WO2014026575A1 - 一种太阳能建筑一体化装置 - Google Patents

一种太阳能建筑一体化装置 Download PDF

Info

Publication number
WO2014026575A1
WO2014026575A1 PCT/CN2013/081264 CN2013081264W WO2014026575A1 WO 2014026575 A1 WO2014026575 A1 WO 2014026575A1 CN 2013081264 W CN2013081264 W CN 2013081264W WO 2014026575 A1 WO2014026575 A1 WO 2014026575A1
Authority
WO
WIPO (PCT)
Prior art keywords
roof structure
receiver
concentrator
integrated device
building integrated
Prior art date
Application number
PCT/CN2013/081264
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳能源技术有限公司 filed Critical 北京兆阳能源技术有限公司
Publication of WO2014026575A1 publication Critical patent/WO2014026575A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar device, and more particularly to a solar integrated device in combination with a building.
  • the building energy consumption that is, the building energy consumption
  • the building energy consumption is the energy consumption of people's daily use such as heating, air conditioning, lighting, cooking, laundry, etc.
  • Different heating systems have different heating energy consumption, for example, to produce 10 tons of 60 °C hot water per day, the starting temperature of the hot water is 20 ° C, the required heat is 467 KWh (defined electricity price 0. 64 yuan / KWh, diesel prices 6.4 yuan / L); wherein the electric power consumption of the boiler 490. 5 KWh (314 million); coal 116Kg (116 million), the natural gas 60. 3m 3 (241 million); boiler fuel consumption 51. 3L Diesel (328 yuan); If the solar building integrated device is used to provide the required heat, the required solar receiving area is 186m 2 (the heat generated per square meter per day is 2. 5 KWh), for a large-scale factory or The warehouse or residential building can provide enough light receiving area.
  • the common solar building integrated devices are mostly solar water heaters and flat-panel photovoltaic modules.
  • the former lacks supervision and design awareness, resulting in solar water heaters being installed everywhere, lacking uniformity with the building and affecting the appearance of the building.
  • the collectors are mainly Glass vacuum tube solar collector tube and flat plate collector, the former is explosive tube, anti-pressure and anti-seismic, anti-impact ability; the latter is mainly 4mm tempered glass, aluminum alloy frame, can be operated under pressure, easy to integrate with construction, but flat
  • the cost of a single collector in a collector is high, that is, the cost of a flat collector is high.
  • the winter temperature of the local latitude is generally increased by 10 ° and the summer temperature is reduced by 10 °.
  • the flat panel photovoltaic module it is generally arranged obliquely on the roof structure of the building or on the wall of the wall to receive solar light. To generate electricity, but photovoltaic cells can only receive one solar energy, and need to pass a larger photovoltaic cell area. Obtaining a specific amount of power generation, although the price of photovoltaic cells has been lowered, the overall module cost and installation cost are also high; in addition, there is a photovoltaic/photothermal building integration (cogeneration) model that uses water to photovoltaic cells.
  • cogeneration photovoltaic/photothermal building integration
  • the module is cooled, and a certain temperature of hot water is obtained during the photovoltaic cell power generation; for example, the International Solar Energy Association (IEA) developed a three-year "PV/T Solar System” research plan in 2005; the water cooled by the thermal imager
  • the temperature of the silicon solar cell is about 0.4% lower than the temperature of the uncooled cell; generally, when the temperature exceeds 25 ° C, the efficiency of the silicon solar cell is decreased by about 0.4%;
  • taking into account the low-cost comprehensive utilization technology of solar photovoltaic power generation and light and heat utilization it has become an important bottleneck for the large-scale implementation of solar energy building integration. Summary of the invention
  • the object of the present invention is to overcome the above problems in the prior art, and to provide a solar building integrated device, which can provide photothermal utilization alone or only when few heat collecting pipes and/or solar photovoltaic cells are required.
  • Photovoltaic power generation which can also provide hot water supply and power generation output devices, can achieve large-scale installation and utilization, reduce the temperature of building walls and roof structures, and meet the hot water or electricity use of users inside the building.
  • the present invention provides a solar building integrated device comprising at least two first roof structures and a second roof structure arranged in parallel, a concentrator disposed on the first roof structure, and a receiver on the second roof structure;
  • the roof structure is disposed obliquely to the sun slope; the concentrator reflects sunlight to the interior of the receiver; the receiver converts the concentrated sunlight into electrical energy and/or thermal energy.
  • the concentrator is a Fresnel array reflection concentrator arranged in an east-west direction of each mirror rotation axis and inclined in the same direction as the first roof structure; that is, a Fresnel array reflection concentrator and the first
  • the roof structures are arranged obliquely to the sunny slope, and the inclination angles of the two roofs may not be exactly the same.
  • a certain support frame may be constructed on the roof structure surface to support the mirror concentrator.
  • the array of mirror arrays of the Fresnel array concentrating concentrator are arranged at different intervals; for example, when the Fresnel array reflection concentrator is obliquely arranged on the top surface of the building, the continuous arrangement may be Blocking sunlight, integrated devices In order to avoid conflicts with visual or sunlight requirements in the interior of the building, the arrays of mirror arrays are arranged at different intervals.
  • the Fresnel array reflection concentrator is driven in unison; the plurality of mirrors are one Dimensional curved mirrors, unified by the end of the drive to complete the convergence of the sun's rays.
  • the receiver is a photothermal receiving device or a photovoltaic receiving device or a photothermal photovoltaic hybrid receiving device;
  • the receiver of the integrated device located on the second roof structure may be a separate photothermal receiving device, directly
  • the concentrated sunlight passes through the collector to heat the heat exchange medium water; it can also be a separate photovoltaic cell receiving device, which directly converges the concentrated sunlight to generate multiple times of solar intensity photovoltaic power generation;
  • the photothermal photovoltaic mixing device combined with the photothermal receiving device realizes the dual output of hot water and electric energy to meet the daily water and domestic electricity demand.
  • the concentrator has an angle adjuster, and specifically adjusts the ratio of the received solar energy in the photothermal photovoltaic hybrid receiver by finely adjusting the uniform tracking angle of the concentrator.
  • the receiver has a heat storage device and/or a power storage device.
  • first roof structure and the second roof structure are a residential roof structure, a factory roof structure or a warehouse roof structure or a warehouse joint roof structure.
