を基に油圧ショベル1のジャッキアップについて説明する。図4に示すように、ジャッキアップとは、走行体4の後部とバケット22とがそれぞれ地面に接地し、走行体4の前部が空中に浮きがっている状態をいう。このとき、走行体4の底面と地面がなす角度をジャッキアップ角度αという。ジャッキアップ角度αが零の場合は走行体4の底面全体が地面に接地している状態である。そして、ジャッキアップ速度とは、ジャッキアップ角度αの時間変化であり、走行体4と地面の接点を中心とした走行体4の角速度を示す。
ところで、旋回体3は走行体4に対して旋回可能であるため、作業姿勢によっては旋回体3と走行体4の向きが図示と逆方向や横方向になることがある。この場合も走行体4の地面との接地点と、地面となす角度をジャッキアップ角度αと呼ぶ。一般的に、走行体4は進行方向に長く、進行方向に直交する横方向の幅は小さくなっている。このため、アーム21の姿勢を変えないままブーム20を一定の動作速度で下げ動作を行うと、走行体4が旋回体3に対して横方向にあるとき、走行体4が地面と接する点とバケット22の距離が小さくなるので、走行体4が旋回体3に対して進行方向にあるときと比べてジャッキアップ速度が速くなる。
<目標ジャッキアップ速度>
以下、目標ジャッキアップ速度の決定方法について図5~図13を用いて説明する。図5に示すように目標ジャッキアップ速度ωは、目標面距離d、バケット対目標面角度θb、バケット対走行体距離db、走行体傾斜角度θp、旋回体相対角度θsにそれぞれ基づいて決定される目標ジャッキアップ速度テーブルの最小値を選択することによって決定される。油圧ショベル1がジャッキアップする速度は、作業フロント2の姿勢によって異なるので、目標ジャッキアップ速度となるように作業フロント2の姿勢に応じて、例えばブームシリンダ20Aの速度を演算する。演算方法については単純な幾何学演算であるので、その詳細説明を省略する。
以下、目標ジャッキアップ速度の決定方法について図5~図13を用いて説明する。図5に示すように目標ジャッキアップ速度ωは、目標面距離d、バケット対目標面角度θb、バケット対走行体距離db、走行体傾斜角度θp、旋回体相対角度θsにそれぞれ基づいて決定される目標ジャッキアップ速度テーブルの最小値を選択することによって決定される。油圧ショベル1がジャッキアップする速度は、作業フロント2の姿勢によって異なるので、目標ジャッキアップ速度となるように作業フロント2の姿勢に応じて、例えばブームシリンダ20Aの速度を演算する。演算方法については単純な幾何学演算であるので、その詳細説明を省略する。
図5に示すように、演算したブームシリンダ20Aの目標動作速度は、オペレータが要求する速度R’を超えないように最小値が選択され、補正速度Vcとして出力される。例えば、土壌硬さ判定部910によって土壌硬さが硬いと判定されたときは、目標動作速度演算部710によって演算された目標動作速度Vtに代わって、補正速度Vcが選択され、駆動指令値変換テーブルに基づいて駆動指令値Piが演算される。
通常のマシンコントロールにおいてバケット22を施工目標面に近づけた場合、目標面距離dに対するブームシリンダ20Aの制限速度は、図6の点線で示したようになる(すなわち、目標ジャッキアップ速度を指示しない例)。これに対して、本実施形態の制御を行った場合、図6の実線で示すようになる(すなわち、目標ジャッキアップ速度を指示した例)。図6から分かるように、目標ジャッキアップ速度を指示しない例では、点線の傾斜が比較的に緩やかであるので、ブームシリンダ20Aの制限速度が緩和されておらず、ブーム下げ動作は比較的に遅い。一方、目標ジャッキアップ速度を指示した例では、実線の傾斜率が比較的に急であり、ブームシリンダ20Aの制限速度が短時間で大きくなる。このため、施工目標面に近い場合でのブームシリンダ20Aの制限速度が緩和されて素早いブーム下げ動作が可能になり、油圧ショベル1を短時間でジャッキアップすることができる。
図7~図11には、それぞれ目標面距離d、バケット対目標面角度θb、バケット対走行体距離db、走行体傾斜角度θp、旋回体相対角度θsに基づいて、目標ジャッキアップ速度ωを決定するテーブルの例を示す。これらのテーブルの値は説明の都合上、線形関数で表記されているが、2次関数などであっても良く、その形式と値は実験値や設計思想に基づいて決定すれば良い。
本実施形態において、目標ジャッキアップ速度決定部920は、目標面距離dが小さいほど目標ジャッキアップ速度ωを小さく決定することが好ましい(図7参照)。このように目標面距離dが小さいほど目標ジャッキアップ速度ωを小さく決定すれば、バケット22が施工目標面に向かってゆっくり(例えば、施工目標面を掘り過ぎないように制限された速度で)動作するので、施工目標面の掘り過ぎを防止することができる。
