WO2022160780A1 - 一种可再生深空能源高效转化供冷供热供电装置 - Google Patents

一种可再生深空能源高效转化供冷供热供电装置 Download PDF

Info

Publication number
WO2022160780A1
WO2022160780A1 PCT/CN2021/124297 CN2021124297W WO2022160780A1 WO 2022160780 A1 WO2022160780 A1 WO 2022160780A1 CN 2021124297 W CN2021124297 W CN 2021124297W WO 2022160780 A1 WO2022160780 A1 WO 2022160780A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
light
energy
renewable
radiation
Prior art date
Application number
PCT/CN2021/124297
Other languages
English (en)
French (fr)
Inventor
董凯军
张博博
孙钦
管海凤
唐占超
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US18/024,062 priority Critical patent/US20230268881A1/en
Publication of WO2022160780A1 publication Critical patent/WO2022160780A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of renewable energy utilization, in particular to an efficient conversion of renewable deep space energy for cooling, heating, and power supply.
  • Renewable deep space energy sources include solar and radiant energy. As a renewable energy source, solar energy has been widely used at home and abroad. It can be used for power generation, heating and cooling. It accounts for an increasing proportion of world energy and is one of the main directions of future energy development. Radiation cooling is a zero-energy, passive cooling technology that uses the spectral characteristics of the earth's atmosphere in the 8-13 ⁇ m band to directly transfer heat to space through thermal radiation. The radiative cooling process is carried out throughout the day, and the cooling process does not consume electricity or Mechanical energy has good application prospects.
  • the biggest bottleneck problem of solar energy and radiative cooling is that the energy density per unit area is too low, and solar energy can only be applied during the daytime, which requires a lot of land resources and space, which greatly limits the application effect of solar energy and radiation cooling.
  • Improving the utilization rate of renewable energy per unit area is a research hotspot at home and abroad.
  • the current technical situation is that only a single energy utilization method can be realized in the same area, and only one of solar energy utilization and radiation cooling can be selected.
  • the main method to improve energy density is still Focus on improving the efficiency of solar and radiant cooling itself.
  • the present invention provides a high-efficiency conversion of renewable deep-space energy for cooling, heating, and power supply, which realizes high-efficiency conversion and simultaneous superimposed utilization of two deep-space energy sources of solar energy and radiant energy in the same area, greatly It improves the energy utilization rate and energy density per unit area, and saves a lot of land resources and space.
  • a device for efficient conversion of renewable deep space energy for cooling, heating and power supply comprising a solar energy conversion device, a radiation refrigeration device, a rotating bracket, an inclination adjustment component and a support base;
  • the solar energy conversion device and the radiation refrigeration device are connected to the rotating support in a mutually perpendicular manner, the rotating support is connected to the inclination adjustment part, and the inclination adjustment part is connected to the support base; the inclination adjustment part is used to adjust the rotation between the support and the ground plane. Inclination angle, the rotating bracket is used to drive the solar energy conversion device and the radiation refrigeration device to rotate, so that the sun-facing surface of the solar energy conversion device is always perpendicular to the sun's irradiating light, and the reflective surface of the radiative refrigeration device is always parallel to the sun's irradiating light.
  • the solar energy conversion device is a solar photovoltaic power generation panel, a solar heat collector or a solar energy adsorption refrigeration device, which is used to convert the received solar energy into electric energy, heat energy or cold energy.
  • the radiation cooling device includes a light-transmitting thermal insulation material, a light-transmitting radiation-refrigerating material, a light-reflecting plate and a cooled medium channel.
  • the inner layers are arranged on both sides of the cooled medium channel;
  • the uncontrollable diffuse reflection light in the atmosphere passes through the light-transmitting thermal insulation material and the light-transmitting radiation cooling material in turn, is reflected by the light reflecting plate, and returns to the atmosphere through the light-transmitting radiation cooling material and the light-transmitting thermal insulation material in sequence.
  • external energy exchange
  • the light-transmitting radiation cooling material transfers heat to the deep space of the universe in the form of 8-13 ⁇ m radiation light waves, and the cooling energy generated by itself is transferred to the cooled medium in the cooled medium channel through the light reflecting plate, so as to realize radiation cooling.
