WO2022161178A1 - 一种带阻滤波器和多阻带滤波器 - Google Patents

一种带阻滤波器和多阻带滤波器 Download PDF

Info

Publication number
WO2022161178A1
WO2022161178A1 PCT/CN2022/071703 CN2022071703W WO2022161178A1 WO 2022161178 A1 WO2022161178 A1 WO 2022161178A1 CN 2022071703 W CN2022071703 W CN 2022071703W WO 2022161178 A1 WO2022161178 A1 WO 2022161178A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric resonator
band
dielectric
stop
resonance
Prior art date
Application number
PCT/CN2022/071703
Other languages
English (en)
French (fr)
Inventor
赵国帅
梁丹
王永彪
俞熹
刘止愚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022161178A1 publication Critical patent/WO2022161178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a band-stop filter and a multi-stop band filter.
  • band-stop filter is a commonly used device.
  • a band-stop filter is a filter that suppresses signals in a certain frequency band and allows signals in other frequency bands to pass.
  • a band-stop filter 100 including a dielectric block, an external electrode 102 , a resonance hole 106 , a capacitor pattern 110 , a coupling pattern 108 , an input electrode 112 and an output electrode 114 .
  • the plurality of resonance holes 106 are arranged in a straight line, and the resonance holes 106 are separated by a quarter wavelength.
  • the input electrode 112 and the output electrode 114 are connected by the strip pattern 120 , so that a specific frequency band is blocked by the capacitor pattern 110 , the coupling pattern 108 and the resonance hole 106 when the signal input through the strip pattern 120 is transmitted.
  • FIG. 2 is a schematic circuit diagram of the band-stop filter 100 .
  • the input electrode 112 and the output electrode 114 are connected by a strip pattern 120, and the strip pattern 120 is coupled to the dielectric resonator 201, the dielectric resonator 202, the dielectric resonator 203, and the dielectric resonator 204, respectively, each dielectric resonator
  • the resonant hole 106 and the capacitance pattern 110 are included. It can be seen that the plurality of dielectric resonators are in a linear cavity row topology, and the suppression degree of the band-stop filter 100 is positively related to the length of the band-stop filter 100. When the length of the band-stop filter 100 is limited, the specified frequency band restraint is limited.
  • the present application provides a band-stop filter, which can improve the suppression degree of the band-stop filter to a specified frequency band under the condition of limited length.
  • a first aspect provides a band-stop filter, the band-stop filter includes a connected resonance module and a dielectric substrate; the resonance module includes an input port, a first dielectric resonator, a second dielectric resonator, a first resonance unit and an output port, the input port is coupled with the first dielectric resonator, the output port is coupled with the second dielectric resonator, a coupling pattern is set between the first dielectric resonator and the second dielectric resonator, and there is a dielectric resonator in the first resonance unit There is a coupling pattern between the resonator and the first dielectric resonator, and a transmission conductor is arranged inside the dielectric substrate.
  • the input end of the transmission conductor is connected to the input port through the first conductive hole, and the output end of the transmission conductor is connected to the input port through the second conductive hole. Output port connection.
  • the first resonance unit includes at least one dielectric resonator.
  • the length of the transmission conductor may be, but is not limited to, quarter wavelength.
  • the transmission conductor is not coupled to the dielectric resonator of the first resonance unit.
  • one of the dielectric resonators in the first resonance unit is coupled to the first dielectric resonator, and the first dielectric resonator is coupled to the transmission conductor.
  • Each dielectric resonator is in a resonant cavity, and the above-mentioned two resonator cavities form inter-cavity coupling.
  • Multiple resonator cavities with inter-cavity coupling have a higher suppression degree than a single resonator cavity, so the band-rejection filter of the present application has better suppression performance than the band-rejection filter of two dielectric resonators.
  • the band-stop filter of the present application and the linear-type cavity-arranged band-stop filter include the same number of dielectric resonators, the band-stop filter of the present application is shorter, and occupies a smaller area of the circuit board, and has more advantages. Facilitates deployment on circuit boards.
  • the first resonance unit includes a dielectric resonator, and the dielectric resonator of the first resonance unit is disposed above the first dielectric resonator. This provides an implementation of the first resonance unit.
  • the first resonance unit includes a dielectric resonator, and the dielectric resonator of the first resonance unit and the first dielectric resonator are on the same horizontal plane and adjacent to each other.
  • the first resonance unit includes a third dielectric resonator and a fourth dielectric resonator, a coupling pattern is provided between the third dielectric resonator and the first dielectric resonator, and the fourth dielectric resonator A coupling pattern is provided between the third dielectric resonator.
  • the resonant cavity where the first dielectric resonator is located is recorded as the first resonant cavity
  • the resonant cavity where the third dielectric resonator is located is recorded as the third resonant cavity
  • the resonant cavity where the fourth dielectric resonator is located is recorded as the fourth resonant cavity, so that the first resonant cavity Coupled with the third resonant cavity, the third resonant cavity is coupled with the fourth resonant cavity, so as to realize a three-layer resonant cavity, which provides another implementation manner of the first resonant unit.
  • the band-stop filter further includes a second resonance unit, and a coupling pattern is provided between a dielectric resonator and the second dielectric resonator in the second resonance unit.
  • the second resonance unit includes at least one dielectric resonator.
  • a coupling pattern is provided between adjacent dielectric resonators.
  • Multi-layer cavities refer to resonant cavities arranged in multiple layers.
  • an isolation pattern is provided between the first resonance unit and the second resonance unit, and the isolation pattern is used to prevent the dielectric resonator in the first resonance unit and the dielectric resonator in the second resonance unit coupling.
  • the isolation pattern is a metallization pattern capable of increasing isolation.
  • the first resonant unit and the second resonant unit are adjacent and not coupled, so that a compact resonant module is provided, which contributes to the miniaturization of the band-stop filter.
  • the transmission conductor is a curved transmission line, and the distance between the input end of the curved transmission line and the output end of the curved transmission line is less than a preset distance.
  • the curved transmission line can be deployed in a shorter band-stop filter, and the curved transmission line is less stressed than the straight transmission line and has a longer service life.
  • the dielectric substrate further includes at least one metal hole, and the metal hole is used to increase the isolation degree between the input port and the output port.
  • the metal hole is used to increase the isolation degree between the input port and the output port.
  • all or part of the metal holes are provided in the area surrounded by the curved transmission line.
  • the band-stop filter further includes a metal shielding cover connected to the front surface of the resonant module.
  • the metal shield cover can reduce the resonant frequency and reduce the harmonic leakage of the resonant module.
  • the transmission conductor is a straight transmission line. This provides another transmission conductor.
  • each dielectric resonator in the resonance module includes a resonance hole and a capacitance pattern connected with the resonance hole.
  • the resonance hole is a via hole opened on the dielectric body, and the axis of the resonance hole is parallel to the horizontal plane.
  • the capacitor pattern may be a metal pattern equivalent to a capacitor.
  • each dielectric resonator in the resonance module is a TEM mode dielectric resonator, a TE mode dielectric resonator or a TM mode dielectric resonator.
  • a second aspect provides a multi-stop band filter
  • the multi-stop band filter includes at least two band-stop filters, and an isolation unit is provided between adjacent band-stop filters.
  • the stop band of each band stop filter is different from the stop band of the other band stop filters, so that multiple frequency bands can be suppressed.
  • the band-stop filter is the band-stop filter in any implementation manner of the first aspect.
  • the isolation unit is an isolation pattern.
  • the isolation pattern is a metallization pattern capable of improving isolation.
  • the isolation unit is an isolation hole. Isolation holes are metallized vias, which can improve the isolation between the band-stop filters around the isolation holes.
  • the isolation unit includes an isolation pattern and an isolation hole. This can further improve the isolation between the band-stop filters.
  • a third aspect provides an electronic device, where the electronic device includes the band-stop filter in any one of the implementations of the first aspect.
  • a fourth aspect provides an electronic device including the multi-stop band filter in any one of the implementations of the second aspect.
  • Fig. 1 is a structural representation of existing band-stop filter
  • Fig. 2 is a circuit schematic diagram of the existing band-stop filter
  • FIG. 3 is a schematic structural diagram of a band-stop filter in an embodiment of the application.
  • 4a is another schematic structural diagram of a band-stop filter in an embodiment of the present application.
  • 4b is a schematic circuit diagram of a band-stop filter in an embodiment of the present application.
  • 4c is another schematic structural diagram of the band-stop filter in the embodiment of the present application.
  • 5a is another schematic structural diagram of a band-stop filter in an embodiment of the present application.
  • FIG. 5b is another schematic structural diagram of a band-stop filter in an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of a band-stop filter in an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a band-stop filter in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a transmission conductor in an embodiment of the application.
  • FIG. 9 is a schematic diagram of the suppression performance of the band-stop filter in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a multi-stop band filter in an embodiment of the present application.
  • the band-stop filter of the present application can be applied to electronic equipment, and the electronic equipment may be, but not limited to, communication equipment.
  • the transmission mode of the transverse electromagnetic wave is the TEM mode
  • the TEM mode is a waveguide mode without electric field and magnetic field components in the propagation direction of the electromagnetic wave.
