WO2022160992A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022160992A1
WO2022160992A1 PCT/CN2021/138416 CN2021138416W WO2022160992A1 WO 2022160992 A1 WO2022160992 A1 WO 2022160992A1 CN 2021138416 W CN2021138416 W CN 2021138416W WO 2022160992 A1 WO2022160992 A1 WO 2022160992A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical waveguide
filter
reflector
chip
Prior art date
Application number
PCT/CN2021/138416
Other languages
English (en)
French (fr)
Inventor
隋少帅
高凤
陈思涛
尹延龙
赵其圣
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022160992A1 publication Critical patent/WO2022160992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • An embodiment of the present disclosure discloses an optical module, including a circuit board on which a semiconductor gain chip is arranged; a silicon optical chip, which is electrically connected to the circuit board and is used for receiving a plurality of different wavelengths emitted by the semiconductor gain chip.
  • the silicon optical chip includes: an input coupler for receiving a plurality of light beams with different wavelengths emitted by the semiconductor gain chip; an optical waveguide, connected to the input a coupler connection for transmitting a plurality of light beams received by the input coupler; a plurality of filters, connected to the input coupler through the optical waveguide, for performing wavelength filtering on the plurality of the light beams respectively; reflection connected to the filter through the optical waveguide, and form a laser resonant cavity with the semiconductor gain chip, the input coupler, and a plurality of the filters; it is used to partially reflect the wavelength-filtered beam Partial transmission; a plurality of heaters, one of which is arranged on the optical waveguide, is used to change the phase of the light wave of the laser resonant cavity by thermal effect, so as to finely adjust the wavelength of the beam; the rest are respectively arranged on the filter On the reflector, it is used to change the refractive index of
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of a wavelength tuning mechanism using a sampling grating structure in a related optical module
  • FIG. 6 is a schematic diagram of a wavelength tuning mechanism interconnected and integrated by a plurality of tunable lasers in a related optical module
  • FIG. 7 is a schematic structural diagram of a silicon photonics chip in an optical module according to some embodiments.
  • FIG. 8 is another schematic structural diagram of a silicon photonics chip in an optical module according to some embodiments.
  • FIG. 9 is a schematic diagram of a third structure of a silicon photonics chip in an optical module according to some embodiments.
  • FIG. 10 is a schematic diagram of a coupling package of a silicon optical chip, a semiconductor gain chip and an optical fiber in an optical module according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 and a silicon photonics chip 400 ;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the inside of the optical module 200 .
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of components such as the circuit board 300 into the casing, and the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 can form encapsulation protection for these components.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 300 further includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of pins which are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • the high-speed wavelength tunable optical module is one of the important components of the system, and the high-speed wavelength tunable chip as the core of the module determines the performance and communication capacity of the system link.
  • the wavelength tuning range is generally only about 12nm.
  • the optical output power of the chip is restricted, so that the optical output power of the module is difficult to be higher than 1mW, resulting in a system chain. Road performance is degraded, and it is difficult to support next-generation high-capacity transmission networks.
  • FIG. 5 is a schematic diagram of a wavelength tuning structure using a sampling grating structure in an optical module in the related art
  • FIG. 6 is a schematic diagram of a wavelength tuning structure in an optical module in the related art that uses multiple tunable lasers for interconnection and integration.
  • the wavelength tuning range can be improved by adopting a sampling grating structure or the interconnection and integration of multiple tunable lasers, but this InP-based wide tuning range laser chip fabrication
  • the process is complex and the cost is high, which is not suitable for 5G applications that are extremely cost-sensitive.
  • the embodiments of the present disclosure provide an optical module, which is based on a silicon photonics integration platform, integrates optoelectronic devices such as filters and high-speed modulators on a silicon photonics integrated chip, and realizes an ultra-wide wavelength tuning range by integrating the filters.
  • the integrated high-speed modulator realizes the electro-optical high-speed modulation function, thereby realizing high integration and low chip cost.
  • FIG. 7 is a schematic structural diagram of a silicon photonics chip in an optical module according to some embodiments.
  • the silicon photonics chip 400 is electrically connected to the circuit board 300 for receiving multiple light beams of different wavelengths emitted by the semiconductor gain chip on the circuit board 300 , and performing ultra-wide wavelength tuning and electro-optic modulation on the light beams to output
  • the signal light is sent into the optical fiber 101 to realize the emission of the signal light.
  • the semiconductor gain chip can emit multiple light beams ranging from 1500 nm to 1600 nm.
  • the silicon photonics chip 400 includes an input coupler 401, an optical waveguide, a plurality of heaters 403, a plurality of filters, a reflector 409, a high-speed modulator 411 and an output coupler 412, an input coupler 401, a plurality of filters, and a reflector 409.
  • the high-speed modulator 411 and the output coupler 412 are connected through an optical waveguide, so that multiple beams of different wavelengths output by the semiconductor gain chip are coupled into the coupler 401, and the multiple beams are sequentially coupled into multiple filters through the optical waveguide.
  • Wavelength filtering then the wavelength-filtered beam is coupled to the reflector 409 via the optical waveguide, the beam passing through the reflector is coupled to the high-speed modulator 411 for electro-optic modulation via the optical waveguide, and the signal light is coupled to the output coupler via the optical waveguide 412, and finally transmit the signal light to the optical fiber 101 through the output coupler.