  • the light-transmitting heat-insulating material adopts vacuum glass or a transparent heat-insulating cover.
  • the inclination adjustment component includes a No. 1 lifting rod and a No. 2 lifting rod arranged on the support base at intervals; the two ends of the rotating bracket are respectively connected to the No. 1 lifting rod and the No. 2 lifting rod the lift end.
  • the high-efficiency conversion of renewable deep space energy for cooling, heating, and power supply can be used singly or in combination, and the placement positions do not interfere with each other.
  • the high-efficiency conversion of renewable deep space energy of the present invention provides cooling, heating, and power supply devices.
  • the solar energy conversion device converts light energy into required electrical energy and thermal energy to achieve power supply and heating for the device.
  • the form is transmitted to the deep space of the universe to realize the cooling of the device.
  • the entire device realizes the high-efficiency conversion and simultaneous superimposition of the two deep space energy sources of solar energy and radiation energy in the same area, which greatly improves the energy utilization rate and energy density per unit area, saving energy.
  • the high-efficiency conversion of renewable deep space energy of the present invention provides cooling, heating, and power supply devices.
  • the solar energy conversion device converts light energy into required electrical energy and thermal energy to achieve power supply and heating for the device.
  • the form is transmitted to the deep space of the universe to realize the cooling of the device.
  • the entire device realizes the high-efficiency conversion and simultaneous superimposition of the two deep space energy sources of solar energy and radiation energy in the same area, which greatly improves the energy utilization rate and energy density per unit area, saving energy.
  • the high-efficiency conversion of renewable deep space energy supply cooling, heating, and power supply devices of the present invention has various functions and forms, and can simultaneously or selectively realize the functions of cooling, heating and power supply, and is suitable for a wide range of scenarios and needs.
  • FIG. 1 is a schematic structural diagram of a high-efficiency conversion of renewable deep space energy for cooling, heating, and power supply of the present invention
  • Fig. 2 is a partial enlarged view of area A in Fig. 1;
  • Fig. 3 is the different combination forms of the solar energy conversion device and the radiation refrigeration device of the present invention.
  • this embodiment provides a device for high-efficiency conversion of renewable deep space energy for cooling, heating, and power supply, which mainly includes a solar energy conversion device 1, a radiation refrigeration device 2, a rotating support 3, a No. 1 lifting rod 4, a second Number lifting rod 5 and support base 6.
  • the solar energy conversion device 1 and the radiation refrigeration device 2 are fixedly connected to the rotating support 3 at a vertical angle, preferably the combination shown in FIG. 3 .
  • the solar energy conversion device 1 is placed in parallel and does not block each other, and the radiation refrigeration device 2 is also swung in parallel. placed without blocking each other.
  • the vertical structure formed by the solar energy conversion device 1 and the radiation cooling device 2 can freely rotate around the rotating support 3 .
  • the No. 1 lifting rod 4 and the No. 2 lifting rod 5 are fixed on the support base 6 at intervals, and the two ends of the rotating bracket 3 are respectively connected to the lifting ends of the No. 1 lifting rod 4 and the No. 2 lifting rod 5 .
  • the rotating bracket 3, the No. 1 lifting rod 4, and the No. 2 lifting rod 5 are respectively equipped with power devices. It can drive the solar energy conversion device 1 and the radiation refrigeration device 2 to rotate around it. Through the coordinated movement of the three, it can be ensured that the sun-facing surface of the solar energy conversion device 1 is always perpendicular to the light irradiated by the sun, and the solar energy is utilized to the maximum extent. At the same time, since the radiation cooling device 2 is arranged perpendicular to the solar energy conversion device 1, the reflective surface of the radiation cooling device 2 is always parallel to the light of the sun. cooling effects.
  • the motion control of the rotating bracket 3, the No. 1 lifting rod 4, and the No. 2 lifting rod 5 can be controlled intelligently through a program according to the longitude and latitude where the device is located.
  • the sun-facing surface of the solar energy conversion device 1 rotates from east to west following the light of the sun.
