WO2022160955A1 - 一种脉搏信号采集及测量装置 - Google Patents

一种脉搏信号采集及测量装置 Download PDF

Info

Publication number
WO2022160955A1
WO2022160955A1 PCT/CN2021/136233 CN2021136233W WO2022160955A1 WO 2022160955 A1 WO2022160955 A1 WO 2022160955A1 CN 2021136233 W CN2021136233 W CN 2021136233W WO 2022160955 A1 WO2022160955 A1 WO 2022160955A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
peak
electret layer
pulse data
pulse signal
Prior art date
Application number
PCT/CN2021/136233
Other languages
English (en)
French (fr)
Inventor
董瑛
韩留洋
王晓浩
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2022160955A1 publication Critical patent/WO2022160955A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0252Load cells

Definitions

  • the invention relates to a pulse signal acquisition and measurement device.
  • Pulse is a common and important physiological signal.
  • the real-time evaluation of heart rate and blood pressure in wearable medical electronic products depends on the accurate measurement of pulse.
  • the calculation and analysis of some physiological parameters with important medical value, such as arterial enhancement index, systolic time, etc., also require accurate pulse data.
  • People's demand for health monitoring and smart medical treatment stimulates the rapid development of pulse-related medical consumer electronic products, and the related hardware facilities and software development also have more and more important use value.
  • the main purpose of the present invention is to overcome the above-mentioned problems in the background art, and to provide a pulse signal acquisition and measurement device.
  • the present invention adopts the following technical solutions:
  • a pulse signal acquisition and measurement device comprising a computer program storage medium, a processing device and a pulse sensor, the pulse sensor is used to collect pulse data, and the processing device performs the following processing when executing a computer program, including: pre-processing the pulse data. processing; extract the systolic peak and diastolic valley from the pulse data; extract the reflection peak and reflection valley from the pulse data; extract the double stroke peak and the descending isthmus from the pulse data; calculate according to the extracted feature points Medical parameters.
  • the preprocessing includes baseline removal, low-pass filtering, and amplitude normalization to obtain smoothed pulse waveforms with the same amplitude.
  • Extracting the systolic peak and the diastolic valley from the pulse data includes: searching for the maximum point of the first-order difference of the pulse data according to the preset amplitude threshold and time threshold, and taking two points immediately in front of and behind the maximum point. A zero point is used as the systolic peak P1 and the diastolic valley V1.
  • Extracting reflection peaks and reflection valleys from the pulse data includes: dividing the pulse data into several single-cycle segments according to the diastolic valley V1, and finding the second maximum point of the first-order difference in each cycle segment ; Judge whether the second maximum value point is greater than 0, if it is greater than 0, then use the two zero points in front and behind it as the reflection peak P2 and reflection valley V2, if not greater than 0, then the second order The maximum point and minimum point corresponding to the difference serve as the reflection peak P2 and the reflection valley V2.
  • Extracting the double pulse peak and the mid-descent isthmus from the pulse data includes: dividing the entire pulse data into several single-cycle segments according to the diastolic valley V1, and in each cycle segment, searching for a first-order difference except for the first and second For all the maximum points outside the maximum point, if there is no remaining maximum point, it is determined that the heavy stroke peak P3 and the descending isthmus V3 do not exist; if there is only one maximum point left, the follow-up is performed directly.
  • processing if there are multiple maximum points, select the maximum point/minimum point pair with the largest amplitude, and then perform subsequent processing; the subsequent processing includes: judging the maximum point Whether it is greater than 0, if it is greater than 0, the two zero points immediately in front and back are used as the heavy stroke peak P3 and the descending isthmus V3; if it is not greater than 0, the maximum value point corresponding to the second-order difference The small value points are used as the double stroke peak P3 and the descending isthmus V3.
  • the pulse sensor is a flexible pressure sensor, including a first metal electrode layer, a first electret layer, a second electret layer and a second metal electrode layer stacked together in sequence, the first electret layer and the There is an air cavity between the second electret layers, and the positive and negative charges ionized by the air in the air cavity through corona polarization are respectively charged by the first electret layer and the second electret layer.
  • the charge dipole and the induced charges on the first and second metal electrode layers form an electric field balance.
  • the dipole moment changes.
  • the induced charge is transferred to form a current on the external circuit
  • the pressure is released, the sensor returns to its original state due to its own elasticity, and a reverse current is formed on the external circuit to restore the electric field balance.
  • the inner surface of the first electret layer and/or the second electret layer has grooves.
  • the inner surface of the first electret layer has a plurality of first strip-shaped grooves that are parallel to each other, and the inner surface of the second electret layer has a plurality of second strip-shaped grooves that are parallel to each other,
  • the first strip-shaped groove and the second strip-shaped groove are opposite to each other, preferably also perpendicular to each other.
  • the material of the first electret layer and/or the second electret layer is selected from fluorinated ethylene propylene copolymer (FEP), polypropylene (PP), polyvinylidene fluoride (PVDF);
  • the material of a metal electrode layer and/or the second metal electrode layer is selected from gold (Au), silver (Ag), copper (Cu), aluminum (Al), and chromium (Cr).
  • a closed air cavity is jointly formed by the first electret layer and the second electret layer.
  • the present invention has the following beneficial effects:
  • the present invention proposes a pulse signal acquisition and measurement device, which overcomes the disadvantage that traditional pulse measurement equipment is difficult to perform in-depth analysis and calculation of pulse data. Diastolic valley, reflex peak, reflex valley, heavy stroke peak and middle descending gorge, according to these pulse characteristic points, the pulse data can be deeply analyzed, and the corresponding physiological parameters with important medical value can be calculated.
  • the pulse signal acquisition and measurement device of the present invention can conveniently and automatically extract pulse feature points during use, can fully tap the medical application value of the pulse data, and has broad application prospects in smart medical care and clinical practice.
  • the flexible pressure pulse sensor provided by the preferred embodiment has the ability to store charges stably for a long time, which enables the sensor to be used for a long time without performance degradation, that is, it has excellent stability and can measure the pulse stably for a long time.
  • the sensor has high sensitivity and can measure the pulse in a small area, which is also very beneficial for the measurement of fingertip pulse and venous pulse.
  • the sensor of the invention can be very light and thin, has good flexibility, can be in good contact with the skin surface to obtain a clearer pulse signal, has the advantages of lightness, flexibility, high precision and good stability, and can be worn for a long time. Does not cause discomfort to the user. It is convenient to make multiple sensors at the same time, and meet the needs of mass production and rapid production and prototyping in practical applications.
  • FIG. 1 is a flowchart of pulse data acquisition, analysis and calculation according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of sub-steps of pulse data acquisition according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of pulse feature point extraction according to an embodiment of the present invention.
  • 4a to 4c are diagrams showing the effect of extracting feature points of different types of pulse waveforms according to an embodiment of the present invention.
  • FIG. 5 is an example diagram of pulse waveform and extracted feature points used to calculate medical parameters according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a pulse signal acquisition and measurement apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the overall structure of a pulse signal acquisition and measurement device according to a specific embodiment of an embodiment of the present invention.
  • FIG. 8 is a flow chart of the fabrication of a sensor according to an embodiment of the present invention.
  • FIG. 9a is a schematic structural diagram of a sensor according to an embodiment of the present invention.
  • Fig. 9b is a cross-sectional view of the sensor shown in Fig. 9a along line I-I.
  • Fig. 9c is an exploded schematic view of the sensor shown in Fig. 9a.
  • FIG. 10 is a working principle of a sensor according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a system with a fixed-point pressurizing device according to an embodiment of the present invention.
  • FIG. 12 is an effect diagram of the fixed-point pressure applied to the wrist by the fixed-point pressure device according to the embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a multi-channel fixed-point pressure device according to an embodiment of the present invention.