  • the transmission mode of the transverse wave is the TE mode, which is a waveguide mode with a magnetic field component but no electric field component in the propagation direction of the electromagnetic wave.
  • the transmission mode of the transverse magnetic wave is the TM mode.
  • the band stop filter includes a TE band stop filter, a TM band stop filter and a TEM band stop filter.
  • the bandstop filter of the present application may be a TE bandstop filter, a TM bandstop filter, or a TEM bandstop filter.
  • the suppression degree of the band-rejection filter is positively related to the number of resonant cavities. Linear The shorter the cavity, the lower the suppression. The longer the linear cavity, the higher the degree of suppression. However, the area of the circuit board is limited, so under the limited length, the performance of the band-stop filter with linear cavity row is often difficult to meet the actual requirements.
  • the present application provides a band-stop filter with inter-cavity coupling, which can improve the suppression degree of the band-stop filter in a limited length.
  • the band-stop filter of the present application is introduced as follows:
  • an embodiment of the band-stop filter 300 of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the coupling pattern 306 between the first dielectric resonator 303 and the second dielectric resonator 304 may be set close to the dielectric substrate 302 , or may be set away from the dielectric substrate 302 .
  • the first resonance unit 305 includes at least one dielectric resonator, and a coupling pattern 306 is provided between one of the dielectric resonators and the first dielectric resonator 303 in the first resonance unit 305 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the first conductive hole 312 and the second conductive hole 313 may be metallized vias.
  • the base of the resonance module 301 is a dielectric body.
  • the dielectric body and the dielectric substrate 302 are fixedly connected by welding.
  • the dielectric constant of the dielectric body and the dielectric constant of the dielectric substrate 302 may be the same or different.
  • Each dielectric resonator in the resonance module 301 includes a resonance hole and a capacitance pattern connected to the resonance hole.
  • the resonance frequency of the dielectric resonator is related to the size of the resonance hole and the size of the capacitance pattern.
  • the material, shape and size of the capacitor pattern can be set according to the actual situation, which is not limited in this application.
  • the resonance hole is a via hole opened on the dielectric body.
  • the axis of the resonance hole is parallel to the horizontal plane.
  • the capacitor pattern connected to the resonance hole may be a metal pattern equivalent to a capacitor.
  • Each dielectric resonator in the resonance module 301 is a TEM mode dielectric resonator, a TE mode dielectric resonator or a TM mode dielectric resonator.
  • the multiple dielectric resonators of the resonance module 301 of the present application may be obtained by processing a dielectric body by an integral molding process.
  • the multiple dielectric resonators of the resonance module 301 are independent, and the resonance module 301 is composed of multiple independent dielectric resonators, one input port and one output port.
  • the coupling pattern 306 may be a metallization pattern, and the metallization pattern may be a metal strip or a metal line.
  • the outer surface of the resonance module 301 is provided with a metallized ground, and each coupling pattern 306 extends on the surface of the resonance module 301 so that the coupling pattern 306 is connected to the metallized ground.
  • the material, shape and size of the coupling pattern 306 can be set according to the actual situation, which is not limited in this application.
  • the coupling pattern 306 between the first resonator 303 and the second resonator 304 is a metal strip, and the length of the metal strip is determined according to a preset coupling degree, and the length of the metal strip determined in this way can make the first resonator 303 and the The coupling degree of the second resonator 304 is greater than the preset coupling degree, so as to achieve an ideal response.
  • the coupling pattern 306 may divide the resonant module 301 into a plurality of resonator cavities, each of which has a dielectric resonator therein.
  • the coupling pattern 306 between the first dielectric resonator 303 and the second dielectric resonator 304, the coupling pattern 306 between the first dielectric resonator 303 and the first resonance unit 305, and the first dielectric resonator 303 may form a first resonance cavity.
  • the coupling pattern 306 between the first dielectric resonator 303 and the second dielectric resonator 304 and the second dielectric resonator 304 may form a second resonant cavity.
  • the coupling pattern 306 between the first dielectric resonator 303 and the first resonance unit 305 and the first resonance unit 305 may form a third resonance cavity.
  • the first resonant cavity and the third resonant cavity form a two-layer resonant cavity
  • the first resonant cavity and the third resonant cavity form inter-cavity coupling
  • the two resonant cavities have a higher degree of suppression than a single resonant cavity.
  • a coupling pattern 306 is provided between adjacent dielectric resonators in the first resonance unit 305 . Since each dielectric resonator is in a cavity, a multi-layer cavity can be formed. The inter-cavity coupling of the multi-layer cavities can make the signal passing through the transmission conductor 309 approach or reach the transmission zero point in the specified frequency band, so the band-stop filter has excellent suppression performance for the specified frequency band.
  • the first dielectric resonator 303 and the second dielectric resonator 304 are coupled with the transmission conductor 309, and the other dielectric resonators are not coupled with the transmission conductor.
  • a band-stop filter is a multi-layer cavity-exhaust band-stop filter. filter. Multiple dielectric resonators with inter-cavity coupling have a higher suppression degree than a single dielectric resonator, so the band-rejection filter of this embodiment has better suppression performance than the band-rejection filter of two dielectric resonators.
  • the band-rejection filter of this embodiment and the linear-type cavity-arranged band-rejection filter include the same number of dielectric resonators, the band-rejection filter of this embodiment is shorter, occupies a smaller area of the circuit board, and saves more space. Facilitates deployment on circuit boards.
  • the coupling between resonator A and resonator B can be understood as the coupling between the resonator cavity where resonator A is located and the resonator cavity where resonator B is located.
  • the base of the resonant module is a dielectric body, and metallization can be performed on the surface of the dielectric body, and then part of the surface of the dielectric body is demetallized, so as to form capacitance patterns, coupling patterns or isolation patterns in the remaining regions.
  • the metallization can be, but is not limited to, silver plating.
  • the first resonance unit 305 may include one or more dielectric resonators.
  • the band-stop filter with different first resonant units is described in detail below:
  • FIG. 4a another embodiment of the band stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 is a dielectric resonator 305 , and a coupling pattern 306 is provided between the dielectric resonator 305 and the first dielectric resonator 303 .
  • the dielectric resonator 305 is located above the first dielectric resonator 303 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the material, structure and connection relationship of the output end 311 of 309 , the first conductive hole 312 and the second conductive hole 313 can be referred to above.
  • FIG. 4b is a schematic circuit diagram of the band-stop filter shown in FIG. 4a. 4b, the input port 307 and the output port 308 are connected by a transmission conductor 309, the input port 307 is coupled with the first dielectric resonator 303, the output port 308 is coupled with the second dielectric resonator 304, and the first dielectric resonator 303 is coupled with the second dielectric resonator 303.
  • the dielectric resonator 304 is coupled, and the first dielectric resonator 303 is coupled with the dielectric resonator 305 .
  • the dotted line represents the coupling.
  • the transmission conductor can be coupled with the dielectric resonator, or the dielectric resonator can be coupled with the dielectric resonator.
  • the input port 307 is coupled with the first dielectric resonator 303
  • the resonance unit 305 is coupled with the first dielectric resonator 303 .
  • a two-layer resonant cavity with inter-cavity coupling can be formed, which can improve the suppression degree of the specified frequency band.
  • FIG. 4c another embodiment of the band-stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 is a dielectric resonator 305 , and a coupling pattern 306 is provided between the dielectric resonator 305 and the first dielectric resonator 303 .
  • the dielectric resonator 305 and the first dielectric resonator 303 are on the same horizontal plane and adjacent to each other. It should be understood that the dielectric resonator 305 may be located in front of, behind, left or right of the first dielectric resonator 303 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the dielectric resonator 305 and the first dielectric resonator 303 are at the same level, but the circuit diagram of the band-stop filter is the circuit diagram shown in FIG. 4b. This provides another band-stop filter for inter-cavity coupling.
  • Dielectric substrate 302 Dielectric substrate 302, first dielectric resonator 303, second dielectric resonator 304, coupling pattern 306, input port 307, output port 308, transmission conductor 309, input end 310 of transmission conductor 309, output end 311 of transmission conductor 309 ,
  • the material, structure and connection relationship of the first conductive hole 312 and the second conductive hole 313 can be referred to above.
  • the first resonance unit 305 includes a dielectric resonator, which is coupled to the first dielectric resonator 303, and the dielectric resonator is connected to the first dielectric resonator 303.
  • the positional relationship is not limited to the above examples.
  • the first resonance unit 305 includes two dielectric resonators.
  • another embodiment of the band-stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 includes a third dielectric resonator 3051 and a fourth dielectric resonator 3052, a coupling pattern 306 is provided between the third dielectric resonator 3051 and the first dielectric resonator 303, and the fourth dielectric resonator 3052 is connected to the third dielectric resonator 3052.
  • a coupling pattern 306 is provided between the dielectric resonators 3051 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the third dielectric resonator 3051 is disposed above the first dielectric resonator 303
  • the fourth dielectric resonator 3052 is disposed above the third dielectric resonator 3051 .
  • Dielectric substrate 302 Dielectric substrate 302, first dielectric resonator 303, second dielectric resonator 304, coupling pattern 306, input port 307, output port 308, transmission conductor 309, input end 310 of transmission conductor 309, output end 311 of transmission conductor 309 , the first conductive hole 312 and the second conductive hole 313 can be referred to above.