  • the sun-facing surface of the solar energy conversion device 1 is always perpendicular to the light of the sun, and the reflective surface of the radiation refrigeration device 2 is always parallel to the light of the sun.
  • the sun-facing side of the solar energy conversion device 1 is reset to face due east.
  • the solar energy conversion device 1 can adopt one or more of solar photovoltaic power generation panels, solar thermal collectors, and solar energy adsorption refrigeration devices, and is used to convert the received solar energy into electric energy, heat energy or cold energy.
  • the specific structures are all existing ones. It is not repeated here.
  • the structure of the radiation refrigeration device 2 is shown in FIG.
  • the light reflection plate 23 , the radiation cooling material 22 , and the vacuum glass plate 21 are stacked from the inside to the outside, and the cooled medium channel 24 is formed between the two layers of the light reflection plate 23 .
  • the vacuum glass 21 is used for light transmission and heat preservation, and of course, it can also be replaced with other light transmission and heat preservation structures, such as a light transmission heat insulation cover, etc., to isolate the heat exchange inside and outside the radiation refrigeration device.
  • the light-transmitting radiation cooling material 22 is used for light-transmitting and full-time radiation cooling. Its working characteristics are similar to black body radiation. Its thermal radiation is mainly emitted in the form of infrared rays with a wavelength of 8-13 microns.
  • the light reflection plate 23 is used for reflecting light, so that the radiative cooling device cannot obtain heat from sunlight, and provides a prerequisite for radiative cooling.
  • the cooled medium channel 24 is used for conveying the cooled medium, so as to distribute, transfer and utilize the cold energy in a timely and effective manner.
  • the working process of the radiation refrigeration device 2 is as follows:
  • the uncontrollable diffusely reflected light in the atmosphere passes through the vacuum glass 21 and the light-transmitting radiation refrigeration material 22 in turn, is reflected by the light reflecting plate 23, passes through the light-transmitting radiation refrigeration material 22 and the light-transmitting vacuum glass 21 in turn, and returns to the atmosphere , the whole process does not produce energy exchange with the outside world.
  • the light-transmitting radiation refrigeration material 22 is isolated from heat conduction and convective heat exchange with the outside atmosphere through the vacuum glass 2.
  • the working characteristics of the radiation refrigeration material are similar to black body radiation, and its thermal radiation wavelength is controlled at 8-13 ⁇ m, 8-13 ⁇ m radiation light wave It can effectively penetrate the atmosphere, conduct heat exchange with the deep space at all times, and transfer heat to the deep space in the form of radiated light waves.
  • the various structures of the cooled medium passages 24 can distribute, transfer and utilize the cooling capacity in a timely and effective manner to realize radiation cooling.
  • the high-efficiency conversion of renewable deep space energy for cooling, heating, and power supply can be used in multiple combinations, and the placement positions do not interfere with each other, so as to increase the light-receiving area of the solar energy conversion device 1 and the heat radiation area of the radiation cooling device 2, and improve energy utilization. Rate.
  • the renewable deep space energy is efficiently converted into cooling, heating, and power supply devices.
  • the solar energy conversion device 1 converts light energy into required electrical energy and thermal energy to achieve power supply and heating for the device.
  • the radiation refrigeration device 2 passes its own thermal energy through. The form of radiated light waves is transmitted to the deep space of the universe to realize the cooling of the device.
  • the entire device realizes the high-efficiency conversion and simultaneous superimposition of two deep-space energy sources, solar energy and radiant energy, in the same area, which greatly improves the energy utilization rate and energy per unit area. density, saving a lot of land resources and space.
  • the special vertical design of the solar energy conversion device 1 and the radiation refrigeration device 2 makes the two work without affecting each other, which further improves the effect of simultaneous superimposed utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种可再生深空能源高效转化供冷供热供电装置,包括太阳能转化装置(1)、辐射制冷装置(2)、旋转支架(3)、倾角调节部件和支撑底座(6);太阳能转化装置(1)与辐射制冷装置(2)以相互垂直的方式连接在旋转支架(3)上,旋转支架(3)连接在倾角调节部件上,倾角调节部件连接在支撑底座(6)上;倾角调节部件用于调节旋转支架(3)与地平面之间的倾斜角度,旋转支架(3)用于带动太阳能转化装置(1)与辐射制冷装置(2)转动,以使得太阳能转化装置(1)的向阳面始终与太阳照射光线垂直的同时,辐射制冷装置(2)的反射面始终与太阳照射光线平行,能在同一区域实现太阳能和辐射能两种深空能源的高效率转化和同时叠加利用,提高了单位面积的能源利用率和能量密度,节省土地资源和空间。

