WO2022160545A1 - 一种lcd光固化3d打印均光优化补偿方法及装置 - Google Patents

一种lcd光固化3d打印均光优化补偿方法及装置 Download PDF

Info

Publication number
WO2022160545A1
WO2022160545A1 PCT/CN2021/098211 CN2021098211W WO2022160545A1 WO 2022160545 A1 WO2022160545 A1 WO 2022160545A1 CN 2021098211 W CN2021098211 W CN 2021098211W WO 2022160545 A1 WO2022160545 A1 WO 2022160545A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
grayscale
light
mask
optimized
Prior art date
Application number
PCT/CN2021/098211
Other languages
English (en)
French (fr)
Inventor
易瑜
谢信福
刘醴
凌少华
Original Assignee
深圳市创必得科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创必得科技有限公司 filed Critical 深圳市创必得科技有限公司
Publication of WO2022160545A1 publication Critical patent/WO2022160545A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present application relates to the technical field of 3D printing, and in particular to a method, device, terminal equipment and storage medium for optimizing and compensating for uniform light in LCD light-curing 3D printing.
  • light-curing 3D printers usually use a single light source or a matrix light source. Due to the service life of the lamp bead itself, manufacturing errors, the manufacturing precision limitations of optical devices and the difference in the energy value loss of the LCD path, the energy value of the irradiated light at each point on the plane when the UV light source penetrates the mask pixels to irradiate the photosensitive curing reaction material Inconsistent, uneven exposure; under normal circumstances, the energy value of each point on the plane where the curing reaction of the photosensitive curing reaction material is located will have high energy in the middle position, low energy in the surrounding area, or the energy value of each point on the plane is different in size and uneven in sensitivity. ; This will lead to uneven light sensitivity when the photosensitive curing reaction material is used to generate the model during the LCD photocuring printing, the printing surface is not smooth, and the printing effect is not ideal.
  • the present application provides a method, device, terminal equipment and storage medium for optimizing and compensating for uniform light in LCD light-curing 3D printing, which can solve the problem of unsatisfactory printing effect due to uneven exposure.
  • the embodiments of the present application provide a method for optimizing and compensating for uniform light in LCD light-curing 3D printing, including:
  • control unit obtains the semi-transparent image displayed on the backlight surface of the semi-transparent unit during full-screen exposure of the LCD screen through the image capture unit, and obtains the initial grayscale value of the image pixels in the full-screen range on the semi-transparent image;
  • the control unit determines whether the average gray value of all initial gray values is lower than the preset threshold; if it is determined that the average gray value is lower than the preset threshold, then proceed to step SA09; if it is determined that the average gray value is not lower than the preset threshold threshold, then go to step SA04;
  • control unit inputs the grayscale mask slice image of the graphic to be printed through a mobile storage device or a network or a computer and obtains the mask grayscale value of each pixel in each grayscale mask slice;
  • the control unit extracts the non-zero minimum value of each initial grayscale value as the Nth reference value, and subtracts the Nth reference value from each initial grayscale value to obtain the Nth grayscale compensation difference of each pixel and forms the grayscale compensation difference surface;
  • the control unit correspondingly subtracts each value in the grayscale compensation difference table from the mask grayscale value of each pixel point of each grayscale mask slice image to obtain the optimized grayscale value of each grayscale mask slice image, and forms Optimize the gray scale;
  • step SA07 the control unit judges whether each optimized grayscale value is greater than or equal to the preset value; if it is judged that there is a value smaller than the preset value in each optimized grayscale value, then step SA10 is executed; Each value is greater than or equal to the preset value, then go to step SA08;
  • control unit performs photocuring printing on each slice mask image according to the optimized gray value of each gray-scale mask slice image obtained, and then enters and executes step SA11;