  • connection can be used for both the fixing function and the coupling or communication function.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature. In the description of the embodiments of the present invention, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • a pulse signal acquisition and measurement device includes a computer program storage medium, a processing device, and a pulse sensor, the pulse sensor is used to collect pulse data, and the processing device executes The computer program performs the following processing, including: preprocessing pulse data; extracting systolic peaks and diastolic valleys from the pulse data; extracting reflection peaks and reflection valleys from the pulse data; Stroke peak and descending middle gorge; calculate medical parameters according to the extracted feature points.
  • the processing device may be a circuit device with a microprocessor as the core.
  • the preprocessing includes baseline removal, low-pass filtering and amplitude normalization to obtain a smooth pulse waveform with the same amplitude.
  • extracting the systolic peak and the diastolic valley from the pulse data includes: searching for the maximum point of the first-order difference of the pulse data according to the preset amplitude threshold and time threshold, and using the extreme The two zero points immediately before and after the large value point are the systolic peak P1 and the diastolic valley V1.
  • extracting reflection peaks and reflection valleys from the pulse data includes: dividing the pulse data into several single-cycle segments according to the diastolic valley V1, and in each cycle segment, searching for The second maximum value point of the first-order difference; judge whether the second maximum value point is greater than 0, if it is greater than 0, the two zero points in front of and behind it are used as the reflection peak P2 and the reflection valley If V2 is not greater than 0, the maximum value point and the minimum value point corresponding to the second-order difference are taken as the reflection peak P2 and the reflection valley V2.
  • extracting the dipole peak and the mid-falling gorge from the pulse data includes: dividing the entire pulse data into several single-cycle segments according to the diastolic valley V1, and in each cycle segment, Find all the maximum points of the first-order difference except the first and second maximum points.
  • the subsequent processing includes: judging whether the maximum value point is greater than 0, if it is greater than 0, then the two zero points in front of and behind it are used as the heavy stroke peak P3 and the descending isthmus V3; if not greater than 0, then the The maximum point and minimum point corresponding to the second-order difference are regarded as the double stroke peak P3 and the descending isthmus V3.
  • the embodiment of the present invention proposes a pulse signal acquisition and measurement device, which overcomes the disadvantage that traditional pulse measurement equipment is difficult to perform in-depth analysis and calculation of pulse data.
  • the pulse signal acquisition and measurement device of the embodiment of the present invention can conveniently and automatically extract pulse feature points during use, can fully exploit the medical application value of pulse data, and has broad application prospects in smart medical care and clinical practice.
  • the pulse sensor is a flexible pressure sensor.
  • the flexible pressure sensor of the preferred embodiment includes a first metal electrode layer 101 , a first electret layer 102 , a second electret layer 103 and a second metal electrode layer 104 that are stacked together in sequence, There is an air cavity 105 between the first electret layer 102 and the second electret layer 103, and the positive and negative charges ionized by the air in the air cavity 105 by corona polarization are respectively charged by the second electret layer.
  • An electret layer 102 and the second electret layer 103 are captured to form charge dipoles. In the initial state, the charge dipoles are connected to the first metal electrode layer 101 and the second metal electrode layer 104. The induced charge forms an electric field balance.
  • the dipole moment changes, and the induced charge is transferred to form a current on the external circuit.
  • the pressure is released, the sensor returns to its original state due to its own elasticity. A reverse current is formed and the electric field is restored to equilibrium.
  • grooves are provided on the inner surface of the first electret layer 102 and/or the second electret layer 103 .
  • the groove pattern may be a periodic line groove pattern, a triangular pyramid groove pattern, a rectangular parallelepiped groove pattern, etc., or a non-periodic and irregular groove pattern.
  • the inner surface of the first electret layer 102 has a plurality of first strip-shaped grooves that are parallel to each other, and the inner surface of the second electret layer 103 has mutual A plurality of parallel second strip grooves, the first strip groove and the second strip groove are perpendicular to each other.
  • the material of the first electret layer 102 and/or the second electret layer 103 may be selected from fluorinated ethylene propylene copolymer (FEP), polypropylene (PP), polyethylene Vinylidene fluoride (PVDF).
  • FEP fluorinated ethylene propylene copolymer
  • PP polypropylene
  • PVDF polyethylene Vinylidene fluoride
  • the material of the first metal electrode layer 101 and/or the second metal electrode layer 104 may be selected from gold (Au), silver (Ag), copper (Cu), aluminum (Al) , Chromium (Cr).
  • the first metal electrode layer 101 and/or the second metal electrode layer 104 may be formed by metal coating (eg, vapor-deposited metal film), screen printing, or metal tape bonding.
  • a closed air cavity 105 is formed by the first electret layer 102 and the second electret layer 103 together.
  • a method for manufacturing the high-sensitivity flexible pressure sensor includes the following steps:
  • the first electret layer 102 and the second electret layer 103 are fabricated, and the first electret layer 102 and the second electret layer 103 are relatively joined together, and an air cavity is formed between them 105;
  • a first metal electrode layer 101 is formed on the outer surface of the first electret layer 102, and a second metal electrode layer 104 is formed on the outer surface of the second electret layer 103;
  • the positive and negative charges ionized by the air in the air cavity 105 through corona polarization are captured by the first electret layer 102 and the second electret layer 103 respectively to form charge dipoles son.
  • the manufacturing of the first electret layer 102 and the second electret layer 103 includes: engraving the first electret layer 102 and/or the second electret layer by laser engraving Recesses are formed on opposing surfaces of layer 103 .
  • the bonding method of the first electret layer 102 and the second electret layer 103 may be thermocompression bonding, chemical bonding or glue bonding.
  • FIG. 1 shows the processing flow of pulse data acquisition, analysis and calculation in an embodiment of the present invention.
  • step S1 the acquisition of pulse data is completed by the hardware device for pulse measurement; in this step, real-time, stable and accurate acquisition of pulse data should be realized, and through the processing of corresponding analog circuits and AD sampling, the obtained pulse data can be used for calculation and calculation. stored digital signal.
  • step S2 the characteristic points of the pulse are extracted by corresponding processing algorithms. The pulse waveforms of different people are very different, and this part should be able to automatically and accurately extract all common types of pulse data.
  • the analysis and calculation of the medical parameters are completed in step S3, and displayed on the terminal device in real time.
  • a process flow of the sub-steps for acquiring pulse data is given in FIG. 2 .
  • step S11 real-time pulse data is acquired through a wearable flexible pressure sensor.
  • step S12 necessary amplification and filtering processing is performed on the output signal of the sensor to obtain clear and stable pulse data.
  • AD sampling is realized by the microprocessor in step S13, and the pulse data is converted into a digital signal, so as to facilitate the analysis, calculation and storage in the next step; Calculations and visualization are performed on terminal devices.
  • systolic peak (P1) systolic peak
  • P2 reflection peak
  • P3 diploid peak
  • V1, V2, V3 their corresponding troughs
  • the systolic peak P1 is caused by the systolic ejection of the left ventricle and the filling of blood in the blood vessel, thereby compressing the blood vessel wall.
  • the reflection peak P2 is caused by the blood being reflected by some peripheral reflection points, causing the vascular pressure to rise again.
  • Dip peak P3 is due to the re-flow of reflected blood to the left ventricle, but is blocked by the closed aortic valve.
  • the pulse waveforms of different groups of people are very different. For example, some people do not have the double beat peak P3; for some people, the reflection peak P2 is not obvious, and there is no obvious peak, but a smooth transition curve.
  • the embodiments of the present invention can realize the automatic and accurate identification of the above-mentioned six important feature points of the pulse signal to the greatest extent.
  • FIG. 3 shows the process flow of pulse feature point extraction.
  • step S21 represents the preprocessing process of pulse data
  • step S22 represents the extraction process of systolic peak P1 and diastolic valley V1
  • step S23 represents the extraction process of reflection peak P2 and reflection valley V2
  • step S24 represents the extraction process of dichotomy peak P3
  • Jiangzhongxia V3 represents the extraction process of Jiangzhongxia V3.
  • step S21 the pulse signal is first subjected to preprocessing such as baseline removal, low-pass filtering, and amplitude normalization, so as to obtain a smooth pulse waveform with the same amplitude.
  • preprocessing such as baseline removal, low-pass filtering, and amplitude normalization
  • Step S22 Next, find the maximum point of the first-order difference of the pulse data according to the preset amplitude threshold and time threshold.
  • the two zero points immediately before and after the maximum point are considered as the systolic peak P1 and the diastolic valley V1.