Description

一种可再生深空能源高效转化供冷供热供电装置 技术领域
本发明涉及可再生能源利用领域,具体涉及一种可再生深空能源高效转化供冷供热供电装置。
背景技术
可再生深空能源包括太阳能和辐射能。太阳能作为可再生能源在国内外已获得广泛的应用,可用于发电、供热和供冷,占世界能源比重越来越大,是未来能源发展的主要方向之一。辐射制冷是一种零能耗、被动式制冷技术,其利用地球大气层在8-13μm波段的光谱特性,通过热辐射方式将热量直接传递至太空,辐射制冷过程全天进行、制冷过程不消耗电能或机械能,具有良好的应用前景。
太阳能及辐射制冷的最大瓶颈问题是单位面积的能量密度太低,且太阳能只能在白天才能应用,需占用大量的土地资源和空间,极大地限制了太阳能和辐射制冷的应用效果。
提高单位面积的可再生能源利用率是国内外研究的热点,目前的技术现状是同一区域只能实现单一的能源利用方式,太阳能利用及辐射制冷只能选择一种,提高能量密度的主要方式仍然集中在提高太阳能和辐射制冷的本身效率。
发明内容
为了解决现有技术存在的不足,本发明提供一种可再生深空能源高效转化供冷供热供电装置,实现同一区域太阳能和辐射能两种深空能源的高效率转化和同时叠加利用,大大提高了单位面积的能源利用率和能量密度,节省大量的土地资源和空间。
为实现上述目的,本发明采用的技术方案是:
一种可再生深空能源高效转化供冷供热供电装置,包括太阳能转化装置、辐射制冷装置、旋转支架、倾角调节部件和支撑底座;
太阳能转化装置与辐射制冷装置以相互垂直的方式连接在旋转支架上,旋转支架连接在倾角调节部件上,倾角调节部件连接在支撑底座上;倾角调节部件用于调节旋转支架与地平面之间的倾斜角度,旋转支架用于带动太阳能转化装置与辐射制冷装置转动,使得太阳能转化装置的向阳面始终与太阳照射光线垂直的同时,辐射制冷装置的反射面始终与太阳照射光线平行。
作为本发明的一种改进,所述太阳能转化装置为太阳能光伏发电板、太阳能集热器或太阳能吸附制冷装置,用于将接收到的太阳能转化为电能、热能或冷量。
作为本发明的一种改进,所述辐射制冷装置包括透光保温材料、透光辐射制冷材料、光线反射板和被冷却介质通道,透光保温材料、透光辐射制冷材料、光线反射板从外向内层叠设置在被冷却介质通道两侧;
大气中的不可控漫反射光线依次穿过透光保温材料、透光辐射制冷材料,经由光线反射板反射,依次穿过透光辐射制冷材料、透光保温材料返回到大气中,整个过程不与外界产生能量交换;
透光辐射制冷材料通过8~13μm辐射光波的形式将热量传递给宇宙深空,自身产生的冷量经光线反射板导热传递给被冷却介质通道中的被冷却介质,实现辐射制冷。
作为本发明的一种改进,所述透光保温材料采用真空玻璃或透明隔热罩。
作为本发明的一种改进,所述太阳能转化装置为若干个,平行摆放且互不遮挡。
作为本发明的一种改进,所述辐射制冷装置为若干个,平行摆放且互不遮挡。
作为本发明的一种改进,所述倾角调节部件包括间隔设置在支撑底座上的一号升降杆和二号升降杆;所述旋转支架的两端分别连接在一号升降杆和二号升降杆的升降端。
作为本发明的一种改进,所述可再生深空能源高效转化供冷供热供电装置可单个或者多个组合使用,摆放位置互不干涉。
与现有技术相比,本发明的有益效果是:
1、本发明的可再生深空能源高效转化供冷供热供电装置,太阳能转化装置将光能转化为所需的电能和热能,实现装置供电供热,辐射制冷装置将自身热能通过辐射光波的形式传递给宇宙深空,实现装置供冷,整个装置在同一区域实现太阳能和辐射能两种深空能源的高效率转化和同时叠加利用,大大提高了单位面积的能源利用率和能量密度,节省大量的土地资源和空间。
2、本发明的可再生深空能源高效转化供冷供热供电装置,装置功能形式多样,可同时或者选择性实现供冷、供热和供电功能,适应场景和需求十分广泛。
附图说明
图1是本发明的可再生深空能源高效转化供冷供热供电装置的结构示意图;
图2是图1中A区域的局部放大图;
图3是本发明太阳能转化装置和辐射制冷装置的不同组合形式;
附图标记说明:1-太阳能转化装置;2-辐射制冷装置;21-真空玻璃;22-透光辐射制冷材料;23-光线反射板;24-被冷却介质通道;3-旋转支架;4-一号升降杆;5-二号升降杆;6-支撑底座。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例