  • roof structure of the residential building is a regressive structure away from the equator.
  • first roof structure and/or the second roof structure is arranged on the sunny side with a concentrator, and the receiver is arranged on the back side; or the second roof structure is a simple support frame for supporting the receiver; Multiple arrays can be used on a large scale.
  • FIG. 1 is a schematic view of the first embodiment of the solar building integrated device of the present invention
  • FIG. 3 is a schematic structural view of a third embodiment of the solar building integrated device of the present invention.
  • FIG 4 is a schematic structural view of a receiver in the above embodiment.
  • the solar building integrated device includes two parallel-arranged first-roof structure 110 and second roof structure 112, a concentrator 100 disposed on the first roof structure 110, and a second roof structure.
  • the receiver 120, and the bracket 130 supporting the concentrator 100 are parallel-arranged first-roof structure 110 and second roof structure 112 .
  • the first roof structure 110 and the second roof structure 112 are both arranged obliquely to face the sun slope;
  • the concentrator 100 is a Fresnel array reflection concentrator, located on the first roof structure 110, each mirror rotation axis, for example
  • the mirror rotating shaft 101 and the mirror rotating shaft 104 are arranged in the east-west direction and are similar to the tilting direction of the first roof structure 110; that is, the Fresnel array reflecting concentrator 100 and the first roof structure 110 are both inclined to the sunny slope surface, The inclination angles of the two may not be exactly the same, which can resist wind, reduce cost, increase space utilization, and facilitate maintenance, and facilitate the mirror to absorb sunlight more effectively;
  • the Fresnel array reflection concentrator 100 is uniformly driven,
  • the plurality of mirrors are one-dimensional curved mirrors, and the convergence of the sun rays is unified by the end driving.
  • the receiver 120 is located on the second roof structure 112 and disposed adjacent to the second roof structure to enhance wind resistance and facilitate maintenance, cost and safety without requiring high support; the receiver 120 receives from The sunlight reflected by the concentrator 100, the receiver 120 may be a separate light-heat receiving device, directly converge the concentrated sunlight through the heat collector to heat the heat exchange medium water; or may be a separate photovoltaic battery receiving device Directly converge the concentrated sunlight to generate multiple times of solar intensity photovoltaic power generation; it can also be a photothermal photovoltaic hybrid receiving device combining photovoltaic receiving device and photothermal receiving device, and the solar thermal energy mixing device receives solar energy in both The ratio is adjustable.
  • the specific operation is to fine-tune the uniform tracking angle of the concentrator 100, and finally realize the double output of the hot water and the electric quantity according to the required ratio of heat, to meet the daily water and domestic electricity demand, energy saving and environmental protection;
  • the bracket 130 is a bracket that supports the concentrator 100 and the receiver 120.
  • the solar building integrated device includes two first roof structures 110 and a second roof structure 112 arranged in parallel, a concentrator 100 disposed on the first roof structure 110, and a second roof structure 112.
  • the first roof structure 110 and the second roof structure 112 are both disposed obliquely to the sun slope.
  • the concentrator 100 can be a Fresnel array reflective concentrator, located on the first roof structure 110.
  • the concentrator 100 can be composed of a Fresnel mirror array, and the mirrors of each array are coaxial.
  • Each of the mirror rotation axes such as the mirror rotation axis 101 and the mirror rotation axis 104, may be arranged in the east-west direction, and the Fresnel array reflection concentrator 100 is similar to the inclination direction of the first roof structure 110, for example, The angle difference is within 20 °, that is, the Fresnel array reflection concentrator 100 and the first roof structure 110 are inclined on the sunny slope surface, and the inclination angles of the two may not be completely the same, so that the wind resistance, the cost, and the space are increased. Utilization, easy maintenance, and The mirror absorbs sunlight more effectively.
  • the Fresnel array reflection concentrator 100 can be driven in a unified manner, and the plurality of mirrors can be a one-dimensional curved mirror, and the one-dimensional curved mirror can be a cylindrical mirror, unified by the end of the mirror array.
  • the drive completes the convergence of the sun's rays.
  • the receiver 120 is located on the second roof structure 1 12 and is disposed adjacent to the second roof structure 1 12 , for example, the receiver 120 is disposed within a range of 1-2 m below the lower edge of the second roof structure 1 12 to enhance wind resistance Performance and ease of maintenance without the need for increased support to reduce cost and safety.
  • the receiver 120 receives the sunlight reflected from the concentrator 100, and the receiver 120 can be a separate photothermal receiving device, and directly collects the collected sunlight through the heat collector to heat the heat exchange medium water, or A separate photovoltaic cell receiving device directly converges the concentrated sunlight to generate multiple times of solar intensity photovoltaic power generation, and can also be a photothermal photovoltaic hybrid receiving device combined with a photovoltaic receiving device and a photothermal receiving device, in a photothermal photovoltaic hybrid device The ratio of the two receiving solar energy is adjustable, for example, a concentrator
  • the 100 has an angle adjuster, and the specific operation is to finely adjust the uniform tracking angle of the concentrator 100, and finally realize the double output of the hot water and the electric quantity according to the required ratio of heat, to meet the daily water use and the demand for living electricity, and to save energy and protect the environment.
  • the photothermal receiving device is arranged on the upper part of the photovoltaic receiving device, if more photovoltaic power generation is desired, the light reflected by the mirror can be finely adjusted to the photovoltaic receiving device, so that the photovoltaic power generation is increased, and the light is generated. The heat is naturally reduced.
  • the bracket 130 is a bracket that supports the concentrator 100 and the receiver 120.
  • the roof structure for example, the first roof structure is a two-story residential roof structure, wherein A is a floor; B is a two-story building; C is a two-story balcony; D is a small courtyard structure;
  • the roof structure of the house is a receding structure away from the equator.
  • the second floor B is moved backward to the north side than the first floor A, and the whole body is inclined to the sun.
  • a heat storage device 140 for the photothermal receiver and a power storage device 150 for the photovoltaic receiver are disposed at an upper portion of the second floor.
  • the roof structure such as the first roof structure 1 10, is a two-story residential roof structure, wherein A is the first floor; B is the second floor, C is the second floor balcony, and D is the roof structure. Small courtyard.