  • SA09 manually adjust or adjust the control unit to enhance the illumination intensity of the 3D printer light source to brighten the backlight surface of the semi-transparent unit, and then enter and execute step SA02;
  • the control unit extracts the non-zero minimum value in the Nth grayscale compensation difference value as the N+1th reference value, and then subtracts the N+1th reference value from each initial grayscale value and subtracts the N+1th grayscale compensation difference value. Form a grayscale compensation difference table, and then enter and execute step SA06;
  • the embodiments of the present application provide a method for optimizing and compensating for uniform light in LCD light-curing 3D printing, including:
  • the control unit acquires the semi-transparent image displayed on the backlight surface of the semi-transparent unit during full-screen exposure of the LCD screen through the image capturing unit, and acquires the initial grayscale value of the image pixels within the full-screen range on the semi-transparent image;
  • the control unit judges whether the average grayscale value of all initial grayscale values is lower than the preset threshold; if it is judged that the average grayscale value is lower than the preset threshold, proceed to step SB09; if it is judged that the average grayscale value is not lower than the preset threshold threshold, then go to step SB04;
  • control unit inputs the grayscale mask slice image of the graphic to be printed through the mobile storage device or the network or the computer and obtains the mask grayscale value of each pixel in each grayscale mask slice;
  • the control unit extracts the non-zero Nth smallest value in each initial grayscale value as the Nth reference value, and then subtracts the Nth reference value from each initial grayscale value to obtain the Nth grayscale compensation difference and forms the grayscale compensation difference value table;
  • control unit correspondingly subtracts the values in the grayscale compensation difference table from the mask grayscale value of each pixel point of each grayscale mask slice image to obtain the optimized grayscale value of each grayscale mask slice image, and forms Optimize the gray scale;
  • control unit determines whether each optimized grayscale value is greater than or equal to the preset value, then executes step SB10; if it is determined that each value in the optimized grayscale table is greater than or equal to the preset value, then proceeds to step SB08;
  • control unit performs photocuring printing on each slice mask image according to the obtained optimized grayscale value of each grayscale mask slice image, and then enters and executes step SB11;
  • the control unit extracts the non-zero N+1th smallest value in each initial grayscale value as the N+1th reference value, and then subtracts the N+1th reference value from each initial grayscale value, and then subtracts the N+1th grayscale compensation difference from each initial grayscale value. value and form a grayscale compensation difference table, and then enter and execute step SB06;
  • the embodiments of the present application provide a method for optimizing and compensating for uniform light in LCD light-curing 3D printing, including:
  • control unit obtains the semi-transparent image displayed on the backlight surface of the semi-transparent unit during full-screen exposure of the LCD screen through the image capture unit, and acquires the initial grayscale value of the image pixels within the full-screen range on the semi-transparent image;
  • control unit determines whether the average gray value of all initial gray values is lower than the preset threshold; if it is determined that the average gray value is lower than the preset threshold, proceed to step SC09; if it is determined that the average gray value is not lower than the preset threshold threshold, then go to step SC04;
  • control unit inputs the grayscale mask slice image of the graphic to be printed through a mobile storage device or a network or a computer and obtains the mask grayscale value of each pixel in each grayscale mask slice;
  • the control unit rounds each initial grayscale value and extracts the integer value with the largest and larger value as the Nth reference value, and then subtracts the Nth reference value from each initial grayscale value to obtain the Nth grayscale compensation difference and uses the same value as the Nth reference value.
  • control unit correspondingly subtracts the values in the grayscale compensation difference table from the mask grayscale values of each pixel point of each grayscale mask slice image to obtain the optimized grayscale value of each grayscale mask slice image, and forms Optimize the gray scale;
  • step SC07 the control unit judges whether each optimized grayscale value is greater than or equal to the preset value; if it is judged that there is a value smaller than the preset value in each optimized grayscale value, step SC10 is executed; if it is judged that the optimized grayscale value is in the Each value is greater than or equal to the preset value, then go to step SC08;
  • control unit performs photocuring printing on each slicing mask image according to the optimized gray value of each gray-scale mask slice image obtained, and then enters and executes step SC11;
  • SC09 manually adjust or adjust the control unit to enhance the illumination intensity of the light source of the 3D printer to brighten the backlight surface of the semi-transparent unit, and then proceed to step SC02;
  • the control unit rounds each initial grayscale value and extracts the largest and larger integer value as the N+1th reference value, and then subtracts the N+1th reference value from each initial grayscale value. and form a grayscale compensation difference table, and then enter and execute step SC06;
  • an embodiment of the present application provides an LCD light-curing 3D printing uniform light optimization compensation device, including: a control unit, an image capture unit, an LCD screen, a light source, and a semi-transparent unit; the semi-transparent unit covers the The backlight surface of the LCD screen; the light emitted by the light source is irradiated on the semi-transparent unit through the LCD screen when the LCD screen is exposed in full screen, and the visible characteristics of the UV ultraviolet light of the light source mixed with visible light and the soft light of the semi-transparent unit are used.
  • the diffuse reflection characteristic forms a semi-transparent image on its backlight surface; the image capturing unit uses its shooting function to capture the semi-transparent image and send it to the control unit, and the control unit extracts the image pixels within the full-screen range on the semi-transparent image.
  • the initial grayscale value; and then the grayscale compensation difference of each pixel and the optimized grayscale value of each pixel in the grayscale mask slice of the graphic to be printed are obtained, so as to realize uniform light curing printing.
  • the embodiments of the present application provide a method for optimizing and compensating for uniform light in LCD light-curing 3D printing, including:
  • each first optimized grayscale value Based on the mask grayscale value of each pixel and the first grayscale compensation difference, obtain each first optimized grayscale value
  • each of the first optimized grayscale values is greater than or equal to a preset value, photocuring printing is performed on the grayscale mask slice image based on each of the first optimized grayscale values.
  • the beneficial effects of the LCD light-curing 3D printing uniform light optimization compensation method are: the present application obtains the initial gray value of each image pixel on the semi-transparent image and the average gray value of each initial gray value; When the average grayscale value is greater than or equal to the preset threshold, obtain the first grayscale compensation difference based on each initial grayscale value; obtain the mask grayscale value of each pixel in the grayscale mask slice image of the graphic to be printed; The mask grayscale value of each pixel and the first grayscale compensation difference value are obtained to obtain each first optimized grayscale value; if each first optimized grayscale value is greater than or equal to the preset value, based on each first optimized grayscale value
  • the grayscale mask slice image is photocured and printed; the present application performs grayscale compensation on the mask grayscale value of each pixel in the grayscale mask slice image by using the initial grayscale value, and uses the optimized grayscale value to adjust the grayscale value.
  • the mask slice image is photocured and printed, which can make the exposure uniform and the printing effect better.
  • FIG. 1 is a flowchart of the LCD light-curing 3D printing uniform light optimization compensation method 1 of the present application
  • FIG. 2 is the length 1 of the uniform light calculation process of the LCD light-curing 3D printing uniform light optimization compensation method 1 of the present application;
  • Fig. 3 is the uniform light calculation process of the LCD light-curing 3D printing method 1 for uniform light optimization and compensation of the present application. Length 2;
  • FIG. 4 is a flowchart of the LCD light-curing 3D printing method 2 for optimizing and compensating for uniform light;
  • FIG. 5 is the length 1 of the uniform light calculation process of the LCD light curing 3D printing uniform light optimization compensation method 2 of the present application;
  • Fig. 6 is the uniform light calculation process length 2 of the LCD light curing 3D printing uniform light optimization compensation method 2 of the application;
  • FIG. 7 is a flowchart of the LCD light-curing 3D printing uniform light optimization compensation method 3 of the present application.
  • Fig. 8 is the uniform light calculation process of the LCD light-curing 3D printing uniform light optimization compensation method 3 of the present application.
  • FIG. 9 is a schematic diagram of the LCD light-curing 3D printing uniform light optimization compensation device of the present application.
  • FIG. 10 is a schematic diagram of a light-curing 3D printer after light-homing optimization and compensation for LCD light-curing 3D printing of the present application;
  • FIG. 11 is a schematic flowchart of the LCD light-curing 3D printing uniform light optimization compensation method of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 1 shows a schematic flow chart of a method 1 for optimizing and compensating for uniform light in LCD light-curing 3D printing provided by the present application.
  • the method adopts a difference iterative value compensation method. Values are 1, 2, 3 to N.
  • FIG. 2 is the length 1 of the uniform light calculation process of the LCD light curing 3D printing uniform light optimization compensation method 1 of the present application. Since the operation display process is too long, it is divided into two parts: 1 and 2.
  • the calculation process mainly describes the value selection and calculation comparison process when method 1 adopts the difference iterative value compensation method.
  • the 4*4 grids in each table represent the positions corresponding to 16 arbitrary pixels on the LCD screen, on the semi-transparent image in the full-screen range, and on the gray-scale mask slice image. As shown in the figure, Table 1-1 indicates that the light source provides sufficient and uniform illumination light under ideal conditions, so that the uniform illumination intensity of 16 pixels is consistent.
  • Table 1-2 indicates that under ideal conditions, the LCD screen has no dead pixels And the loss in the light transmission path of each pixel is the same.
  • Table 1-3 shows that if the material of the semi-transparent unit is ideal, the soft light effect is relatively uniform, so the energy loss when the light passes through each pixel in this link is also If the grayscale mask slice image is not loaded at this time, the semi-transparent light with sufficient energy and uniform brightness will inevitably be formed at the 16 pixels corresponding to the backlight surface of the semi-transparent unit. image, and the brightness of each pixel is uniform.
  • Table 2-1 shows that under normal circumstances, the light source emits uneven illumination light with sufficient energy, mainly because the light energy in the middle of the light source is sufficient, and the energy in the edge position is weak;
  • Table 2-2 indicates that when the illumination light penetrates the LCD There is energy loss in the screen, where the number 125 indicates the aging pixel, and the light transmittance is weak, resulting in high light energy loss, where the number 0 indicates that the pixel is completely transparent;
  • Table 2-3 indicates that the LCD screen is loaded
  • the mask image of the printed slice is obtained. According to the calibration value that the LCD grayscale mask slice is fully transparent and all are 0, it can be known that the gray value at the 16 corresponding pixels of the printed slice mask image should be all 255 to achieve full transparency.
  • Table 3-1 shows that when a weak light source with low light energy value is used, the light source may be high in the middle and low in the surrounding area, or the lamp beads may also encounter low light emission due to aging, resulting in uneven illumination;
  • Table 3 -2 means that the irradiated light emitted by the light source will have energy loss such as scattering and heating when it penetrates the LCD screen.
  • the position of the number 0 indicates that this is a dead pixel on the LCD pixel, which is completely transparent and cannot be loaded into the primary color of the stored image;
  • the position of the number 125 indicates that this is an aging point on an LCD pixel, with low light transmittance and large light loss; if the point is a dead pixel, 255 should be used to indicate that it is completely opaque.
  • the one-time minimum value is used for grayscale compensation printing. Due to the improper value, the final photosensitive energy of the photosensitive resin will be all zero, resulting in printing failure; Table 3-3 shows that the semi-transparent unit used is relatively The soft light effect is uniform, so the energy loss is uniform when the irradiated light passes through this link; if the grayscale mask slice image is not loaded at this time, the backlight surface of the semi-transparent unit must be formed as shown in Table 3-4. The semi-transparent image with low energy and uneven brightness, and the brightness of each pixel is also uneven; it can be seen from these four tables that when the output light of the light source is weak, the image energy and brightness formed by the backlight surface of the semi-transparent unit are uniform.
  • Table 4-1 indicates that the light source emits uneven illumination light with sufficient energy at the pixel point;
  • Table 4-2 indicates that there is energy loss at the pixel point when the illumination light penetrates the LCD screen;
  • Table 4-3 indicates that the semi-transparent unit is uniform Loss of irradiating light energy;
  • Table 4-4 shows that the image capturing unit obtains images with sufficient but uneven brightness of each pixel and uneven gray value of each pixel in the semi-transparent image obtained by the image capturing unit on the backlight surface of the semi-transparent unit.