如图1所示,本实施例提供了一种可再生深空能源高效转化供冷供热供电装置,主要包括太阳能转化装置1,辐射制冷装置2,旋转支架3,一号升降杆4,二号升降杆5和支撑底座6。
太阳能转化装置1与辐射制冷装置2垂直角度固定连接在旋转支架3上,优选图3所示的组合形式,具体的,太阳能转化装置1平行摆放且互不遮挡,辐射制冷装置2也平行摆放且互不遮挡。太阳能转化装置1和辐射制冷装置2形成的垂直结构可以围绕旋转支架3自由旋转。一号升降杆4与二号升降杆5间隔固定在支撑底座6上,旋转支架3的两端分别连接在一号升降杆4和二号升降杆5的升降端。
旋转支架3、一号升降杆4、二号升降杆5分别配置动力装置,一号升降杆4与二号升降杆5协同工作,可实现调节旋转支架3相对地平面的倾斜角度,旋转支架3可带动太阳能转化装置1与辐射制冷装置2绕其转动。通过三者协同运动,可保证太阳能转化装置1的向阳面始终与太阳照射光线垂直,最大程度的利用太阳能。与此同时,因辐射制冷装置2垂直太阳能转化装置1设置,辐射制冷装置2的反射面则始终与太阳照射光线平行,辐射制冷装置2不用直接反射太阳光,可最大程度的降低太阳直射对辐射制冷的影响。
具体的,旋转支架3、一号升降杆4、二号升降杆5的动作控制可根据装置所处的经纬度通过程序智能控制。白天时段,太阳能转化装置1的向阳面跟随太阳照射光线自东向西旋转,整个过程太阳能转化装置1的向阳面始终与太阳照射光线垂直,辐射制冷装置2的反射面始终与太阳照射光线平行。夜间时段,太阳能转化装置1的向阳面复位朝向正东方。
太阳能转化装置1可采用太阳能光伏发电板、太阳能集热器、太阳能吸附制冷装置的一种或几种,用于将接收到的太阳能转化为电能、热能或冷量,具体结构均为现有,在此不再赘述。
辐射制冷装置2的结构如图2所示,包括真空玻璃21、透光辐射制冷材料22、光线反射 板23和被冷却介质通道24。光线反射板23、辐射制冷材料22、真空玻璃板21自内而外层叠摆放,两层光线反射板23之间构成被冷却介质通道24。真空玻璃21用于透光和保温,当然也可换成其他的透光保暖结构,例如透光隔热罩等,隔绝辐射制冷装置内外的热交换。透光辐射制冷材料22用于透光和全时段辐射制冷,工作特性类似于黑体辐射,其热辐射主要以波长为8-13微米的红外线的形式散发,这个波段的红外线很难被大气层吸收,可以直达外太空,从而将辐射制冷装置的热量带走。光线反射板23用于反射光线,从而使得辐射制冷装置无法从阳光中获取热量,为辐射制冷提供先决条件。被冷却介质通道24用于输送被冷却介质,及时有效将冷量分配、转移和利用。
具体的,辐射制冷装置2的工作过程如下:
大气中的不可控漫反射光线,依次穿过真空玻璃21、透光辐射制冷材料22,经光线反射板23反射,依次穿过透光辐射制冷材料22、透光真空玻璃21,返回到大气中,整个过程不与外界产生能量交换。
与此同时,透光辐射制冷材料22通过真空玻璃2隔绝与外界大气导热及对流换热,辐射制冷材料工作特性类似于黑体辐射,其热辐射波长控制在8~13μm,8~13μm的辐射光波能够有效穿透大气层,全时段与宇宙深空进行热交换,通过辐射光波的形式将热量传递给宇宙深空,自身产生的冷量经光线反射板23导热传递给被冷却介质,被冷却介质通过被冷却介质通道24的多样结构,及时有效将冷量分配、转移和利用,实现辐射制冷。
另外,可再生深空能源高效转化供冷供热供电装置可多个组合使用,摆放位置互不干涉,以增加太阳能转化装置1的受光面积和辐射制冷装置2的热辐射面积,提高能源利用率。
综上,本发明的可再生深空能源高效转化供冷供热供电装置,太阳能转化装置1将光能转化为所需的电能和热能,实现装置供电供热,辐射制冷装置2将自身热能通过辐射光波的形式传递给宇宙深空,实现装置供冷,整个装置在同一区域实现太阳能和辐射能两种深空能源的高效率转化和同时叠加利用,大大提高了单位面积的能源利用率和能量密度,节省大量的土地资源和空间。同时,太阳能转化装置1与辐射制冷装置2特殊的垂直设计,使得二者工作时互不影响,进一步提高了同时叠加利用的效果。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (8)