  • FIG. 5b another embodiment of the band-stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 includes a third dielectric resonator 3051 and a fourth dielectric resonator 3052, a coupling pattern 306 is provided between the third dielectric resonator 3051 and the first dielectric resonator 303, and the fourth dielectric resonator 3052 is connected to the third dielectric resonator 3052.
  • a coupling pattern 306 is provided between the dielectric resonators 3051 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the first dielectric resonator 303, the third dielectric resonator 3051, and the fourth dielectric resonator 3052 are on the same horizontal plane, the third dielectric resonator 3051 is adjacent to the first dielectric resonator 303, and the fourth dielectric resonator 3052 is adjacent to the third dielectric resonator 3051 .
  • Dielectric substrate 302 Dielectric substrate 302, first dielectric resonator 303, second dielectric resonator 304, coupling pattern 306, input port 307, output port 308, transmission conductor 309, input end 310 of transmission conductor 309, output end 311 of transmission conductor 309 , the first conductive hole 312 and the second conductive hole 313 can be referred to above.
  • the first resonance unit may include more than three dielectric resonators, and the multiple dielectric resonators of the first resonance unit may be arranged horizontally or vertically, which is not limited in this application.
  • the band-stop filter 300 further includes a second resonance unit including at least one dielectric resonator, wherein one of the dielectric resonators is coupled to the second dielectric resonator 304 .
  • the first resonance unit and the second resonance unit may or may not be adjacent.
  • the situation where the resonator of the first resonance unit is not adjacent to the resonator of the second resonance unit is introduced:
  • another embodiment of the band stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 is a dielectric resonator 305
  • a coupling pattern 306 is provided between the dielectric resonator 305 and the first dielectric resonator 303 .
  • the dielectric resonator 305 and the first dielectric resonator 303 are on the same horizontal plane and adjacent to each other.
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the second resonance unit is a dielectric resonator 601
  • a coupling pattern 306 is provided between the dielectric resonator 601 and the second dielectric resonator 304
  • the dielectric resonator 601 and the second dielectric resonator 304 are on the same horizontal plane and adjacent to each other.
  • the resonant cavity where the first dielectric resonator 303 is located is coupled with the resonant cavity where the dielectric resonator 305 is located, and the above two resonant cavities can be considered as a two-layer resonant cavity.
  • the resonant cavity where the second dielectric resonator 304 is located is coupled with the resonant cavity where the dielectric resonator 601 is located, and the above two resonant cavities can be considered as another two-layer resonant cavity.
  • the resonant cavity has better suppression performance.
  • another embodiment of the band-stop filter of the present application includes:
  • the resonance module 301 includes a first dielectric resonator 303, a second dielectric resonator 304, a first resonance unit 305, an input port 307 and an output port 308;
  • the input port 307 is coupled to the first dielectric resonator 303
  • the output port 308 is coupled to the second dielectric resonator 304
  • a coupling pattern 306 is provided between the first dielectric resonator 303 and the second dielectric resonator 304 .
  • the first resonance unit 305 is a dielectric resonator 305 , and a coupling pattern 306 is provided between the dielectric resonator 305 and the first dielectric resonator 303 .
  • the dielectric resonator 305 is disposed above the first dielectric resonator 303 .
  • a transmission conductor 309 is provided inside the dielectric substrate 302 .
  • the input end 310 of the transmission conductor 309 is connected to the input port 307 through the first conductive hole 312
  • the output end 311 of the transmission conductor 309 is connected to the output port 308 through the second conductive hole 313 .
  • the second resonance unit is a dielectric resonator 701 , the dielectric resonator 701 is disposed above the second dielectric resonator 304 , and a coupling pattern 306 is disposed between the dielectric resonator 701 and the second dielectric resonator 304 .
  • An isolation pattern 702 is provided between the dielectric resonator 305 and the dielectric resonator 701 , and the isolation pattern 702 is used to increase the isolation between the dielectric resonator 305 and the dielectric resonator 701 so that the dielectric resonator 305 and the dielectric resonator 701 are not coupled.
  • the isolation pattern 702 is a metallization pattern capable of improving isolation.
  • the metallization pattern can be, but is not limited to, metal strips or metal lines.
  • the material, shape and size of the isolation pattern 702 can be set according to the actual situation, which is not limited in this application.
  • the resonant cavity where the first dielectric resonator 303 is located is coupled with the resonant cavity where the dielectric resonator 305 is located, and the above two resonant cavities can be considered as a two-layer resonant cavity.
  • the resonant cavity where the second dielectric resonator 304 is located is coupled with the resonant cavity where the dielectric resonator 701 is located, and the above two resonant cavities are another two-layer resonant cavity. Has better suppression performance.
  • the first resonance unit is adjacent to the second resonance unit and an isolation pattern is arranged between the first resonance unit and the second resonance unit, so that the band-stop filter has a simple and compact structure and excellent electrical performance.
  • the first resonance unit and/or the second resonance unit may include more than three dielectric resonators, so that more than three layers of resonance cavities can be formed, thereby further improving the suppression performance of the band-stop filter.
  • the dielectric resonators in the first resonance unit and the second resonance unit are arranged longitudinally, the suppression performance can be improved without increasing the area occupied by the circuit board.
  • the transmission conductor 309 is described below:
  • the transmission conductor 309 is a curved transmission line, and the distance between the input end 307 of the curved transmission line and the output end 308 of the curved transmission line is less than a predetermined distance.
  • the length of the transmission conductor 309 may be, but is not limited to, quarter wavelength.
  • the distance between the input end of the curved transmission line and the output end of the curved transmission line can be set to be much smaller than a quarter wavelength.
  • the dielectric substrate 302 further includes at least one metal hole, and the metal hole is used to increase the isolation between the input port and the output port.
  • the metal hole is provided in the area surrounded by the curved transmission line.
  • the input end 310 of the curved transmission line is connected to the first conductive hole 312
  • the output end 311 of the curved transmission line is connected to the second conductive hole 313 .
  • Seven metal holes 801 are provided in the area surrounded by the curved transmission line. It should be understood that the number of metal holes 801 is not limited to seven, and the present application does not limit the number of metal holes.
  • Metal vias 801 may be metallized vias. It should be understood that the shape and length of the curved transmission line can be set according to the actual situation, which is not limited in this application. The location of the metal hole is also not limited to the area surrounded by the curved transmission line.
  • the suppression performance of the band-stop filter will be introduced below.
  • the abscissa is frequency, in gigahertz (GHz).
  • the ordinate is the degree of suppression, and the unit is decibel.
  • S11 is the input reflection coefficient curve
  • S12 is the reverse transmission coefficient curve. It can be seen from Figure 9 that for the frequency band from 1.89GHz to 1.92GHz, S12 can reach below -20 decibels (dB), which indicates that the band-stop filter can suppress the frequency band from 1.89GHz to 1.92GHz well, and the echo bandwidth is higher than Wide, less loss.
  • dB decibels
  • the transmission conductor 309 is a straight transmission line.
  • the transmission conductor 309 may also be a silver wire, a copper wire or a microstrip wire.
  • the shape and material of the transmission conductor 309 are not limited to the above examples, and are not limited in this application.
  • the band-stop filter 300 further includes a metal shielding cover connected to the front side of the resonant module 301 .
  • the metal shielding cover can cover the resonant holes of each dielectric resonator in the resonant module 301 to reduce harmonic leakage and reduce the resonant frequency.
  • the present application further provides an electronic device, the electronic device comprising any one of the embodiments or optional embodiments shown in FIG. 3 , FIG. 4 a , FIG. 4 c , FIG. 5 a , FIG. 5 b , FIG. 6 or FIG. band stop filter.
  • one embodiment of the multi-stop band filter of the present application includes:
  • the first band stop filter 1001 and the second band stop filter 1002, the stop band of the first band stop filter 1001 is different from the stop band of the second band stop filter 1002;
  • An isolation unit is provided between the first band stop filter 1001 and the second band stop filter 1002 , and the isolation unit includes an isolation pattern 1003 and an isolation hole 1004 .
  • the isolation pattern 1003 is a metallization pattern capable of improving isolation.
  • Isolation holes 1004 may be, but are not limited to, metallized vias. Both the isolation pattern 1003 and the isolation hole 1004 can improve the isolation degree between the first band stop filter 1001 and the second band stop filter 1002 .
  • the first band stop filter 1001 and the second band stop filter 1002 may be integrally formed, or may be independent.
  • the number of band-stop filters in the multi-stop-band filter is not limited to two, and the number and stop bands of the band-stop filters can be set according to actual conditions. Stopband refers to the frequency band suppressed by the bandstop filter.
  • the isolation cells may be isolation patterns.
  • the material, shape and size of the isolation pattern can be set according to the actual situation, which is not limited in this application.
  • the isolation unit may be an isolation hole.
  • the present application further provides an electronic device including the multi-stop band filter in the embodiment shown in FIG. 10 or an optional embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种带阻滤波器包括:相连的谐振模块和介质衬底;谐振模块包括输入端口、第一介质谐振器、第二介质谐振器、第一谐振单元和输出端口,第一介质谐振器与第二介质谐振器之间设置有耦合图案,在第一谐振单元中有一个介质谐振器与第一介质谐振器之间设有耦合图案,介质衬底的内部设置有传输导体,传输导体的输入端通过第一导电孔与输入端口连接,传输导体的输出端通过第二导电孔与输出端口连接。每个介质谐振器在一个谐振腔内,这样可以形成多层排腔,利用多层排腔的腔间耦合可以提高谐振效果,对指定频带的抑制度更高。