  • Step S23 Divide the entire pulse data into several single-cycle segments according to the diastolic valley V1. Within each period segment, look for the second maximum point of the first-order difference. If it is greater than 0, the two zero points immediately in front of and behind it will be considered as the reflection peak P2 and the reflection valley V2; if not greater than 0, the second maximum point of the second order difference and the minimum The value points are considered as reflection peaks P2 and reflection valleys V2.
  • step S24 the extraction of the heavy stroke peak P3 and the descending middle gorge V3 is similar to the extraction process of P2 and V2, except that the second maximum value point is replaced by the third maximum value point. That is, the entire pulse data is firstly divided into several single-cycle segments according to the diastolic valley V1. In each cycle segment, find all the maximum points of the first-order difference except the first and second maximum points. If there is no remaining maximum point, it is determined that the heavy stroke peak P3 and the descending isthmus V3 do not exist, and the algorithm ends; if there is only one maximum point left, the subsequent processing is performed directly; if there are multiple maximum points value point, the maximum value point/minimum point pair with the largest amplitude is selected, and subsequent processing is also performed.
  • FIG. 4a to 4c show the extraction effects of different types of pulse waveforms using the pulse feature point extraction algorithm according to the embodiment of the present invention.
  • Fig. 4a in the first and second types of pulse waveforms, there are no dichotomous peaks P3 and mid-descending isthmus V3.
  • the reflection peak P2 of the first type of pulse waveform is very prominent, and it is an obvious peak value; while the reflection peak P2 of the second type of pulse waveform is not obvious and is just a smooth transition curve.
  • the third and fourth types of pulse waveforms have dichotomous peak P3 and descending isthmus V3.
  • the reflection peak P2 and the dichotomous peak P3 are very prominent and are obvious peaks; while in the fourth type of pulse waveform, the reflection peak P2 and the dichotomous peak P3 are not obvious, just smooth transition. As shown in Figure 4c, in the fifth type of pulse, there are multiple oscillation peaks.
  • the above five types of pulse waveforms basically summarize the common pulse shapes, and the extraction effects of these five types of pulse waveform feature points are shown on the right side in Figures 4a to 4c.
  • the circle mark represents the systolic peak P1 (solid) and its preceding diastolic valley V1 (hollow);
  • the square mark represents the reflection peak P2 (solid) and its preceding reflection valley V2 (hollow);
  • the diamond mark represents the dichotomy peak P3 ( solid) and the descending middle isthmus V3 (hollow) in front of it. It can be seen that for different pulse waveforms, the algorithm proposed by the present invention has a good extraction effect.
  • the corresponding medical parameters are calculated using the obtained feature points.
  • a pulse waveform and the extracted feature points are shown in FIG. 5 .
  • the amplitude ratio of P1 and P2 peaks (A2/A1, known as arterial enhancement index, AI) and time interval ( ⁇ t1) are important physiological parameters, which are related to the elasticity and compliance of blood vessels and are often used to quantify blood vessels. degree of stiffness.
  • the time interval ⁇ t2 of the troughs V1 and V2 reflects the travel time required from ventricular ejection to peripheral reflection, and is closely related to the ability of the left ventricle to eject blood during systole.
  • the calculated parameter values can also be used for real-time visualization of the visualization.
  • FIG. 6 is a structural block diagram of a pulse signal acquisition and measurement apparatus according to an embodiment.
  • the pulse pulse is measured by the sensor and processed by the amplifying filter circuit, it is sent to the microprocessor for digital-to-analog conversion, and the obtained digital pulse signal is used for feature point extraction; or the microprocessor wirelessly sends the digital pulse signal to the mobile phone. , computer and other terminal equipment to complete the extraction of feature points in the terminal equipment. Finally, the obtained pulse feature points are used for the calculation of medical parameters, and the results are used for visual display and analysis.
  • the overall structure of a pulse signal acquisition and measurement device is shown in FIG. 7 .
  • the main functional components are integrated in the watch case 4 , which can be divided into a circuit part 1 and a gas circuit part 2 .
  • the circuit part 1 takes the microprocessor as the core, samples the pulse signal from the amplifying and filtering circuit, and performs further data storage, display or wireless transmission.
  • the microprocessor and the pump-valve control circuit also realize the working control of the micro-pump and micro-valve of the gas circuit part 2 .
  • the micropump and the microvalve are communicated with the airbag cuff 5 through the airway 3, and the air pressure in the airbag is fed back to the microprocessor through the air pressure sensor.
  • the micro-valve is closed and the micro-pump works to inflate the air bag.
  • the microprocessor controls the micropump to stop working.
  • the air pressure in the air bag remains stable, and the pulse is measured by the pulse sensor fixed on the cuff, and transmitted to the microprocessor through the amplification and filtering circuit.
  • the microprocessor will close the micro-pump, open the micro-valve, and quickly discharge the gas in the airbag.
  • the flexible pulse sensor is fixed on the cuff and directly contacts the skin to measure the pulse, which increases the stability of the pulse output and avoids the need for photoelectric sensors or air pressure sensors. These indirect measurement methods are vulnerable to external disturbances.
  • the device can apply a specific static pressure to the skin at the wrist to obtain the pulse signal under different pressures, which will greatly increase the richness of the obtained information, which can be obtained from More and more valuable medical information.
  • the pulse sensor in the pulse signal acquisition and measurement device preferably adopts a flexible pressure sensor. 8 to 10 , in the flexible pressure sensor provided by the preferred embodiment of the present invention, there is an air cavity 105 between the first electret layer 102 and the second electret layer 103 , and the air cavity 105 has an air cavity 105 .
  • the air is ionized by corona polarization to generate positive and negative charges, which are captured by the first electret layer 102 and the second electret layer 103 to form charge dipoles. In the initial state, the charge dipoles are It forms an electric field balance with the induced charges on the metal electrode layers 101 and 104.
  • the dipole moment changes, and the induced charge is transferred to form a current on the external circuit.
  • the sensor is due to Its elasticity returns to its original state, forming a reverse current on the external circuit and restoring the balance of the electric field, so that the flexible pressure sensor can sense the pulsation of the pulse, output the corresponding current, and realize the measurement of the pulse.
  • the senor Due to the electret material's ability to store charges stably, the sensor can be used for a long time without performance degradation, that is, it has excellent stability and can measure pulses stably for a long time. In addition, the sensor has high sensitivity and can measure the pulse in a small area, which is very beneficial for the measurement of fingertip pulse and venous pulse.
  • the sensor of the embodiment of the present invention can be very thin (50-100 ⁇ m), has good flexibility, can be in good contact with the skin surface to obtain a clearer pulse signal, and will not cause discomfort to the user when worn for a long time sense. Multiple sensors can be produced at the same time to meet the needs of practical applications for mass production and rapid production and prototyping.
  • the flexible pressure sensor of the embodiment of the present invention has wide application prospects in the fields of pulse and other physiological signal measurement, electronic skin, human-computer interaction interface, and the like.
  • the flexible piezoelectric electret sensor is fabricated based on laser engraving and thermocompression bonding processes.
  • Line grooves were cut on two electret films (FEP films as an example) using a laser, the line grooves on the two FEP films were placed perpendicular to each other, and thermocompression bonded to form a closed air cavity.
  • the metal electrode is evaporated on one side of the sensor, the sensor is corona charged by a high-voltage power supply, and finally a metal tape is attached to the other side of the sensor as the electrode on the other side.
  • the vapor-deposited metal electrodes can also be replaced with attached metal tapes, which can further reduce the cost, shorten the manufacturing cycle, and improve the robustness of the sensor in long-term use.
  • Figure 8 shows an example of a sensor fabrication flow.
  • 101 denotes the first metal electrode layer;
  • 102 denotes the first electret layer;
  • 103 denotes the second electret layer;
  • 104 denotes the second metal electrode layer.
  • the material of the electret film used can be fluorinated ethylene propylene copolymer (FEP), polypropylene (PP), polyvinylidene fluoride (PVDF), etc., and it is preferably a FEP film here;
  • the metal electrode used can be gold (Au). ), silver (Ag), copper (Cu), aluminum (Al), chromium (Cr) and other materials, preferably Cu electrodes here.
  • the thickness of the electret film can be 10-100 ⁇ m, preferably 25 ⁇ m here; the thickness of the metal electrode is 0.1 ⁇ m-10 ⁇ m, preferably 10 ⁇ m here.
  • the electret film is placed on a hard substrate in order to flatten the film and facilitate further processing.