  1. 一种可再生深空能源高效转化供冷供热供电装置,其特征在于:包括太阳能转化装置、辐射制冷装置、旋转支架、倾角调节部件和支撑底座;
    太阳能转化装置与辐射制冷装置以相互垂直的方式连接在旋转支架上,旋转支架连接在倾角调节部件上,倾角调节部件连接在支撑底座上;倾角调节部件用于调节旋转支架与地平面之间的倾斜角度,旋转支架用于带动太阳能转化装置与辐射制冷装置转动,使得太阳能转化装置的向阳面始终与太阳照射光线垂直的同时,辐射制冷装置的反射面始终与太阳照射光线平行。
  2. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述太阳能转化装置为太阳能光伏发电板、太阳能集热器或太阳能吸附制冷装置,用于将接收到的太阳能转化为电能、热能或冷量。
  3. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述辐射制冷装置包括透光保温材料、透光辐射制冷材料、光线反射板和被冷却介质通道,透光保温材料、透光辐射制冷材料、光线反射板从外向内层叠设置在被冷却介质通道两侧;
    大气中的不可控漫反射光线依次穿过透光保温材料、透光辐射制冷材料,经由光线反射板反射,依次穿过透光辐射制冷材料、透光保温材料返回到大气中,整个过程不与外界产生能量交换;
    透光辐射制冷材料通过8~13μm辐射光波的形式将热量传递给宇宙深空,自身产生的冷量经光线反射板导热传递给被冷却介质通道中的被冷却介质,实现辐射制冷。
  4. 根据权利要求3所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述透光保温材料采用真空玻璃或透明隔热罩。
  5. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述太阳能转化装置为若干个,平行摆放且互不遮挡。
  6. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述辐射制冷装置为若干个,平行摆放且互不遮挡。
  7. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述倾角调节部件包括间隔设置在支撑底座上的一号升降杆和二号升降杆;所述旋转支架的两端分别连接在一号升降杆和二号升降杆的升降端。
  8. 根据权利要求1所述的一种可再生深空能源高效转化供冷供热供电装置,其特征在于:所述可再生深空能源高效转化供冷供热供电装置可单个或者多个组合使用,摆放位置互不干涉。
PCT/CN2021/124297 2021-09-06 2021-10-18 一种可再生深空能源高效转化供冷供热供电装置 WO2022160780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/024,062 US20230268881A1 (en) 2021-09-06 2021-10-18 Device for supplying cold energy, heat energy and electrical energy by efficiently converting renewable deep-space energies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039672.X 2021-09-06
CN202111039672.XA CN113720027A (zh) 2021-09-06 2021-09-06 一种可再生深空能源高效转化供冷供热供电装置

Publications (1)

Publication Number Publication Date
WO2022160780A1 true WO2022160780A1 (zh) 2022-08-04

Family

ID=78681959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124297 WO2022160780A1 (zh) 2021-09-06 2021-10-18 一种可再生深空能源高效转化供冷供热供电装置

Country Status (3)

Country Link
US (1) US20230268881A1 (zh)
CN (1) CN113720027A (zh)
WO (1) WO2022160780A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115264992A (zh) * 2022-05-27 2022-11-01 东南大学 可自动调整热辐射发射与接收的集热制冷板及热流整流器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486760A (zh) * 2013-10-21 2014-01-01 中国科学技术大学 一种太阳能集热-辐射制冷的综合装置
CN109539602A (zh) * 2018-10-10 2019-03-29 华中科技大学 一种基于天空辐射和太阳能集热的房屋集热排热系统
CN109631417A (zh) * 2019-01-04 2019-04-16 重庆大学 一种具有夜间辐射制冷功能的光伏光热一体化装置
CN111811161A (zh) * 2020-07-13 2020-10-23 湖南大学 一种基于先进天空辐射的冷热联合收集和存储装置及方法
CN211822931U (zh) * 2020-03-29 2020-10-30 河北工业大学 一种辐射制冷-制热装置
CN112361645A (zh) * 2020-11-05 2021-02-12 中国科学院广州能源研究所 一种太阳能利用与辐射制冷复合系统
US20210219463A1 (en) * 2020-01-10 2021-07-15 SkyCool Systems, Inc. Systems and methods for radiative cooling
CN216048431U (zh) * 2021-09-06 2022-03-15 中国科学院广州能源研究所 一种可再生深空能源高效转化供冷供热供电装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379061B1 (ko) * 2011-08-11 2014-03-28 (주)엘지하우시스 배강도 진공유리
US20220311378A1 (en) * 2019-06-14 2022-09-29 The Administrators Of The Tulane Educational Fund Hybrid receiver for concentrated photovoltaic-thermal power systems, and associated methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486760A (zh) * 2013-10-21 2014-01-01 中国科学技术大学 一种太阳能集热-辐射制冷的综合装置
CN109539602A (zh) * 2018-10-10 2019-03-29 华中科技大学 一种基于天空辐射和太阳能集热的房屋集热排热系统
CN109631417A (zh) * 2019-01-04 2019-04-16 重庆大学 一种具有夜间辐射制冷功能的光伏光热一体化装置
US20210219463A1 (en) * 2020-01-10 2021-07-15 SkyCool Systems, Inc. Systems and methods for radiative cooling
CN211822931U (zh) * 2020-03-29 2020-10-30 河北工业大学 一种辐射制冷-制热装置
CN111811161A (zh) * 2020-07-13 2020-10-23 湖南大学 一种基于先进天空辐射的冷热联合收集和存储装置及方法
CN112361645A (zh) * 2020-11-05 2021-02-12 中国科学院广州能源研究所 一种太阳能利用与辐射制冷复合系统
CN216048431U (zh) * 2021-09-06 2022-03-15 中国科学院广州能源研究所 一种可再生深空能源高效转化供冷供热供电装置

Also Published As

Publication number Publication date
CN113720027A (zh) 2021-11-30
US20230268881A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
CN2913955Y (zh) 可自散热的太阳能聚集型光伏发电装置
WO2012113195A1 (zh) 基于碟式聚光的太阳能二次聚光分频方法及其装置
CN101098113A (zh) 平面网架二维跟踪太阳的光伏发电装置
WO2021249576A1 (zh) 一种太阳能利用与辐射制冷复合系统
WO2023020449A1 (zh) 一种基于分波段的逆向差别光路光热复用装置
WO2022160780A1 (zh) 一种可再生深空能源高效转化供冷供热供电装置
CN101776330A (zh) 一种新型太阳能聚光集热方法及系统
CN216048431U (zh) 一种可再生深空能源高效转化供冷供热供电装置
CN108365793B (zh) 一种利用太阳能光伏发电余热及风力制热的温差发电装置
CN210624963U (zh) 一种新型太阳能热水系统用集热器
CN205407659U (zh) 一种太阳能分布式热电联产能源系统
CN2932457Y (zh) 平面网架二维跟踪太阳的光伏发电装置
WO2014026575A1 (zh) 一种太阳能建筑一体化装置
CN101776325B (zh) 内聚光与外聚光结合的复合抛物面聚光器
CN110474602A (zh) 一种太阳能采集装置
CN206944508U (zh) 可调集热量曲面反射聚光太阳能集热器
CN202435312U (zh) 太阳能热电联用组件
CN112865702B (zh) 一种百叶窗式太阳能聚光光伏/光热/照明一体化系统
CN107026609A (zh) 曲面反射聚光太阳能光电光热分光谱利用装置
CN211011959U (zh) 基于线性菲涅尔透镜的三棱式集热发电综合系统
CN109140796B (zh) 一种太阳能发电装置
CN209181291U (zh) 光热同用高效节能太阳能电池板
CN207200666U (zh) 曲面反射聚光太阳能光电光热分光谱利用装置
CN202350334U (zh) 太阳能光热光电转化装置
CN206237345U (zh) 一种大面积碟式聚光太阳能光伏发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE