WO2022162320A1 - Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées - Google Patents

Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées Download PDF

Info

Publication number
WO2022162320A1
WO2022162320A1 PCT/FR2022/050155 FR2022050155W WO2022162320A1 WO 2022162320 A1 WO2022162320 A1 WO 2022162320A1 FR 2022050155 W FR2022050155 W FR 2022050155W WO 2022162320 A1 WO2022162320 A1 WO 2022162320A1
Authority
WO
WIPO (PCT)
Prior art keywords
impregnation solution
carbon
viscosity
manufacturing process
process according
Prior art date
Application number
PCT/FR2022/050155
Other languages
English (en)
Inventor
Fanny ALOUSQUE
Amélie RETHORE
Patrice BRENDER
Original Assignee
Safran Landing Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Landing Systems filed Critical Safran Landing Systems
Priority to CN202280012368.2A priority Critical patent/CN116761787A/zh
Priority to US18/274,789 priority patent/US20240083822A1/en
Priority to EP22705440.0A priority patent/EP4284770A1/fr
Publication of WO2022162320A1 publication Critical patent/WO2022162320A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62855Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal

Definitions

  • TITLE Process for manufacturing a part in carbon/carbon composite material with improved mechanical properties
  • the present invention relates, in general, to carbon/carbon composite materials.
  • the invention relates to the manufacture of parts made of carbon/carbon composite materials and, more particularly, to the improvement of their mechanical properties in the face of wear and friction, in order to improve their lifespan and their recycling/renovation.
  • Such composite materials are known for their use in the production of brake discs, in particular for aircraft. Given their function in the aeronautical field, friction parts require high resistance to friction and wear. In addition, friction parts have a complex life cycle often made up of several lives that require the manufacture of materials with homogeneous characteristics over time.
  • the material comprises a carbon matrix incorporated in a reinforcement formed by a carbon fiber preform.
  • the manufacturing consists of the densification of a carbon fiber preform by a pyrocarbon matrix, in order to obtain a blank.
  • the densification, carried out partially, is followed by the impregnation of the blank with an impregnation solution, generally of the sol/gel type, comprising ceramic precursors, or a colloidal dispersion, comprising ceramic fillers intended to reinforce the structure.
  • an impregnation solution generally of the sol/gel type, comprising ceramic precursors, or a colloidal dispersion, comprising ceramic fillers intended to reinforce the structure.
  • the object of the invention is therefore to remedy these drawbacks and to propose a process for manufacturing a part made of carbon/carbon composite material, the distribution of the ceramic fillers of which is homogeneous within the material obtained and the mechanical properties facing the optimized wear and friction thus making it possible to prolong the life of the material and in particular to renovate it.
  • a method for manufacturing a part in carbon/carbon composite material comprising: the formation of a fibrous preform, the partial densification of the fibrous preform by a carbon matrix forming a partially densified blank, the impregnation of the preform partially densified by an impregnation solution comprising ceramic precursors or ceramic particles, and the drying of the impregnated preform.
  • the manufacturing process includes controlling the viscosity of the impregnation solution in order to control the homogeneity of the distribution during the drying of the ceramic particles or of the ceramic precursors within the blank.
  • the viscosity of the impregnation solution is controlled so as to maintain a dynamic viscosity value of between 12 and 700 mPa s.
  • the impregnation solution may comprise a solution of the sol/gel type comprising ceramic precursors, preferably a derivative of zirconium, titanium, yttrium, hafnium or tantalum, or a mixture of these derivatives.
  • the impregnation solution may comprise a colloidal dispersion of ceramic particles, preferably zirconium dioxide, titanium dioxide, yttrium(III) oxide, hafnium dioxide, tantalum pentoxide or a mixture of several of these.
  • the impregnation solution comprises a mass fraction of zirconium, titanium, yttrium, hafnium or tantalum or a mixture of several of these comprised between 3 and 15%.
  • the impregnation solution comprises macromolecules of ceramic precursors or ceramic particles of average size less than or equal to I ⁇ m.
  • the manufacturing method can comprise the control of the partial gelation of the solution of the sol/gel type.
  • At least one thickening additive can be added to the impregnation solution, preferably a polymer from the poloxamer family, more preferably the tri-block polymers of general formula poly(ethylene oxidejx- poly(propylene oxide) n -poly(ethylene oxide) m, m and n are attached by the manufacturer's synthesis process.
  • the manufacturing process may also include formulating an impregnating solution of predetermined viscosity.
  • FIG 1 illustrates a method of manufacturing a carbon/carbon composite material according to an embodiment in accordance with the invention.
  • FIG 2 is a graph representing the charge gradient of a carbon/carbon composite material obtained according to three examples of compositions of a sol/gel type impregnation solution.
  • FIG 3 is a graph representing the charge gradient of a carbon/carbon composite material obtained according to four examples of compositions of a colloidal dispersion type impregnation solution.
  • FIG. 1 illustrates a method for manufacturing a part made of carbon/carbon composite material according to one embodiment of the invention.
  • a carbonaceous preform is formed.
  • the preform is fibrous.
  • the shape of the part to be produced for example a brake disc, can advantageously be given to the preform.
  • the carbonaceous preform is partially densified by a pyrocarbon matrix in order to partially fill the porosity of the preform, forming a partially densified carbonaceous blank.
  • Densification is, for example, carried out by gas phase chemical infiltration (CVI).
  • the porosity rate of the partially densified carbonaceous blank can be between 47 and 72% by volume.
  • the impregnation solution can be a solution of the sol/gel type. containing ceramic precursors.
  • the ceramic precursors may be chosen from: a derivative of a ceramic compound such as zirconium, titanium, yttrium, hafnium or tantalum, or even a mixture of several of these derivatives.
  • the impregnation solution can be a colloidal dispersion.
  • the colloidal dispersion may advantageously comprise zirconium dioxide, titanium dioxide, yttrium(III) oxide, hafnium dioxide, tantalum pentoxide or a mixture of several of these.
  • the impregnation solution of the sol/gel or colloidal dispersion type comprises a mass fraction of zirconium, titanium, yttrium, hafnium or tantalum or a mixture of several of these comprised between 3 and 15%.
  • the impregnation solution will preferably comprise macromolecules of ceramic precursors or ceramic particles of average size less than or equal to I ⁇ m.
  • the impregnation can be carried out under vacuum, advantageously at a pressure of between 0.1 and 0.5 mbar, at room temperature for a period of 30 minutes to 1 hour.
  • the viscosity of the impregnation solution is controlled.
  • the partially densified carbon blank is impregnated with an impregnation solution of predetermined viscosity, chosen such that it allows a homogeneous distribution within the material of the ceramic particles contained in the impregnation solution.