  • the input coupler 401 is disposed at one end face of the silicon optical chip 400, and is used for receiving multiple light beams of different wavelengths emitted by the semiconductor gain chip on the circuit board 300; the optical waveguide is coupled to the input A plurality of filters are connected to the input coupler 401 for transmitting and receiving multiple light beams in the silicon photonics chip 400; a plurality of filters are connected to the input coupler 401 through an optical waveguide, and are used to filter the wavelengths of the multiple light beams input by the input coupler 401 to To achieve ultra-wide wavelength tuning; a plurality of heaters 403 are respectively arranged on the optical waveguide and the filter, which can change the refractive index of the optical waveguide through thermal effects, and change the wavelength of light in the optical waveguide, so as to achieve fine adjustment of wavelength; A heater 403 is integrated on top of each filter to change the refractive index of the material by thermal effect, thereby changing the wavelength of light to achieve ultra-wide wavelength tuning; a reflector 409
  • the semiconductor gain chip, the input coupler 401, the optical waveguide, the heater 403, the filter and the reflector 409 constitute a laser resonant cavity to achieve stable and single wavelength output;
  • the high-speed modulator 411 is arranged on the output light of the reflector 409 On the road, it is used to load the electrical signal onto the beam output by the reflector, so as to realize high-speed electro-optic modulation;
  • the output coupler 412 is arranged at one end face of the silicon photonics chip 400, and the output coupler 412 and the input coupler 401 are located in the same The side is used to couple the signal light output by the high-speed modulator 411 into the optical fiber 101 to realize the emission of the signal light.
  • the input coupler 401 adopts an inclined waveguide design, that is, the waveguide of the input coupler 401 is arranged at a certain angle with the end face of the silicon optical chip 400 , so that the light beam emitted by the semiconductor gain chip enters the coupler 401 from the lower right. At this time, part of the light beam may be reflected on the end face of the silicon photonic chip 400, and the reflected beam will be emitted from the upper right side instead of returning to the semiconductor gain chip in the same way, thereby reducing the light reflection on the end face of the silicon photonic chip to the semiconductor gain chip. Impact.
  • the output coupler 412 adopts a straight waveguide design, that is, the waveguide of the output coupler 412 is perpendicular to the end face of the silicon photonic chip 400, so the signal light output by the output coupler 412 is perpendicular to the end face of the silicon photonic chip, which is convenient for back-end optical path coupling and reducing light Component package size.
  • the silicon photonics chip 400 includes a first filter 407 and a second filter 408, and the first filter 407 and the second filter 408 are connected by an optical waveguide, so as to connect the first filter 407 through the optical waveguide
  • the output beam is coupled into the second filter 408 for secondary wavelength filtering of the beam transmitted by the optical waveguide.
  • the wavelength tuning ranges of the first filter 407 and the second filter 408 are different, that is, the first filter 407 and the second filter 408 can transmit wavelengths in different ranges.
  • the input end of the first filter 407 is connected to the input coupler 401 through an optical waveguide, and is used to filter the wavelength of the light beam input by the input coupler 401;
  • the light beam filtered by the first filter 407 is subjected to secondary wavelength screening, so as to further screen the light beam wavelength.
  • the optical waveguide includes a first optical waveguide 402, a second optical waveguide 414, a third optical waveguide 415, a fourth optical waveguide 416 and a fifth optical waveguide 417.
  • One end of the first optical waveguide 402 is connected to the input coupler 401, and the other end is connected to the input coupler 401.
  • the input end of the first filter 407 is connected to couple the plurality of light beams received by the input coupler 401 into the first filter 407 through the first optical waveguide 402 ; one end of the second optical waveguide 414 is connected to the first filter 407 The output end is connected, and the other end is connected with the input end of the second filter 408, so as to couple the light beam output by the first filter 407 into the second filter 408 through the second optical waveguide 414; one end of the third optical waveguide 415 is connected to The output end of the second filter 408 is connected, and the other end is connected to the input end of the reflector 409, so as to couple the light beam output by the second filter 408 into the reflector 409 through the third optical waveguide 415; One end is connected to the output end of the reflector 409, and the other end is connected to the input end of the high-speed modulator 411, so as to couple the light beam output from the reflector 409 into the high-speed modulator 411 through the fourth optical waveguide 416; one end of
  • the silicon photonic chip 400 includes at least three heaters 403, and the first heaters 403 are arranged on the first optical waveguide 402, and are used to change the refractive index of the optical waveguide through thermal effects, thereby changing the phase of the light wave of the laser resonator, and realizing fine adjustment of the wavelength;
  • the two heaters are integrated above the first filter 407, and the third heater is integrated above the second filter 408 to change the refractive index of the material through thermal effects, thereby changing the wavelength filtering characteristics of the first filter 407 and the second filter 408, Ultra-wide wavelength tuning can be achieved by changing the wavelengths that can pass through the first filter 407 and the second filter 408 respectively.
  • the high-speed modulator 411 is disposed behind the reflector 409, and can load an electrical signal onto the light beam output by the reflector 409, thereby realizing high-speed electro-optic modulation.
  • the modulation speed can be 10G/25G/50G according to the application.
  • the high-speed modulator 411 can adopt a curved waveguide design to achieve extremely small device size.
  • the silicon photonics chip 400 further includes a first monitoring detector 404 and a second monitoring detector 410, the first monitoring detector 404 is connected to the input end of the first filter 407 through the sixth optical waveguide 418, Used to monitor the transmit power of the semiconductor gain chip, so as to realize optical coupling between the input coupler 401 and the semiconductor gain chip; the second monitoring detector 410 is connected to the output end of the reflector 409 through an optical waveguide for monitoring the output of the reflector 409 Optical power.
  • a plurality of monitoring detectors are used to monitor the output optical power value of the semiconductor gain chip, and the optical power can be stabilized within a specific range through external circuit feedback.
  • the silicon photonic chip 400 further includes four anti-reflectors 405 , the first anti-reflector is disposed on one side of the sixth optical waveguide 418 and connected to the first monitoring detector 404 , and the second anti-reflector passes through the seventh optical waveguide 419 is connected to the output end of the first filter 407 , the third anti-reflector is connected to the input end of the second filter 408 through the eighth optical waveguide 420 , and the fourth anti-reflector is connected to the second filter 408 through the ninth optical waveguide 421
  • the output end of the connection is used to eliminate the influence of light reflection on the laser resonator.
  • the third optical waveguide 415 and the reflector 409 form a laser resonant cavity, and the light beam emitted by the semiconductor gain chip passes through the input coupler 401, the first optical waveguide 402, the heater 403, the first filter 407, the second optical waveguide 414,
  • the second filter 408 , the third optical waveguide 415 and the reflector 409 are repeatedly reflected, and the influence of the light reflection on the laser resonator is eliminated by the anti-reflector 405 until the beam satisfies the ultra-wide wavelength tuning range.
  • the silicon photonic chip 400 is provided with an input coupler 401, a first optical waveguide 402, a heater 403, a first monitoring detector 404, an anti-reflector 405, a first filter 407, a second optical waveguide 414, and a second filter 408, the third optical waveguide 415, the reflector 409, the second monitoring detector 410, the high-speed modulator 411 and the output coupler 412, the spacing between the optical devices is small, so the heat generated between the optical devices is easy to generate heat Therefore, the silicon photonics chip 400 is provided with a plurality of heat insulation grooves 406, and the heat insulation grooves 406 are arranged between the optical devices to reduce thermal crosstalk between the optical devices and improve the performance stability of the chip.
  • the thermal insulation trench 406 is formed by etching the silicon photonic integrated chip.
  • FIG. 8 is another schematic structural diagram of a silicon photonics chip in an optical module according to some embodiments.
  • the silicon photonics chip 400 provided by the embodiment of the present disclosure further includes an anti-reflection glass block 500 , and the anti-reflection glass block 500 is disposed on the output end face of the output coupler 412 is used to reduce light reflection on the end face of the output coupler 412 .
  • Both sides of the optical path of the anti-reflection glass block 500 are coated with an anti-reflection film to reduce the reflectivity of the glass block.
  • a refractive index matching liquid is applied between the anti-reflection glass block 500 and the output coupler 412, and the reflection loss related to the glass-air interface can be almost eliminated by the refractive index matching liquid.
  • the light beam emitted by the semiconductor gain chip on the circuit board is injected into the silicon optical chip 400 through the input coupler 401, the output beam of the input coupler 401 is transmitted through the optical waveguide, and the integrated heater 403 on the optical waveguide changes the refractive index of the optical waveguide through thermal effect , so as to change the light wave phase of the laser resonant cavity and realize fine adjustment of the wavelength;
  • the light beam is transmitted to the first filter 407 and the second filter 408 through the optical waveguide, and the multiple light beams are subjected to wavelength screening twice through the two filters;
  • the wavelength-filtered beam is partially reflected and partially transmitted at the reflector 409, and the reflected beam is repeatedly reflected and screened in the laser resonator until it meets the wavelength tuning range of the laser resonator;
  • the electrical signal is loaded by the high-speed modulator 411 On the beam transmitted by the reflector 409, high-speed electro-optic modulation is realized; the modulated signal beam is coupled into the optical fiber 101 through the output
  • the present disclosure integrates optical devices such as an input coupler 401, an optical waveguide, a heater 403, a filter, a reflector 409, a high-speed modulator 411, and an output coupler 412 into a silicon photonics chip.
  • the device realizes an ultra-wide wavelength tuning range
  • the integrated curved waveguide modulator realizes the electro-optical high-speed modulation function, which solves the problems of small wavelength tuning range, low emission power and low modulation speed of high-speed tunable lasers.
  • FIG. 9 is a schematic diagram of a third structure of a silicon photonics chip in an optical module according to some embodiments.
  • the silicon photonics chip 400 provided by the embodiment of the present disclosure further includes a plurality of temperature sensors 413 , and the plurality of temperature sensors 413 are respectively It is arranged between the optical devices in the silicon photonics chip 400 to accurately monitor the working temperature of the silicon photonics chip 400 . That is, through the distribution of different positions of the single or multiple temperature sensors 413 , the temperature state of each wavelength operation can be precisely controlled to achieve precise wavelength output.
  • three temperature sensors 413 can be integrated in the silicon optical chip 400 , and one temperature sensor 413 can be disposed near the input coupler 401 for monitoring the first optical waveguide near the input coupler 401 in the silicon optical chip 400 402.
  • the temperature of the heater 403 is used to precisely control the wavelength of the first optical waveguide 402 for fine adjustment; another temperature sensor 413 can be set near the first filter 407, and a third temperature sensor 413 can be set on the second filter 408 Nearby, it is used to monitor the temperature of the heater 403 on the first filter 407 and the second filter 408 in the silicon photonics chip 400 to control the wavelength tuning function of the filter.
  • a plurality of temperature sensors 413 are integrated in the silicon photonics chip 400 , and the temperature state of each wavelength operation can be precisely controlled through the different positions of the plurality of temperature sensors 413 to achieve accurate wavelength output.
  • the present disclosure is based on a silicon photonics integration platform, combining the input coupler 401, the first optical waveguide 402, the heater 403, the first filter 407, the second optical waveguide 414, the second filter 408, the third optical waveguide 415, the reflector 409, the fourth optical waveguide 416, the high-speed modulator 411, the fifth optical waveguide 417, the output coupler 412, the first monitoring detector 404, the second monitoring detector 410, the temperature sensor 413 and other optical devices are integrated in the silicon photonic chip , the ultra-wide wavelength tuning range is realized by integrating the filter, and the high-speed electro-optic modulation function is realized by integrating the curved waveguide modulator, and the output optical power value of the semiconductor gain chip is realized by the first monitoring detector 404 and the second monitoring detector 410
  • FIG. 10 is a schematic diagram of a coupling package of a silicon optical chip, a semiconductor gain chip and an optical fiber in an optical module according to some embodiments.
  • the semiconductor gain chip 310 provided by the embodiment of the present disclosure is disposed on the circuit board 300 , and the semiconductor gain chip 310 is coupled and packaged with the input coupler 401 , that is, the semiconductor gain chip 310 and the silicon photonics chip 400 are directly coupled by the end face.
  • the semiconductor gain chip 310, the input coupler 401, the optical waveguide, the heater 403, the filter and the reflector 409 form a laser resonant cavity, and the light beam emitted by the semiconductor gain chip is subjected to wavelength gain through the semiconductor gain chip 310. Wavelength tuning, screening and reflection are carried out in the laser resonant cavity, and the reflector 409 transmits it after satisfying the ultra-wide wavelength tuning range, thereby realizing wavelength-tunable output.
  • the optical module provided by the embodiment of the present disclosure further includes a first lens 610 , an isolator 620 and a second lens 630 , and the first lens 610 , the isolator 620 and the second lens 630 are sequentially arranged on the output optical path of the output coupler 412 .
  • the wavelength transmitted through the reflector 409 is modulated by the high-speed modulator 411 to realize the electrical-optical signal conversion function.
  • the modulated signal light is transmitted to the output coupler 412, and is output to the first lens 610 through the output coupler 412, and passes through the first lens.
  • the 610 converts the signal beam output by the output coupler 412 into a collimated beam;
  • the second lens 630 is arranged between the first lens 610 and the optical fiber 101 for converging and coupling the collimated beam into the optical fiber 101 to realize the emission of signal light
  • the isolator 620 is arranged between the first lens 610 and the second lens 630, when the signal light is reflected at the end face of the optical fiber 101, the reflected beam is absorbed and reflected by the isolator 620, preventing the reflected beam from being transmitted to the output coupling
  • the electro-optical high-speed modulation of the high-speed modulator 411 is affected.
  • the silicon photonic chip 400 and the optical fiber 101 are packaged in a lens active coupling manner, so as to realize the coupling of the high-speed modulated wavelength-tunable optical signal into the optical fiber.
  • the whole package assembly can be placed on the same semiconductor cooler, and the operating temperature can be controlled.
  • the optical module provided by the embodiment of the present disclosure includes a circuit board and a silicon photonics chip, a semiconductor gain chip is arranged on the circuit board, and the silicon photonics chip is electrically connected to the circuit board, and is used for receiving a plurality of light beams of different wavelengths emitted by the semiconductor gain chip.
  • the light beam is subjected to filter resonance and electro-optic modulation; wherein, the silicon optical chip includes an input coupler, an optical waveguide, a plurality of filters, a plurality of heaters, a reflector, a high-speed modulator and an output coupler, and the semiconductor gain chip emits a plurality of beams
  • the input coupler is injected into the silicon optical chip, the light beam output by the input coupler is coupled to the first filter through the first optical waveguide, the light beam output by the first filter is coupled to the second filter through the second optical waveguide, and the second
  • the light beam output by the filter is coupled to the reflector through the third optical waveguide, the light beam transmitted by the reflector is coupled to the high-speed modulator through the fourth optical waveguide, and the optical signal output by the high-speed modulator is coupled to the output coupler through the fifth optical waveguide,
  • the modulated optical signal beam is coupled into the optical fiber through the output coupler to realize the emission of signal light; the heater integrated on the first optical waveguide changes the
  • multiple monitoring detectors are integrated in the silicon photonic chip to monitor the output optical power value of the semiconductor gain chip, and the optical power is stabilized within a specific range through external circuit feedback;
  • the reflector eliminates the influence of light reflection on the laser resonator through the anti-reflector; integrates multiple temperature sensors in the silicon photonic chip, and accurately controls the temperature state of each wavelength operation through the different position distribution of the multiple temperature sensors. Precise wavelength output.
  • the present disclosure integrates optical devices such as input couplers, optical waveguides, heaters, filters, reflectors, high-speed modulators, output couplers, monitoring detectors, and temperature sensors in a silicon photonics chip.
  • the integrated filter realizes an ultra-wide wavelength tuning range
  • the integrated curved waveguide modulator realizes the electro-optical high-speed modulation function, which solves the problems of small wavelength tuning range, low emission power and low modulation speed of high-speed tunable lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本公开公开了一种光模块,包括电路板及与电路板电连接的硅光芯片,硅光芯片接收电路板上半导体增益芯片发射的多个不同波长的光束并对光束进行滤波谐振和电光调制;硅光芯片包括输入/出耦合器、光波导、多个滤波器、多个加热器、反射器与高速调制器,输入耦合器接收半导体增益芯片发射的光束;多个滤波器用于对接收的多个光束进行波长筛选;反射器用于对波长筛选后的光束进行部分反射部分透射;多个加热器分别设置于光波导与滤波器上,用于改变光波导及滤波器的折射率;高速调制器用于将电信号加载至反射器输出的光束上;输出耦合器用于将高速调制器输出的信号光耦合至光纤。本公开基于硅光子集成平台实现了超宽波长调谐范围与电光高速调制。

Description

一种光模块
本公开要求在2021年01月28日提交中国专利局、申请号为202110118429.0、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开实施例公开了一种光模块,包括电路板,其上设置有半导体增益芯片;硅光芯片,与所述电路板电连接,用于接收所述半导体增益芯片发射的多个不同波长的光束并对所述光束进行滤波谐振和电光调制;其中,所述硅光芯片包括:输入耦合器,用于接收所述半导体增益芯片发射的多个不同波长的光束;光波导,与所述输入耦合器连接,用于传输所述输入耦合器接收的多个光束;多个滤波器,通过所述光波导与所述输入耦合器连接,用于分别对多个所述光束进行波长筛选;反射器,通过所述光波导与所述滤波器连接,并与所述半导体增益芯片、所述输入耦合器、多个所述滤波器构成激光器谐振腔;用于对波长筛选后的光束进行部分反射部分透射;多个加热器,其一设置于所述光波导上,用于通过热效应改变所述激光器谐振腔的光波相位,以对所述光束的波长进行精细调节;其余分别设置于所述滤波器上,用于通过热效应改变所述滤波器的折射率,以对透过所述滤波器的波长进行粗调;高速调制器,设置于所述反射器的输出光路上,用于将电信号加载至所述反射器输出的光束上,输出信号光;输出耦合器,用于将所述信号光耦合至光纤。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为相关的光模块中采用取样光栅结构的波长调谐机构示意图;
图6为相关的光模块中采用多个可调激光器互联集成的波长调谐机构示意图;
图7为根据一些实施例的一种光模块中硅光芯片的结构示意图;
图8为根据一些实施例的一种光模块中硅光芯片的另一结构示意图;
图9为根据一些实施例的一种光模块中硅光芯片的第三种结构示意图;
图10为根据一些实施例的一种光模块中硅光芯片、半导体增益芯片与光纤的耦合封装示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使 得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括上壳体201、下壳体202、解锁部件203、电路板300与硅光芯片400;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,插入上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200的内部。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
在5G前传应用中,高速波长可调光模块是系统重要元件之一,其中高速波长可调芯片作为模块核心决定了系统链路的性能和通信容量。当前基于相关的InP基的高速可调激光器芯片虽然能够实现25G的调制速率,但波长调谐范围一般只有12nm左右,同时芯片的出光功率受到制约,使得模块出光功率很难高于1mW,导致系统链路性能下降,并且难以支持下一代高容量的传输网络。
图5为相关技术中光模块中采用取样光栅结构的波长调谐结构示意图,图6为相关技术中光模块中采用多个可调激光器互联集成的波长调谐结构示意图。如图5、图6所示,针上述此问题,可以通过采用取样光栅结构或多个可调激光器互联集成的方式来提高波长调谐范围,但这种基于InP基的宽调谐范围的激光器芯片制作工艺较复杂,成本很高,不适于对成本极敏感的5G应用中。
本公开实施例提供了一种光模块,该光模块基于硅光子集成平台,将滤波器、高速调制器等光电器件集成于硅光子集成芯片上,通过集成滤波器实现超宽波长调谐范围,同时集成高速调制器实现电光高速调制功能,由此实现高集成度和低芯片成本。
图7为根据一些实施例的一种光模块中硅光芯片的结构示意图。如图7所示,硅光芯 片400与电路板300电连接,用于接收电路板300上半导体增益芯片发射的多个不同波长的光束,并对光束进行超宽波长调谐和电光调制,从而输出信号光至光纤101内,以实现信号光的发射。在本公开实施例中,半导体增益芯片可发射1500nm~1600nm的多个光束。
硅光芯片400包括输入耦合器401、光波导、多个加热器403、多个滤波器、反射器409、高速调制器411与输出耦合器412,输入耦合器401、多个滤波器、反射器409、高速调制器411与输出耦合器412通过光波导连接,如此半导体增益芯片输出的多个不同波长的光束耦合输入耦合器401内,经由光波导将多个光束依次耦合至多个滤波器内进行波长筛选,之后经由光波导将波长筛选后的光束耦合至反射器409,经由光波导将透过反射器的光束耦合至高速调制器411进行电光调制,经由光波导将信号光耦合至输出耦合器412,最后经输出耦合器将信号光传输至光纤101中。
在本公开的某一些实施例中,输入耦合器401设置于硅光芯片400的一侧端面处,用于接收电路板300上半导体增益芯片发射的多个不同波长的光束;光波导与输入耦合器401连接,用于在硅光芯片400内传输接收的多个光束;多个滤波器通过光波导与输入耦合器401连接,用于对输入耦合器401输入的多个光束进行波长筛选,以实现超宽波长的调谐;多个加热器403分别设置于光波导与滤波器上,可通过热效应改变光波导的折射率,改变光波导内的光波长,从而实现波长的精细调节;通过在每个滤波器上方集成加热器403,通过热效应改变材料折射率,从而改变光波长,实现超宽波长调谐;反射器409设置于滤波器的光路末端,用于对波长筛选后的光束进行部分反射部分透射,从而将半导体增益芯片、输入耦合器401、光波导、加热器403、滤波器与反射器409构成激光器谐振腔,实现稳定、单一波长输出;高速调制器411设置于反射器409的输出光路上,用于将电信号加载至反射器输出的光束上,从而实现电光高速调制;输出耦合器412设置于硅光芯片400的一侧端面处,且输出耦合器412与输入耦合器401位于同一侧,用于将高速调制器411输出的信号光耦合至光纤101中,实现信号光的发射。
在本公开实施例中,输入耦合器401采用倾斜波导设计,即输入耦合器401的波导与硅光芯片400的端面成一定角度设置,如此半导体增益芯片发射的光束由右下方射入耦合器401时,部分光束可能会在硅光芯片400的端面发生反射,反射后的光束会由右上方射出,而不会原路返回半导体增益芯片内,从而降低了硅光芯片端面光反射对半导体增益芯片的影响。
输出耦合器412采用直波导设计,即输出耦合器412的波导与硅光芯片400的端面相垂直,如此输出耦合器412输出的信号光垂直射出硅光芯片端面,方便后端光路耦合和降低光组件封装尺寸。
在本公开实施例中,硅光芯片400包括第一滤波器407与第二滤波器408,第一滤波器407与第二滤波器408通过光波导连接,以通过光波导将第一滤波器407输出的光束耦合至第二滤波器408内,以对光波导传输的光束进行二次波长筛选。第一滤波器407与第二滤波器408的波长调谐范围不同,即第一滤波器407与第二滤波器408可透过不同范围的波长。第一滤波器407的输入端通过光波导与输入耦合器401连接,用于对输入耦合器401输入的光束进行一次波长筛选;第二滤波器408设置于反射器409的输出端,用于对 第一滤波器407筛选后的光束进行二次波长筛选,从而进一步筛选光束波长。
光波导包括第一光波导402、第二光波导414、第三光波导415、第四光波导416与第五光波导417,第一光波导402的一端与输入耦合器401连接、另一端与第一滤波器407的输入端连接,以通过第一光波导402将输入耦合器401接收的多个光束耦合至第一滤波器407内;第二光波导414的一端与第一滤波器407的输出端连接、另一端与第二滤波器408的输入端连接,以通过第二光波导414将第一滤波器407输出的光束耦合至第二滤波器408内;第三光波导415的一端与第二滤波器408的输出端连接、另一端与反射器409的输入端连接,以通过第三光波导415将第二滤波器408输出的光束耦合至反射器409内;第四光波导416的一端与反射器409输出端连接、另一端与高速调制器411的输入端连接,以通过第四光波导416将反射器409输出的光束耦合至高速调制器411内;第五光波导417的一端与高速调制器411的输出端连接、另一端与输出耦合器412连接,以通过第五光波导417将高速调制器411输出的光束耦合至输出耦合器412内。
硅光芯片400包括至少三个加热器403,第一加热器403设置于第一光波导402上,用于通过热效应改变光波导折射率,从而改变激光器谐振腔光波相位,实现波长精细调节;第二加热器集成于第一滤波器407上方,第三加热器集成于第二滤波器408上方,通过热效应改变材料折射率,从而改变第一滤波器407与第二滤波器408的波长筛选特性,以分别改变能够透过第一滤波器407与第二滤波器408的波长,实现超宽波长调谐。
高速调制器411设置于反射器409之后,能够将电信号加载至反射器409输出的光束上,从而实现电光高速调制,其调制速度按照应用可以为10G/25G/50G等。为了降低整体集成芯片尺寸,提高集成度,该高速调制器411可以采用弯曲波导设计,实现极小器件尺寸。
在本公开实施例中,硅光芯片400还包括第一监控探测器404与第二监控探测器410,第一监控探测器404通过第六光波导418与第一滤波器407的输入端连接,用于监测半导体增益芯片的发射功率,以便于输入耦合器401与半导体增益芯片实现光耦合;第二监控探测器410通过光波导与反射器409的输出端连接,用于监控反射器409的输出光功率。本公开通过多个监控探测器监控半导体增益芯片输出光功率值大小,并且通过外部电路反馈可实现光功率稳定在特定范围内。
硅光芯片400还包括四个减反射器405,第一减反射器设置于第六光波导418的一侧,并与第一监控探测器404连接,第二减反射器通过第七光波导419与第一滤波器407的输出端连接,第三减反射器通过第八光波导420与第二滤波器408的输入端连接,第四减反射器通过第九光波导421与第二滤波器408的输出端连接;用于消除光反射对激光器谐振腔的影响。在本公开的某一些实施例中,电路板300上的半导体增益芯片、输入耦合器401、第一光波导402、加热器403、第一滤波器407、第二光波导414、第二滤波器408、第三光波导415与反射器409构成激光器谐振腔,半导体增益芯片发出的光束在输入耦合器401、第一光波导402、加热器403、第一滤波器407、第二光波导414、第二滤波器408、第三光波导415与反射器409之间反复反射,并通过减反射器405消除光反射对激光器谐振腔的影响,直至光束满足超宽波长调谐范围。
硅光芯片400上设置有输入耦合器401、第一光波导402、加热器403、第一监控探测器404、减反射器405、第一滤波器407、第二光波导414、第二滤波器408、第三光波导415、反射器409、第二监控探测器410、高速调制器411与输出耦合器412,各光学器件之间间隔较小,如此各光学器件之间产生的热量容易产生热串扰,因此硅光芯片400上设置有多个隔热槽406,隔热槽406设置在各光学器件之间,用于减小各个光学器件之间热串扰,提高芯片性能稳定性。在本公开实施例中,隔热槽406通过刻蚀硅光集成芯片形成。
图8为根据一些实施例的光模块中硅光芯片的另一结构示意图。如图8所示,为了进一步增加硅光芯片400的稳定性,本公开实施例提供的硅光芯片400还包括增透玻璃块500,该增透玻璃块500设置于输出耦合器412的输出端面上,用于降低输出耦合器412端面的光反射。增透玻璃块500光路的两侧均镀有增透膜,降低玻璃块的反射率,如此输出耦合器412输出的信号光通过增透玻璃块500耦合至光纤101时,信号光能够大部分透过增透玻璃块500,只有少部分在增透玻璃块500朝向输出耦合器412的侧面上发生反射,以将信号光尽可能多地透过增透玻璃块500耦合至光纤101中。
在本公开实施例中,增透玻璃块500与输出耦合器412之间施加有折射率匹配液,通过折射率匹配液可几乎消除与玻璃-空气分界面相关的反射损失。
电路板上半导体增益芯片发射的光束通过输入耦合器401射入硅光芯片400内,输入耦合器401输出光束通过光波导进行传输,光波导上集成的加热器403通过热效应改变光波导的折射率,从而改变激光器谐振腔的光波相位,实现波长精细调节;通过光波导将光束传输至第一滤波器407与第二滤波器408处,通过两个滤波器对多个光束进行两次波长筛选;波长筛选后的光束在反射器409处进行部分反射部分透射,反射后的光束在激光器谐振腔内多次反射、筛选,直至满足激光器谐振腔的波长调谐范围;通过高速调制器411将电信号加载至反射器409透射的光束上,实现电光高速调制;调制后的信号光束经由输出耦合器412、增透玻璃块500耦合至光纤101中,实现了信号光的发射;并在硅光芯片400内集成第一监控探测器404与第二监控探测器410,来监控半导体增益芯片输出光功率值大小,通过外部电路反馈实现了光功率稳定在特定范围内。本公开基于硅光子集成平台,将输入耦合器401、光波导、加热器403、滤波器、反射器409、高速调制器411、输出耦合器412等光学器件集成在硅光子芯片内,通过集成滤波器实现了超宽波长调谐范围,同时集成弯曲波导调制器实现了电光高速调制功能,解决了高速可调激光器波长调谐范围小、发射功率低和调制速度低的问题。
图9为根据一些实施例的一种光模块中硅光芯片的第三种结构示意图。如图9所示,为了能够精确的监控硅光芯片400的工作温度,从而实现稳定波长输出,本公开实施例提供的硅光芯片400还包括多个温度传感器413,该多个温度传感器413分别设置于硅光芯片400内各光学器件之间,用于精确监控硅光芯片400的工作温度。即通过单个或多个温度传感器413的不同位置分布,精确控制每个波长工作的温度状态,实现精确波长输出。
在本公开实施例中,硅光芯片400内可集成三个温度传感器413,一个温度传感器413可设置于输入耦合器401附近,用于监控硅光芯片400内输入耦合器401附近第一光波导402、加热器403的温度,以精确控制第一光波导402的波长精细调节;另一个温度传感 器413可设置于第一滤波器407附近,第三个温度传感器413可设置于第二滤波器408附近,用于监控硅光芯片400内第一滤波器407、第二滤波器408上加热器403的温度,以控制滤波器的波长调谐功能。
在硅光芯片400内集成多个温度传感器413,通过多个温度传感器413的不同位置分布,精确控制每个波长工作的温度状态,实现精确波长输出。本公开基于硅光子集成平台,将输入耦合器401、第一光波导402、加热器403、第一滤波器407、第二光波导414、第二滤波器408、第三光波导415、反射器409、第四光波导416、高速调制器411、第五光波导417、输出耦合器412、第一监控探测器404、第二监控探测器410、温度传感器413等光学器件集成在硅光子芯片内,通过集成滤波器实现了超宽波长调谐范围,同时集成弯曲波导调制器实现了电光高速调制功能,通过第一监控探测器404、第二监控探测器410实现了半导体增益芯片输出光功率值大小,通过外部电路反馈实现了光功率稳定在特定范围内,解决了高速可调激光器波长调谐范围小、发射功率低和调制速度低的问题。
图10为根据一些实施例的一种光模块中硅光芯片、半导体增益芯片与光纤的耦合封装示意图。如图10所示,本公开实施例提供的半导体增益芯片310设置于电路板300上,半导体增益芯片310与输入耦合器401耦合封装,即半导体增益芯片310与硅光芯片400采用端面直接耦合方式进行封装,半导体增益芯片310与输入耦合器401、光波导、加热器403、滤波器与反射器409构成激光器谐振腔,半导体增益芯片射出的光束经由半导体增益芯片310进行波长增益,增益后的波长在激光器谐振腔内进行波长调谐、筛选及反射,满足超宽波长调谐的范围后由反射器409透射而出,实现了波长可调输出。
本公开实施例提供的光模块还包括第一透镜610、隔离器620与第二透镜630,第一透镜610、隔离器620与第二透镜630依次设置于输出耦合器412的输出光路上。经由反射器409透射出的波长通过高速调制器411进行调制,实现电光信号转换功能,调制后的信号光传输至输出耦合器412,通过输出耦合器412输出至第一透镜610,通过第一透镜610将输出耦合器412输出的信号光束转换为准直光束;第二透镜630设置于第一透镜610与光纤101之间,用于将准直光束汇聚耦合至光纤101中,实现信号光的发射;隔离器620设置于第一透镜610与第二透镜630之间,用于在信号光在光纤101的端面发生反射时,反射光束被隔离器620吸收、反射,避免了反射光束传输至输出耦合器412、高速调制器411内,影响高速调制器411的电光高速调制。
在本公开实施例中,硅光芯片400与光纤101采用透镜有源耦合方式进行封装,实现了将高速调制的波长可调光信号耦合到光纤中。为了控制波长稳定性,可以将整体封装组件放在同一半导体制冷器上,对工作温度进行控制。
本公开实施例提供的光模块包括电路板与硅光芯片,电路板上设置有半导体增益芯片,硅光芯片与电路板电连接,用于接收半导体增益芯片发射的多个不同波长的光束并对光束进行滤波谐振和电光调制;其中,硅光芯片包括输入耦合器、光波导、多个滤波器、多个加热器、反射器、高速调制器及输出耦合器,半导体增益芯片发射的多个光束通过输入耦合器射入硅光芯片内,输入耦合器输出的光束通过第一光波导耦合至第一滤波器,第一滤波器输出的光束通过第二光波导耦合至第二滤波器,第二滤波器输出的光束通过第三光波 导耦合至反射器,反射器透过的光束通过第四光波导耦合至高速调制器,高速调制器输出的光信号通过第五光波导耦合至输出耦合器,调制后的光信号束经由输出耦合器耦合至光纤中,实现了信号光的发射;第一光波导上集成的加热器通过热效应改变光波导的折射率,从而改变激光器谐振腔光波相位,实现波长精细调节;通过多个滤波器及集成于滤波器上的加热器分别对耦合至硅光芯片的多个不同波长的光束进行波长筛选,得到同时满足多个滤波器筛选范围的光束波长,实现超宽波长调谐范围;在硅光芯片内集成多个监控探测器来监控半导体增益芯片输出光功率值大小,通过外部电路反馈实现了光功率稳定在特定范围内;在硅光芯片内集成多个减反射器,通过减反射器来消除光反射对激光器谐振腔的影响;在硅光芯片内集成多个温度传感器,通过多个温度传感器的不同位置分布,精确控制每个波长工作的温度状态,实现精确波长输出。
本公开基于硅光子集成平台,将输入耦合器、光波导、加热器、滤波器、反射器、高速调制器、输出耦合器、监控探测器、温度传感器等光学器件集成在硅光子芯片内,通过集成滤波器实现了超宽波长调谐范围,同时集成弯曲波导调制器实现了电光高速调制功能,解决了高速可调激光器波长调谐范围小、发射功率低和调制速度低的问题。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板,其上设置有半导体增益芯片;
    硅光芯片,与所述电路板电连接,用于接收所述半导体增益芯片发射的多个不同波长的光束并对所述光束进行滤波谐振和电光调制;
    其中,所述硅光芯片包括:
    输入耦合器,用于接收所述半导体增益芯片发射的多个不同波长的光束;
    光波导,与所述输入耦合器连接,用于传输所述输入耦合器接收的多个光束;
    多个滤波器,通过所述光波导与所述输入耦合器连接,用于分别对多个所述光束进行波长筛选;
    反射器,通过所述光波导与所述滤波器连接,并与所述半导体增益芯片、所述输入耦合器、多个所述滤波器构成激光器谐振腔;用于对波长筛选后的光束进行部分反射部分透射;
    多个加热器,其一设置于所述光波导上,用于通过热效应改变所述激光器谐振腔的光波相位,以对所述光束的波长进行精细调节;其余分别设置于所述滤波器上,用于通过热效应改变所述滤波器的折射率,以对透过所述滤波器的波长进行粗调;
    高速调制器,设置于所述反射器的输出光路上,用于将电信号加载至所述反射器输出的光束上,输出信号光;
    输出耦合器,用于将所述信号光耦合至光纤。
  2. 根据权利要求1所述的光模块,其特征在于,所述滤波器包括第一滤波器与第二滤波器,所述光波导包括第一光波导、第二光波导、第三光波导、第四光波导与第五光波导,所述第一光波导的两端分别与所述输入耦合器、所述第一滤波器的输入端连接,所述第二光波导的两端分别与所述第一滤波器的输出端、所述第二滤波器的输入端连接,所述第三光波导的两端分别与所述第二滤波器的输出端、所述反射器的输入端连接,所述第四光波导的两端分别与所述反射器的输出端、所述高速调制器的输入端连接,所述第五光波导的两端分别与所述高速调制器的输出端、所述输出耦合器连接。
  3. 根据权利要求2所述的光模块,其特征在于,一个所述加热器设置于所述第一光波导上。
  4. 根据权利要求2所述的光模块,其特征在于,所述硅光芯片还包括第一监控探测器与第二监控探测器,所述第一监控探测器通过第六光波导与所述第一滤波器的输入端连接,用于监测所述半导体增益芯片的发射光功率;所述第二监控探测器通过光波导与所述反射器的输出端连接,用于监控所述反射器的输出光功率。
  5. 根据权利要求4所述的光模块,其特征在于,所述硅光芯片还包括四个减反射器,第一减反射器设置于所述第六光波导的一侧,第二减反射器通过第七光波导与所述第一滤波器的输出端连接,第三减反射器通过第八光波导与所述第二滤波器的输入端连接,第四减反射器通过第九光波导与所述第二滤波器的输出端连接;用于消除光反射对所述激光器 谐振腔的影响。
  6. 根据权利要求1所述的光模块,其特征在于,所述硅光芯片上还设置有隔热槽,所述隔热槽设置于所述光波导、所述滤波器、所述加热器、所述反射器与所述高速调制器的周围,用于减小所述光波导、所述滤波器、所述加热器、所述反射器与所述高速调制器之间的热串扰。
  7. 根据权利要求1所述的光模块,其特征在于,所述硅光芯片还包括多个温度传感器,所述温度传感器分别设置于所述光波导、所述滤波器、所述加热器、所述反射器与所述高速调制器的周围,用于精确监控所述硅光芯片的工作温度,以实现精确波长输出。
  8. 根据权利要求1所述的光模块,其特征在于,还包括增透玻璃块,所述增透玻璃块设置于所述输出耦合器的输出端面上,用于降低所述输出耦合器端面的光反射。
  9. 根据权利要求1所述的光模块,其特征在于,所述输入耦合器的波导与所述硅光芯片的端面成一定角度设置,用于降低所述硅光芯片端面光发射对所述半导体增益芯片的影响;
    所述输出耦合器的波导垂直于所述硅光芯片的端面。
  10. 根据权利要求5所述的光模块,其特征在于,所述减反射器为光栅耦合器、拉锥形波导、光衰减器。
PCT/CN2021/138416 2021-01-28 2021-12-15 一种光模块 WO2022160992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110118429.0A CN114826409B (zh) 2021-01-28 2021-01-28 一种光模块
CN202110118429.0 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022160992A1 true WO2022160992A1 (zh) 2022-08-04

Family

ID=82525751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138416 WO2022160992A1 (zh) 2021-01-28 2021-12-15 一种光模块

Country Status (2)

Country Link
CN (1) CN114826409B (zh)
WO (1) WO2022160992A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103570A1 (zh) * 2022-11-18 2024-05-23 青岛海信宽带多媒体技术有限公司 光模块
WO2024103573A1 (zh) * 2022-11-18 2024-05-23 青岛海信宽带多媒体技术有限公司 光模块

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361149A (zh) * 2018-11-30 2019-02-19 武汉邮电科学研究院有限公司 一种硅基可调谐激光器
US20200280173A1 (en) * 2019-03-01 2020-09-03 Neophotonics Corporation Method for wavelength control of silicon photonic external cavity tunable laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966989B (zh) * 2015-06-29 2018-12-25 武汉光迅科技股份有限公司 波长可调谐外腔激光器及可调光发射模块
CN107247381B (zh) * 2017-07-11 2019-09-24 中国科学院半导体研究所 一种硅基集成任意波形信号发生器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361149A (zh) * 2018-11-30 2019-02-19 武汉邮电科学研究院有限公司 一种硅基可调谐激光器
US20200280173A1 (en) * 2019-03-01 2020-09-03 Neophotonics Corporation Method for wavelength control of silicon photonic external cavity tunable laser

Also Published As

Publication number Publication date
CN114826409B (zh) 2024-02-23
CN114826409A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11163126B2 (en) Light source assembly supporting direct coupling to an integrated circuit
US10054737B2 (en) Optical I/O system using planar light-wave integrated circuit
WO2021248957A1 (zh) 一种光模块
WO2022160992A1 (zh) 一种光模块
CN213122371U (zh) 一种光模块
WO2022110965A1 (zh) 一种光模块
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
CN217879744U (zh) 一种光模块
CN218037458U (zh) 一种光模块
WO2024027248A1 (zh) 激光器及光模块
US20230418006A1 (en) Optical module
US20230421262A1 (en) Optical module
WO2023093052A1 (zh) 光模块
WO2022267805A1 (zh) 光模块
WO2022116619A1 (zh) 一种光模块
CN113488832B (zh) 一种具有调制器的激光器及光模块
WO2022100278A1 (zh) 一种光模块
WO2022007428A1 (zh) 一种光模块
CN114167553B (zh) 一种光模块
WO2022188581A1 (zh) Eml芯片及光模块
WO2022179226A1 (zh) 一种eml芯片及光模块
CN114647037A (zh) 一种光模块
WO2024066093A1 (zh) 光模块
WO2024066202A1 (zh) 光模块
WO2024103573A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922582

Country of ref document: EP

Kind code of ref document: A1