Description

一种带阻滤波器和多阻带滤波器
本申请要求于2021年01月30日提交中国专利局、申请号为202110132027.6、申请名称为“一种带阻滤波器和多阻带滤波器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种带阻滤波器和多阻带滤波器。
背景技术
在通信领域中,带阻滤波器是一种常用的器件。带阻滤波器是指对某个频段的信号进行抑制,让其余频段的信号通过的滤波器。
参阅图1,目前有一种带阻滤波器100包括电介质块,外部电极102,谐振孔106,电容图案110,耦合图案108,输入电极112和输出电极114。多个谐振孔106采用直线型排列,谐振孔106相隔四分之一波长。输入电极112和输出电极114通过条形图案120连接,使得通过条形图案120输入的信号传输时,通过电容图案110、耦合图案108以及谐振孔106来阻止特定的频带。
图2为带阻滤波器100的电路示意图。参阅图2,输入电极112和输出电极114通过条形图案120连接,条形图案120分别与介质谐振器201、介质谐振器202、介质谐振器203、介质谐振器204耦合,每个介质谐振器包括谐振孔106和电容图案110。可以看出,多个介质谐振器呈直线型排腔拓扑,带阻滤波器100的抑制度与带阻滤波器100的长度正相关,当带阻滤波器100的长度受限时,对指定频带的抑制度有限。
发明内容
有鉴于此,本申请提供一种带阻滤波器,在限定长度的条件下能够提高带阻滤波器对指定频带的抑制度。
第一方面提供一种带阻滤波器,该带阻滤波器包括相连的谐振模块和介质衬底;谐振模块包括输入端口、第一介质谐振器、第二介质谐振器、第一谐振单元和输出端口,输入端口与第一介质谐振器耦合,输出端口与第二介质谐振器耦合,第一介质谐振器与第二介质谐振器之间设置有耦合图案,在第一谐振单元中有一个介质谐振器与第一介质谐振器之间设有耦合图案,介质衬底的内部设置有传输导体,传输导体的输入端通过第一导电孔与输入端口连接,传输导体的输出端通过第二导电孔与输出端口连接。第一谐振单元包括至少一个介质谐振器。传输导体的长度可以是但不限于四分之一波长。传输导体与第一谐振单元的介质谐振器不耦合。
在上述带阻滤波器中,第一谐振单元中的一个介质谐振器与第一介质谐振器耦合,第一介质谐振器与传输导体耦合。每个介质谐振器在一个谐振腔内,上述两个谐振腔形成腔间耦合。具有腔间耦合的多个谐振腔比单个谐振腔具有更高的抑制度,因此本申请的带阻滤波器比两个介质谐振器的带阻滤波器的抑制性能更好。在本申请的带阻滤波器与直线型 排腔的带阻滤波器包括相同数量的介质谐振器的情况下,本申请的带阻滤波器更短,而且占用电路板的面积更小,更有利于在电路板上部署。
在一种可能的实现方式中,第一谐振单元包括一个介质谐振器,第一谐振单元的介质谐振器设置在第一介质谐振器的上方。这样提供了第一谐振单元的一种实现方式。
在另一种可能的实现方式中,第一谐振单元包括一个介质谐振器,第一谐振单元的介质谐振器与第一介质谐振器处于同一水平面且相邻。
在另一种可能的实现方式中,第一谐振单元包括第三介质谐振器和第四介质谐振器,第三介质谐振器与第一介质谐振器之间设置有耦合图案,第四介质谐振器与第三介质谐振器之间设置有耦合图案。第一介质谐振器所在谐振腔记为第一谐振腔,第三介质谐振器所在谐振腔记为第三谐振腔,第四介质谐振器所在谐振腔记为第四谐振腔,这样第一谐振腔与第三谐振腔耦合,第三谐振腔与第四谐振腔耦合,从而实现了三层谐振腔,这样提供了第一谐振单元的另一种实现方式。
在另一种可能的实现方式中,带阻滤波器还包括第二谐振单元,在第二谐振单元中有一个介质谐振器与第二介质谐振器之间设有耦合图案。第二谐振单元包括至少一个介质谐振器。当第二谐振单元包括多个介质谐振器时,相邻介质谐振器之间设有耦合图案。这样可以形成另一个多层排腔,利用多层排腔的腔间耦合可以提高谐振效果,对指定频带的抑制度更高。多层排腔是指多层排列的谐振腔。
在另一种可能的实现方式中,第一谐振单元与第二谐振单元之间设有隔离图案,隔离图案用于防止第一谐振单元中的介质谐振器与第二谐振单元中的介质谐振器耦合。隔离图案是能够增加隔离度的金属化图案。该带阻滤波器中,第一谐振单元和第二谐振单元相邻且不耦合,这样提供了一种紧凑型的谐振模块,有助于带阻滤波器小型化。
在另一种可能的实现方式中,传输导体为曲形传输线,曲形传输线的输入端与曲形传输线的输出端之间的距离小于预设距离。该曲形传输线可以在更短的带阻滤波器中部署,而且曲形传输线的应力比直线形的传输线的应力更小,使用寿命更长。
在另一种可能的实现方式中,介质衬底还包括至少一个金属孔,金属孔用于增加输入端口与输出端口之间的隔离度。可选的,全部或部分金属孔被设置在被曲形传输线包围的区域。
在另一种可能的实现方式中,带阻滤波器还包括与谐振模块的正面连接的金属屏蔽盖。金属屏蔽盖可以降低谐振频率以及减少谐振模块的谐波泄露。
在另一种可能的实现方式中,传输导体为直线型的传输线。这样提供了另一种传输导体。
在另一种可能的实现方式中,在谐振模块中每个介质谐振器包括谐振孔和与谐振孔连接的电容图案。谐振孔是在介质体上开设的过孔,谐振孔的轴线与水平面平行。电容图案可以是等效为电容的金属图案。
在另一种可能的实现方式中,在谐振模块中每个介质谐振器为TEM模介质谐振器、TE模介质谐振器或者TM模介质谐振器。
第二方面提供一种多阻带滤波器,多阻带滤波器包括至少两个带阻滤波器,相邻的带 阻滤波器之间设有隔离单元。每个带阻滤波器的阻带不同于其他带阻滤波器的阻带,这样可以对多个频带进行抑制。带阻滤波器为第一方面任意一种实现方式中的带阻滤波器。
在一种可能的实现方式中,隔离单元为隔离图案。隔离图案是能够提高隔离度的金属化图案。
在另一种可能的实现方式中,隔离单元为隔离孔。隔离孔是金属化过孔,能够提高隔离孔周围的带阻滤波器之间的隔离度。
在另一种可能的实现方式中,隔离单元包括隔离图案和隔离孔。这样能够进一步提高带阻滤波器之间的隔离度。
第三方面提供一种电子设备,该电子设备包括第一方面任意一种实现方式中的带阻滤波器。
第四方面提供一种电子设备,该电子设备包括第二方面任意一种实现方式中的多阻带滤波器。
附图说明
图1为现有带阻滤波器的一个结构示意图;
图2为现有带阻滤波器的一个电路示意图;
图3为本申请实施例中带阻滤波器的一个结构示意图;
图4a为本申请实施例中带阻滤波器的另一个结构示意图;
图4b为本申请实施例中带阻滤波器的一个电路示意图;
图4c为本申请实施例中带阻滤波器的另一个结构示意图;
图5a为本申请实施例中带阻滤波器的另一个结构示意图;
图5b为本申请实施例中带阻滤波器的另一个结构示意图;
图6为本申请实施例中带阻滤波器的另一个结构示意图;
图7为本申请实施例中带阻滤波器的另一个结构示意图;
图8为本申请实施例中传输导体的一个示意图;
图9为本申请实施例中带阻滤波器的抑制性能的一个示意图;
图10为本申请实施例中多阻带滤波器的一个示意图。
具体实施方式
本申请的带阻滤波器可应用于电子设备,电子设备可以是但不限于通信设备。
在传输线中有三种导波形式:横电磁波、横电波和横磁波。横电磁波的传输模式即TEM模,TEM模是在电磁波的传播方向上没有电场和磁场分量的一种波导模式。横电波的传输模式即TE模,在电磁波的传播方向上有磁场分量但无电场分量的一种波导模式。横磁波的传输模式即TM模。在电磁波的传播方向上有电场分量但无磁场分量的一种波导模式。相应的,带阻滤波器包括TE带阻滤波器、TM带阻滤波器和TEM带阻滤波器。本申请的带阻滤波器可以是TE带阻滤波器、TM带阻滤波器或者TEM带阻滤波器。
对于直线型排腔的带阻滤波器,带阻滤波器的抑制度与谐振腔的数量正相关。直线型 排腔越短,抑制度越低。直线型排腔越长,抑制度越高。但是,电路板的面积是有限的,因此在有限长度下,直线型排腔的带阻滤波器的性能常常难以满足实际需求。
对于上述问题,本申请提供一种腔间耦合的带阻滤波器,能够在有限长度下提高带阻滤波器的抑制度。下面对本申请的带阻滤波器进行介绍:
参阅图3,本申请的带阻滤波器300的一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。第一介质谐振器303与第二介质谐振器304之间的耦合图案306可以设置靠近在介质衬底302的位置,也可以设置在远离介质衬底302的位置。
第一谐振单元305包括至少一个介质谐振器,在第一谐振单元305中有一个介质谐振器与第一介质谐振器303之间设置有耦合图案306。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。其中,第一导电孔312和第二导电孔313可以是金属化过孔。
本实施例中,谐振模块301的基体为介质体。可选的,介质体和介质衬底302通过焊接固定连接。该介质体的介电常数和介质衬底302的介电常数可以相同,也可以不同。
在谐振模块301中每个介质谐振器包括谐振孔和与谐振孔连接的电容图案。介质谐振器的谐振频率与谐振孔的尺寸以及电容图案的大小相关。电容图案的材料、形状和大小均可以根据实际情况进行设置,本申请不作限定。
谐振孔是在介质体上开设的过孔。可选的,谐振孔的轴线与水平面平行。与谐振孔连接的电容图案可以是等效为电容的金属图案。在谐振模块301中每个介质谐振器为TEM模介质谐振器、TE模介质谐振器或TM模介质谐振器。需要说明的是,本申请的谐振模块301的多个介质谐振器可以是采用一体成型工艺对介质体加工所得。或者,谐振模块301的多个介质谐振器是独立的,该谐振模块301由多个独立的介质谐振器、一个输入端口和一个输出端口组成。
耦合图案306可以是金属化图案,金属化图案可以是金属条或金属线。谐振模块301的外表面设置有金属化地,每个耦合图案306在谐振模块301表面延伸,使得耦合图案306与金属化地连接。
耦合图案306的材料、形状和大小均可以根据实际情况进行设置,本申请不作限定。例如,在第一谐振器303与第二谐振器304之间的耦合图案306为金属条,根据预设耦合度确定金属条的长度,这样确定的金属条的长度能够使得第一谐振器303与第二谐振器304的耦合度大于预设耦合度,从而达到理想响应。
应理解,耦合图案306可以将谐振模块301分成多个谐振腔,每个谐振腔内有一个介质谐振器。第一介质谐振器303与第二介质谐振器304之间的耦合图案306、第一介质谐 振器303与第一谐振单元305之间的耦合图案306和第一介质谐振器303可以形成第一谐振腔。第一介质谐振器303与第二介质谐振器304之间的耦合图案306和第二介质谐振器304可以形成第二谐振腔。
当第一谐振单元305包括一个介质谐振器时,第一介质谐振器303与第一谐振单元305之间的耦合图案306和第一谐振单元305可以形成第三谐振腔。这样第一谐振腔与第三谐振腔构成两层谐振腔,第一谐振腔与第三谐振腔形成腔间耦合,两个谐振腔比单个谐振腔具有更高的抑制度。
在第一谐振单元305包括多个介质谐振器的情况下,在第一谐振单元305中相邻的介质谐振器之间设有耦合图案306。由于每个介质谐振器在一个谐振腔内,这样可以形成多层排腔。多层排腔的腔间耦合可以使得通过传输导体309的信号在指定频带接近或达到传输零点,因此该带阻滤波器对指定频带的抑制性能优异。
本实施例中,第一介质谐振器303和第二介质谐振器304与传输导体309耦合,其他介质谐振器和传输导体不耦合,这样的带阻滤波器是一种多层排腔的带阻滤波器。具有腔间耦合的多个介质谐振器比单个介质谐振器具有更高的抑制度,因此本实施例的带阻滤波器比两个介质谐振器的带阻滤波器的抑制性能更好。
在本实施例的带阻滤波器与直线型排腔的带阻滤波器包括相同数量的介质谐振器的情况下,本实施例的带阻滤波器更短,占用电路板的面积更小,更有利于在电路板上部署。
在本申请中,谐振器A与谐振器B耦合可以理解为谐振器A所在谐振腔与谐振器B所在谐振腔耦合。谐振模块的基体为介质体,可以在介质体表面进行金属化处理,然后将介质体表面的部分区域去金属化,从而在其余区域形成电容图案、耦合图案或者隔离图案。金属化处理可以是但不限于镀银。
在带阻滤波器300中,第一谐振单元305可以包括一个或多个介质谐振器。下面对具有不同的第一谐振单元的带阻滤波器进行详细介绍:
参阅图4a,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305为介质谐振器305,介质谐振器305与第一介质谐振器303之间设置有耦合图案306。介质谐振器305位于第一介质谐振器303的上方。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
本实施例中,介质衬底302、第一介质谐振器303、第二介质谐振器304、耦合图案306、输入端口307、输出端口308、传输导体309、传输导体309的输入端310、传输导体309的输出端311、第一导电孔312和第二导电孔313的材料、结构和连接关系可参阅前文。
图4b为图4a所示带阻滤波器的一个电路示意图。参阅图4b,输入端口307与输出端口308通过传输导体309连接,输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304耦合,第一介质谐振器303与介质谐振器305耦合。本申请的电路示意图中,虚线表示耦合。具体可以是传输导体与介质谐振器耦合,或者介质谐振器与介质谐振器耦合。
可以看出,输入端口307与第一介质谐振器303耦合,谐振单元305与第一介质谐振器303耦合。这样可以形成腔间耦合的两层谐振腔,能够提高对指定频带的抑制度。
参阅图4c,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305为介质谐振器305,介质谐振器305与第一介质谐振器303之间设置有耦合图案306。介质谐振器305与第一介质谐振器303处于同一水平面且相邻。应理解,介质谐振器305可以位于第一介质谐振器303的前方、后方、左侧或右侧。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
本实施例中,介质谐振器305与第一介质谐振器303处于同一水平面,但是带阻滤波器的电路图为图4b所示的电路图。这样提供了另一种腔间耦合的带阻滤波器。
介质衬底302、第一介质谐振器303、第二介质谐振器304、耦合图案306、输入端口307、输出端口308、传输导体309、传输导体309的输入端310、传输导体309的输出端311、第一导电孔312和第二导电孔313的材料、结构和连接关系可参阅前文。
在图4a和4c所示的带阻滤波器中,第一谐振单元305包括一个介质谐振器,该介质谐振器与第一介质谐振器303耦合,而且该介质谐振器与第一介质谐振器303的位置关系不限于以上举例。
下面对第一谐振单元305包括两个介质谐振器的情况进行介绍,参阅图5a,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305包括第三介质谐振器3051和第四介质谐振器3052,第三介质谐振器3051与第一介质谐振器303之间设置有耦合图案306,第四介质谐振器3052与第三介质谐振器3051之间设置耦合图案306。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
本实施例中,第三介质谐振器3051设置在第一介质谐振器303的上方,第四介质谐振器3052设置在第三介质谐振器3051的上方。
介质衬底302、第一介质谐振器303、第二介质谐振器304、耦合图案306、输入端口307、输出端口308、传输导体309、传输导体309的输入端310、传输导体309的输出端311、第一导电孔312和第二导电孔313可参阅前文。
参阅图5b,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305包括第三介质谐振器3051和第四介质谐振器3052,第三介质谐振器3051与第一介质谐振器303之间设置有耦合图案306,第四介质谐振器3052与第三介质谐振器3051之间设置耦合图案306。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
本实施例中,第一介质谐振器303、第三介质谐振器3051和第四介质谐振器3052处于同一水平面,第三介质谐振器3051与第一介质谐振器303相邻,第四介质谐振器3052与第三介质谐振器3051相邻。
介质衬底302、第一介质谐振器303、第二介质谐振器304、耦合图案306、输入端口307、输出端口308、传输导体309、传输导体309的输入端310、传输导体309的输出端311、第一导电孔312和第二导电孔313可参阅前文。
应理解,第一谐振单元可以包括三个以上的介质谐振器,第一谐振单元的多个介质谐振器可以水平排列或者纵向排列,本申请不作限定。
在另一个示例中,带阻滤波器300还包括第二谐振单元,第二谐振单元包括至少一个介质谐振器,在第二谐振单元中有一个介质谐振器与第二介质谐振器304耦合。
第一谐振单元与第二谐振单元可以相邻,也可以不相邻。首先对第一谐振单元的谐振器与第二谐振单元的谐振器不相邻的情况进行介绍:
参阅图6,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合, 第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305为介质谐振器305,介质谐振器305与第一介质谐振器303之间设置有耦合图案306。介质谐振器305与第一介质谐振器303处于同一水平面且相邻。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
第二谐振单元为介质谐振器601,介质谐振器601与第二介质谐振器304之间设有耦合图案306,介质谐振器601与第二介质谐振器304处于同一水平面且相邻。
本实施例中,第一介质谐振器303所在谐振腔和介质谐振器305所在谐振腔耦合,上述两个谐振腔可以认为是一个两层谐振腔。同理,第二介质谐振器304所在谐振腔和介质谐振器601所在谐振腔耦合,上述两个谐振腔可以认为是另一个两层谐振腔,这样形成的两个两层谐振腔比一个两层谐振腔具有更好的抑制性能。
其次对第一谐振单元与第二谐振单元相邻的情况进行介绍:
参阅图7,本申请的带阻滤波器的另一个实施例包括:
相连的谐振模块301和介质衬底302;
谐振模块301包括第一介质谐振器303、第二介质谐振器304、第一谐振单元305、输入端口307和输出端口308;
输入端口307与第一介质谐振器303耦合,输出端口308与第二介质谐振器304耦合,第一介质谐振器303与第二介质谐振器304之间设置有耦合图案306。
第一谐振单元305为介质谐振器305,介质谐振器305与第一介质谐振器303之间设置有耦合图案306。介质谐振器305设置在第一介质谐振器303的上方。
介质衬底302的内部设置有传输导体309,传输导体309的输入端310通过第一导电孔312与输入端口307连接,传输导体309的输出端311通过第二导电孔313与输出端口308连接。
第二谐振单元为介质谐振器701,介质谐振器701设置在第二介质谐振器304的上方,介质谐振器701与第二介质谐振器304之间设置有耦合图案306。
介质谐振器305与介质谐振器701之间设有隔离图案702,隔离图案702用于增加介质谐振器305与所介质谐振器701的隔离度,使介质谐振器305与介质谐振器701不耦合。
隔离图案702是能够提高隔离度的金属化图案。金属化图案可以是但不限于金属条或金属线。隔离图案702的材料、形状和大小可以根据实际情况进行设置,本申请不作限定。
本实施例中,第一介质谐振器303所在谐振腔和介质谐振器305所在谐振腔耦合,上述两个谐振腔可以认为是一个两层谐振腔。同理,第二介质谐振器304所在谐振腔和介质谐振器701所在谐振腔耦合,上述两个谐振腔是另一个两层谐振腔,这样形成的两个两层谐振腔比一个两层谐振腔具有更好的抑制性能。
其次,第一谐振单元与第二谐振单元相邻且第一谐振单元与第二谐振单元之间设有隔离图案,使得该带阻滤波器结构简洁,紧凑,而且电性能优异。
应理解,第一谐振单元和/或第二谐振单元可以包括三个以上的介质谐振器,这样能够 形成三层以上的谐振腔,从而进一步提高带阻滤波器的抑制性能。当第一谐振单元和第二谐振单元中的介质谐振器是纵向排列时,不增加占用电路板的面积就能够提高抑制性能。
下面对传输导体309进行介绍:
在一个示例中,传输导体309为曲形传输线,曲形传输线的输入端307与曲形传输线的输出端308之间的距离小于预设距离。传输导体309的长度可以是但不限于四分之一波长。曲形传输线的输入端与曲形传输线的输出端之间的距离可以设置为远小于四分之一波长。与具有直线传输线的带阻滤波器相比,具有曲形传输线的带阻滤波器的长度更短,可以制造出更小的带阻滤波器,并且曲形传输线的应力比直线传输线的应力小,因此使用寿命更长。可选的,介质衬底302还包括至少一个金属孔,金属孔用于增加输入端口与输出端口之间的隔离度。可选的,金属孔被设置在被曲形传输线包围的区域。
参阅图8,在一个示例中,曲形传输线的输入端310与第一导电孔312连接,曲形传输线的输出端311与第二导电孔313连接。在曲形传输线包围的区域设置有7个金属孔801。应理解,金属孔801的数量不限于7个,本申请对金属孔数量不作限定。金属孔801可以是金属化过孔。应理解,曲形传输线的形状和长度可以根据实际情况进行设置,本申请不作限定。金属孔的位置也不限于被曲形传输线包围的区域。
下面以图7所示的带阻滤波器具有曲形传输线为例,对该带阻滤波器的抑制性能进行介绍。参阅图9,横坐标为频率,单位为吉赫兹(GHz)。纵坐标为抑制度,单位为分贝。S11是输入反射系数曲线,S12是反向传输系数曲线。从图9可以看出,对于1.89GHz至1.92GHz的频带,S12可以达到-20分贝(dB)以下,这表明带阻滤波器可以对1.89GHz至1.92GHz的频带进行良好抑制,回波带宽较宽,损耗少。
在该频率区间的采样点m3和采样点m1的抑制度如表1所示:
采样点 频率(GHz) 抑制度(dB)
m1 1.9155 -32.0845
m3 1.8950 -34.3408
表1
在另一个示例中,传输导体309为直线型的传输线。具体的,传输导体309还可以是银线、铜线或者微带线。传输导体309的形状和材料不限于以上举例,本申请不作限定。
在另一个示例中,带阻滤波器300还包括与谐振模块301的正面连接的金属屏蔽盖。金属屏蔽盖可以覆盖谐振模块301中各介质谐振器的谐振孔,以减少谐波泄露,并且可以降低谐振频率。
本申请还提供一种电子设备,该电子设备包括本申请的图3、图4a、图4c、图5a、图5b、图6或图7所示的任意一个实施例或可选实施例中的带阻滤波器。
参阅图10,本申请的多阻带滤波器的一个实施例包括:
第一带阻滤波器1001和第二带阻滤波器1002,第一带阻滤波器1001的阻带不同于第二带阻滤波器1002的阻带;
第一带阻滤波器1001和第二带阻滤波器1002之间设有隔离单元,隔离单元包括隔离图案1003和隔离孔1004。
隔离图案1003为能够提高隔离度的金属化图案。隔离孔1004可以是但不限于金属化过孔。隔离图案1003和隔离孔1004都可以提高第一带阻滤波器1001与第二带阻滤波器1002之间的隔离度。
应理解,在多阻带滤波器中第一带阻滤波器1001和第二带阻滤波器1002可以是一体成型的,也可以是独立的。在多阻带滤波器中带阻滤波器的数量不限于两个,带阻滤波器的数量和阻带可以根据实际情况进行设置。阻带是指带阻滤波器抑制的频带。
在多阻带滤波器的另一个示例中,隔离单元可以为隔离图案。隔离图案的材料、形状和大小均可以根据实际情况进行设置,本申请不作限定。
在多阻带滤波器的另一个示例中,隔离单元可以为隔离孔。
本申请还提供一种电子设备,该电子设备包括图10所示实施例或可选实施例中的多阻带滤波器。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (14)

  1. 一种带阻滤波器,其特征在于,包括:
    相连的谐振模块和介质衬底;
    所述谐振模块包括输入端口、第一介质谐振器、第二介质谐振器、第一谐振单元和输出端口;
    所述输入端口与所述第一介质谐振器耦合,所述输出端口与所述第二介质谐振器耦合,所述第一介质谐振器与所述第二介质谐振器之间设置有耦合图案;
    所述第一谐振单元包括至少一个介质谐振器,在所述第一谐振单元中有一个介质谐振器与所述第一介质谐振器之间设有耦合图案;
    所述介质衬底的内部设置有传输导体,所述传输导体的输入端通过第一导电孔与所述输入端口连接,所述传输导体的输出端通过第二导电孔与所述输出端口连接。
  2. 根据权利要求1所述的带阻滤波器,其特征在于,所述第一谐振单元包括一个介质谐振器,所述第一谐振单元的介质谐振器设置在所述第一介质谐振器的上方。
  3. 根据权利要求1所述的带阻滤波器,其特征在于,所述第一谐振单元包括一个介质谐振器,所述第一谐振单元的介质谐振器与所述第一介质谐振器处于同一水平面且相邻。
  4. 根据权利要求1所述的带阻滤波器,其特征在于,所述第一谐振单元包括第三介质谐振器和第四介质谐振器,所述第三介质谐振器与所述第一介质谐振器之间设置有耦合图案,所述第四介质谐振器与所述第三介质谐振器之间设置有耦合图案。
  5. 根据权利要求1所述的带阻滤波器,其特征在于,所述带阻滤波器还包括第二谐振单元,所述第二谐振单元包括至少一个介质谐振器,在所述第二谐振单元中有一个介质谐振器与所述第二介质谐振器之间设有耦合图案。
  6. 根据权利要求5所述的带阻滤波器,其特征在于,
    所述第一谐振单元与所述第二谐振单元之间设有隔离图案,所述隔离图案用于防止所述第一谐振单元中的介质谐振器与所述第二谐振单元中的介质谐振器耦合。
  7. 根据权利要求1至6中任一项所述的带阻滤波器,其特征在于,所述传输导体为曲形传输线,所述曲形传输线的输入端与所述曲形传输线的输出端之间的距离小于预设距离。
  8. 根据权利要求7所述的带阻滤波器,其特征在于,所述介质衬底还包括至少一个金属孔,所述金属孔用于增加所述输入端口与所述输出端口之间的隔离度。
  9. 根据权利要求1至6中任一项所述的带阻滤波器,其特征在于,所述带阻滤波器还包括与所述谐振模块的正面连接的金属屏蔽盖。
  10. 一种多阻带滤波器,其特征在于,包括:
    至少两个带阻滤波器,所述带阻滤波器为如权利要求1至9中任一项所述的带阻滤波器;
    相邻的带阻滤波器之间设有隔离单元。
  11. 根据权利要求10所述的多阻带滤波器,其特征在于,所述隔离单元为隔离图案。
  12. 根据权利要求10所述的多阻带滤波器,其特征在于,所述隔离单元包括隔离图案和隔离孔。
  13. 一种电子设备,其特征在于,包括:
    如利要求1至9中任一项所述的带阻滤波器。
  14. 一种电子设备,其特征在于,包括:
    如利要求10至12中任一项所述的多阻带滤波器。
PCT/CN2022/071703 2021-01-30 2022-01-13 一种带阻滤波器和多阻带滤波器 WO2022161178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110132027.6A CN114843723B (zh) 2021-01-30 2021-01-30 一种带阻滤波器和多阻带滤波器
CN202110132027.6 2021-01-30

Publications (1)

Publication Number Publication Date
WO2022161178A1 true WO2022161178A1 (zh) 2022-08-04

Family

ID=82561166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071703 WO2022161178A1 (zh) 2021-01-30 2022-01-13 一种带阻滤波器和多阻带滤波器

Country Status (2)

Country Link
CN (1) CN114843723B (zh)
WO (1) WO2022161178A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336109A (ja) * 1994-06-03 1995-12-22 Murata Mfg Co Ltd 誘電体フィルタ
US5557246A (en) * 1994-02-17 1996-09-17 Murata Manufacturing Co., Ltd. Half wavelengh and quarter wavelength dielectric resonators coupled through side surfaces
US5793267A (en) * 1996-03-07 1998-08-11 Murata Manufacturing Co., Ltd. Dielectric block filter having first and second resonator arrays coupled together
JPH1127004A (ja) * 1997-07-02 1999-01-29 Ngk Spark Plug Co Ltd 誘電体フィルタ
CN101719579A (zh) * 2009-12-30 2010-06-02 西安空间无线电技术研究所 多频带带阻滤波器及多频带带通滤波器
CN105048041A (zh) * 2015-06-18 2015-11-11 中国船舶重工集团公司第七一九研究所 三通带交叉耦合基片集成波导滤波器拓扑结构及滤波器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312902A (ja) * 1998-04-30 1999-11-09 Murata Mfg Co Ltd 誘電体フィルタ、送受共用器および通信機
JP6676171B2 (ja) * 2015-12-24 2020-04-08 華為技術有限公司Huawei Technologies Co.,Ltd. フィルタおよびワイヤレスネットワークデバイス
CN110459843A (zh) * 2019-08-22 2019-11-15 深圳市国人射频通信有限公司 一种介质波导滤波器
CN212162041U (zh) * 2020-07-02 2020-12-15 罗森伯格技术有限公司 一种带阻滤波器及射频器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557246A (en) * 1994-02-17 1996-09-17 Murata Manufacturing Co., Ltd. Half wavelengh and quarter wavelength dielectric resonators coupled through side surfaces
JPH07336109A (ja) * 1994-06-03 1995-12-22 Murata Mfg Co Ltd 誘電体フィルタ
US5793267A (en) * 1996-03-07 1998-08-11 Murata Manufacturing Co., Ltd. Dielectric block filter having first and second resonator arrays coupled together
JPH1127004A (ja) * 1997-07-02 1999-01-29 Ngk Spark Plug Co Ltd 誘電体フィルタ
CN101719579A (zh) * 2009-12-30 2010-06-02 西安空间无线电技术研究所 多频带带阻滤波器及多频带带通滤波器
CN105048041A (zh) * 2015-06-18 2015-11-11 中国船舶重工集团公司第七一九研究所 三通带交叉耦合基片集成波导滤波器拓扑结构及滤波器

Also Published As

Publication number Publication date
CN114843723B (zh) 2023-04-18
CN114843723A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020088620A1 (zh) 一种介质滤波器及通信设备
JP4535995B2 (ja) 多層プリント回路基板のビア構造、それを有する帯域阻止フィルタ
JP2007013962A (ja) 多層帯域通過フィルタ
US11063330B2 (en) Filter
CN110797614B (zh) 一种具有高次模抑制的小型化基片集成波导滤波器
KR20130036052A (ko) Pcb 장착 마이크로파 오목형 공진 공동을 위한 커플링 메커니즘
US5173672A (en) Dielectric block filter with included shielded transmission line inductors
CN212874710U (zh) 薄膜滤波器
JPH0443703A (ja) 対称型ストリップライン共振器
JP2005260570A (ja) マイクロストリップ線路導波管変換器
CN112164846B (zh) 一种毫米波带通滤波器
CN116759779B (zh) 一种5g毫米波滤波功分模块
WO2022161178A1 (zh) 一种带阻滤波器和多阻带滤波器
KR100249836B1 (ko) 스텝 임피던스 공진기를 갖는 듀플렉서
CN114566775B (zh) 一种应用于卫星通讯的高阻带抑制微带带阻滤波器
CN209913004U (zh) 基于共面波导的宽阻带微波滤波器
CN210380786U (zh) 一种微型多层陶瓷带通滤波器
CN111710943A (zh) 一种微型窄带低频带通滤波器
CN219553853U (zh) 印刷膜射频微带带通滤波器
KR101439420B1 (ko) 공진기 및 이를 포함하는 필터
CN110190369B (zh) 基于共面波导的宽阻带微波滤波器
CN117691965B (zh) 一种含有半模基片同轴谐振器的滤波器
CN113506962B (zh) 陷波可调谐振结构及小型片式介质滤波器
CN117080701A (zh) 一种异质集成ltcc同轴腔带通滤波器及射频前端电路
JP3676885B2 (ja) チップ型積層フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745055

Country of ref document: EP

Kind code of ref document: A1