  • the roof structure of the residential building is a structure that is away from the equator. For example, in the northern hemisphere, the second floor B is moved backward to the north side than the first floor A, and the concentrator 100 is tilted toward the whole.
  • a heat storage device 140 for the photothermal receiver and a power storage device 150 for the photovoltaic receiver may be arranged, for example, the roof of the second floor B may be arranged for light heat
  • 2 is a schematic structural view of a second embodiment of the solar building integrated device of the present invention; as shown in FIG. 2, the first roof structure 210 and/or the second roof structure 212 are arranged on the sunny side of the concentrator, and arranged on the back side.
  • the concentrator 200 is disposed on the first roof structure 210; the mirror rotating shaft 201 and the mirror rotating shaft 204 are arranged in an axial direction; the concentrator 202 is disposed on the sunny side of the second roof structure 212.
  • the mirror rotating shaft 206 and the mirror rotating shaft 207 are arranged axially, and the receiving device 220 is arranged on the back side; the second roof structure in the southmost direction is a simple supporting frame for supporting the receiver 221; Multi-array for large-scale use.
  • the concentrator is designed as a Fresnel mirror array group, and the concentrator is provided with a lighting band; for example, between mirror array groups Arranged at intervals, such as mirror 206 and mirror 207 on second roof structure 212; in order not to affect the lighting effect on balcony C, the spacing between the two mirrors is set larger; or as the first roof A mirror 204 disposed on the structure 210, the mirror 204 (shown in broken lines in the figure) can be moved by a specific distance as a whole. With the mobility of the mirror 204, at least one set of mirrors in the mirror array group can be integrated. Move a specific distance to provide sunlight for the roof structure of the residential building.
  • FIG. 2 is a schematic structural view of a second embodiment of the solar building integrated device of the present invention.
  • the first roof structure 210 and/or the second roof structure 212 are arranged with a concentrator on the sunny side and a receiver on the back side.
  • a concentrator 200 may be disposed on the first roof structure 210, and the concentrator 200 may be a Fresnel array reflective concentrator located on the first roof structure 210, and each mirror of the concentrator 200 rotates
  • the shaft such as the mirror rotation axis 201 and the mirror rotation axis 204, may be arranged in the east-west direction.
  • a concentrator 202 is disposed on the sunny side of the second roof structure 212.
  • the concentrator 202 may be a Fresnel array reflective concentrator, each mirror rotating shaft of the concentrator 202, such as a mirror rotating shaft 206 and The mirror rotating shaft 207 may be arranged in the east-west direction, and the back side surface is provided with a receiving device 220, and the southmost second roof structure 212 is a simple supporting frame for supporting the receiver 221, so that multi-array large-scale use can be realized.
  • the concentrator can be designed as a Fresnel mirror array, and the concentrator is provided with a lighting belt, such as a mirror.
  • the array groups are arranged at different intervals, for example, in order not to affect the lighting effect on the balcony C, the interval between the mirror rotating shaft 206 and the mirror rotating shaft 207 on the second roof structure 212 is set larger, or a mirror rotation axis as arranged on the first roof structure 210 204.
  • the mirror array disposed on the mirror rotation axis 204 can be moved by a specific distance as a whole, using the mirror rotation axis 204 and the mobility of the mirror array disposed on the axis, the mirror At least one set of mirrors in the array group can be moved a specific distance as a whole to provide sunlight for the roof structure of the residential building. Specifically, the mirror array is placed on the sunny side, which will definitely block the sunlight. If sunlight is needed, the mirror array can be moved to let the sun shine in.
  • the roof structure is an embodiment of a common residential roof structure.
  • the solar building integration device comprises two first roof structures 310 and a second roof structure 312 arranged in parallel, a concentrator 300 disposed on the first roof structure 310, a receiver 320 on the second roof structure 312, and A bracket 330 that supports the concentrator 300 and the receiver 320.
  • the first roof structure 310 and the second roof structure 312 are both disposed obliquely to the sun slope surface, and the concentrator 300 is located on the first roof structure 310, and each mirror rotation axis, such as the mirror rotation axis 301 and the mirror rotation axis
  • the 303 is arranged in the east-west direction, and is similar to the tilting direction of the first roof structure 310, that is, the Fresnel array reflecting concentrator 300 and the first roof structure 310 are both inclined to the sunny slope surface, and the inclination angles of the two may not be completely the same. It is convenient for the mirror to absorb sunlight more effectively.
  • the Fresnel array reflection concentrator 300 is driven in a unified manner, and the plurality of mirrors are one-dimensional curved mirrors, and the convergence of the sun rays is unified by the end driving.
  • the receiver 320 is located on the second roof structure 312, and receives the sunlight reflected from the concentrator 300.
  • the receiver 320 can be a separate photothermal receiving device, and directly collects the collected sunlight through the collector to exchange the heat exchange medium.
  • the water is heated; it can also be a separate photovoltaic cell receiving device, which directly converges the concentrated sunlight to generate multiple times of solar intensity photovoltaic power generation; and can also be a photothermal photovoltaic hybrid receiving device combined with a photovoltaic receiving device and a photothermal receiving device.
  • the ratio of receiving solar energy is adjustable.
  • the specific operation is to finely adjust the uniform tracking angle of the concentrator 300, and finally realize the double output of the hot water and the electric quantity according to the required ratio of heat, and meet the daily routine.
  • the bracket 330 is a support for supporting the concentrator 300 and the receiver 320.
  • Fig. 4 is a schematic structural view of a receiver in the above embodiment.
  • the receiver 420 can be a photothermal photovoltaic hybrid receiving device, and the receiver 420 can include a photothermal receiving device 422 and a photovoltaic receiving device 421.
  • the photothermal receiving device 422 includes an absorption tube 424 and an auxiliary concentrator 428.
  • the photovoltaic receiving device 421 includes a photovoltaic cell 423 and an auxiliary concentrator 428.
  • the photovoltaic cell 423 is a single crystal silicon cell, which implements low-rate power generation and only radiates heat through natural convection. High-efficiency photovoltaic power generation.
  • the roof structure of the present invention may be a residential roof structure, a factory roof structure or a warehouse roof structure or a warehouse joint roof structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Building Environments (AREA)

Abstract

一种太阳能建筑一体化装置,包括至少两列东西轴向平行布置的第一屋顶结构(110)、第二屋顶结构(112)、设置在第一屋顶结构(110)上的聚光器(100)及设置在第二屋顶结构(112)上的接收器(120),第一屋顶结构(110)和/或第二屋顶结构(112)面向阳坡面倾斜布置,聚光器(100)与第一屋顶结构(110)的倾斜方向相近,接收器(120)靠近第二屋顶结构(112)的顶部布置,聚光器(100)将太阳光反射至接收器(120)内部,接收器(120)将汇聚的太阳光转化为电能和/或热能。该装置具有节能环保、效率高、成本低、适合大规模实施等优点。

Description

一种太阳能建筑一体化装置 技术领域 本发明涉及一种太阳能装置, 特别涉及一种与建筑结合的太阳能一体 化装置。
背景技术
目前, 国内建筑能耗占全社会能耗的比重比较大, 热水、 空调和采暖能 耗占建筑能耗的 65%左右, 而综合利用太阳能, 全面实现太阳能与建筑一体 化及太阳能光热光电应用一体化, 太阳能热水可补充 15%的建筑能耗, 采暖、 制冷系统可解决 50%的建筑能耗, 光伏发电可节约 30%的建筑能耗, 就可建成 最理想的零能耗房。 其中, 建筑能耗, 即建筑的运行能耗, 就是人们日常用 會^ 如采暖、 空调、 照明、 炊事、 洗衣等的能耗。
不同加热系统具有不同的加热能耗, 例如以每天生产 10吨 60 °C热水, 该热水的起始温度为 20°C,则需要的热量为 467KWh (定义电价 0. 64元 / KWh, 柴油价格 6. 4元 /L ); 其中电锅炉所耗电量 490. 5 KWh ( 314元); 燃煤 116Kg ( 116元) , 天然气 60. 3m3 ( 241元) ; 燃油锅炉消耗 51. 3L柴油 (328元) ; 如果使用太阳能建筑一体化装置提供所需热量, 则所需要的太阳光接收面积 为 186m2 (每平米每天产生的热量为 2. 5 KWh ) , 对于一个大面积的厂房或者 库房或者居民房可以提供足够受光面积。
常见的太阳能建筑一体化装置多为太阳能热水器和平板光伏模组, 前者 由于缺乏监管力度及设计意识, 导致太阳能热水器到处乱装, 与建筑缺乏统 一性, 影响建筑外观; 目前集热器主要有全玻璃真空管太阳能集热管和平板 集热器, 其中前者易爆管, 抗压抗震、 抗击能力较差; 后者主要为 4mm钢化 玻璃, 铝合金边框, 可承压运行, 易于与建筑结合, 但平板集热器中的单个 集热器成本高, 即平板集热器成本高。 在与倾斜向阳屋顶结构结合设计时, 一般取当地纬度的冬天温度加 10 ° , 夏天温度减 10 ° ; 对于平板光伏模组, 一般倾斜布置于建筑屋顶结构或者布置于墙体壁面,接收太阳能光进行发电, 但光伏电池只能接收一个太阳光强能量, 需要通过较大的光伏电池面积才能 获得特定发电量, 虽然光伏电池价格有所下调, 但整体模组成本及安装成本 也很高; 另外, 还有一种光伏 /光热建筑一体化(热电联产) 的模式, 使用水 对光伏电池模组进行冷却, 在光伏电池发电过程中, 获得一定温度的热水; 例如 2005年国际太阳能协会 (IEA) 制定了为期 3年的 "PV/T 太阳能系统" 研究计划;通过热像仪可知水冷 PV/T电池片温度比不冷却的电池片温度低大 约 20°C ; —般在温度超过 25°C时, 每增加 1 °C, 硅太阳能电池的效率下降约 0. 4%; 虽然如此, 想获得更多的能量, 使用 1个太阳光照, 仍然需要较大光 伏电池接收面积, 成本依旧居高不下, 很难在农村的新农村建设中大规模使 用; 如何获得一种光伏电池使用量少, 同时兼顾太阳能光伏发电和光热利用 的低成本综合利用技术, 成为太阳能建筑一体化大规模实施的重要瓶颈。 发明内容
本发明的目的在于克服现有技术中存在的上述问题, 提供一种太阳能 建筑一体化装置, 在只需要很少的集热管道和 /或太阳能光伏电池的情况 下, 实现单独提供光热利用或者光伏发电, 也可以同时提供热水供应和发 电的输出装置, 该装置可以实现大规模安装利用, 降低建筑墙壁和屋顶结 构的温度, 并满足建筑内部用户的热水或电力使用。 本发明提供一种太阳 能建筑一体化装置, 包括至少两栋平行布置的第一屋顶结构和第二屋顶结 构、 第一屋顶结构上布置的聚光器及第二屋顶结构上的接收器; 所述屋顶 结构面向阳坡面倾斜布置; 所述聚光器将太阳光反射至接收器内部; 所述 接收器将汇聚太阳光转化成电能和 /或热能。
进一歩地, 所述聚光器为各反射镜旋转轴东西方向布置, 且与第一屋 顶结构相近倾斜方向的菲涅尔阵列反射聚光器; 即菲涅尔阵列反射聚光器 与第一屋顶结构都向阳坡面倾斜布置, 二者的倾斜角度可以不完全相同, 可以在屋顶结构面建设一定支撑架以支撑反射镜聚光器。
进一歩地,所述菲涅尔阵列反射聚光器的反射镜阵列组间隔不等地布置; 例如当菲涅尔阵列反射聚光器向阳坡面倾斜布置于房屋建筑顶面时, 连续布 置可能遮挡太阳光, 一体化装置为了避免与建筑内部的生活发生视觉或阳光 需求上的冲突, 反射镜阵列组间采取间隔不等地布置。
进一歩地, 所述菲涅尔阵列反射聚光器统一联动驱动; 多个反射镜为一 维弧形反射镜, 统一由端部的驱动完成对太阳光线的汇聚。
进一歩地, 所述接收器为光热接收装置或光伏接收装置或光热光伏混合 接收装置; 位于第二屋顶结构上的一体化装置的接收器, 可以为单独的光热 接收装置, 直接将汇聚来的太阳光, 通过集热器, 将换热介质水进行加热; 也可以为单独的光伏电池接收装置, 直接将汇聚来的太阳光进行多倍太阳光 强度光伏发电; 还可以为光伏接收装置与光热接收装置相结合的光热光伏混 合装置, 实现热水和电量的双重输出, 满足日常生活用水和生活用电需求。
进一歩地, 所述聚光器具有角度调整器, 具体通过聚光器的统一跟踪角 度的微调, 实现光热光伏混合接收器中二者接收太阳光能量比例的调整。
进一歩地, 为了获得更稳定的夜间热水和电量输出, 所述接收器具有储 热装置和 /或储电装置。
进一歩地, 所述第一屋顶结构和第二屋顶结构为居民房屋顶结构、 厂房 屋顶结构或库房屋顶结构或库房联体屋顶结构。
进一歩地, 所述居民房屋顶结构为远离赤道方向渐退式结构。
进一歩地, 所述第一屋顶结构和 /或第二屋顶结构在向阳面布置聚光器, 在背阳面布置接收器; 或者第二屋顶结构为支撑接收器的简易支撑架; 如此 一体化装置可多阵列大规模使用。 附图说明
下面参照附图对本发明的具体实施方案进行详细的说明, 附图中: 图 1是本发明太阳能建筑一体化装置的第一实施例结构示意图; 图 2是本发明太阳能建筑一体化装置的第二实施例结构示意图; 图 3是本发明太阳能建筑一体化装置的第三实施例结构示意图。
图 4是上述实施例中接收器结构示意图。
具体实施方式
下面结合实施例对本发明进行进一歩的详细说明。
图 1 是本发明太阳能建筑一体化装置的第一实施例结构示意图。 如图 1 所示, 该太阳能建筑一体化装置包括两栋平行布置的第- 屋顶结构 110和第 二屋顶结构 112、第一屋顶结构 110上布置的聚光器 100 、第二屋顶结构上的 接收器 120, 及支撑聚光器 100的支架 130。所述第一屋顶结构 110和第二屋 顶结构 112均面向阳坡面倾斜布置; 聚光器 100为菲涅尔阵列反射聚光器, 位于第一屋顶结构 110上, 各反射镜旋转轴, 例如反射镜旋转轴 101和反射 镜旋转轴 104东西方向布置, 且与第一屋顶结构 110的倾斜方向相近; 即菲 涅尔阵列反射聚光器 100与第一屋顶结构 110都向阳坡面倾斜布置, 二者的 倾斜角度可以不完全相同, 如此可以抗风、 降低成本、 增加空间利用率、 便 于维护, 且便于反射镜更加有效地吸收太阳光; 菲涅尔阵列反射聚光器 100 统一联动驱动, 多个反射镜为一维弧形反射镜, 统一由端部的驱动完成对太 阳光线的汇聚。 接收器 120位于第二屋顶结构 112上, 且靠近第二屋顶结构 布置, 以增强抗风性能, 且在不需增加高支撑情况下能便于维护, 降低成本 和安全性; 该接收器 120接收来自聚光器 100反射的阳光, 接收器 120可以 为单独的光热接收装置, 直接将汇聚来的太阳光, 通过集热器, 将换热介质 水进行加热; 也可以为单独的光伏电池接收装置, 直接将汇聚来的太阳光进 行多倍太阳光强度光伏发电; 还可以为光伏接收装置与光热接收装置相结合 的光热光伏混合接收装置, 光热光伏混合装置中二者接收太阳光能量的比例 可调, 具体操作是通过聚光器 100的统一跟踪角度的微调, 最终实现热水和 电量的按热量所需比例双重输出, 满足日常生活用水和生活用电需求, 节能 环保; 所述支架 130为支撑聚光器 100和接收器 120的支架。
图 1是本发明太阳能建筑一体化装置的第一实施例结构示意图。 如图 1 所示, 该太阳能建筑一体化装置包括两栋平行布置的第一屋顶结构 110 和第二屋顶结构 112、 第一屋顶结构 110上布置的聚光器 100、 第二屋顶 结构 112上的接收器 120以及支撑聚光器 100和接收器 120的支架 130。
所述第一屋顶结构 110和第二屋顶结构 112均面向阳坡面倾斜布置。 聚光器 100可以为菲涅尔阵列反射聚光器, 位于第一屋顶结构 110上, 具 体地, 聚光器 100可以由菲涅尔反射镜阵列构成的, 每个阵列的反射镜同 轴, 各反射镜旋转轴, 例如反射镜旋转轴 101和反射镜旋转轴 104可以为 东西方向布置, 且菲涅尔阵列反射聚光器 100与第一屋顶结构 110的倾斜 方向相近, 例如, 两者布置角度相差在 20 ° 以内, 即菲涅尔阵列反射聚光 器 100与第一屋顶结构 110都向阳坡面倾斜布置, 二者的倾斜角度可以不 完全相同, 如此可以抗风、 降低成本、 增加空间利用率、 便于维护, 且便 于反射镜更加有效地吸收太阳光。
菲涅尔阵列反射聚光器 100可以统一联动驱动, 多个反射镜可以为一 维弧形反射镜, 该一维弧形反射镜可以是圆柱面反射镜, 统一由反射镜阵 列的端部的驱动完成对太阳光线的汇聚。 接收器 120 位于第二屋顶结构 1 12上, 且靠近第二屋顶结构 1 12布置, 例如将接收器 120布置在在第二 屋顶结构 1 12下沿的 l-2m的范围内, 以增强抗风性能, 且在不需增加高 的支撑情况下能便于维护, 以降低成本和安全性。 该接收器 120接收来自 聚光器 100反射的阳光, 接收器 120可以为单独的光热接收装置, 直接将 汇聚来的太阳光, 通过集热器, 将换热介质水进行加热, 也可以为单独的 光伏电池接收装置, 直接将汇聚来的太阳光进行多倍太阳光强度光伏发 电, 还可以为光伏接收装置与光热接收装置相结合的光热光伏混合接收装 置, 光热光伏混合装置中二者接收太阳光能量的比例可调, 例如, 聚光器
100具有角度调整器,具体操作是通过聚光器 100的统一跟踪角度的微调, 最终实现热水和电量的按热量所需比例双重输出, 满足日常生活用水和生 活用电需求, 节能环保。 例如, 将光热接收装置布置于光伏接收装置的上 部, 如果想要获得更多光伏发电量, 可以将反射镜反射的光更多微调至光 伏接收装置内,如此光伏发电量增加,光热发热量自然减少。所述支架 130 为支撑聚光器 100和接收器 120的支架。
图 1中描述屋顶结构例如第一屋顶结构为二层居民房屋顶结构, 其中 A为一层楼; B为二层楼; C为二层的阳台; D为屋顶结构的小院; 该类居 民房的屋顶结构为远离赤道方向渐退式结构, 例如在北半球中, 二层 B比 一层 A要向北边后移, 整体向阳倾斜。 在二层楼的上部位置布置有用于光 热接收器的储热装置 140及用于光伏接收器的储电装置 150。
图 1中描述屋顶结构例如第一屋顶结构 1 10为二层居民房屋顶结构, 其中 A为第一层楼; , B为第二层楼, C为第二层楼的阳台, D为屋顶结构 的小院。 该类居民房的屋顶结构为远离赤道方向渐退式结构, 例如在北半 球中,第二层楼 B比第一层楼 A要向北边后移,聚光器 100整体向阳倾斜。 在第二层楼 B的上部位置可以布置有用于光热接收器的储热装置 140及用 于光伏接收器的储电装置 150, 例如在第二层楼 B的楼顶可以布置有用于 光热接收器的储热装置 140及用于光伏接收器的储电装置 150。 图 2是本发明太阳能建筑一体化装置的第二实施例结构示意图; 如图 2所示, 第一屋顶结构 210和 /或第二屋顶结构 212在向阳面布置聚光器, 在背阳面布置接收器; 具体地第一屋顶结构 210上布置有聚光器 200 ; 包 括东西轴向布置的反射镜旋转轴 201和反射镜旋转轴 204; 第二屋顶结构 212的向阳面上布置有聚光器 202,包括东西轴向布置的反射镜旋转轴 206 和反射镜旋转轴 207, 且背阳面布置有接收装置 220 ; 最南面的第二屋顶 结构为简易支撑架, 用以支撑接收器 221 ; 如此可以实现多阵列大规模使 用。 一体化装置为了避免与建筑内部的生活发生视觉或阳光需求上的冲 突, 设计聚光器为菲涅尔反射镜阵列组, 且所述聚光器设置有采光带; 例 如反射镜阵列组之间间隔不等地布置, 例如第二屋顶结构 212上的反射镜 206和反射镜 207 ; 为了不影响对阳台 C的采光效果, 两个反射镜之间的 间隔设置较大; 也或者如第一屋顶结构 210上布置的反射镜 204, 该反射 镜 204 (在图中显示虚线) 可以整体移动特定距离, 利用反射镜 204的可 移动性, 所述反射镜阵列组中的至少 1组反射镜可以整体移动特定距离, 为居民房屋顶结构提供阳光所需。
图 2是本发明太阳能建筑一体化装置的第二实施例结构示意图。 如图 2所示, 第一屋顶结构 210和 /或第二屋顶结构 212在向阳面布置聚光器, 在背阳面布置接收器。 具体地, 可以在第一屋顶结构 210上布置有聚光器 200, 聚光器 200 可以为菲涅尔阵列反射聚光器, 位于第一屋顶结构 210 上, 聚光器 200的各反射镜旋转轴, 例如反射镜旋转轴 201和反射镜旋转 轴 204可以为东西方向布置。第二屋顶结构 212的向阳面上布置有聚光器 202 , 该聚光器 202可以为菲涅尔阵列反射聚光器, 聚光器 202的各反射 镜旋转轴, 例如反射镜旋转轴 206和反射镜旋转轴 207可以为东西方向布 置, 且背阳面布置有接收装置 220, 最南面的第二屋顶结构 212为简易支 撑架, 用以支撑接收器 221, 如此可以实现多阵列大规模使用。 太阳能建 筑一体化装置为了避免与建筑内部的生活发生视觉或阳光需求上的冲突, 可以将上述聚光器设计为菲涅尔反射镜阵列组, 且上述聚光器设置有采光 带, 例如反射镜阵列组之间间隔不等地布置, 例如, 为了不影响对阳台 C 的采光效果,第二屋顶结构 212上的反射镜旋转轴 206和反射镜旋转轴 207 之间的间隔设置较大, 也或者如第一屋顶结构 210上布置的反射镜旋转轴 204, 该反射镜旋转轴 204 (在图中显示虚线)上布置的反射镜阵列可以整 体移动特定距离, 利用反射镜旋转轴 204及轴上布置的反射镜阵列的可移 动性, 所述反射镜阵列组中的至少 1组反射镜可以整体移动特定距离, 为 居民房屋顶结构提供阳光所需。 具体地, 反射镜阵列布置在向阳面, 肯定 会遮挡太阳光, 如果需要阳光, 就可以移动反射镜阵列, 让阳光照进来。
图 3是本发明太阳能建筑一体化装置的第三实施例结构示意图。 如图 3所示, 屋顶结构为一层普通居民房屋顶结构的实施例。 其中该太阳能建 筑一体化装置包括两栋平行布置的第一屋顶结构 310 和第二屋顶结构 312、第一屋顶结构 310上布置的聚光器 300、第二屋顶结构 312上的接收 器 320, 及支撑聚光器 300和接收器 320的支架 330。 所述第一屋顶结构 310和第二屋顶结构 312均面向阳坡面倾斜布置, 聚光器 300位于第一屋 顶结构 310上, 各反射镜旋转轴, 例如反射镜旋转轴 301和反射镜旋转轴 303东西方向布置, 且与第一屋顶结构 310的倾斜方向相近, 即菲涅尔阵 列反射聚光器 300与第一屋顶结构 310都向阳坡面倾斜布置, 二者的倾斜 角度可以不完全相同, 便于反射镜更加有效地吸收太阳光。 菲涅尔阵列反 射聚光器 300统一联动驱动, 多个反射镜为一维弧形反射镜, 统一由端部 的驱动完成对太阳光线的汇聚。 接收器 320位于第二屋顶结构 312上, 接 收来自聚光器 300反射的阳光, 接收器 320可以为单独的光热接收装置, 直接将汇聚来的太阳光, 通过集热器, 将换热介质水进行加热; 也可以为 单独的光伏电池接收装置, 直接将汇聚来的太阳光进行多倍太阳光强度光 伏发电; 还可以为光伏接收装置与光热接收装置相结合的光热光伏混合接 收装置, 光热光伏混合装置中二者接收太阳光能量的比例可调, 具体操作 是通过聚光器 300的统一跟踪角度的微调, 最终实现热水和电量的按热量 所需比例双重输出, 满足日常生活用水和生活用电需求, 节能环保; 所述 支架 330为支撑聚光器 300和接收器 320的支架。
图 4是上述实施例中接收器的结构示意图。 如图 4所示, 接收器 420 可以为光热光伏混合接收装置, 该接收器 420可以包括光热接收装置 422 和光伏接收装置 421。 其中光热接收装置 422包括吸收管 424和辅助聚光 器 428, 光伏接收装置 421包括光伏电池 423和辅助聚光器 428。 优选地, 光伏电池 423为单晶硅电池, 实施低倍率发电, 且只通过自然对流散热进 行高效率的光伏发电。
需要特殊注意的是: 本发明的屋顶结构可以为居民房屋顶结构、 厂房 屋顶结构或库房屋顶结构或库房联体屋顶结构等。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的 本发明可以有许多变化。 因此, 所有对于本领域技术人员来说显而易见的 改变, 都应包括在本权利要求书所涵盖的范围之内。 本发明所要求保护的 范围仅由所述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种太阳能建筑一体化装置, 包括至少两列东西轴向平行布置的 第一屋顶结构、 第二屋顶结构、 第一屋顶结构上布置的聚光器及第二屋顶 结构上布置的接收器; 其特征在于, 所述第一屋顶结构和 /或第二屋顶结 构面向阳坡面倾斜布置; 所述聚光器与第一屋顶结构倾斜方向相近; 所述 接收器靠近第二屋顶结构布置; 所述聚光器将太阳光反射至接收器内部; 所述接收器将汇聚太阳光转化成电能和 /或热能。
2、 根据权利要求 1所述的一种太阳能建筑一体化装置, 其特征在于, 所述聚光器为菲涅尔反射镜阵列组, 且所述聚光器设置有采光带。
3、 根据权利要求 2所述的一种太阳能建筑一体化装置, 其特征在于, 所述反射镜阵列组之间间隔不等地布置。
4、 根据权利要求 2所述的一种太阳能建筑一体化装置, 其特征在于, 所述反射镜阵列组中的至少 1组反射镜可以整体移动特定距离。
5、 根据权利要求 1所述的一种太阳能建筑一体化装置, 其特征在于, 所述接收器为光热接收装置或光伏接收装置或光热光伏混合接收装置。
6、 根据权利要求 5所述的一种太阳能建筑一体化装置, 其特征在于, 所述聚光器具有角度调整器, 具体通过聚光器的统一跟踪角度的微调, 实 现光热光伏混合接收器中二者接收太阳光能量比例的调整。
7、 根据权利要求 5所述的一种太阳能建筑一体化装置, 其特征在于, 所述接收器具有储热装置和 /或储电装置。
8、 根据权利要求 1所述的一种太阳能建筑一体化装置, 其特征在于, 所述第一屋顶结构和第二屋顶结构为居民房屋顶结构、 厂房屋顶结构或库 房屋顶结构或库房联体屋顶结构。
9、 根据权利要求 8所述的一种太阳能建筑一体化装置, 其特征在于, 所述居民房屋顶结构为远离赤道方向渐退式结构。
10、 根据权利要求 1所述的一种太阳能建筑一体化装置, 其特征在 于, 所述第一屋顶结构和 /或第二屋顶结构在向阳面布置聚光器, 在背阳 面布置接收器。
1 1、根据权利要求 1所述的一种太阳能建筑一体化装置,其特征在于, 所述第二屋顶结构为支撑接收器的简易支撑架。
12、根据权利要求 1所述的一种太阳能建筑一体化装置,其特征在于, 所述一体化装置可多阵列大规模使用。
PCT/CN2013/081264 2012-08-14 2013-08-12 一种太阳能建筑一体化装置 WO2014026575A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210289636.3 2012-08-14
CN201210289636.3A CN103590546A (zh) 2012-08-14 2012-08-14 一种太阳能建筑一体化装置

Publications (1)

Publication Number Publication Date
WO2014026575A1 true WO2014026575A1 (zh) 2014-02-20

Family

ID=50080846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081264 WO2014026575A1 (zh) 2012-08-14 2013-08-12 一种太阳能建筑一体化装置

Country Status (2)

Country Link
CN (1) CN103590546A (zh)
WO (1) WO2014026575A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220838A (zh) * 2015-10-26 2016-01-06 湖南大学 一种能自动开关散热的太阳能屋顶
US10398686B2 (en) 2013-03-15 2019-09-03 Heron Therapeutics, Inc. Compositions of a polyorthoester and an aprotic solvent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613411A (zh) * 2016-12-21 2018-10-02 北京兆阳能源技术有限公司 一种太阳能聚光装置及使用该装置的建筑物或构筑物结构
CN106948474A (zh) * 2017-04-27 2017-07-14 浙江汇力建设有限公司 一种节能建筑

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989954A (ja) * 1982-11-11 1984-05-24 Nippon Light Metal Co Ltd 太陽熱集熱器つき屋根
US5564411A (en) * 1995-01-26 1996-10-15 Myles, Iii; John F. Roof module having an integral solar energy concentrator
CN1179808A (zh) * 1995-01-26 1998-04-22 约翰·F·迈尔斯三世 具有一体化太阳能收集装置的屋顶
CN101672537A (zh) * 2009-09-23 2010-03-17 孙涛 太阳能利用装置及使用方法
CN102445007A (zh) * 2011-12-06 2012-05-09 上海电力学院 一种基于太阳能与建筑一体化的热水系统
CN202254379U (zh) * 2011-08-06 2012-05-30 冯益安 位于房屋上的菲涅尔反射镜点聚焦聚光系统
CN203022245U (zh) * 2013-01-04 2013-06-26 深圳市动静追日太阳能科技有限公司 一种建筑一体化的太阳能利用系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203475730U (zh) * 2012-08-14 2014-03-12 北京兆阳能源技术有限公司 一种太阳能建筑一体化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989954A (ja) * 1982-11-11 1984-05-24 Nippon Light Metal Co Ltd 太陽熱集熱器つき屋根
US5564411A (en) * 1995-01-26 1996-10-15 Myles, Iii; John F. Roof module having an integral solar energy concentrator
CN1179808A (zh) * 1995-01-26 1998-04-22 约翰·F·迈尔斯三世 具有一体化太阳能收集装置的屋顶
CN101672537A (zh) * 2009-09-23 2010-03-17 孙涛 太阳能利用装置及使用方法
CN202254379U (zh) * 2011-08-06 2012-05-30 冯益安 位于房屋上的菲涅尔反射镜点聚焦聚光系统
CN102445007A (zh) * 2011-12-06 2012-05-09 上海电力学院 一种基于太阳能与建筑一体化的热水系统
CN203022245U (zh) * 2013-01-04 2013-06-26 深圳市动静追日太阳能科技有限公司 一种建筑一体化的太阳能利用系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398686B2 (en) 2013-03-15 2019-09-03 Heron Therapeutics, Inc. Compositions of a polyorthoester and an aprotic solvent
CN105220838A (zh) * 2015-10-26 2016-01-06 湖南大学 一种能自动开关散热的太阳能屋顶

Also Published As

Publication number Publication date
CN103590546A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
Shan et al. Performance evaluations and applications of photovoltaic–thermal collectors and systems
Yang et al. Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system
CN205160460U (zh) 一种基于cpc设计的三平面复合平面聚光器
JP2008523593A5 (zh)
CN101976972A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN102013843A (zh) 一种可控双状态反光聚光太阳能集热发电装置
WO2021213238A1 (zh) 光伏——光热装置
WO2014026575A1 (zh) 一种太阳能建筑一体化装置
CN113899109B (zh) 利用太阳辐射中温制热和天空辐射制冷的高效一体化系统
MX2014006740A (es) Sistema hibrido de recuperacion de energia solar.
CN201956363U (zh) 一种太阳能多功能模块及使用该模块的太阳能电热系统
CN101976973A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN110513895A (zh) 一种基于三棱柱特性的太阳能集热发电装置
CN203475730U (zh) 一种太阳能建筑一体化装置
CN211011958U (zh) 一种基于三棱柱特性的太阳能集热发电装置
CN103795326A (zh) 一种可控双状态反光聚光太阳能集热发电装置
US10082318B2 (en) Linear fresnel light concentrating device with high multiplying power
CN103808029B (zh) 一种太阳能聚光系统
CN208567164U (zh) 聚焦式光伏光热一体化供暖装置
CN201474197U (zh) 波形瓦聚光太阳能水电一体化建筑模块
CN105577032A (zh) 单元式太阳能全光谱利用的光电-热电-热水复合系统
CN201583011U (zh) 活动式复合抛物面聚光器
CN201038175Y (zh) 平板式太阳能发电制热器
CN201072857Y (zh) 复合抛物线反射聚光太阳能发电板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829091

Country of ref document: EP

Kind code of ref document: A1