  • the value of the dynamic viscosity of the impregnation solution is between 12 and 700 mPa s, considered at ambient temperature, around 23°C .
  • the value of the viscosity of the impregnation solution is controlled over time, for example at different times, so as to be maintained within this range of values, that is to say between 12 and 700 mPa s, in order to guarantee a homogeneous distribution of the ceramic particles contained in the impregnation solution during drying.
  • the lower limit of the range of dynamic viscosity values above is fixed by obtaining a heterogeneous material with a solution of lower viscosity.
  • the upper limit is fixed by the impossibility of impregnating the material with a solution of higher viscosity.
  • the viscosity of the impregnating solution can be controlled by directly adjusting the formulation of an impregnating solution so that it has a predetermined viscosity.
  • At least one thickening additive can be added to the impregnation solution.
  • a polymer from the poloxamer family more preferably the tri-block polymers of general formula poly(ethylene oxide) x-poly(propylene oxidejn-poly(ethylene oxidejm, m and n are fixed by the manufacturer's synthetic method
  • Pluronic® L44 or Tergitol® L64 can be used.
  • the manufacturing process may include controlling the viscosity by controlling the partial gelling of the sol/gel-type solution.
  • the manufacturing process then comprises a step of drying 400 of the impregnated material.
  • the drying is preferably carried out at atmospheric pressure, at a temperature of between 60 and 100° C., for 48 to 72 hours and, advantageously, under an inert atmosphere, for example under nitrogen.
  • the material can then be subjected to a heat treatment, according to a following step 500, to allow the conversion of the ceramic precursor(s) into oxide(s).
  • the heat treatment can also be carried out to carry out the pyrolysis of any additives such as a thickener or a surfactant.
  • the heat treatment is advantageously carried out at a temperature of between 600 and 1700° C., preferably under a nitrogen flow and under vacuum, at a pressure below atmospheric pressure.
  • the manufacturing method may comprise a following step 600 of densification of the carbon/carbon composite material thus loaded with ceramic particles, advantageously by infiltration chemical in gaseous phase, by the pyrocarbon matrix, in order to fill the residual porosity.
  • the final density of the carbon/carbon composite material is greater than 1700 g/cm 3 .
  • the final mass fraction of zirconium, titanium, yttrium, hafnium or tantalum derivative of the carbon/carbon composite material obtained can be between 1 and 10%.
  • the composition of the particles is, preferably, predominantly ZrOxCy, TiOxCy, HfOxCy, with x between 0 and 2 and including between 0 and 1 or YwOxCy with w between 1 and 2, x between 0 and 3 and including between 0 and 1, or Ta w O x C y with w between 1 and 2, x between 0 and 5 and including between 0 and 1.
  • the matrix is made of pyrocarbon and the open porosity rate of the carbon blank partially densified by the matrix is between 62% and 72%.
  • composition of the sol/gel type impregnation solution of each example A, B and C comprises zirconium butoxide diluted in a butanol/ethanol mixture in the presence of water, hydrochloric acid and acetyl acetone.
  • the viscosity of the impregnating solution is measured using a rotational viscometer.
  • the sample of carbon/carbon composite material obtained according to each formulation is thermostated thanks to a double-envelope assembly, the temperature of the heat transfer fluid of which is set at 23°C. Three measurements were performed on each sample. The speed of the mobile was fixed at 30 revolutions/min. The final viscosity value indicated in Table 1 corresponds to the average of the three measurements.
  • Example A corresponds to an impregnation solution without viscosity control precautions.
  • Example B corresponds to an impregnation solution incorporating a thickening additive, Pluronic® L44, aimed at increasing the viscosity of the solution.
  • example C corresponds to an impregnation solution whose sol/gel is partially gelled.
  • the sol/gel mixture changes over time due to the polymerization of the zirconium butoxide. This evolution results in an increase in viscosity over time until the mixture gels completely.
  • partial gelation we mean gelation of the sol/gel to the desired viscosity.
  • This control of gelation can be obtained either by controlling the evolution time given at ambient temperature and atmospheric pressure, or by accelerating the process by heating the soil/gel under an inert atmosphere. In the example illustrated, the evolution of the viscosity of the sol/gel was followed until the desired target value was obtained.
  • the distribution of the ceramic fillers of carbon/carbon composite materials obtained by impregnation of preforms partially densified by the compositions of Examples A, B and C is checked after heat treatment by measuring the charge gradient from the core to the edges of the material.
  • a value of 1 is associated with a homogeneous material.
  • a value less than 1 translates an excess of ceramic fillers at the heart of the carbon/carbon composite material, and a value greater than 1 translates an excess of ceramic fillers at the edge of the material, in this example on the faces of the brake disc.
  • the measurement of the load gradient can be measured by measuring the ash content in the heart and on the faces of the sample. This technique consists in evaluating the mass of ashes remaining after calcination of the material.
  • Calibrated specimens of the material to be evaluated are oxidized in air at 1000°C for 15 hours in order to eliminate the carbon and keep only the ceramic compound.
  • the gradient is then calculated by calculating the ratio of the ash content of each face with that of the core.
  • the measurement of the load gradient was carried out by measuring the ash content.
  • the charge gradient can be measured by inductively coupled plasma (ICP) spectrometry, and calculation of the ratio of the rate of charges on each face of the material with that of the core.
  • ICP inductively coupled plasma
  • Example A whose viscosity is not controlled, has a charge gradient of about 2.5, i.e., well above 1.
  • the material exhibits a strong heterogeneity in the distribution of the ceramic fillers, the ceramic fillers being mainly present at the edges of the material.
  • the materials obtained from impregnation with an impregnation solution according to the compositions of examples B and C whose viscosity is controlled have a charge gradient, respectively, of 1, 1 and 1, reflecting a homogeneous distribution .
  • the material obtained has a homogeneous charge distribution.
  • the experimental protocol is similar to examples A, B and C, however, the sol/gel type solution is replaced by a colloidal dispersion.
  • Example D corresponds to an impregnation solution without viscosity control precautions, low in viscosity, that is to say, in the example illustrated, with a viscosity of less than 12 mPa s.
  • Example E corresponds to an impregnation solution comprising a thickening additive, Tergitol® L64 aimed at increasing the viscosity of the solution.
  • examples F and G correspond to impregnation solutions directly formulated to have a viscosity predetermined, moderately viscous, respectively 29.74 mPa s and 14.14 mPa s.
  • D of viscosity lower than the range of predetermined values leads to a charge gradient well above 1, that is to say a heterogeneous distribution of the ceramic particles within the material.
  • compositions of examples E, F and G lead to a particularly homogeneous distribution.
  • the material obtained has a homogeneous charge distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Braking Arrangements (AREA)
  • Ceramic Products (AREA)

Abstract

Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées Procédé de fabrication d'une pièce en matériau composite carbone/carbone, comprenant : la formation (100) d'une préforme carbonée, la densification partielle (200) de la préforme par une matrice de pyrocarbone, formant ainsi une ébauche partiellement densifiée, l'imprégnation (300) de l'ébauche partiellement densifié par une solution d'imprégnation comportant des particules de céramique ou des précurseurs de céramique, et le séchage (400) de l'ébauche imprégnée. En outre, on contrôle la viscosité de la dispersion ou solution d'imprégnation afin de contrôler l'homogénéité de la répartition des particules céramiques au sein de la pièce du matériau composite imprégné lors du séchage.

Description

DESCRIPTION
TITRE : Procédé de fabrication d’une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées
Domaine technique
La présente invention concerne, de manière générale, les matériaux composites carbone/carbone.
Plus précisément, l’invention se rapporte à la fabrication de pièces en matériaux composites carbone/carbone et, plus particulièrement à l’ amélioration de leurs propriétés mécaniques face à l ’usure et aux frottements, afin d’ améliorer leur durée de vie et leur recyclage/rénovation.
De tels matériaux composites sont connus pour leur utilisation dans l’ élaboration de disques de freins, notamment pour aéronef. Compte tenu de leur fonction dans le domaine aéronautique, les pièces de friction nécessitent une résistance élevée aux frottements et à l ’usure. De plus, les pièces de friction ont un cycle de vie complexe souvent constitué de plusieurs vies qui nécessitent la fabrication de matériaux ayant des caractéristiques homogènes dans le temps.
Classiquement, le matériau comprend une matrice en carbone incorporée dans un renfort formé par une préforme fibreuse en carbone.
Etat de la technique
Afin d’améliorer les performances mécaniques des matériaux composites carbone/carbone face à l’usure, il est connu de l’ état de la technique d’introduire des particules céramiques, comme cela est divulgué, par exemple, dans le document FR 2 967 170.
Typiquement, la fabrication consiste en la densification d’une préforme en fibres de carbone par une matrice de pyrocarbone, afin d’obtenir une ébauche.
La densification, réalisée de façon partielle, est suivie de l’imprégnation de l’ ébauche par une solution d’imprégnation, généralement de type sol/gel, comportant des précurseurs céramiques, ou une dispersion colloïdale, comportant des charges céramiques destinées à renforcer la structure.
Cependant, il a été constaté que la distribution des particules céramiques au sein du matériau n’ était pas homogène. Lors de la phase de séchage de la solution d’imprégnation, les particules sont entraînées vers la périphérie de la pièce, ayant pour conséquence la formation d’un gradient de concentration. Une concentration élevée de particules céramiques se retrouvent au niveau des bords du matériau, alors que le cœur possède une plus faible concentration.
L ’hétérogénéité résultante engendre une évolution du matériau et de ses propriétés durant son cycle de vie. Il n’ est dès lors pas possible de rénover le matériau, ce qui réduit sa durée de vie.
Exposé de l’invention
L ’invention a donc pour but de remédier à ces inconvénients et de proposer un procédé de fabrication d’une pièce en matériau composite carbone/carbone dont la distribution des charges céramiques est homogène au sein du matériau obtenu et les propriétés mécaniques face à l’usure et au frottement optimisées permettant ainsi de prolonger la vie du matériau et notamment de le rénover.
Il est donc proposé un procédé de fabrication d’une pièce en matériau composite carbone/carbone, comprenant : la formation d’une préforme fibreuse, la densification partielle de la préforme fibreuse par une matrice carbonée formant une ébauche partiellement densifiée, l’imprégnation de l’ ébauche partiellement densifiée par une solution d’imprégnation comportant des précurseurs de céramique ou des particules céramiques, et le séchage de l’ ébauche imprégnée.
En outre, le procédé de fabrication comprend le contrôle de la viscosité de la solution d’imprégnation afin de contrôler l’homogénéité de la répartition lors du séchage des particules de céramique ou des précurseurs de céramique au sein de l’ ébauche. De préférence, la viscosité de la solution d’imprégnation est contrôlée de façon à maintenir une valeur de viscosité dynamique comprise entre 12 et 700 mPa s.
Selon un mode de réalisation, la solution d’imprégnation peut comprendre une solution de type sol/gel comportant des précurseurs céramiques, de préférence un dérivé de zirconium, titane, yttrium, hafnium ou tantale, ou un mélange de ces dérivés.
Selon un autre mode de réalisation, la solution d’imprégnation peut comprendre une dispersion colloïdale de particules céramiques, de préférence le dioxyde de zirconium, dioxyde de titane, oxyde d’yttrium(III), dioxyde d’hafnium, pentoxyde de tantale ou un mélange de plusieurs de ceux-ci.
De préférence, la solution d’imprégnation comprend une fraction massique en zirconium, titane, yttrium, hafnium ou tantale ou du mélange de plusieurs de ceux-ci comprise entre 3 et 15%.
De préférence, la solution d’imprégnation comporte des macromolécules de précurseurs céramiques ou des particules céramiques de taille moyenne inférieure ou égale à I pm.
Selon un exemple de réalisation, le procédé de fabrication peut comprendre le contrôle de la gélification partielle de la solution de type sol/gel.
Selon un autre exemple de réalisation, au moins un additif épaississant peut être ajouté à la solution d’imprégnation, de préférence un polymère de la famille des poloxamères, de préférence encore les polymères tri-bloc de formule générale poly(oxyde d’éthylènejx- poly(oxyde de propylène)n-poly(oxyde d’ éthylènejm, m et n sont fixés par le procédé de synthèse du fabricant.
En variante, le procédé de fabrication peut aussi comprendre la formulation d’une solution d’imprégnation de viscosité prédéterminée.
Brève description des dessins
D ’ autres buts, avantages et caractéristiques ressortiront de la description qui va suivre, donnée à titre purement illustratif et faite en référence aux dessins annexés sur lesquels : [Fig 1 ] illustre un procédé de fabrication d’un matériau composite carbone/carbone selon un mode de réalisation conforme à l’invention.
[Fig 2] est un graphique représentant le gradient de charge d’un matériau composite carbone/carbone obtenu selon trois exemples de compositions d’une solution d’imprégnation de type sol/gel.
[Fig 3] est un graphique représentant le gradient de charge d’un matériau composite carbone/carbone obtenu selon quatre exemples de compositions d’une solution d’imprégnation de type dispersion colloïdale.
Exposé détaillé d’un mode de réalisation
Dans ce qui va suivre, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans l’ expression « compris entre ».
La figure 1 illustre un procédé de fabrication d’une pièce en matériau composite carbone/carbone selon un mode de réalisation de l’invention.
Dans une première étape 100, une préforme carbonée est formée. Dans l’exemple illustré, la préforme est fibreuse. La forme de la pièce à réaliser, par exemple un disque de frein, peut avantageusement être donnée à la préforme.
Dans une deuxième étape 200, la préforme carbonée est partiellement densifiée par une matrice de pyrocarbone afin de combler, en partie seulement, la porosité de la préforme, formant une ébauche carbonée partiellement densifiée. La densification est, par exemple, réalisée par infiltration chimique en phase gazeuse (CVI).
Avantageusement, le taux de porosité de l’ ébauche carbonée partiellement densifiée peut être compris entre 47 et 72% volumique.
Une imprégnation du matériau composite obtenu par une solution d’imprégnation comprenant des particules céramiques ou des précurseurs de céramique est ensuite réalisée dans une étape suivante 300. Selon un exemple de réalisation, la solution d’imprégnation peut être une solution de type sol/gel comportant des précurseurs céramiques.
Les précurseurs céramiques pourront être choisis parmi : un dérivé d’un composé céramique tel que le zirconium, titane, yttrium, hafnium ou tantale, ou encore un mélange de plusieurs de ces dérivés. Selon une alternative de réalisation, la solution d’imprégnation peut être une dispersion colloïdale.
La dispersion colloïdale pourra comprendre, avantageusement, du dioxyde de zirconium, dioxyde de titane, oxyde d’yttrium(III), dioxyde d’hafnium, pentoxyde de tantale ou un mélange de plusieurs de ceux-ci.
De préférence, la solution d’imprégnation de type sol/gel ou dispersion colloïdale comprend une fraction massique en zirconium, titane, yttrium, hafnium ou tantale ou du mélange de plusieurs de ceux-ci comprise entre 3 et 15%.
De plus, la solution d’imprégnation comportera, de préférence, des macromolécules de précurseurs de céramique ou des particules céramiques de taille moyenne inférieure ou égale à I pm.
Comme tel est le cas dans l’ exemple illustré, l’imprégnation peut être réalisée sous vide, avantageusement à une pression comprise entre 0.1 et 0.5mbar, à température ambiante pendant une durée de 30 minutes à I h.
Selon l’invention, la viscosité de la solution d’imprégnation est contrôlée. En d’ autres termes, l’ ébauche carbonée partiellement densifiée est imprégnée par une solution d’imprégnation de viscosité prédéterminée, choisie telle qu’ elle permet une répartition homogène au sein du matériau des particules céramiques contenues dans la solution d’imprégnation.
De préférence, la valeur de la viscosité dynamique de la solution d’imprégnation est comprise entre 12 et 700 mPa s, considérée à température ambiante, autour de 23°C .
De préférence, la valeur de la viscosité de la solution d’imprégnation est contrôlée au cours du temps, par exemple à différents instants, de façon à être maintenue dans cette plage de valeur, c ’ est-à-dire comprise entre 12 et 700 mPa s, afin de garantir lors du séchage une répartition homogène des particules céramiques contenues dans la solution d’imprégnation.
La borne inférieure de la plage de valeurs de viscosité dynamique ci-dessus est fixée par l’obtention d’un matériau hétérogène avec une solution de viscosité inférieure. De plus, la borne supérieure est fixée par l’impossibilité d’imprégner le matériau avec une solution de viscosité supérieure. La viscosité de la solution d’imprégnation peut être contrôlée en ajustant directement la formulation d’une solution d’imprégnation afin qu’ elle possède une viscosité prédéterminée.
Selon un autre exemple, au moins un additif épaississant peut être ajouté à la solution d’imprégnation. De préférence un polymère de la famille des poloxamères, de préférence encore les polymères tri-bloc de formule générale poly(oxyde d’ éthylène)x-poly(oxyde de propylènejn- poly(oxyde d’ éthylènejm, m et n sont fixés par le procédé de synthèse du fabricant. Par exemple, le Pluronic® L44 ou le Tergitol® L64 peuvent être utilisés.
En alternative, dans le cas d’une solution d’imprégnation de type sol/gel, le procédé de fabrication peut comprendre le contrôle de la viscosité par le contrôle de la gélification partielle de la solution de type sol/gel.
Le procédé de fabrication comprend ensuite une étape de séchage 400 du matériau imprégné.
Dans l’ exemple illustré, le séchage est réalisé, de préférence, à pression atmosphérique, à une température comprise entre 60 et 100°C, pendant 48h à 72h et, avantageusement, sous atmosphère inerte, par exemple sous azote.
Le matériau peut ensuite être soumis à un traitement thermique, selon une étape suivante 500, pour permettre la conversion du ou des précurseur(s) céramique(s) en oxyde(s).
Le traitement thermique peut également être effectué pour réaliser la pyrolyse d’éventuels additifs tels qu’un épaississant ou encore un tensioactif.
Dans l ’ exemple illustré, le traitement thermique est, de manière avantageuse, réalisé à une température comprise entre 600 et 1700°C, de préférence sous flux d’ azote et sous vide, à une pression inférieure à la pression atmosphérique.
En outre, le procédé de fabrication peut comprendre une étape suivante 600 de densification du matériau composite carbone/carbone ainsi chargé en particules céramiques, avantageusement par infiltration chimique en phase gazeuse, par la matrice pyrocarbone, afin de combler la porosité résiduelle.
De préférence, la densité finale du matériau composite carbone/carbone est supérieure à 1700g/cm3.
Avantageusement, la fraction massique finale en dérivé de zirconium, titane, yttrium, hafnium ou tantale du matériau composite carbone/carbone obtenu peut être comprise entre 1 et 10%.
La composition des particules est, préférentiellement, de manière dominante ZrOxCy, TiOxCy, HfOxCy, avec x compris entre 0 et 2 et y compris entre 0 et 1 ou YwOxCy avec w compris entre 1 et 2, x compris entre 0 et 3 et y compris entre 0 et 1 , ou TawOxCy avec w compris entre 1 et 2, x compris entre 0 et 5 et y compris entre 0 et 1 .
Exemples A, B et C : solutions d’imprégnation de type sol/gel :
Trois pièces en matériau composite carbone/carbone ont été fabriquées selon le procédé de fabrication illustré ci-dessus. Trois formulations de solution d’imprégnation ont été testées.
La matrice est en pyrocarbone et le taux de porosité ouverte de l’ ébauche carbonée partiellement densifiée par la matrice est compris entre 62% et 72%.
La composition de trois exemples de solution d’imprégnation ainsi que les valeurs de viscosité de ces compositions mesurées sont présentées dans le Tableau 1 ci-dessous.
[Tableau 1 ]
Figure imgf000009_0001
La composition de la solution d’imprégnation de type sol/gel de chaque exemple A, B et C comprend du butoxyde de zirconium dilué dans un mélange butanol/éthanol en présence d’ eau, d’ acide chlorhydrique et d’ acétyle acétone.
Dans les exemples illustrés, la viscosité de la solution d’imprégnation est mesurée à l’ aide d’un viscosimètre rotatif. L’ échantillon de matériau composite carbone/carbone obtenu selon chaque formulation est thermostaté grâce à un montage à double-enveloppe dont la température du fluide caloporteur est réglée à 23°C . Trois mesures ont été réalisées sur chaque échantillon. La vitesse du mobile a été fixée à 30 tours/min. La valeur finale de viscosité indiquée dans le tableau 1 correspond à la moyenne des trois mesures.
L ’ exemple A correspond à une solution d’imprégnation sans précaution de contrôle de la viscosité.
L ’ exemple B correspond à une solution d’imprégnation incorporant un additif épaississant, le Pluronic® L44, visant à augmenter la viscosité de la solution.
Enfin, l’ exemple C correspond à une solution d’imprégnation dont le sol/gel est partiellement gélifié.
Le mélange sol/gel évolue dans le temps compte tenu de la polymérisation du butoxyde de zirconium. Cette évolution se traduit par une augmentation de la viscosité au cours du temps jusqu’ à gélification totale du mélange.
Par gélification partielle, on entend, une gélification du sol/gel jusqu’à la viscosité désirée. Cette maîtrise de la gélification peut être obtenue soit par contrôle de la durée d’ évolution donnée à température ambiante et pression atmosphérique, soit en accélérant le processus par un chauffage du sol/gel sous atmosphère inerte. Dans l’exemple illustré, l’ évolution de la viscosité du sol/gel a été suivie jusqu’ à obtention de la valeur cible désirée.
La distribution des charges céramiques de matériaux composites carbone/carbone obtenus par imprégnation d’ ébauches partiellement densifiées par les compositions des exemples A, B et C est contrôlée après traitement thermique par mesure du gradient de charge du cœur vers les bords du matériau.
Le gradient de charge a été mesuré pour chaque exemple et les résultats sont présentés sur le graphique de la figure 2.
Une valeur de 1 est associée à un matériau homogène. Une valeur inférieure à 1 traduit un excès de charges céramiques au cœur du matériau composite carbone/carbone, et une valeur supérieure à 1 traduit un excès de charges céramiques au bord du matériau, dans cet exemple sur les faces du disque de frein.
La mesure du gradient de charge peut être mesurée par mesure du taux de cendres au cœur et sur les faces de l’ échantillon. Cette technique consiste à évaluer la masse de cendres restante après calcination du matériau.
Des éprouvettes calibrées du matériau à évaluer sont oxydées sous air à 1000°C pendant 15h afin d’ éliminer le carbone et de ne garder que le composé céramique. Le gradient est ensuite calculé en faisant le rapport des taux de cendres de chaque face avec celui du cœur.
Dans les exemples illustrés, la mesure du gradient de charge a été réalisée par mesure du taux de cendres.
Selon une alternative, le gradient de charge peut être mesuré par spectrométrie à plasma à couplage inductif (ICP), et calcul du rapport du taux de charges de chaque face du matériau avec celui du cœur.
Comme on peut le voir sur la figure 3 , l’ exemple A dont la viscosité n’est pas contrôlée, présente un gradient de charge d’ environ 2,5 , c’ est-à- dire, largement supérieur à 1 . Le matériau présentant une forte hétérogénéité de distribution des charges céramiques, les charges céramiques étant majoritairement présentes au niveau des bords du matériau.
Au contraire, les matériaux obtenus à partir de l’imprégnation par une solution d’imprégnation selon les compositions des exemples B et C dont la viscosité est contrôlée présentent un gradient de charge, respectivement, de 1 , 1 et 1 , traduisant une répartition homogène.
Lorsque la viscosité de la solution d’imprégnation est suffisante c’ est-à-dire comprise dans la plage de valeurs prédéterminée, avantageusement entre 12 et 700 mPa s, le matériau obtenu présente une distribution de charges homogène.
Exemples D, E, F et G : solutions d’imprégnation de type dispersion colloïdale :
Quatre compositions de solution d’imprégnation ont été préparées, correspondant aux exemples D, E, F et G, les formulations étant présentées dans le tableau 2 ci-dessous.
Le protocole expérimental est similaire aux exemples A, B et C, cependant, la solution de type sol/gel est remplacée par une dispersion colloïdale.
[Tableau 2]
Figure imgf000012_0001
L ’ exemple D correspond à une solution d’imprégnation sans précaution de contrôle de la viscosité, peu visqueuse, c’ est-à-dire, dans l’exemple illustré, de viscosité inférieure à 12 mPa s.
L ’ exemple E correspond à une solution d’imprégnation comprenant un additif épaississant, le Tergitol® L64 visant à augmenter la viscosité de la solution.
Enfin, les exemples F et G correspondent à des solutions d’imprégnation directement formulées pour avoir une viscosité prédéterminée, moyennement visqueuse, respectivement de 29,74 mPa s et 14, 14 mPa s.
Le gradient de charge a été mesuré pour chaque exemple et les résultats sont présentés sur le graphique de la figure 3. Comme on peut le voir sur la figure 3 , la composition de l’ exemple
D de viscosité inférieure à la plage de valeurs prédéterminée conduit à un gradient de charge largement supérieur à 1 , c ’ est-à-dire une répartition hétérogène des particules céramiques au sein du matériau.
Au contraire, les compositions des exemples E, F et G conduisent à une distribution particulièrement homogène.
Comme cela a été également démontré dans les exemples de solution d’imprégnation sol/gel, lorsque la viscosité de la solution d’imprégnation est contrôlée, c’ est-à-dire comprise dans la plage de valeurs prédéterminée, avantageusement comprise entre 12 et 700 mPa s, le matériau obtenu présente une distribution de charge homogène.
Il en résulte un matériau composite carbone/carbone aux propriétés homogènes tout au long de sa vie. Ce matériau peut donc être rénové, ce processus permettant d’allonger sa durée de vie.

Claims

REVENDICATIONS
1. Procédé de fabrication d’une pièce en matériau composite carbone/carbone, comprenant : la formation ( 100) d’une préforme carbonée fibreuse, la densification partielle (200) de la préforme par une matrice de pyrocarbone afin d’obtenir une ébauche partiellement densifiée, l ’imprégnation (300) de l’ébauche partiellement densifiée par une solution d’imprégnation comportant des particules de céramique ou des précurseurs de céramique, et le séchage (400) de l’ ébauche imprégnée, caractérisé en ce que l’on contrôle la viscosité de la solution d’imprégnation afin de contrôler l’homogénéité de la répartition des particules céramiques au sein de la pièce du matériau composite imprégné lors du séchage, la viscosité de la solution d’imprégnation étant contrôlée de façon à maintenir une valeur de viscosité dynamique comprise entre 12 et 700 mPa s.
2. Procédé de fabrication selon la revendication 1 , caractérisé en ce que la solution d’imprégnation comprend une solution de type sol/gel comportant des précurseurs de céramique, de préférence un dérivé de zirconium, titane, yttrium, hafnium ou tantale, ou un mélange de plusieurs de ces dérivés.
3. Procédé de fabrication selon la revendication 2, caractérisé en ce qu’il comprend le contrôle de la gélification partielle de la solution de type sol/gel par gélification du sol/gel jusqu’ à la viscosité désirée, la gélification partielle étant obtenue soit par contrôle de la durée d’ évolution donnée à température ambiante et pression atmosphérique, soit en accélérant le processus par un chauffage du sol/gel sous atmosphère inerte.
4. Procédé de fabrication selon la revendication 1 , caractérisé en ce que la solution d’imprégnation comprend une dispersion colloïdale de particules de céramique, de préférence le dioxyde de zirconium, dioxyde de titane, oxyde d’yttrium(III), dioxyde d’hafnium, pentoxyde de tantale ou un mélange de plusieurs de ceux-ci.
5. Procédé de fabrication selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la solution d’imprégnation comprend une fraction massique en zirconium, titane, yttrium, hafnium ou tantale ou du mélange de plusieurs de ceux-ci comprise entre 3 et 15%.
6. Procédé de fabrication selon l’une quelconque des revendications 1 à 5 , caractérisé en ce que la solution d’imprégnation comporte des macromolécules de précurseurs de céramique ou des particules de céramique de taille moyenne inférieure ou égale à I pm.
7. Procédé de fabrication selon l’une quelconque des revendications 1 à 6, caractérisé en ce qu’ au moins un additif épaississant est ajouté à la solution d’imprégnation, de préférence un polymère de la famille des poloxamères.
8. Procédé de fabrication selon l’une quelconque des revendications 1 à 6, caractérisé en ce qu’il comprend la formulation d’une solution d’imprégnation de viscosité prédéterminée.
PCT/FR2022/050155 2021-01-29 2022-01-27 Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées WO2022162320A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280012368.2A CN116761787A (zh) 2021-01-29 2022-01-27 用于制造机械性能得以改进的由碳/碳复合材料制成的部件的方法
US18/274,789 US20240083822A1 (en) 2021-01-29 2022-01-27 Method for manufacturing a part made of carbon/carbon composite material with improved mechanical properties
EP22705440.0A EP4284770A1 (fr) 2021-01-29 2022-01-27 Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100842A FR3119388B1 (fr) 2021-01-29 2021-01-29 Procédé de fabrication d’une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées
FRFR2100842 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022162320A1 true WO2022162320A1 (fr) 2022-08-04

Family

ID=75746801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050155 WO2022162320A1 (fr) 2021-01-29 2022-01-27 Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées

Country Status (5)

Country Link
US (1) US20240083822A1 (fr)
EP (1) EP4284770A1 (fr)
CN (1) CN116761787A (fr)
FR (1) FR3119388B1 (fr)
WO (1) WO2022162320A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967170A1 (fr) 2010-11-10 2012-05-11 Messier Bugatti Procede de fabrication d'une piece de friction a base de materiau composite c/c
US20150166410A1 (en) * 2013-12-18 2015-06-18 Honeywell International Inc. Composite materials including ceramic particles and methods of forming the same
US20170175833A1 (en) * 2015-12-18 2017-06-22 Goodrich Corporation Systems and methods for carbon-carbon materials incorporating yttrium and zirconium compounds
WO2019175501A1 (fr) * 2018-03-13 2019-09-19 Safran Ceramics Composite a matrice ceramique oxyde/oxyde

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967170A1 (fr) 2010-11-10 2012-05-11 Messier Bugatti Procede de fabrication d'une piece de friction a base de materiau composite c/c
US20150166410A1 (en) * 2013-12-18 2015-06-18 Honeywell International Inc. Composite materials including ceramic particles and methods of forming the same
US20170175833A1 (en) * 2015-12-18 2017-06-22 Goodrich Corporation Systems and methods for carbon-carbon materials incorporating yttrium and zirconium compounds
WO2019175501A1 (fr) * 2018-03-13 2019-09-19 Safran Ceramics Composite a matrice ceramique oxyde/oxyde

Also Published As

Publication number Publication date
FR3119388B1 (fr) 2023-10-06
US20240083822A1 (en) 2024-03-14
FR3119388A1 (fr) 2022-08-05
CN116761787A (zh) 2023-09-15
EP4284770A1 (fr) 2023-12-06

Similar Documents

Publication Publication Date Title
EP2356085B1 (fr) Procede pour le lissage de la surface d'une piece en materiau cmc
EP2253604B1 (fr) Piece à base de matériau composite c/c et procédé pour sa fabrication
EP2930162B1 (fr) Protection contre l'oxydation de pièces en matériau composite contenant du carbone
EP2637986B1 (fr) Procede de fabrication d'une piece de friction a base de materiau composite c/c.
FR2983193A1 (fr) Procede de fabrication de piece en materiau cmc
WO2010112768A1 (fr) Procede pour le lissage de la surface d'une piece en materiau cmc.
FR3078331A1 (fr) Procede de protection contre l'oxydation d'une piece en materiau composite
CA2919590A1 (fr) Procede de fabrication de pieces en materiau composite par impregnation a basse temperature de fusion
EP2753595B1 (fr) Procédé de formation sur un substrat en materiau composite a matrice céramique contenant du sic d'un revêtement lisse d'aspect glacé et pièce en matériau composite a matrice céramique munie d'un tel revêtement
WO2014053751A1 (fr) Procede de fabrication d'une piece aerodynamique par surmoulage d'une enveloppe ceramique sur une preforme composite
EP3215331B1 (fr) Procédé de densification de poudres de polyarylene-éther-cétone (paek), utilisation d'une telle poudre densifiée, et objet fabriqué à partir d'une telle poudre
WO2012076797A1 (fr) Materiaux et pieces resistants a haute temperature en milieu oxydant et leur procede de fabrication
WO2022162320A1 (fr) Procédé de fabrication d'une pièce en matériau composite carbone/carbone aux propriétés mécaniques améliorées
EP1648842B1 (fr) Protection contre l oxydation de pieces en materiau composit e contenant du carbone et pieces ainsi protegees
EP2704896B1 (fr) Protections thermiques obtenues par procede d'enroulement filamentaire et méthode de fabrication correspondante
EP2906517A1 (fr) Procede de traitement local d'une piece en materiau composite poreux
EP0072306A1 (fr) Procédé de préparation d'un matériau composite comportant une matrice inorganique dans laquelle sont reparties des inclusions de carbone vitreux, matériau obtenu par ce procédé et son utilisation comme contact électrique
FR3084894A1 (fr) Revetement ceramique pour noyau de fonderie
FR3067960A1 (fr) Procede de fabrication d'une preforme fibreuse chargee de particules
WO2012140342A1 (fr) Procede de fabrication de composants par pim, base sur l'utilisation de fibres ou fils organiques, avantageusement couplee a l'utilisation de co2 supercritique
WO2023126605A1 (fr) Composition pour la fabrication directe d'un matériau composite à matrice céramique
FR2642748A1 (fr) Materiau de frottement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22705440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274789

Country of ref document: US

Ref document number: 202280012368.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022705440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022705440

Country of ref document: EP

Effective date: 20230829