  • the selected hard substrate should be flat and smooth, with low surface energy, so that the electret film can be easily torn off after subsequent processing.
  • the material of the hard base may preferably be a 1 mm thick copper plate. Place the electret film flat on the hard substrate, and wipe it with a soft paper several times to remove the dust on the electret film and make the electret film adsorb on the hard substrate. A groove pattern is then carved into the electret film.
  • the engraving method used can be manual engraving, laser engraving, chemical reagent etching based on a mask (such as a photolithography process, a silk screen mold, etc.), etc., and a laser engraving process is preferred here.
  • the carved groove pattern can be a periodic line groove pattern, a triangular pyramid groove pattern, a rectangular parallelepiped groove pattern, etc., or a non-periodic and irregular groove pattern.
  • a line groove pattern is preferred here.
  • the depth of the groove is as deep as possible without breaking through the electret film.
  • Such groove characterization is performed on the two electret films 102, 103, respectively.
  • line grooves are preferred, and the line grooves on the two films are perpendicular to each other.
  • the two such films are then placed against each other so that they are bonded together to form a closed air cavity.
  • the bonding method used may be thermocompression bonding, chemical reagent bonding, glue bonding, etc., and thermocompression bonding is preferred here.
  • the parameters for thermocompression bonding are 90s at a pressure of 1 MPa and a temperature of 250°C. After hot pressing, the two electret films form an inseparable whole, and the groove pattern forms a sealed air cavity.
  • a metal electrode layer 101 is then provided on one side of the electret thin film.
  • the way of setting can be metal coating, screen printing, metal tape bonding and so on. Metal coating and screen printing can achieve thinner metal layers for better flexibility; however, they are more expensive and time consuming.
  • the method of bonding with a metal tape is preferable.
  • Corona polarization is then performed using a DC high voltage power supply, a corona needle, and a ground electrode.
  • a specific embodiment is to place the metal electrode layer 101 on the ground electrode and place the corona needle above the other side of the sensor (eg 3 cm). Apply negative high voltage (-18 ⁇ -30kV) to the corona needle, and perform corona charging for 2 ⁇ 5min.
  • a metal electrode layer 104 is provided on the other side of the electret film to complete the fabrication of the sensor.
  • the way of setting can still be metal coating, screen printing, metal tape bonding, etc. The method of metal tape bonding is still preferred here.
  • Fig. 9a and Fig. 9b respectively show a complete structural schematic diagram of the sensor and a cross-sectional view along the line I-I.
  • Figure 9c shows an exploded schematic view of the sensor.
  • Figure 10 shows the working principle of the sensor. In the process of high-voltage corona polarization, the air in the sealed cavity 105 will be broken down, and equal positive and negative charges will be ionized. Then, under the action of the electric field, the positive and negative charges move to the upper and lower sides respectively, and are finally captured by the inner walls of the electret films 102 and 103 to form a large number of charge dipoles.
  • the charge dipoles trapped on the trench wall of the electret film and the induced charges on the metal electrode form an electric field balance, and there is no electrical response.
  • the dipole moment changes, the electric field balance is destroyed, and the induced charge on the metal electrode is transferred to form a current on the external circuit.
  • the sensor returns to its original state due to its own elasticity, forming an opposite current in the external circuit (3 in Figure 10). In this way, the flexible pressure sensor can sense the pulse of the pulse, output the corresponding current, and realize the measurement of the pulse.
  • the senor continued to work for years.
  • the output nature of the sensor is similar to that of a piezoelectric sensor, and it also has the characteristics of self-driving. It does not require an external power supply during operation, and has the effect of low power consumption.
  • laser cutting, thermocompression bonding, corona polarization, and metal tape sticking are all very simple and low-cost processes, which are convenient for rapid manufacturing and molding and reduce costs.
  • multiple sensors can be produced in the same batch at the same time, which is conducive to mass production of sensors; or sensors of different sizes can be produced in the same batch, which can be easily adjusted in size.
  • Airbags and fixed-point compression devices are Airbags and fixed-point compression devices
  • a pulse signal acquisition and measurement device preferably adopts an air bag for fixed-point pressure, including an air bag cuff 5 and a plurality of sub-air bags 51 , the air bag cuff 5 There are air ports on the airbag for inflation and exhaustion, the plurality of sub-airbags 51 are connected to the airbag cuff 5 through their respective air tubes 32, and the air tubes 32 of the plurality of sub-airbags 51 are in accordance with their respective airbag cuffs.
  • the position on 5 has a corresponding size, and the size of at least a part of the airway is different from the size of the rest of the airway, so that the sub-balloon 51 corresponding to the at least a part of the airway and the rest of the airway within the same inflation time
  • the sub-airbags 51 corresponding to the airway are inflated and pressurized differently, so that when the airbag cuff 5 is worn on the human body, especially the wrist, the corresponding parts of the human body can be pressurized at a fixed point.
  • the plurality of sub-airbags 51 are distributed along the length direction of the airbag cuff 5 , and the size of the airway of at least one sub-airbag 51 in the middle position is larger than the size of the rest of the airway tubes.
  • the air tube of the at least one sub-balloon 51 in the middle position includes a plurality of air tubes, wherein the size of the air tube in the middle is the largest, and the sizes of the air tubes on both sides are symmetrical. level becomes smaller.
  • the air tubes of the plurality of sub-airbags 51 have corresponding material properties according to their respective positions on the airbag cuff 5 .
  • at least one sub-airbag 51 in the middle position adopts Softer, more deformable material than the rest of the airway.
  • the airbag includes multiple layers of the plurality of sub-airbags 51 independently juxtaposed in the width direction of the airbag cuff 5 , preferably three layers of the plurality of sub-airbags 51 ,
  • the three-layer sub-airbags respectively form the inch airbag cuff 5a, the closing airbag cuff 5b, and the inch airbag cuff 5c.
  • the embodiments of the present invention provide a fixed-point pressure device with fixed-point distribution and adjustable pressure.
  • the gas-driven pressure method is adopted.
  • the positions on the airbag cuff have corresponding sizes, and the size of at least a part of the airway is different from the size of the rest of the airway, so that the molecular airbag and the remaining sub-airbags are inflated and pressurized differently at the same inflation time. , so that when the airbag cuff is worn on the human body, especially on the wrist, the corresponding parts of the human body can be pressurized at a fixed point, so that more pressure can be applied to a specific part, and the effect of fixed point pressure can be achieved.
  • the fixed-point pressure device has good application prospects in the fields of digital traditional Chinese medicine pulse diagnosis, wearable electronic sphygmomanometer and the like.
  • the present invention achieves a multi-channel adjustable fixed-point pressurization effect through multiple layers of the plurality of sub-airbags that are independently and juxtaposed.
  • the pressure of each channel can be adjusted independently, and the size of the pressure can also be adjusted according to the preset threshold value, which can well meet the needs of multi-channel fixed-point compression during pulse or blood pressure measurement.
  • Figure 11 is a schematic diagram of a system with a fixed-point pressurization device.
  • One side of the airbag cuff is connected with a micropump, a microvalve and an air pressure sensor through an airway tube 31, so as to realize gas input, output and air pressure feedback.
  • the other side is connected to each sub-airbag through an air tube 32, and for different sub-airbags, the corresponding air tube 32 has different thicknesses. The thicker the airway tube 32, the greater the degree of pressurization of the corresponding sub-balloon in the same time.
  • the materials of the sub-airbags are different.
  • the sub-airbags on both sides can be made of harder and less deformable materials, while the sub-airbags in the middle can be made of softer and more deformable materials; under the same air pressure, the middle sub-airbags will deform more and exert more pressure on the wrist. Large pressure, which will help to apply more pressure on specific parts, and play the effect of fixed-point pressure.
  • Figure 12 shows the effect of fixed-point compression on the wrist by the compression device based on the layered airbag design.
  • a plurality of such designed structures can be connected in parallel, such as the three-way independent pneumatic fixed-point pressurization structure as shown in Figure 13.
  • the Background of the Invention section may contain background information about the problem or environment of the invention and is not necessarily a description of the prior art. Therefore, what is contained in the Background section is not an admission of prior art by the applicant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Power Engineering (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种脉搏信号采集及测量装置,包括计算机程序存储介质、处理装置和脉搏传感器,脉搏传感器用于采集脉搏数据,处理装置执行计算机程序时进行如下处理,包括:对脉搏数据进行预处理;从脉搏数据中提取收缩峰和舒张谷;从脉搏数据中提取反射峰和反射谷;从脉搏数据中提取重搏峰和降中峡;根据提取到的特征点计算医学参量。脉搏信号采集及测量装置在使用过程中可方便地自动提取脉搏特征点,并根据脉搏特征点计算医学参量,从而能够充分挖掘脉搏数据的医学应用价值,在智慧医疗和临床实践中具有广泛的应用前景。