加えて、目標ジャッキアップ速度決定部920は、バケット対目標面角度θbが小さいほど目標ジャッキアップ速度ωを大きく決定することが好ましい(図8参照)。バケット対目標面角度θbが小さいときは施工目標面を掘り過ぎることがないので、目標ジャッキアップ速度ωを大きく決定することで素早いジャッキアップを行うことができる。
また、目標ジャッキアップ速度決定部920は、バケット対走行体距離dbが大きいほど目標ジャッキアップ速度ωを大きく決定することが好ましい(図9参照)。バケット対走行体距離dbが大きいときは、掘り始めのときであり、目標ジャッキアップ速度ωを大きく決定することで素早いジャッキアップを行うことができる。換言すれば、目標面距離dが小さいときは掘削が終わるときであり、従って素早いジャッキアップを行う必要がない。しかも、バケットが近くにあるときは、同じジャッキアップ速度でも重量バランスの関係でバケット22の掘削力が大きくなるので、施工目標面を掘り過ぎる可能性が高くなる。このような掘り過ぎを防止する観点から、バケット対走行体距離dbが小さいときに目標ジャッキアップ速度ωを小さく決定する必要がある。
また、目標ジャッキアップ速度決定部920は、走行体傾斜角度θpが大きいほど目標ジャッキアップ速度ωを小さく決定することが好ましい(図10参照)。走行体傾斜角度θpが大きいときは、油圧ショベル1が不安定になりやすく、素早いジャッキアップを行うとオペレータに不安感を与えやすいので、ゆっくりジャッキアップを行うことで良好な操作性を確保することができる。
また、目標ジャッキアップ速度決定部920は、旋回体相対角度θsが大きいほど目標ジャッキアップ速度ωを小さく決定することが好ましい(図11参照)。旋回体相対角度θsが大きいときは、走行体4に対して作業フロント2が横向きのときであり、従って油圧ショベル1が不安定になりやすく、素早いジャッキアップを行うとオペレータに不安感を与えやすいので、ゆっくりジャッキアップを行うことで良好な操作性を確保することができる。
また、図12Aには、目標ジャッキアップ速度ωを指示した場合と指示しない場合の走行体傾斜角度θpの時間変化の例をそれぞれ実線と点線で示す。図12Aに示すように、目標ジャッキアップ速度ωを指示した場合、開始時刻をt1とすると、時刻t2までに油圧ショベル1のジャッキアップが完了する。一方で、目標ジャッキアップ速度ωを指示しない場合は、時刻t2より遅い時刻t3にジャッキアップが完了する。よって、目標ジャッキアップ速度ωを指示した場合は、走行体傾斜角度θpの時間変化は急速であり、目標ジャッキアップ速度ωを指示しない場合と比較して短時間でジャッキアップ動作ができる。
図12Bには、目標ジャッキアップ速度ωを指示した場合と指示しない場合のブーム速度指令値の時間変化の例をそれぞれ実線と点線で示す。図12Bから、目標ジャッキアップ速度ωを指示した場合、開始時刻をt1とすると、時刻t1の直後にブーム速度指令値が急激に大きくなり、油圧ショベル1のジャッキアップが完了する時刻t2にブーム速度指令値が零になる。一方で、目標ジャッキアップ速度ωを指示しない場合は、時刻t1から少しずつブーム速度指令値が大きくなり、油圧ショベル1のジャッキアップが完了する時刻t3にブーム速度指令値が零になる。よって、目標ジャッキアップ速度ωを指示した場合は、目標ジャッキアップ速度ωを指示しない場合と比較してブーム速度指令値が急激に大きくできるため、短時間でジャッキアップ動作ができる。なお、図13には、要求速度(例えば、補正速度Vc)に基づいてブームを駆動させるための駆動指令値に変換するテーブルの一例を示す。このとき、動作指令値生成部720は、図13に示す変換テーブルを参照し補正速度Vcに基づいて駆動指令値Piを生成する。
一方、目標動作速度補正部930は、目標ジャッキアップ速度決定部920で決定した走行体4の目標ジャッキアップ速度ωとなるように、フロント姿勢とオペレータの操作量Rに基づいてブームシリンダ20Aの補正速度Vcを演算する。補正速度Vcの演算方法については、既に周知された方法を用いることができる。更に、目標動作速度補正部930は、演算した結果を動作指令値生成部720に出力する。
以下、図14を基に駆動制御装置34の制御処理を説明する。まず、ステップS110では、走行体傾斜角度θpの演算が行われる。このとき、傾斜角度演算部820は、旋回体3に取り付けられた旋回体IMUセンサ30Sから得られる加速度信号と角速度信号に基づいて旋回体3の傾斜角度を演算し、演算した旋回体3の傾斜角度を走行体傾斜角度θpとする。
ステップS110に続くステップS120では、フロント姿勢の検出が行われる。このとき、フロント姿勢検出部830は、ブームIMUセンサ20S、アームIMUセンサ21S、バケットIMUセンサ22Sから得られる加速度信号及び角速度信号に基づいて、作業フロント2のブーム20、アーム21及びバケット22の姿勢をそれぞれ検出する。これによって、フロント姿勢が検出される。
ステップS120に続くステップS130では、ブーム20、アーム21及びバケット22の目標動作速度Vtの演算が行われる。このとき、目標動作速度演算部710は、ステップS120で検出したフロント姿勢に、操作入力量センサ33Cで検出した操作レバー33A,33Bの操作量R、目標面管理装置100で演算した目標面距離dに基づいて、バケット22が施工目標面に沿って動作するようにブームシリンダ20A、アームシリンダ21A、及びバケットシリンダ22Aの少なくとも一つの目標動作速度Vtを演算する。例えば、目標動作速度演算部710は、施工目標面より掘り過ぎないようにフロント姿勢、目標面距離d、操作レバー33A,33Bの操作量Rに基づきブームシリンダ20Aの目標動作速度Vtを演算する。
ステップS130に続くステップS140では、バケット対目標面角度θbの演算が行われる。このとき、目標面管理装置100は、バケット22の底面と施工目標面がなす角度を演算する。
ステップS140に続くステップS150では、バケット対走行体距離dbの演算が行われる。このとき、目標ジャッキアップ速度決定部920は、ステップS120で検出した作業フロントの姿勢に基づいて、バケット対走行体距離dbを演算する。
ステップS150に続くステップS160では、旋回体相対角度θsの演算が行われる。このとき、旋回角度演算部840は、旋回角度センサ37で検出した信号に基づいて旋回体相対角度θsを演算する。
ステップS160に続くステップS170では、目標ジャッキアップ速度ωの演算が行われる。このとき、目標ジャッキアップ速度決定部920は、ステップS110で演算した走行体傾斜角度θp、ステップS140で演算したバケット対目標面角度θb、ステップS150で演算したバケット対走行体距離db、及びステップS160で演算した旋回体相対角度θsに、目標面距離dを加えて、これらに基づいて走行体4がジャッキアップするときの目標ジャッキアップ速度ωを演算して決定する。
ステップS170に続くステップS180では、ブームの補正速度の演算が行われる。このとき、目標動作速度補正部930は、ステップS170で演算した目標ジャッキアップ速度ωになるように、フロント姿勢とオペレータの操作量Rに基づいてブームシリンダ20Aの補正速度Vcを演算する。
ステップS180に続くステップS190では、土壌硬さ判定部910は、上述の式(1)に基づいてブームシリンダ20Aの推力Fを演算する。
ステップS190に続くステップS200では、土壌硬さ判定部910は、算出したブームシリンダ20Aの推力を予め定められた閾値と比較することで、土壌が硬いか否かを判定する。そして、算出したブームシリンダ20Aの推力が閾値以下の場合、土壌が硬くないと判定される。従って、駆動制御装置34は、目標動作速度を補正しないことにする(ステップS210参照)。ステップS210では、駆動制御装置34は、例えばステップS130で演算したブームシリンダ20Aの目標動作速度Vtをそのまま採用する。そして、ステップS210が終わると、制御処理はステップS250に進み、動作指令値生成部720は目標動作速度Vtに基づいて駆動指令値Piを生成する。
一方、ステップS200において推力が閾値より大きいと判定された場合、土壌が硬いと判定され、制御処理はステップS220に進む。
ステップS220では、駆動制御装置34は、操作レバー33A,33Bの操作量Rに相当するオペレータ要求速度R’がステップS180で演算したブームシリンダ20Aの補正速度Vcより大きいか否かを判定する。なお、操作量Rに相当するオペレータ要求速度R’は目標動作速度演算部710によって演算される。そして、操作量Rに相当するオペレータ要求速度R’がブームシリンダ20Aの補正速度Vcより大きくないと判定した場合、駆動制御装置34は、目標動作速度を操作量Rに相当するオペレータ要求速度R’と等しくなるように該目標動作速度を補正する(ステップS230参照)。ステップS230が終わると、制御処理はステップS250に進み、動作指令値生成部720は補正された目標動作速度(すなわち、操作量Rに相当するオペレータ要求速度R’)に基づいて駆動指令値Piを生成する。
一方、ステップS220において操作量Rに相当するオペレータ要求速度R’がステップS180で演算したブームシリンダ20Aの補正速度Vcより大きいと判定した場合、駆動制御装置34は、目標動作速度を制限せずに該目標動作速度を補正する(ステップS240参照)。このとき、駆動制御装置34は、ステップS180で演算したブームシリンダ20Aの補正速度Vcをブームシリンダ20Aの目標動作速度とするように、該目標動作速度を補正する。ステップS240に続くステップS250では、駆動指令値の生成が行われる。このとき、動作指令値生成部720は、補正された目標動作速度(すなわち、ステップS180で演算したブームシリンダ20Aの補正速度Vc)に基づいて駆動指令値Piを生成する。
ステップS250に続くステップS260では、制御電流の生成が行われる。このとき、駆動指令部730は、ステップS250で生成した駆動指令値Piに基づいて、電磁制御弁35Aの駆動に必要な制御電流Iを生成する。これによって、一連の制御処理が終了する。
本実施形態に係る油圧ショベル1では、目標ジャッキアップ速度決定部920は目標面距離d、バケット対目標面角度θb、バケット対走行体距離db、走行体傾斜角度θp及び旋回体相対角度θsに基づいて、走行体4がジャッキアップするときの目標ジャッキアップ速度ωを演算して決定し、目標動作速度補正部930は走行体4の目標ジャッキアップ速度ωとなるようにブームシリンダ20Aの補正速度Vcを演算する。このため、ジャッキアップが必要な硬い土壌を掘削するときは施工目標面付近でのブーム動作速度の制限値によらずに目標動作速度を補正することができる。従って、油圧ショベルがジャッキアップする速度を任意に設定できるので、施工目標面付近において素早いジャッキアップを行うことができる。また、ジャッキアップが必要ない柔らかい土壌を掘削するときに油圧ショベル1がジャッキアップする速度を零、すなわちジャッキアップを行うためのブームシリンダ20Aの動作速度の補正を制限できるので、施工目標面の掘り過ぎを防止することができる。
加えて、土壌硬さ判定部910によって土壌硬さが硬いと判定されたときに、動作指令値生成部720は目標動作速度補正部930で補正した目標動作速度(すなわち、補正速度Vc)に基づいて駆動指令値を生成する。
更に、目標動作速度補正部930は、目標ジャッキアップ速度ωに基づいて演算した補正速度が目標動作速度演算部710で演算した操作量Rに相当するオペレータ要求速度R’を超えないように目標動作速度を補正する。オペレータによる操作レバーの操作量Rに相当するオペレータ要求速度R’よりも速くジャッキアップすると、オペレータに不安感を与えやすいため、操作量Rに相当するオペレータ要求速度R’を超えないようにジャッキアップすることで操作性を更に高めることができる。その結果、施工目標面付近において素早いジャッキアップを実現できるとともに、掘削の精度、オペレータの操作性及び作業性を高めることができる。
以上、本発明の実施形態について詳述したが、本発明は、上記の実施形態に限定されるものではなく、請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。
1 油圧ショベル
2 作業フロント
3 旋回体
4 走行体
20 ブーム
20BP ブームボトム圧センサ
20RP ブームロッド圧センサ
20S ブームIMUセンサ
21 アーム
21S アームIMUセンサ
22 バケット
22S バケットIMUセンサ
30S 旋回体IMUセンサ
33 操作量検出装置
33A,33B 操作レバー(操作装置)
33C 操作入力量センサ
34 駆動制御装置
35 駆動装置
35A 電磁制御弁
37 旋回角度センサ
38 姿勢検出装置
39 負荷検出装置
100 目標面管理装置
710 目標動作速度演算部
720 動作指令値生成部
730 駆動指令部
810 シリンダ負荷演算部
820 傾斜角度演算部
830 フロント姿勢検出部
840 旋回角度演算部
910 土壌硬さ判定部
920 目標ジャッキアップ速度決定部
930 目標動作速度補正部
2 作業フロント
3 旋回体
4 走行体
20 ブーム
20BP ブームボトム圧センサ
20RP ブームロッド圧センサ
20S ブームIMUセンサ
21 アーム
21S アームIMUセンサ
22 バケット
22S バケットIMUセンサ
30S 旋回体IMUセンサ
33 操作量検出装置
33A,33B 操作レバー(操作装置)
33C 操作入力量センサ
34 駆動制御装置
35 駆動装置
35A 電磁制御弁
37 旋回角度センサ
38 姿勢検出装置
39 負荷検出装置
100 目標面管理装置
710 目標動作速度演算部
720 動作指令値生成部
730 駆動指令部
810 シリンダ負荷演算部
820 傾斜角度演算部
830 フロント姿勢検出部
840 旋回角度演算部
910 土壌硬さ判定部
920 目標ジャッキアップ速度決定部
930 目標動作速度補正部
Claims (8)
- 走行可能な走行体と、
前記走行体に旋回自在に取り付けられる旋回体と、
前記旋回体に揺動自在に取り付けられるとともにブーム、アーム及びバケットを有する作業フロントと、
前記ブームと前記アームと前記バケットをそれぞれ駆動させるアクチュエータと、
前記アクチュエータを操作する操作装置の操作量を検出する操作量検出装置と、
前記作業フロントの姿勢と前記旋回体の姿勢をそれぞれ検出する姿勢検出装置と、
施工目標面を設定し、設定した前記施工目標面と前記バケットの距離を目標面距離として演算する目標面管理装置と、
前記操作量と前記作業フロントの姿勢と前記目標面距離に基づいて前記バケットが前記施工目標面に沿って掘削するように前記アクチュエータの目標動作速度を演算し、前記アクチュエータへの動作指令値を生成する駆動制御装置と、
前記動作指令値に基づいて前記アクチュエータを駆動させる駆動装置と、
を備える油圧ショベルにおいて、
前記駆動制御装置は、前記目標面距離に基づいて前記油圧ショベルがジャッキアップする際の目標ジャッキアップ速度を決定し、決定した前記目標ジャッキアップ速度に基づいて前記目標動作速度を補正することを特徴とする油圧ショベル。 - 前記アクチュエータの負荷を検出する負荷検出装置を更に備え、
前記駆動制御装置は、前記負荷検出装置で検出した結果に基づいて前記作業フロントが掘削する場所の土壌硬さを判定し、前記土壌硬さと、前記目標ジャッキアップ速度に基づいて演算した補正速度とに基づいて前記目標動作速度を補正し、補正した前記目標動作速度に基づいて前記動作指令値を生成する請求項1に記載の油圧ショベル。 - 前記駆動制御装置は、前記目標面距離が小さいほど前記目標ジャッキアップ速度を小さく決定する請求項1に記載の油圧ショベル。
- 前記目標面管理装置は、前記バケットの底面と前記施工目標面がなす角度をバケット対目標面角度として演算し、
前記駆動制御装置は、前記バケット対目標面角度が小さいほど前記目標ジャッキアップ速度を大きく決定する請求項1に記載の油圧ショベル。 - 前記駆動制御装置は、前記作業フロントの姿勢に基づいて前記バケットと前記走行体の距離をバケット対走行体距離として演算し、演算した前記バケット対走行体距離が大きいほど前記目標ジャッキアップ速度を大きく決定する請求項1に記載の油圧ショベル。
- 前記駆動制御装置は、前記姿勢検出装置で検出した結果に基づいて走行体傾斜角度を演算し、演算した前記走行体傾斜角度が大きいほど前記目標ジャッキアップ速度を小さく決定する請求項1に記載の油圧ショベル。
- 前記駆動制御装置は、前記姿勢検出装置で検出した結果に基づいて前記走行体の進行方向を基準とした前記旋回体と前記走行体の相対角度を旋回体相対角度として演算し、演算した前記旋回体相対角度が大きいほど前記目標ジャッキアップ速度を小さく決定する請求項1に記載の油圧ショベル。
- 前記駆動制御装置は、前記補正速度が前記操作量に相当するオペレータ要求速度を超えないように前記目標動作速度を補正する請求項2に記載の油圧ショベル。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/002885 WO2022162795A1 (ja) | 2021-01-27 | 2021-01-27 | 油圧ショベル |
EP21922818.6A EP4098804A4 (en) | 2021-01-27 | 2021-01-27 | HYDRAULIC EXCAVATOR |
CN202180017595.XA CN115210430B (zh) | 2021-01-27 | 2021-01-27 | 液压挖掘机 |
JP2022550188A JP7274671B2 (ja) | 2021-01-27 | 2021-01-27 | 油圧ショベル |
US17/801,809 US20230091185A1 (en) | 2021-01-27 | 2021-01-27 | Hydraulic excavator |
KR1020227029654A KR102643536B1 (ko) | 2021-01-27 | 2021-01-27 | 유압 셔블 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/002885 WO2022162795A1 (ja) | 2021-01-27 | 2021-01-27 | 油圧ショベル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022162795A1 true WO2022162795A1 (ja) | 2022-08-04 |
Family
ID=82653201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/002885 WO2022162795A1 (ja) | 2021-01-27 | 2021-01-27 | 油圧ショベル |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230091185A1 (ja) |
EP (1) | EP4098804A4 (ja) |
JP (1) | JP7274671B2 (ja) |
KR (1) | KR102643536B1 (ja) |
CN (1) | CN115210430B (ja) |
WO (1) | WO2022162795A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115613644B (zh) * | 2022-11-07 | 2024-10-01 | 江苏徐工工程机械研究院有限公司 | 铣槽机的控制方法和铣槽机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04366236A (ja) * | 1991-06-14 | 1992-12-18 | Hitachi Constr Mach Co Ltd | 建設機械の傾斜角度制御装置 |
JP2014122510A (ja) * | 2012-12-21 | 2014-07-03 | Sumitomo (Shi) Construction Machinery Co Ltd | ショベル及びショベル制御方法 |
JP5947477B1 (ja) | 2015-09-25 | 2016-07-06 | 株式会社小松製作所 | 作業機械の制御装置、作業機械、及び作業機械の制御方法 |
US20180073219A1 (en) * | 2015-04-13 | 2018-03-15 | Volvo Construction Equipment Ab | Hydraulic apparatus of construction equipment and control method therefor |
JP2018080510A (ja) | 2016-11-16 | 2018-05-24 | 日立建機株式会社 | 作業機械 |
WO2020049623A1 (ja) * | 2018-09-03 | 2020-03-12 | 日立建機株式会社 | 作業機械 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1025034A (en) * | 1973-06-01 | 1978-01-24 | Herman Statz | Semiconductor devices with isolation between adjacent regions and method of manufacture |
JPS5947477U (ja) | 1982-09-20 | 1984-03-29 | 市川 正美 | 釣針外し具 |
JP3608900B2 (ja) * | 1997-03-10 | 2005-01-12 | 新キャタピラー三菱株式会社 | 建設機械の制御方法および制御装置 |
JP4215944B2 (ja) * | 2000-12-04 | 2009-01-28 | 日立建機株式会社 | 油圧ショベルのフロント制御装置 |
JP4366236B2 (ja) | 2004-04-26 | 2009-11-18 | 邦昭 堀越 | 電磁誘導調理器具における換気補助装置 |
US20170121930A1 (en) * | 2014-06-02 | 2017-05-04 | Komatsu Ltd. | Construction machine control system, construction machine, and method of controlling construction machine |
JP6564739B2 (ja) * | 2016-06-30 | 2019-08-21 | 日立建機株式会社 | 作業機械 |
JP6581136B2 (ja) * | 2017-03-21 | 2019-09-25 | 日立建機株式会社 | 作業機械 |
KR102137469B1 (ko) * | 2017-03-29 | 2020-07-24 | 히다찌 겐끼 가부시키가이샤 | 작업 기계 |
JP6807290B2 (ja) * | 2017-09-14 | 2021-01-06 | 日立建機株式会社 | 作業機械 |
JP6912356B2 (ja) * | 2017-11-13 | 2021-08-04 | 日立建機株式会社 | 建設機械 |
CN111206636B (zh) * | 2020-03-12 | 2021-08-13 | 广东新拓计算机科技有限公司 | 一种河道清淤机器人及无人船 |
-
2021
- 2021-01-27 CN CN202180017595.XA patent/CN115210430B/zh active Active
- 2021-01-27 WO PCT/JP2021/002885 patent/WO2022162795A1/ja unknown
- 2021-01-27 KR KR1020227029654A patent/KR102643536B1/ko active IP Right Grant
- 2021-01-27 EP EP21922818.6A patent/EP4098804A4/en active Pending
- 2021-01-27 JP JP2022550188A patent/JP7274671B2/ja active Active
- 2021-01-27 US US17/801,809 patent/US20230091185A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04366236A (ja) * | 1991-06-14 | 1992-12-18 | Hitachi Constr Mach Co Ltd | 建設機械の傾斜角度制御装置 |
JP2014122510A (ja) * | 2012-12-21 | 2014-07-03 | Sumitomo (Shi) Construction Machinery Co Ltd | ショベル及びショベル制御方法 |
US20180073219A1 (en) * | 2015-04-13 | 2018-03-15 | Volvo Construction Equipment Ab | Hydraulic apparatus of construction equipment and control method therefor |
JP5947477B1 (ja) | 2015-09-25 | 2016-07-06 | 株式会社小松製作所 | 作業機械の制御装置、作業機械、及び作業機械の制御方法 |
JP2018080510A (ja) | 2016-11-16 | 2018-05-24 | 日立建機株式会社 | 作業機械 |
WO2020049623A1 (ja) * | 2018-09-03 | 2020-03-12 | 日立建機株式会社 | 作業機械 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4098804A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230091185A1 (en) | 2023-03-23 |
EP4098804A4 (en) | 2023-12-06 |
CN115210430A (zh) | 2022-10-18 |
EP4098804A1 (en) | 2022-12-07 |
KR102643536B1 (ko) | 2024-03-06 |
CN115210430B (zh) | 2024-03-15 |
KR20220127933A (ko) | 2022-09-20 |
JPWO2022162795A1 (ja) | 2022-08-04 |
JP7274671B2 (ja) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102028414B1 (ko) | 작업 기계 | |
KR102413885B1 (ko) | 작업 기계 | |
CN107306500B (zh) | 作业机械的控制装置、作业机械以及作业机械的控制方法 | |
JPH08333768A (ja) | 建設機械の領域制限掘削制御装置 | |
JP6521691B2 (ja) | ショベル | |
JP6843039B2 (ja) | 作業機械 | |
WO2019012701A1 (ja) | 作業機械および作業機械の制御方法 | |
JP7274671B2 (ja) | 油圧ショベル | |
WO2021059749A1 (ja) | 作業機械 | |
JP7314429B2 (ja) | 作業機械 | |
US12084836B2 (en) | Work machine | |
WO2019012699A1 (ja) | 作業機械および作業機械の制御方法 | |
WO2024070262A1 (ja) | 作業機械 | |
WO2022224624A1 (ja) | 作業機械 | |
JP7036868B2 (ja) | 作業機械の制御装置及び制御方法 | |
JP7488962B2 (ja) | 作業機械 | |
WO2024171607A1 (ja) | 作業機械 | |
WO2019012700A1 (ja) | 作業機械および作業機械の制御方法 | |
KR20220086672A (ko) | 작업 기계의 제어 시스템, 작업 기계, 및 작업 기계의 제어 방법 | |
JP2023151687A (ja) | ショベル | |
JPS5836696B2 (ja) | ユアツシヨベルナドノ バケツトキセキセイギヨソウチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022550188 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021922818 Country of ref document: EP Effective date: 20220830 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21922818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |