WO2022161135A1 - 压电层为掺钪氮化铝的滤波器及电子设备 - Google Patents

压电层为掺钪氮化铝的滤波器及电子设备 Download PDF

Info

Publication number
WO2022161135A1
WO2022161135A1 PCT/CN2022/070611 CN2022070611W WO2022161135A1 WO 2022161135 A1 WO2022161135 A1 WO 2022161135A1 CN 2022070611 W CN2022070611 W CN 2022070611W WO 2022161135 A1 WO2022161135 A1 WO 2022161135A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
piezoelectric layer
scandium
resonator
thickness
Prior art date
Application number
PCT/CN2022/070611
Other languages
English (en)
French (fr)
Inventor
徐洋
庞慰
李葱葱
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022161135A1 publication Critical patent/WO2022161135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and in particular, to a filter and an electronic device.
  • thin film bulk acoustic resonator As a new type of MEMS device, thin film bulk acoustic resonator (FBAR) has the advantages of small size, light weight, low insertion loss, high frequency bandwidth and high quality factor, which is well adapted to the replacement of wireless communication systems.
  • the present invention is proposed to alleviate or solve at least one aspect of the above-mentioned problems in the prior art.
  • a filter that includes a plurality of bulk acoustic wave resonators.
  • the bulk acoustic wave resonator includes a piezoelectric layer, the piezoelectric layer is scandium-doped aluminum nitride, and the doping concentration of scandium is in the range of 10%-14%.
  • the filter is a filter of Band1 frequency band.
  • the thickness of the piezoelectric layer ranges from 0.503 ⁇ m to 0.696 ⁇ m, and at the receiving end of the filter, the thickness of the piezoelectric layer ranges from 0.439 ⁇ m to 0.647 ⁇ m.
  • Embodiments of the invention also relate to a filter comprising a plurality of bulk acoustic wave resonators.
  • the bulk acoustic wave resonator includes a piezoelectric layer, the piezoelectric layer is scandium-doped aluminum nitride, and the doping concentration of scandium is in the range of 10%-14%.
  • the filter is a filter of Band3 frequency band. At the transmitting end of the filter, the thickness of the piezoelectric layer ranges from 0.542 ⁇ m to 0.759 ⁇ m, and at the receiving end of the filter, the thickness of the piezoelectric layer ranges from 0.519 ⁇ m to 0.72 ⁇ m.
  • Embodiments of the present invention also relate to an electronic device comprising the filter described above.
  • FIG. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator
  • FIG. 2 is a graph exemplarily showing the variation trend of the 50-ohm resonator area (Kum 2 ) at the transmitting end of the filter in the Band1 frequency band with the scandium doping concentration or the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer;
  • 3 is a graph exemplarily showing the variation trend of the parallel impedance of the resonator with the scandium-doped aluminum nitride piezoelectric layer or the scandium-doped concentration in the scandium-doped aluminum nitride piezoelectric layer for a resonance frequency of 2 GHz and a 50-ohm resonator;
  • FIG. 4 is a graph showing the variation trend of the thickness of the piezoelectric layer of the resonator at the transmitting end of the filter in the Band3 frequency band with the doping concentration of scandium according to an exemplary embodiment of the present invention
  • FIG. 5 is a graph showing the variation trend of the thickness of the piezoelectric layer of the resonator at the receiving end of the filter in the Band3 frequency band with the scandium doping concentration according to an exemplary embodiment of the present invention
  • FIG. 6 is a graph showing the variation trend of the thickness of the piezoelectric layer of the resonator at the transmitting end of the filter in the Band1 frequency band with the doping concentration of scandium according to an exemplary embodiment of the present invention
  • FIG. 7 is a graph showing the variation trend of the thickness of the piezoelectric layer of the resonator at the receiving end of the Band1 band filter with the scandium doping concentration according to an exemplary embodiment of the present invention.
  • Figure 1 shows a cross-sectional view of a typical sandwich-structured BAW resonator.
  • the reference numerals are described as follows:
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms.
  • the embodiment of the present invention adopts the form of a cavity.
  • Bottom electrode (including bottom electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • the piezoelectric layer in the embodiment of the present invention, is a scandium-doped aluminum nitride piezoelectric layer, which may be a single crystal piezoelectric layer or a polycrystalline piezoelectric layer.
  • Top electrode (including top electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Passivation layer or process layer which can be aluminum nitride, silicon nitride or silicon dioxide, etc.
  • the passivation layer or process layer 106 may also not be provided.
  • the doping concentration of the element doped in the piezoelectric layer is briefly described below.
  • Doping means that a portion of one or more elements in the original undoped piezoelectric material is replaced by a doping element.
  • the doping concentration is defined as: in a unit volume, the atomic number of the doping element, and the total atomic number of the above-mentioned one or more elements partially replaced by the doping element and the atomic number of the doping element and the ratio.
  • the piezoelectric layer is aluminum nitride and the doping element is scandium (ie, the piezoelectric layer is scandium-doped aluminum nitride ALScN)
  • part of the aluminum atoms are replaced by scandium atoms
  • the doping concentration is scandium atoms per unit volume.
  • the ratio of the number to the sum of the number of aluminum atoms and the number of scandium atoms (Sc/Al+Sc).
  • FIG. 2 is a graph exemplarily showing the variation trend of the area of the 50-ohm resonator at the transmitting end of the filter in the Band1 frequency band with the scandium doping concentration or the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer.
  • the electromechanical coupling coefficient kt 2 of the resonator is guaranteed to be the same with the doping concentration of scandium.
  • Increasing the 50 ⁇ resonator area shrinks.
  • Sc concentration in AlN it becomes more and more difficult to prepare high-quality thin films, resulting in the degradation of the resonator performance.
  • FIG. 3 is a graph exemplarily showing the variation trend of the parallel impedance of the resonator with the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer for a resonant frequency of 2 GHz and a 50 ohm resonator.
  • the ordinate is the parallel impedance of the 50 ohm resonator
  • the abscissa is the doping concentration of scandium.
  • the parallel impedance Rp the Rp of 8% concentration is equivalent to 1, and the other points are Rp of 8% concentration percentage expressed.
  • Figures 4-7 show that as the doping concentration of Sc in AlScN increases, under the premise of keeping the kt 2 unchanged, the thickness of the piezoelectric layer in both Band 3 and Band 1 bands decreases. In the case of a fixed frequency band, the reduction of the piezoelectric layer results in a reduction in the area of the 50 ohm resonator.
  • the filter is Band1 frequency band (Band1 frequency band is abbreviated as B1 in the drawings), which means that the frequency range of the filter is 1.92GHz-1.98GHz at the transmitting end, and the frequency range is 2.11GHz at the receiving end of the filter. –2.17GHz; the filter is Band3 band (Band3 band is abbreviated as B3 in the figure), which means that the frequency range of the filter is 1.71GHz-1.785GHz at the transmitting end and 1.805GHz-1.88GHz at the receiving end.
  • FIG. 4 is a diagram illustrating the thickness of the scandium-doped aluminum nitride piezoelectric layer of the resonator at the transmitting end of the Band3 band filter as a function of the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer according to an exemplary embodiment of the present invention.
  • Trend graph. In FIG. 4 the ordinate is the thickness (unit ⁇ m) of the piezoelectric layer of the resonator, and the abscissa is the doping concentration of scandium.
  • FIG. 5 is a diagram showing the thickness of the scandium-doped aluminum nitride piezoelectric layer of the resonator at the receiving end of the Band 3 band filter as a function of the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer according to an exemplary embodiment of the present invention.
  • Trend graph. In FIG. 5 the ordinate is the thickness (unit ⁇ m) of the piezoelectric layer of the resonator, and the abscissa is the doping concentration of scandium.
  • FIG. 6 is a diagram showing that the thickness of the scandium-doped aluminum nitride piezoelectric layer of the resonator at the transmitting end of the Band1 band filter varies with the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer according to an exemplary embodiment of the present invention.
  • the ordinate is the thickness (unit ⁇ m) of the piezoelectric layer of the resonator
  • the abscissa is the doping concentration of scandium.
  • FIG. 7 is a diagram showing that the thickness of the scandium-doped aluminum nitride piezoelectric layer of the resonator at the receiving end of the filter in the Band1 band varies with the scandium doping concentration in the scandium-doped aluminum nitride piezoelectric layer according to an exemplary embodiment of the present invention.
  • the ordinate is the thickness (unit ⁇ m) of the piezoelectric layer of the resonator
  • the abscissa is the doping concentration of scandium.
  • the area of the piezoelectric layer will increase on the premise of keeping the kt 2 unchanged, which is not conducive to the miniaturization of the filter device; but if the thickness of the piezoelectric layer is If it is too small, the area of the piezoelectric layer will be greatly reduced on the premise of keeping the kt 2 unchanged, which is not conducive to the heat dissipation of the filter device, resulting in a decrease in the power capacity of the resonator, which will adversely affect the performance of the resonator. big impact.
  • the doping concentration is selected to be 10-14%, and the thickness of the piezoelectric layer is 0.40 ⁇ m. to 0.80 ⁇ m.
  • the thickness of the piezoelectric layer ranges from 0.542 ⁇ m to 0.759 ⁇ m between ⁇ m, at the receiving end of the filter (indicated by RX in the drawing), the thickness of the piezoelectric layer ranges from 0.519 ⁇ m to 0.72 ⁇ m.
  • the thickness of the piezoelectric layer ranges from 0.503 ⁇ m to 0.696 ⁇ m.
  • the thickness of the piezoelectric layer ranges from 0.439 ⁇ m to 0.647 ⁇ m.
  • BAW resonators can be used to form other semiconductor devices besides filters.
  • a filter comprising a plurality of bulk acoustic wave resonators, wherein:
  • the bulk acoustic wave resonator includes a piezoelectric layer, the piezoelectric layer is scandium-doped aluminum nitride, and the doping concentration of scandium is in the range of 10%-14%;
  • the filter is a Band1 band filter
  • the thickness of the piezoelectric layer ranges from 0.503 ⁇ m to 0.696 ⁇ m, and at the receiving end of the filter, the thickness of the piezoelectric layer ranges from 0.439 ⁇ m to 0.647 ⁇ m.
  • a filter comprising a plurality of bulk acoustic wave resonators, wherein:
  • the bulk acoustic wave resonator includes a piezoelectric layer, the piezoelectric layer is scandium-doped aluminum nitride, and the doping concentration of scandium is in the range of 10%-14%;
  • the filter is a Band3 band filter
  • the thickness of the piezoelectric layer ranges from 0.542 ⁇ m to 0.759 ⁇ m, and at the receiving end of the filter, the thickness of the piezoelectric layer ranges from 0.519 ⁇ m to 0.72 ⁇ m.
  • An electronic device comprising a filter according to claim 1 or 2.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种滤波器,包括多个体声波谐振器。所述体声波谐振器包括压电层,压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内。所述滤波器为Band1频段的滤波器,且在所述滤波器的发射端,压电层的厚度范围在0.503μm到0.696μm之间,在所述滤波器的接收端,压电层的厚度范围在0.439μm到0.647μm之间;或者所述滤波器为Band3频段的滤波器;且在所述滤波器的发射端,压电层的厚度范围在0.542μm到0.759μm之间,在所述滤波器的接收端,压电层的厚度范围在0.519μm到0.72μm之间。本发明也涉及一种包括上述滤波器的电子设备。

Description

压电层为掺钪氮化铝的滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种滤波器和一种电子设备。
背景技术
随着5G通信技术的发展,通信技术对滤波器的大带宽提出了越来越高的要求。在这种前提下,滤波器的设计就对具有更大有效机电耦合系数(kt 2)的谐振器提出了迫切需求。
薄膜体声波谐振器(FBAR)作为一种新型的MEMS器件,具有体积小、质量轻、插入损耗低、频带宽以及品质因子高等优点,很好地适应了无线通信系统的更新换代。
当前滤波器器件存在缩小器件尺寸的需求。缩小器件尺寸有两个主要的途径,一是优化版图,提升有效区域(谐振器有效区域)在整个器件版图中的占比,二是缩小谐振器的尺寸。优化版图方面因为不涉及改动谐振器结构,所以通常不会影响谐振器性能,然而缩小谐振器尺寸会影响到了谐振器本身,无论是更改结构还是更改材料,都会对谐振器性能产生较大影响。
因此,如何能在确保谐振器性能不发生明显恶化的前提下缩小滤波器的面积是现实中需要解决的问题。
发明内容
为缓解或解决现有技术中的上述问题的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了一种滤波器,包括多个体声波谐振器。所述体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内。所述滤波器为Band1频段的滤波器。在所述滤波器的发射端,压电层的厚度范围在0.503μm到0.696μm之间,在所述滤波器的接收端,压电层的厚度范围在0.439μm到0.647μm之间。
本发明的实施例还涉及一种滤波器,包括多个体声波谐振器。所述体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内。所述滤波器为Band3频段的滤波器。在所述滤波器的发射端,压电层的厚度范围在0.542μm到0.759μm之间,在所述滤波器的接收端,压 电层的厚度范围在0.519μm到0.72μm之间。
本发明的实施例也涉及一种电子设备,包括上述的滤波器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,其中:
图1为体声波谐振器的示意性截面图;
图2为示例性示出Band1频段的滤波器的发射端的50欧姆谐振器面积(Kum 2)随掺钪氮化铝压电层中钪掺杂浓度或者掺钪浓度变化趋势的图;
图3为示例性示出对于谐振频率为2GHz、50欧姆谐振器并联阻抗随掺钪氮化铝压电层中钪掺杂浓度或者掺钪浓度变化趋势的图;
图4为根据本发明的一个示例性实施例的示出Band3频段的滤波器的发射端的谐振器的压电层厚度随钪掺杂浓度变化趋势的图;
图5为根据本发明的一个示例性实施例的示出Band3频段的滤波器的接收端的谐振器的压电层厚度随钪掺杂浓度变化趋势的图;
图6为根据本发明的一个示例性实施例的示出Band1频段的滤波器的发射端的谐振器的压电层厚度随钪掺杂浓度变化趋势的图;
图7为根据本发明的一个示例性实施例的示出Band1频段的滤波器的接收端的谐振器的压电层厚度随钪掺杂浓度变化趋势的图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。发明的一部分实施例,而并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了典型的三明治结构的体声波谐振器的截面图。图1中,附图标记说明如下:
101:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
102:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。本发明的实施例中采用的是空腔的形式。
103:底电极(包括底电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
104:压电层,在本发明的实施例中,为掺钪氮化铝压电层,其可以是单晶压电层,也可以多晶压电层。
105:顶电极(包括顶电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
106:钝化层或工艺层,其可以是氮化铝、氮化硅或二氧化硅等。钝化层或工艺层106也可以不设置。
下面简单说明在压电层中掺杂的元素的掺杂浓度。
掺杂意味着原来没有掺杂的压电材料中的一种或多种元素的一部分被掺杂元素所代替。此时掺杂浓度定义为:在单位体积中,掺杂元素的原子数,与上述提及的一种或多种被掺杂元素部分代替的元素的总原子数与掺杂元素的原子数之和的比值。例如,在压电层为氮化铝、掺杂元素为钪(即压电层为掺钪氮化铝ALScN)的情况下,部分铝原子被钪原子替代,掺杂浓度为单位体积中钪原子数与铝原子数和钪原子数的和的比值(Sc/Al+Sc)。
图2为示例性示出Band1频段的滤波器的发射端的50欧姆谐振器面积随掺钪氮化铝压电层中钪掺杂浓度或者掺钪浓度变化趋势的图。如图2所示,在增加AlN中掺杂Sc元素的掺杂浓度,即AlScN中钪掺杂浓度,的情况下,保证谐振器的机电耦合系数kt 2相同的情况下随着钪掺杂浓度增加50Ω谐振器面积缩小。然而,随着AlN中Sc浓度的提升,高质量的薄膜制备变得越来越难,从而导致谐振器性能的降低。
图3为示例性示出对于谐振频率为2GHz、50欧姆谐振器并联阻抗随掺钪氮化铝压电层中钪掺杂浓度变化趋势的图。在图3中,纵坐标为50欧姆谐振器并联阻抗,横坐标为掺钪的掺杂浓度,对于并联阻抗Rp,以8%浓度的Rp等效为1,其他点以是8%浓度的Rp的百分比表示。如图3所示,当掺杂浓度达到20%时,50欧姆谐振器并联阻抗相对于12%和8%的掺杂浓度有明显降低,然而50欧姆谐振器并联阻抗在掺杂浓度为12%与8%时相当。形成这种现象的主要原因是薄膜质量的区别。随着Sc的掺杂浓度的增加,Sc元素因为沉积温度以及薄膜应力的因素开始聚集结晶,在压电材料内部形成单独的Sc晶体。这种微小的Sc晶体破坏了压电材料本身的晶体性,并且以杂质的形式加大了压电层的材料声学损耗。最终,使用这种带有Sc结晶的压电材料制备的谐振器的性能明显恶化。
图4-图7示出了随着AlScN中Sc的掺杂浓度增加,在保证kt 2不变的前提下,Band3频段和Band1频段的压电层厚度均在下降。在频段固定的情 况下,压电层降低导致50欧姆谐振器面积缩小。
在本发明中,滤波器为Band1频段(在附图中Band1频段简称为B1)表示在滤波器的发射端其频率范围为1.92GHz–1.98GHz,在滤波器的接收端其频率范围为2.11GHz–2.17GHz;滤波器为Band3频段(在附图中Band3频段简称为B3)表示在滤波器的发射端其频率范围为1.71GHz–1.785GHz,在接收端其频率范围为1.805GHz–1.88GHz。
图4为根据本发明的一个示例性实施例的示出Band3频段滤波器的发射端的谐振器的掺钪氮化铝压电层的厚度随掺钪氮化铝压电层中钪掺杂浓度变化趋势的图。在图4中,纵坐标为谐振器的压电层的厚度(单位μm),横坐标为掺钪的掺杂浓度。
图5为根据本发明的一个示例性实施例的示出Band3频段滤波器的接收端的谐振器的掺钪氮化铝压电层的厚度随掺钪氮化铝压电层中钪掺杂浓度变化趋势的图。在图5中,纵坐标为谐振器的压电层的厚度(单位μm),横坐标为掺钪的掺杂浓度。
图6为根据本发明的一个示例性实施例的示出Band1频段的滤波器的发射端的谐振器的掺钪氮化铝压电层的厚度随掺钪氮化铝压电层中钪掺杂浓度变化趋势的图。在图6中,纵坐标为谐振器的压电层的厚度(单位μm),横坐标为掺钪的掺杂浓度。
图7为根据本发明的一个示例性实施例的示出Band1频段的滤波器的接收端的谐振器的掺钪氮化铝压电层的厚度随掺钪氮化铝压电层中钪掺杂浓度变化趋势的图。在图7中,纵坐标为谐振器的压电层的厚度(单位μm),横坐标为掺钪的掺杂浓度。
对于滤波器而言,压电层的厚度大,则在保证kt 2不变的前提下,压电层的面积会增大,这不利于滤波器器件的小型化;但是如果压电层的厚度过小,则在保证kt 2不变的前提下,压电层的面积会减小较多,这不利于滤波器器件的散热,导致谐振器的功率容量下降,会对谐振器的性能产生较大影响。此外,如上提及的,随着AlN中Sc浓度的提升,高质量的薄膜制备变得越来越难,从而导致谐振器性能的降低。基于以上,对于滤波器发射端的谐振器和接收端的谐振器,在压电层为掺钪压电层的情况下,选择其掺杂浓度为10-14%,且压电层的厚度在0.40μm到0.80μm之间。
在本发明的一个实施例中,对于Band3频段滤波器,参见图4-5,在所述滤波器的发射端(在附图中以TX表示),压电层的厚度范围在0.542μm到0.759μm之间,在所述滤波器的接收端(在附图中以RX表示),压电层的厚度范围在0.519μm到0.72μm之间。
在本发明的一个实施例中,对于Band1频段滤波器,参见图6-7,在所述滤波器的发射端,压电层的厚度范围在0.503μm到0.696μm之间,在所述滤波器的接收端,压电层的厚度范围在0.439μm到0.647μm之间。
需要指出的是,在本发明中,对于掺杂浓度和压电层厚度的各个数值范围,除了明确指出不包含端点值之外,除了可以为端点值,还可以为各个数值范围的中值,这些均在本发明的保护范围之内。
如本领域技术人员能够理解的,体声波谐振器可以用于形成除了滤波器之外的其他半导体器件。
基于以上,本发明提出了如下技术方案:
1、一种滤波器,包括多个体声波谐振器,其中:
体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内;
所述滤波器为Band1频段的滤波器;且
在所述滤波器的发射端,压电层的厚度范围在0.503μm到0.696μm之间,在所述滤波器的接收端,压电层的厚度范围在0.439μm到0.647μm之间。
2、一种滤波器,包括多个体声波谐振器,其中:
体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内;
所述滤波器为Band3频段的滤波器;且
在所述滤波器的发射端,压电层的厚度范围在0.542μm到0.759μm之间,在所述滤波器的接收端,压电层的厚度范围在0.519μm到0.72μm之间。
3、一种电子设备,包括根据权利要求1或2所述的滤波器。这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

  1. 一种滤波器,包括多个体声波谐振器,其中:
    体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内;
    所述滤波器为Band1频段的滤波器;且
    在所述滤波器的发射端,压电层的厚度范围在0.503μm到0.696μm之间,在所述滤波器的接收端,压电层的厚度范围在0.439μm到0.647μm之间。
  2. 一种滤波器,包括多个体声波谐振器,其中:
    体声波谐振器包括压电层,所述压电层为掺钪氮化铝,钪的掺杂浓度在10%-14%的范围内;
    所述滤波器为Band3频段的滤波器;且
    在所述滤波器的发射端,压电层的厚度范围在0.542μm到0.759μm之间,在所述滤波器的接收端,压电层的厚度范围在0.519μm到0.72μm之间。
  3. 一种电子设备,包括根据权利要求1或2所述的滤波器。
PCT/CN2022/070611 2021-01-29 2022-01-07 压电层为掺钪氮化铝的滤波器及电子设备 WO2022161135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110129394.0 2021-01-29
CN202110129394.0A CN114826194A (zh) 2021-01-29 2021-01-29 压电层为掺钪氮化铝的滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2022161135A1 true WO2022161135A1 (zh) 2022-08-04

Family

ID=82526139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070611 WO2022161135A1 (zh) 2021-01-29 2022-01-07 压电层为掺钪氮化铝的滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN114826194A (zh)
WO (1) WO2022161135A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262543A (zh) * 2020-04-01 2020-06-09 河源市众拓光电科技有限公司 一种钪掺杂氮化铝兰姆波谐振器与制备方法
CN111342799A (zh) * 2018-12-18 2020-06-26 天津大学 具有扩大的释放通道的体声波谐振器、滤波器、电子设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342799A (zh) * 2018-12-18 2020-06-26 天津大学 具有扩大的释放通道的体声波谐振器、滤波器、电子设备
CN111262543A (zh) * 2020-04-01 2020-06-09 河源市众拓光电科技有限公司 一种钪掺杂氮化铝兰姆波谐振器与制备方法

Also Published As

Publication number Publication date
CN114826194A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11909380B2 (en) Acoustic resonator and method of manufacturing the same
WO2021051812A1 (zh) 具有调节层的体声波谐振器、滤波器和电子设备
US11990892B2 (en) Acoustic wave device with transverse spurious mode suppression
US9917567B2 (en) Bulk acoustic resonator comprising aluminum scandium nitride
US11870415B2 (en) Acoustic device structures, devices and systems
US7994878B2 (en) Acoustic wave device and high-frequency filter using the same
WO2019206534A1 (en) Saw resonator, rf filter, multiplexer and method of manufacturing a saw resonator
US20230318562A1 (en) Bulk-acoustic wave resonator
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022068562A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2020134803A1 (zh) 电极厚度不对称的体声波谐振器、滤波器和电子设备
WO2022089597A1 (zh) 包含掺杂谐振器的滤波器和多工器、通信设备
Zhao et al. 15-ghz epitaxial aln fbars on sic substrates
US11558031B2 (en) Film bulk acoustic resonator and method of manufacturing the same
WO2020125352A1 (zh) 基于元素掺杂缩小有效面积的谐振器、滤波器和电子设备
CN111953314A (zh) 滤波器设计方法和滤波器、多工器、通信设备
WO2022042464A1 (zh) 温补滤波器优化方法和温补滤波器、多工器、通信设备
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022161135A1 (zh) 压电层为掺钪氮化铝的滤波器及电子设备
US20060220763A1 (en) Acoustic mirror type thin film bulk acoustic resonator, and filter, duplexer and communication apparatus comprising the same
WO2020140654A1 (zh) 基于梁檐尺寸调整声学谐振器性能的装置和方法
WO2022068552A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
US20220416764A1 (en) Acoustic wave device and composite filter device
WO2022206332A1 (zh) 具有钨电极的体声波谐振器、滤波器及电子设备
WO2022068561A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205DATED 08.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22745013

Country of ref document: EP

Kind code of ref document: A1