Description

一种脉搏信号采集及测量装置 技术领域
本发明涉及一种脉搏信号采集及测量装置。
背景技术
心脏的周期性泵血导致血管管径的扩张,在一些离体表较近的血管处(如手腕处的桡动脉、脖颈处的颈动脉等)可以感受到这种周期性的搏动,即脉搏。脉搏是一种常用而重要的生理信号,在可穿戴式的医疗电子产品中对于心率、血压的实时评估都要依赖于对脉搏的准确测量。一些具有重要医学价值的生理参数的计算和分析,如动脉增强指数、心脏收缩期时间等,也都需要准确的脉搏数据。人们对健康监测和智慧医疗的需求刺激着与脉搏相关的医疗消费电子产品的快速发展,与此相关的硬件设施和软件开发也具有越来越重要的使用价值。
然而,目前大多数商用的可穿戴式脉搏测量设备仅仅是简单地实现了脉搏的测量,以及计算心率、血压等较为直观的生理参数,并未对脉搏数据做深入的分析处理,这使得这些设备不能完全挖掘出脉搏信号的医学价值。事实上,对脉搏数据的深入分析和对脉搏特征点的提取具有十分广泛的应用前景,这对于获取动脉增强指数、心脏收缩期/舒张期时间、对脉搏的识别分类以及基于脉搏波的生物识别技术具有关键的意义。因此,目前急需一种稳定可靠的脉搏信号采集及测量装置,以实现对脉搏数据的深入分析。
需要说明的是,在上述背景技术部分公开的信息仅用于对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的主要目的在于克服上述背景技术存在的问题,提供一种脉搏信号采集及测量装置。
为实现上述目的,本发明采用以下技术方案:
一种脉搏信号采集及测量装置,包括计算机程序存储介质、处理装置和脉搏传感器,所述脉搏传感器用于采集脉搏数据,所述处理装置执行计算机程序时进行如下处理,包括:对脉搏数据进行预处理;从所述脉搏数据中提取收缩峰和舒张谷;从所述脉搏数据中提取反射峰和反射谷;从所述脉搏数据中提取重搏峰和降中峡;根据提取到的特征点计算医学参量。
所述预处理包括去除基线、低通滤波和幅值归一化,以得到幅值相同的平滑的脉搏波形。
从所述脉搏数据中提取收缩峰和舒张谷包括:根据预先设定的幅值阈值和时间阈值寻找脉搏数据一阶差分的极大值点,以极大值点前方和后方紧挨着的两个零点作为收缩峰P1和舒张谷V1。
从所述脉搏数据中提取反射峰和反射谷包括:根据舒张谷V1将所述脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差分的第二个极大值点;判断所述第二个极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为反射峰P2和反射谷V2,如果不大于0,则将二阶差分对应的极大值点和极小值点作为反射峰P2和反射谷V2。
从所述脉搏数据中提取重搏峰和降中峡包括:根据舒张谷V1将整个脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差分除了第一个、第二个极大值点外的所有极大值点,如果没有剩余的极大值点,则判定重搏峰P3和降中峡V3不存在;如果只剩下一个极大值点,则直接进行后续的处理;如果还有多个极大值点,则选中幅值最大的那一个极大值点/极小值点对,再进行后续的处理;所述后续的处理包括:判断极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为重搏峰P3和降中峡V3;如果不大于0,则将二阶差分对应的极大值点和极小值点作为重搏峰P3和降中峡V3。
所述脉搏传感器为柔性压力传感器,包括依次层叠在一起的第一金属电极层、第一驻极体层、第二驻极体层以及第二金属电极层,所述第一驻极体层与所述第二驻极体层之间具有空气腔,所述空气腔内的空气经电晕极化电离出的正负电荷分别由所述第一驻极体层和所述第二驻极体层捕获而形成电荷偶极子,初始状态下所述电荷偶极子与所述第一、第二金属电极层上的感应电荷形成电场平衡,当所述传感器受压变形时,偶极矩改变,所述感应电荷转移而在外电路上形成电流,当释放压力时,所述传感器由于自身弹性恢复原状,在外电路上形成反向的电流并恢复所述电场平衡。
所述第一驻极体层和/或所述第二驻极体层的内表面上具有凹槽。
所述第一驻极体层的内表面上具有相互平行的多个第一条形凹槽,所述第二驻极体层的内表面上具有相互平行的多个第二条形凹槽,所述第一条形凹槽和所述第二条形凹槽彼此相对,优选还彼此垂直。
所述第一驻极体层和/或所述第二驻极体层的材料选自氟化乙烯丙烯共聚物(FEP)、聚丙烯(PP)、聚偏氟乙烯(PVDF);所述第一金属电极层和/或所述第二金属电极层的材料选自金(Au)、银(Ag)、铜(Cu)、铝(Al)、铬(Cr)。
由所述第一驻极体层与所述第二驻极体层共同形成封闭的空气腔。
与现有技术相比,本发明具有如下有益效果:
本发明针对脉搏信号检测和疾病诊断的需求,提出了一种脉搏信号采集及测量装置,克服了传统的脉搏测量设备难以对脉搏数据进行深入分析计算的弊端,通过从脉搏数据中提取收缩峰、舒张谷、反射峰、反射谷、重搏峰和降中峡,根据这些脉搏特征点能够深入地分析脉搏数据,计算相应的具有重要医学价值的生理参量。本发明的脉搏信号采集及测量装置在使用过程中可方便地自动提取脉搏特征点,能够充分挖掘脉搏数据的医学应用价值,在智慧医疗和临床实践中具有广泛的应用前景。
优选实施例提供的柔性压力脉搏传感器中具有长时间稳定储存电荷的能力,这使得该传感器可以长期使用而不会有性能上的衰减,即具有优异的稳定性,能够长时间地稳定测量脉搏。另外,该传感器灵敏度高,能够以很小的面积测量脉搏,这对于指尖脉搏、静脉脉搏的测量也十分有利。本发明的传感器可实现十分轻薄,具有很好的柔性,可以与皮肤表面良好地接触以获得更清晰的脉搏信号,具有轻薄、柔性、精度高、稳定性好的优点,而且在长时间佩戴时不会给使用者造成不适感。便于同时制作多个传感器,满足实际应用对大批量生产、快速制作成型的需求。
附图说明
图1为本发明一种实施例的脉搏数据获取与分析计算的流程图。
图2为本发明一种实施例的脉搏数据获取的子步骤的流程图。
图3为本发明一种实施例的脉搏特征点提取的流程图。
图4a至图4c为本发明一种实施例对不同类型脉搏波形的特征点的提取效果图。
图5为本发明一种实施例的脉搏波形和提取的特征点用于计算医学参量的示例图。
图6为本发明一种实施例的脉搏信号采集及测量装置结构框图。
图7为本发明一种实施例的具体实施例的脉搏信号采集及测量装置的整体结构示意图。
图8为本发明一种实施例的传感器制作流程图。
图9a为本发明一种实施例的传感器的结构示意图。
图9b为图9a所示传感器沿I–I线的截面图。
图9c为图9a所示传感器的分解示意图。
图10为本发明一种实施例的传感器的工作原理。
图11为本发明实施例的具有定点加压装置的系统的结构示意图。
图12为本发明实施例的定点加压装置对手腕处的定点加压效果图。
图13为本发明实施例的多路定点加压装置的结构示意图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的, 而不是为了限制本发明的范围及其应用。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1至图7,在一种实施例中,一种脉搏信号采集及测量装置,包括计算机程序存储介质、处理装置和脉搏传感器,所述脉搏传感器用于采集脉搏数据,所述处理装置执行计算机程序时进行如下处理,包括:对脉搏数据进行预处理;从所述脉搏数据中提取收缩峰和舒张谷;从所述脉搏数据中提取反射峰和反射谷;从所述脉搏数据中提取重搏峰和降中峡;根据提取到的特征点计算医学参量。处理装置可以是以微处理器为核心的电路装置。
参阅图3,在优选的实施例中,所述预处理包括去除基线、低通滤波和幅值归一化,以得到幅值相同的平滑的脉搏波形。
参阅图3,在优选的实施例中,从所述脉搏数据中提取收缩峰和舒张谷包括:根据预先设定的幅值阈值和时间阈值寻找脉搏数据一阶差分的极大值点,以极大值点前方和后方紧挨着的两个零点作为收缩峰P1和舒张谷V1。
参阅图3,在优选的实施例中,从所述脉搏数据中提取反射峰和反射谷包括:根据舒张谷V1将所述脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差分的第二个极大值点;判断所述第二个极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为反射峰P2和反射谷V2,如果不大于0,则将二阶差分对应的极大值点和极小值点作为反射峰P2和反射谷V2。
参阅图3,在优选的实施例中,从所述脉搏数据中提取重搏峰和降中峡包括:根据舒张谷V1将整个脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差 分除了第一个、第二个极大值点外的所有极大值点,如果没有剩余的极大值点,则判定重搏峰P3和降中峡V3不存在;如果只剩下一个极大值点,则直接进行后续的处理;如果还有多个极大值点,则选中幅值最大的那一个极大值点/极小值点对,再进行后续的处理;所述后续的处理包括:判断极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为重搏峰P3和降中峡V3;如果不大于0,则将二阶差分对应的极大值点和极小值点作为重搏峰P3和降中峡V3。
本发明实施例提出了一种脉搏信号采集及测量装置,克服了传统的脉搏测量设备难以对脉搏数据进行深入分析计算的弊端,通过从脉搏数据中提取收缩峰、舒张谷、反射峰、反射谷、重搏峰和降中峡,根据这些脉搏特征点能够深入地分析脉搏数据,计算相应的具有重要医学价值的生理参量。本发明实施例的脉搏信号采集及测量装置在使用过程中可方便地自动提取脉搏特征点,能够充分挖掘脉搏数据的医学应用价值,在智慧医疗和临床实践中具有广泛的应用前景。
在优选的实施例中,所述脉搏传感器为柔性压力传感器。
参阅图8至图10,优选实施例的柔性压力传感器包括依次层叠在一起的第一金属电极层101、第一驻极体层102、第二驻极体层103以及第二金属电极层104,所述第一驻极体层102与所述第二驻极体层103之间具有空气腔105,所述空气腔105内的空气经电晕极化电离出的正负电荷分别由所述第一驻极体层102和所述第二驻极体层103捕获而形成电荷偶极子,初始状态下所述电荷偶极子与所述第一金属电极层101、第二金属电极层104上的感应电荷形成电场平衡,当所述传感器受压变形时,偶极矩改变,所述感应电荷转移而在外电路上形成电流,当释放压力时,所述传感器由于自身弹性恢复原状,在外电路上形成反向的电流并恢复所述电场平衡。
在优选的实施例中,所述第一驻极体层102和/或所述第二驻极体层103的内表面上具有凹槽。凹槽的图案可以是周期性的线条凹槽图案、三角锥凹槽图案、长方体凹槽图案等、或者是无周期、无规律的凹槽图案。
在一个特别优选的实施例中,所述第一驻极体层102的内表面上具有相互平行的多个第一条形凹槽,所述第二驻极体层103的内表面上具有相互平行的多个第二条形凹槽,所述第一条形凹槽和所述第二条形凹槽彼此垂直。
在不同的实施例中,所述第一驻极体层102和/或所述第二驻极体层103的材料可以选自氟化乙烯丙烯共聚物(FEP)、聚丙烯(PP)、聚偏氟乙烯(PVDF)。
在不同的实施例中,所述第一金属电极层101和/或所述第二金属电极层104的材料可以选自金(Au)、银(Ag)、铜(Cu)、铝(Al)、铬(Cr)。
在不同的实施例中,所述第一金属电极层101和/或所述第二金属电极层104可以为金属镀膜(如蒸镀金属膜)、丝网印刷或金属胶带粘接形成。
在优选的实施例中,由所述第一驻极体层102与所述第二驻极体层103共同形成封闭的空气腔105。
参阅图8至图10,在另一种实施例中,一种制作所述的高灵敏度柔性压力传感器的方法,包括如下步骤:
制作第一驻极体层102和第二驻极体层103,并将所述第一驻极体层102和所述第二驻极体层103相对接合在一起,两者之间形成空气腔105;
在所述第一驻极体层102的外表面形成第一金属电极层101,在所述第二驻极体层103的外表面形成第二金属电极层104;
其中,通过电晕极化使所述空气腔105内的空气电离出的正负电荷,分别由所述第一驻极体层102和所述第二驻极体层103捕获而形成电荷偶极子。
在优选的实施例中,所述制作第一驻极体层102和第二驻极体层103包括:通过激光雕刻在所述第一驻极体层102和/或所述第二驻极体层103的相对表面上形成凹槽。
在不同的实施例中,所述第一驻极体层102和所述第二驻极体层103的接合方式可以为热压键合、化学试剂键合或胶水粘接。
以下进一步举例描述本发明具体实施例。
图1给出了本发明实施例中的脉搏数据获取与分析计算的处理流程。在步骤S1中,通过脉搏测量的硬件装置完成脉搏数据的获取;该步骤中应实现对脉搏数据实时、稳定和准确的获取,并经过相应的模拟电路和AD采样的处理,得到可用于计算和存储的数字信号。在步骤S2中通过相应的处理算法提取出脉搏的特征点。不同人群的脉搏波形相差很大,该部分应该对所有常见类型的脉搏数据,均可实现自动地、准确地提取效果。通过得到的脉搏特征点,在步骤S3中完成医学参量的分析计算,并在终端设备上实时显示。
图2中给出了用于获取脉搏数据的子步骤的处理流程。
首先,在步骤S11中,通过可穿戴的柔性压力传感器实时获取脉搏数据。在步骤S12中对传感器的输出信号进行必要的放大滤波处理,以得到清晰稳定的脉搏数据。最后在步骤S13中通过微处理器实现AD采样,将脉搏数据转换为数字信号,以便于下一步的分析运算和储存;或者是将数字脉搏信号经无线发送模块至手机、电脑等终端设备,进而在终端设备上进行运算和可视化显示。
接着,将获取的数字脉搏信号和AD采样率用于进一步的特征点提取算法。一般而言,一个脉搏周期内常见的特征点包括收缩峰(P1),反射峰(P2)和重搏峰(P3),以及与它们对应的波谷(V1,V2,V3)。收缩峰P1是由左心室收缩射血、血液在血管中充盈进而压迫血管壁所致。反射峰P2是由血液被一些外周的反射点反射,导致的血管 压力再次升高。重搏峰P3是由于被反射的血液重新流向左心室,但是被关闭的主动脉瓣阻挡所致。
不同人群的脉搏波形差异很大,比如有的人重搏峰P3不存在;有的人反射峰P2不明显,没有出现一个明显的峰值,而是一个平滑过渡的曲线。对于不同的脉搏波形,本发明实施例均能最大程度地实现对脉搏信号的上述六个重要特征点的自动准确识别。
图3中给出了脉搏特征点提取的处理流程。其中步骤S21表示对脉搏数据的预处理流程;步骤S22表示对收缩峰P1和舒张谷V1的提取流程;步骤S23表示对反射峰P2和反射谷V2的提取流程;步骤S24表示对重搏峰P3和降中峡V3的提取流程。
具体而言,步骤S21、首先对脉搏信号进行去除基线、低通滤波和幅值归一化等预处理过程,以得到幅值相同的平滑的脉搏波形。
步骤S22、接着根据预先设定的幅值阈值和时间阈值寻找脉搏数据一阶差分的极大值点。极大值点前方和后方紧挨着的两个零点被认为是收缩峰P1和舒张谷V1。
步骤S23、根据舒张谷V1将整个脉搏数据分割为若干个单周期片段。在每个周期片段内,寻找一阶差分的第二个极大值点。如果它大于0,则它前方和后方紧挨着的两个零点将被认为是反射峰P2和反射谷V2;如果不大于0,就把二阶差分的第二个极大值点和极小值点认为是反射峰P2和反射谷V2。
步骤S24、对重搏峰P3和降中峡V3的提取类似于对P2和V2的提取过程,只不过是把第二个极大值点换成了第三个极大值点。即也是首先根据舒张谷V1将整个脉搏数据分割为若干个单周期片段。在每个周期片段内,寻找一阶差分除了第一个、第二个极大值点外的所有极大值点。如果没有剩余的极大值点,则判定重搏峰P3和降中峡V3不存在,算法结束;如果只剩下一个极大值点,则直接进行后续的处理;如果还有多个极大值点,则选中幅值最大的那一个极大值点/极小值点对,也进行后续的处理。后续的处理就是判断找到的这个极大值点是否大于0,如果它大于0,则它前方和后方紧挨着的两个零点将被认为是重搏峰P3和降中峡V3;如果不大于0,就把二阶差分中对应的极大值点和极小值点认为是重搏峰P3和降中峡V3。
图4a至图4c展示了使用本发明实施例的脉搏特征点提取算法对不同类型的脉搏波形的提取效果。如图4a所示,第一、二类脉搏波形中,不存在重搏峰P3和降中峡V3。其中第一类脉搏波形的反射峰P2很突出,是一个明显的峰值;而第二类脉搏波形的反射峰P2不明显,只是一个平滑的过渡曲线。如图4b所示,第三、四类脉搏波形存在重搏峰P3和降中峡V3。同样的,也是在第三类脉搏波形中反射峰P2和重搏峰P3很突出,是明显的峰值;而在第四类脉搏波形中,反射峰P2和重搏峰P3不明显,只是平滑的过渡。如图4c所示,在第五类脉搏中,则是存在多个振荡峰值。
以上五类脉搏波形基本上概括了常见的脉搏形状,在图4a至图4c中右侧展现了对这五类脉搏波形特征点的提取效果。其中圆形标记表示收缩峰P1(实心)及其前面的舒张谷V1(空心);方形标记表示反射峰P2(实心)及其前面的反射谷V2(空心);菱形标记表示重搏峰P3(实心)及其前面的降中峡V3(空心)。可以看出对于不同的脉搏波形,本发明提出的算法均具有很好的提取效果。
最后使用得到的特征点计算相应的医学参量。作为一个演示性例证,图5中给出了一种脉搏波形和提取到的特征点。其中P1、P2峰的幅值比(A2/A1,被称为动脉增强指数,AI)和时间间隔(Δt1)是重要的生理参数,与血管的弹性和顺应性相关,常被用来量化血管的僵硬程度。此外,波谷V1、V2的时间间隔Δt2反映了从心室射血到外周反射所需的传播时间,与收缩期左心室射血的能力密切相关。这三个医学参量是最常用、也是最重要的医学参量,可以从提取的特征点很方便地计算得出。最后,还可将计算得到的参量值用于可视化的实时显示。
图6是一种实施例脉搏信号采集及测量装置的结构框图。脉搏搏动经传感器的测量和放大滤波电路的处理后,被送至微处理器进行数模转换,得到的数字脉搏信号被用于特征点提取;或者是微处理器将数字脉搏信号无线发送到手机、电脑等终端设备,在终端设备内完成特征点的提取。最后将得到的脉搏特征点用于医学参量的计算,并将结果用于可视化的显示和分析。
一个具体实施例的脉搏信号采集及测量装置的整体结构如图7所示。在表壳4中集成了主要的功能部件,可分为电路部分1和气路部分2。电路部分1以微处理器为核心,对来自放大滤波电路的脉搏信号进行采样,并进行进一步的数据存储、显示或无线发送。
微处理器和泵阀控制电路还实现气路部分2的微泵、微阀的工作控制。微泵、微阀通过导气管3与气囊袖带5连通,气囊内的气压通过气压传感器反馈给微处理器。正常测量时,微阀关闭,微泵工作,往气囊里充气。一旦气压达到了设定值,微处理器控制微泵停止工作。此时气囊里的气压保持稳定,由固定在袖带上的脉搏传感器测量脉搏,并经放大滤波电路传输到微处理器中。工作结束,微处理器将关闭微泵,打开微阀,将气囊内的气体快速排出。
在图7所示的脉搏信号采集及测量装置中,柔性的脉搏传感器固定在袖带上,直接与皮肤接触、实现脉搏的测量,增加了脉搏输出结果的稳定性,可避免光电传感器或气压传感器这些间接测量方法易受外部干扰的缺点。此外,通过泵阀控制电路和气路部分的设计,该装置可对手腕处的皮肤施加特定的静压力,来获取不同压力下的脉搏信号,这将大大增加所获取信息的丰富度,从中可获取更多、更有价值的医学信息。
柔性压力传感器
脉搏信号采集及测量装置中脉搏传感器优选采用柔性压力传感器。参阅图8至图10,本发明优选实施例提供的柔性压力传感器中,在第一驻极体层102与第二驻极体层103之间具有空气腔105,且所述空气腔105内的空气经电晕极化电离出正负电荷,分别由所述第一驻极体层102和所述第二驻极体层103捕获而形成电荷偶极子,初始状态下所述电荷偶极子与金属电极层101、104上的感应电荷形成电场平衡,当所述传感器受压变形时,偶极矩改变,所述感应电荷转移而在外电路上形成电流,当释放压力时,所述传感器由于自身弹性恢复原状,在外电路上形成反向的电流并恢复所述电场平衡,由此,柔性压力传感器能够感受脉搏的搏动,输出相应的电流,实现脉搏的测量。
由于驻极体材料具有稳定储存电荷的能力,这使得该传感器可以长期使用而不会有性能上的衰减,即具有优异的稳定性,能够长时间地稳定测量脉搏。另外,该传感器灵敏度高,能够以很小的面积测量脉搏,这对于指尖脉搏、静脉脉搏的测量十分有利。本发明实施例的传感器可实现十分轻薄(50~100μm),具有很好的柔性,可以与皮肤表面良好地接触以获得更清晰的脉搏信号,而且在长时间佩戴时不会给使用者造成不适感。可以同时制作多个传感器,满足实际应用对大批量生产、快速制作成型的需求。本发明实施例的柔性压力传感器在脉搏等生理信号测量、电子皮肤、人机交互界面等领域具有广泛的应用前景。
在一个具体实施例中,基于激光雕刻和热压键合工艺制作柔性压电驻极体传感器。使用激光在两个驻极体薄膜(作为示例采用FEP薄膜)上切割出线条沟槽,让两个FEP薄膜上的线条沟槽彼此垂直放置,热压键合以形成密闭的空气腔。在传感器的一侧蒸镀金属电极之后,通过高压电源对传感器电晕充电,最后在传感器的另一侧贴附金属胶带,做为另一侧的电极。替代实施例中,也可以将蒸镀的金属电极换成贴附的金属胶带,这样可以进一步降低成本,缩短制作周期,并提高传感器长期使用中的鲁棒性。
图8示出传感器制作流程的一种示例。101表示第一金属电极层;102表示第一驻极体层;103表示第二驻极体层;104表示第二金属电极层。所用的驻极体薄膜的材料可以是氟化乙烯丙烯共聚物(FEP)、聚丙烯(PP)、聚偏氟乙烯(PVDF)等,这里优选为FEP薄膜;所用的金属电极可以是金(Au)、银(Ag)、铜(Cu)、铝(Al)、铬(Cr)等材料,这里优选为Cu电极。为了达到柔性的效果,驻极体薄膜的厚度可以是10~100μm,这里优选为25μm;金属电极的厚度为0.1μm~10μm,这里优选为10μm。
由于驻极体膜很薄,为了使薄膜平整、以及便于下一步的处理,将驻极体薄膜放 置在硬质基底上。所选的硬质基底应平整光滑,表面能低,便于经过后续的处理后,驻极体薄膜还能顺利地被撕下。硬质基底的材料可以被优选为1mm厚的铜板。将驻极体薄膜平整地放在硬质基底上,并用轻柔的纸擦拭数次,以除去驻极体薄膜上的灰尘、并使驻极体薄膜吸附在硬质基底上。随后在驻极体薄膜上刻出凹槽图案。所使用的刻画方法可以是手工刻画、激光雕刻、基于掩膜(如光刻工艺、丝网模具等)的化学试剂刻蚀等,这里优选为激光雕刻工艺。所刻画的凹槽图案可以是周期性的线条凹槽图案、三角锥凹槽图案、长方体凹槽图案等、或者是无周期、无规律的凹槽图案。这里优选为线条凹槽图案。较佳地,凹槽的深度尽量深同时又不打穿驻极体薄膜。
分别在两个驻极体薄膜102、103上进行这样的凹槽刻画。这里优选为线条凹槽,并使得两个薄膜上的线条凹槽互相垂直。随后将这样的两个薄膜彼此相对放置,使它们键合在一起,以形成密闭的空气腔。所使用的键合方式可以是热压键合、化学试剂键合、胶水粘接等,这里优选为热压键合。对于优选的FEP驻极体材料,热压键合的参数是在1MPa的压力和250℃的温度下,热压90s。热压之后两个驻极体薄膜形成一个不可分割的整体,凹槽图案形成密封的空气腔。
随后在驻极体薄膜的一侧设置金属电极层101。设置的方式可以是金属镀膜、丝网印刷、金属胶带粘接等。金属镀膜和丝网印刷可以获得更薄的金属层,以取得更好的柔性效果;但它们的成本较贵,耗时较长。这里优选为金属胶带粘接的方式。而后使用直流高压电源、电晕针和接地电极执行电晕极化。具体实施方案是将金属电极层101放置在接地电极上,在传感器的另一侧上方(例如3cm)处放置电晕针。对电晕针施加负的高压电(-18~-30kV),进行电晕充电2~5min。最后,在驻极体薄膜的另一侧设置金属电极层104,以完成传感器的制作。设置的方式仍然可以是金属镀膜、丝网印刷、金属胶带粘接等。这里仍然优选为金属胶带粘接的方式。
图9a、图9b分别示出传感器完整的结构示意图和沿I–I线的截面图。图9c示出传感器的分解示意图。图10示出传感器的工作原理。在高压电晕极化的过程中,密封的空腔105内的空气将被击穿,电离出等量的正负电荷。随后在电场的作用下,正负电荷分别向上下两侧移动,最终被驻极体薄膜102、103的内壁所捕获,形成大量的电荷偶极子。初始状态下(图10中①),驻极体薄膜沟槽腔壁上捕获的电荷偶极子与金属电极上的感应电荷形成电场平衡,没有电响应。当传感器感受外部压力而压缩变形时(图10中②),偶极矩改变,电场平衡被破坏,金属电极上的感应电荷转移而在外电路上形成电流。释放压力时,传感器由于自身弹性恢复原状,在外电路中形成一个相反的电流(图10中③)。由此,柔性压力传感器能够感受脉搏的搏动,输出相应的电流,实现脉搏的测量。
由于驻极体材料具有稳定储存电荷的能力,因此该传感器持续工作数年。另外,该传感器的输出性质类似于压电传感器,同样具有自驱动的特点,在工作时不需要外接电源,起到低功耗的效果。此外,所提出的制作工艺流程中,激光切割、热压键合、电晕极化、粘贴金属胶带都是很简单的低成本工艺,便于快速制作成型,并降低成本。另外,在这些工艺中,同一批次中可以同时制作多个传感器,这有利于传感器的大批量生产;或者是同一批次中生产制作不同尺寸大小的传感器,可便捷地尺寸调节。
气囊和定点加压装置
参阅图11至图13,在一种实施例中,脉搏信号采集及测量装置中优选采用一种用于定点加压的气囊,包括气囊袖带5和多个子气囊51,所述气囊袖带5上具有用于充气和排气的气口,所述多个子气囊51通过各自的导气管32与所述气囊袖带5相连,所述多个子气囊51的导气管32按照各自在所述气囊袖带5上所处的位置具有相对应的尺寸,且至少一部分导气管的尺寸不同于其余导气管的尺寸,以使得在同一的充气时间内所述至少一部分导气管对应的子气囊51与所述其余导气管对应的子气囊51的充气加压程度不同,从而当所述气囊袖带5佩戴在人体尤其是手腕上时能够对人体的对应部位进行定点加压。
在优选的实施例中,所述多个子气囊51沿所述气囊袖带5的长度方向分布,位于中间位置的至少一个子气囊51的导气管的尺寸大于其余导气管的尺寸。
在更优选的实施例中,所述位于中间位置的至少一个子气囊51的导气管包括多个导气管,其中最中间的导气管的尺寸最大,而两侧的导气管的尺寸以对称形式逐级变小。
在优选的实施例中,所述多个子气囊51的导气管按照各自在所述气囊袖带5上所处的位置具有相对应的材料性质,优选地,位于中间位置的至少一个子气囊51采用比其余导气管更软、更易变形的材料。
参阅图13,在优选的实施例中,所述气囊包括在所述气囊袖带5的宽度方向上独立并列设置的多层所述多个子气囊51,优选为3层所述多个子气囊51,3层子气囊分别形成尺气囊袖带5a、关气囊袖带5b、寸气囊袖带5c。
本发明实施例提供了一种压力大小定点分布、可调的定点加压装置,采用气体驱动加压方式,多个子气囊通过各自的导气管与气囊袖带相连,并且这些导气管按照各自在所述气囊袖带上所处的位置具有相对应的尺寸,且至少一部分导气管的尺寸不同于其余导气管的尺寸,以使得在同一的充气时间内部分子气囊与其余子气囊的充气加压程度不同,从而当气囊袖带佩戴在人体尤其是手腕上时能够对人体的对应部位进行 定点加压,由此,可实现在特定的部位施加更大的压力,起到定点加压的效果。使用时,通过调整气囊袖带的佩戴位置,还可以灵活地调整定点加压的位置。该定点加压装置在数字化中医脉诊、可穿戴电子血压计等领域具有很好的应用前景。
在优选的实施例中,本发明通过多路独立并列设置的多层所述多个子气囊,实现多路可调的定点加压效果。每一路的压力都可以单独调节,压力的大小也可以根据预先设定的阈值进行调控,从而能够很好地满足脉搏或血压测量时的多路定点加压需求。
图11是具有定点加压装置的系统示意图。气囊袖带一侧通过导气管31与微泵、微阀和气压传感器相连,实现气体的输入、输出和气压的反馈。另一侧通过导气管32与各子气囊相连,并且对于不同的子气囊,对应的导气管32的粗细不一样。越粗的导气管32,意味着在相同的时间内对应的子气囊的加压程度更大。为了进一步增强定点加压的效果,子气囊的材料不同。两侧的子气囊可以选用更硬、不易变形的材料,而中间的子气囊选用更软、更易变形的材料;在相同的气压下,中间的子气囊将发生更大的变形,对手腕施加更大的压力,这将有助于在特定的部位施加更大的压力,起到定点加压的效果。图12显示了基于分层气囊设计的加压装置对手腕的定点加压效果。为了实现多路独立加压的效果,可以将多个这样设计的结构并联在一起,如图13所示的三路独立的气动定点加压结构。
本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

Claims (10)

  1. 一种脉搏信号采集及测量装置,其特征在于,包括计算机程序存储介质、处理装置和脉搏传感器,所述脉搏传感器用于采集脉搏数据,所述处理装置执行计算机程序时进行如下处理,包括:对脉搏数据进行预处理;从所述脉搏数据中提取收缩峰和舒张谷;从所述脉搏数据中提取反射峰和反射谷;从所述脉搏数据中提取重搏峰和降中峡;根据提取到的特征点计算医学参量。
  2. 如权利要求1所述的脉搏信号采集及测量装置,其特征在于,所述预处理包括去除基线、低通滤波和幅值归一化,以得到幅值相同的平滑的脉搏波形。
  3. 如权利要求1或2所述的脉搏信号采集及测量装置,其特征在于,从所述脉搏数据中提取收缩峰和舒张谷包括:根据预先设定的幅值阈值和时间阈值寻找脉搏数据一阶差分的极大值点,以极大值点前方和后方紧挨着的两个零点作为收缩峰P1和舒张谷V1。
  4. 如权利要求1至3任一项所述的脉搏信号采集及测量装置,其特征在于,从所述脉搏数据中提取反射峰和反射谷包括:根据舒张谷V1将所述脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差分的第二个极大值点;判断所述第二个极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为反射峰P2和反射谷V2,如果不大于0,则将二阶差分对应的极大值点和极小值点作为反射峰P2和反射谷V2。
  5. 如权利要求1至4任一项所述的脉搏信号采集及测量装置,其特征在于,从所述脉搏数据中提取重搏峰和降中峡包括:根据舒张谷V1将整个脉搏数据分割为若干个单周期片段,在每个周期片段内,寻找一阶差分除了第一个、第二个极大值点外的所有极大值点,如果没有剩余的极大值点,则判定重搏峰P3和降中峡V3不存在;如果只剩下一个极大值点,则直接进行后续的处理;如果还有多个极大值点,则选中幅值最大的那一个极大值点/极小值点对,再进行后续的处理;所述后续的处理包括:判断极大值点是否大于0,如果大于0,则以其前方和后方紧挨着的两个零点作为重搏峰P3和降中峡V3;如果不大于0,则将二阶差分对应的极大值点和极小值点作为重搏峰P3和降中峡V3。
  6. 如权利要求1至5任一项所述的脉搏信号采集及测量装置,其特征在于,所述脉搏传感器为柔性压力传感器,包括依次层叠在一起的第一金属电极层、第一驻极体层、第二驻极体层以及第二金属电极层,所述第一驻极体层与所述第二驻极体层之间具有空气腔,所述空气腔内的空气经电晕极化电离出的正负电荷分别由所述第一驻极体层和所述第二驻极体层捕获而形成电荷偶极子,初始状态下所述电荷偶极子与所 述第一、第二金属电极层上的感应电荷形成电场平衡,当所述传感器受压变形时,偶极矩改变,所述感应电荷转移而在外电路上形成电流,当释放压力时,所述传感器由于自身弹性恢复原状,在外电路上形成反向的电流并恢复所述电场平衡。
  7. 如权利要求6所述的脉搏信号采集及测量装置,其特征在于,所述第一驻极体层和/或所述第二驻极体层的内表面上具有凹槽。
  8. 如权利要求7所述的脉搏信号采集及测量装置,其特征在于,所述第一驻极体层的内表面上具有相互平行的多个第一条形凹槽,所述第二驻极体层的内表面上具有相互平行的多个第二条形凹槽,所述第一条形凹槽和所述第二条形凹槽彼此相对,优选还彼此垂直。
  9. 如权利要求6至8任一项所述的脉搏信号采集及测量装置,其特征在于,所述第一驻极体层和/或所述第二驻极体层的材料选自氟化乙烯丙烯共聚物(FEP)、聚丙烯(PP)、聚偏氟乙烯(PVDF);所述第一金属电极层和/或所述第二金属电极层的材料选自金(Au)、银(Ag)、铜(Cu)、铝(Al)、铬(Cr)。
  10. 如权利要求6至9任一项所述的脉搏信号采集及测量装置,其特征在于,由所述第一驻极体层与所述第二驻极体层共同形成封闭的空气腔。
PCT/CN2021/136233 2021-01-29 2021-12-08 一种脉搏信号采集及测量装置 WO2022160955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110127027.7 2021-01-29
CN202110127027.7A CN112842289B (zh) 2021-01-29 2021-01-29 一种脉搏信号采集及测量装置

Publications (1)

Publication Number Publication Date
WO2022160955A1 true WO2022160955A1 (zh) 2022-08-04

Family

ID=75986922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136233 WO2022160955A1 (zh) 2021-01-29 2021-12-08 一种脉搏信号采集及测量装置

Country Status (2)

Country Link
CN (1) CN112842289B (zh)
WO (1) WO2022160955A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842288B (zh) * 2021-01-29 2022-02-25 清华大学深圳国际研究生院 脉搏数据分类模型建立装置、分类识别装置和测量系统
CN112842289B (zh) * 2021-01-29 2022-03-22 清华大学深圳国际研究生院 一种脉搏信号采集及测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243474B1 (en) * 1996-04-18 2001-06-05 California Institute Of Technology Thin film electret microphone
CN102317066A (zh) * 2008-12-13 2012-01-11 拜尔材料科学股份公司 铁电驻极体两层和更多层复合材料及其生产方法
US20120078123A1 (en) * 2010-09-29 2012-03-29 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
US20130324859A1 (en) * 2010-11-29 2013-12-05 University-Industry Cooperation Group Of Kyung Hee University Method for providing information for diagnosing arterial stiffness
US20140135632A1 (en) * 2012-11-15 2014-05-15 Pulsecor Limited Method and apparatus for determining cardiac medical parameters from supra-systolic signals obtained from an oscillometric blood pressure system
CN110013234A (zh) * 2019-04-08 2019-07-16 清华大学深圳研究生院 一种柔性压力传感器及脉诊仪
CN112842289A (zh) * 2021-01-29 2021-05-28 清华大学深圳国际研究生院 一种脉搏信号采集及测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440768B (zh) * 2010-10-13 2013-08-28 兰州理工大学 脉搏波形特征点提取方法
CN104116503B (zh) * 2014-07-16 2016-08-24 华中科技大学 一种无创连续血压的测量装置
CN104188642A (zh) * 2014-09-24 2014-12-10 中国科学院合肥物质科学研究院 一种无创获取中心动脉压力波形及其相关参数的装置与获取方法
CN107785081B (zh) * 2017-12-12 2020-06-19 北京动亮健康科技有限公司 计算中心血流动力学指标的方法、装置、存储介质及设备
CN108670209A (zh) * 2018-03-29 2018-10-19 中国科学院微电子研究所 一种自动识别中医脉象的方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243474B1 (en) * 1996-04-18 2001-06-05 California Institute Of Technology Thin film electret microphone
CN102317066A (zh) * 2008-12-13 2012-01-11 拜尔材料科学股份公司 铁电驻极体两层和更多层复合材料及其生产方法
US20120078123A1 (en) * 2010-09-29 2012-03-29 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
US20130324859A1 (en) * 2010-11-29 2013-12-05 University-Industry Cooperation Group Of Kyung Hee University Method for providing information for diagnosing arterial stiffness
US20140135632A1 (en) * 2012-11-15 2014-05-15 Pulsecor Limited Method and apparatus for determining cardiac medical parameters from supra-systolic signals obtained from an oscillometric blood pressure system
CN110013234A (zh) * 2019-04-08 2019-07-16 清华大学深圳研究生院 一种柔性压力传感器及脉诊仪
CN112842289A (zh) * 2021-01-29 2021-05-28 清华大学深圳国际研究生院 一种脉搏信号采集及测量装置

Also Published As

Publication number Publication date
CN112842289B (zh) 2022-03-22
CN112842289A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022160952A1 (zh) 脉搏数据分类模型建立装置、分类识别装置和测量系统
WO2022160955A1 (zh) 一种脉搏信号采集及测量装置
WO2022160951A1 (zh) 一种可穿戴式数字脉诊仪
US20190223736A1 (en) Blood pressure testing device and method
CN109381170A (zh) 压力传感器、无创连续监测血压装置及系统
JP2022506695A (ja) 軟質の静電容量式圧力センサ
WO2022160953A1 (zh) 微弱电流放大电路及传感器系统
CN112842290B (zh) 一种多路定点加压装置及传感器系统
CN105407795A (zh) 人体健康数据云端处理方法、移动终端和通信系统
CN104970781A (zh) 一种踝臂指数测量装置、血压计
CN112945429A (zh) 一种高灵敏度柔性压力传感器及制作方法
CN112842293B (zh) 一种可穿戴式的脉搏实时检测装置
CN107397542B (zh) 一种基于脉搏波传感器的动态血压监测穿戴式设备及监测方法
JP3547379B2 (ja) 橈骨動脈の圧脈波計測システム
CN112842305B (zh) 一种可穿戴式血压测量系统
CN112773347B (zh) 一种可穿戴式高精度血压测量系统
JP3547380B2 (ja) 圧脈波検出用アタッチメント及び圧脈波検出具
CN112842274B (zh) 用于定点加压的气囊、定点加压装置及传感器系统
CN100346741C (zh) 基于心音信号的血压测量装置
CN112842311B (zh) 一种可穿戴式心率实时检测系统
Kumar et al. Blood pressure measurement techniques, standards, technologies, and the latest futuristic wearable cuff-less know-how
CN112842291B (zh) 一种脉搏波速测量系统及无创式血流状况评估系统
CN210204713U (zh) 一种血压监测系统
Kumar et al. Sensors & Diagnostics
Yoshimura et al. Development of a Wrist Sphygmomanometer with an Active Soft Mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922545

Country of ref document: EP

Kind code of ref document: A1