  • Table 5-1 shows the initial grayscale values of pixels in the semi-transparent image obtained by the image capture unit described in Table 4-4;
  • Table 5-2 shows that the non-zero minimum value 85 is extracted for the first time among the above values.
  • the reason for extracting the non-zero minimum value is also to exclude the reference selection of completely opaque dead pixels. Therefore, it is necessary to uniformly subtract the reference value from the initial grayscale value obtained by the image capturing unit, thus obtaining the value shown in Table 5-4.
  • the first grayscale compensation difference is necessary to uniformly subtract the reference value from the initial grayscale value obtained by the image capturing unit, thus obtaining the value shown in Table 5-4.
  • FIG. 3 shows the uniform light calculation process of the LCD light-curing 3D printing method 1 of the uniform light optimization compensation method 2 of the present application.
  • the calculation process mainly describes the value selection and calculation comparison process when method 1 adopts the difference iterative value compensation method.
  • the 4*4 grids in each table are represented as positions corresponding to 16 arbitrary pixels.
  • Table 6-1 indicates that the gray value of the pixel points of the grayscale mask slice are all 255, and the first grayscale compensation difference in Table 6-2 is the first gray value obtained in Table 5-4.
  • the grayscale compensation difference value; the corresponding values in Table 6-1 are subtracted from the values in Table 6-2 to obtain the first optimized grayscale value of the grayscale mask slice in Table 6-3.
  • the grayscale value is It is the mask pixel grayscale value of each pixel point in the LCD mask link, that is, the first grayscale value of each pixel point of the grayscale mask slice loaded into the LCD screen during LCD photocuring printing.
  • the photosensitive energy value of the photosensitive resin is obtained to verify whether the photosensitive resin is uniform.
  • the slice gray value 255 is subtracted from Table 6-3.
  • Each value in the LCD image pixel shading energy value in Table 6-4 is obtained.
  • Table 7-1 the light source with uneven illumination but sufficient energy emits the energy value, subtract the energy value loss in Table 7-2 when the irradiated light penetrates the LCD screen, and then subtract the energy value loaded in the LCD in Table 7-3.
  • the energy value shielded by the grayscale mask is what is required in Table 6-4, and the photosensitive energy value of the photosensitive resin in Table 7-4 can be obtained. From Table 7-4, it can be seen that each point on the photosensitive plane of the photosensitive resin is photosensitive when exposed to light.
  • the final photosensitive uniform value and photosensitive irradiation intensity of the photosensitive curing reaction material are determined from the reference value 85 selected in Table 5-3 and the table.
  • the semi-transparent unit is determined by the sum of the illuminating light energy shielding, so when selecting the reference value in step 4 of the three methods of this application, it is necessary to exclude the influence of zero value, and if the selected reference value If it is too small, it will also lead to insufficient printing light energy.
  • the optimized gray value of the final grayscale mask slice image is also selected, so as to reselect the reference value; for example, Assuming that the preset value in step 7 of method 1 is 200, then there is a value less than 200 in table 6-3, then it is necessary to enter step 11 to reselect the reference value to obtain the grayscale compensation difference; and in the prior art, directly
  • the minimum value if there is an opaque dead point on the LCD screen, the reference value must be zero, which will cause the optimized gray value of the grayscale mask slice image to be too low, so that the final photosensitive resin is printed.
  • the received light energy value is all 25, resulting in insufficient light energy and printing failure.
  • Table 8-1 to Table 8-4 indicate that in the previous steps, if the selected value of reference value 85 is not suitable, the value needs to be re-selected, so in the first grayscale compensation difference between Table 8-1 and Table 5-4 , select the non-zero minimum value 80 again as the second reference value 80, and then subtract the second reference value 80 from the first grayscale compensation difference to obtain the second grayscale compensation difference in Table 8-4, and for the generated
  • the negative number of is directly set to zero, this is to avoid the second optimized gray value of the gray mask obtained subsequently to exceed the physical range of the maximum gray value of 255.
  • the non-zero minimum value is repeatedly selected in each gray-level compensation difference, which is actually the iterative value compensation method of the difference, which is equivalent to excluding the minimum value one by one in a column of gradually increasing values, and selecting it up level by level
  • a reference value that can make the final printing light energy sufficient and uniform can always be found, so as to obtain the required grayscale mask optimization grayscale value.
  • Table 9-1 shows the grayscale value of the pixel corresponding to the grayscale mask slice of the image to be printed.
  • the grayscale value of 255 indicates full light transmission; subtract the value in Table 9-2 from Table 9-1.
  • the second grayscale compensation difference of , the optimized grayscale value of the pixel point of the second grayscale mask slice in Table 9-3 can be obtained, which can realize uniform light printing under sufficient illumination energy.
  • Table 9-4 is obtained by subtracting the values in Table 9-3 from 255, which represents the shading energy value caused by loading the gray-scale mask slice into the LCD to block the irradiated light.
  • FIG. 4 shows a schematic flow chart of the method 2 of uniform light optimization compensation for LCD light-curing 3D printing provided by the present application. This method adopts the minimum value sequential value compensation method. The value of 1, 2, 3 ⁇ N.
  • FIG. 5 shows the uniform light calculation process of the LCD light-curing 3D printing uniform light optimization compensation method 2 of the application.
  • Length 1 The calculation process mainly describes the value selection and calculation comparison process when the method 2 adopts the minimum value sequential value compensation method. Since the operation display process is too long, it is divided into two parts: 1 and 2.
  • the 4*4 grids in each table represent the positions corresponding to 16 arbitrary pixels on the LCD screen, on the semi-transparent image in the full-screen range, and on the gray-scale mask slice image.
  • Table 11-1 indicates that the light source emits uneven illumination light with sufficient energy;
  • Table 11-2 indicates that there is energy loss when the illumination light penetrates the LCD screen;
  • Table 11-3 indicates that the grayscale mask is not loaded The sliced image has no loss of light energy;
  • Table 11-4 shows the initial grayscale values of the pixels in the semi-transparent image acquired by the image capturing unit.
  • Tables 12-1, 2, and 3 indicate that the non-zero minimum value is selected from the photosensitive energy values obtained by the image capturing unit as the first reference value, and then the first grayscale compensation difference in Table 12-4 is obtained.
  • Tables 13-1, 2, and 3 indicate that the grayscale mask 1 in 13-3 is obtained according to the grayscale mask slice grayscale values in Table 13-1 and the mask slice grayscale compensation difference in Table 13-2 Suboptimal gray value, where the mask slice gray compensation difference in Table 13-2 is the first gray compensation difference in Table 12-4.
  • Table 13-4 is obtained by subtracting the values in Table 13-3 from 255, which represents the shading energy value caused by loading the grayscale mask slice pixel grayscale of the LCD to block the irradiated light.
  • Tables 15-1 and 2 indicate that the second minimum value is re-extracted on the basis of excluding the last minimum value, that is, the reference value is extracted from small to large in order, and after the second reference value in Table 15-3 is obtained, the table 15 The second reference value is subtracted from each value in -1 to obtain the second grayscale compensation difference in Table 15-4, and the generated negative number is directly set to zero, in order to avoid the second grayscale mask obtained later.
  • the sub-optimized gray value is outside the 255 maximum gray value physical range.
  • FIG. 6 is the length 2 of the uniform light calculation process of the uniform light optimization compensation method 2 of the LCD light-curing 3D printing of the present application.
  • the calculation process mainly describes the value selection and calculation comparison process when the method 2 adopts the minimum value sequential value compensation method.
  • the 4*4 grids in each table are represented as positions corresponding to 16 arbitrary pixels.
  • Table 16-1 represents the grayscale value of the pixel point of the grayscale mask slice of the image to be printed, and the grayscale value of 255 represents full light transmission; on the basis of Table 16-1, subtract Table 16-
  • the second grayscale compensation difference in 2 can obtain the optimized grayscale value of the second grayscale mask slice in Table 16-3.
  • step 7 of method 2 is 220
  • step 11 it is necessary to go to step 11 to reselect the reference value to obtain the difference.
  • Table 16-4 is obtained by subtracting the values in Table 16-3 from 255, which represents the shading energy value caused by loading the grayscale mask slice pixel grayscale of the LCD to block the irradiated light.
  • Tables 18-1 and 2 indicate that the third minimum value is re-extracted on the basis of excluding the previous minimum value, that is, the reference value is extracted from small to large in order, and after the third reference value in Table 18-3 is obtained, the table Subtract the 3rd reference value from each value in 18-1 to get the 3rd grayscale compensation difference in Table 18-4, and directly set zero for the generated negative number, this is to avoid the grayscale mask obtained later
  • the third optimized gray value exceeds the physical range of the maximum gray value of 255.
  • Table 19-1 shows the grayscale value of the pixel point of the grayscale mask slice of the image to be printed, and the grayscale value of 255 indicates full light transmission; on the basis of Table 19-1, subtract the third point in Table 19-2.
  • the grayscale compensation difference value can be used to obtain the optimized grayscale value of the third grayscale mask slice in Table 19-3.
  • step 7 in method 2 assuming that the preset value in step 7 is 220, then the table All the values in 19-3 are greater than 220, and uniform printing with sufficient light energy can be achieved.
  • Table 19-4 is obtained by subtracting each value in Table 19-3 from 255, which represents the shading energy value brought by loading the grayscale mask slice pixel grayscale of the LCD to block the irradiated light.
  • the non-zero minimum value is gradually selected as the reference value in the photosensitive energy value of the image capturing unit from low to high, which is actually the use of the minimum value sequential value compensation method, which is equivalent to a series of gradually increasing values. Exclude the minimum value, and select the value step by step. Finally, a reference value that can make the final printing light energy sufficient and uniform can always be found, so as to obtain the required grayscale mask optimized grayscale value.
  • FIG. 7 shows a schematic flow chart of the LCD light curing 3D printing uniform light optimization compensation method 3 provided by the present application.
  • the method adopts the digital rounding and high-frequency value compensation method.
  • the value of N is 1, 2, 3 ⁇ N.
  • FIG. 8 is the uniform light calculation process of the LCD light curing 3D printing uniform light optimization compensation method 3 of the present application.
  • the calculation process mainly describes the value selection and calculation comparison process when the method 3 adopts the digital rounding plus high frequency value value compensation method.
  • the 4*4 grids in each table represent the positions corresponding to 16 arbitrary pixels on the LCD screen, on the semi-transparent image in the full-screen range, and on the gray-scale mask slice image.
  • Table 21-1 indicates that the light source emits uneven illumination light with sufficient energy;
  • Table 21-2 indicates that there is energy loss when the illumination light penetrates the LCD screen;
  • Table 24-6 indicates that the grayscale mask is not loaded The sliced image has no loss of light energy;
  • Table 21-4 shows the initial grayscale values of the pixels in the semi-transparent image acquired by the image capturing unit.
  • Tables 22-1 and 2 indicate that the initial grayscale value obtained by the image capture unit needs to be rounded first, because the initial grayscale value of the original acquisition photosensitive in Table 22-1 always has a non-integer value.
  • Table 22-3 when the reference value is selected according to the frequency of the same value, it is not easy to extract the number with the highest frequency of the same value, and the data processing process will consume too much computing power of the control unit; After the adjustment, the integer initial grayscale values in Table 22-2 are obtained; in particular, as shown in Table 22-3, when selecting the integer value with the largest number of the same value, there are two groups of integer values with the largest number of the same value. It is necessary to select the larger integer value as the reference value from the two sets of integer values; then obtain the first reference value of the initial gray value in Table 22-4.
  • Tables 23-1, 2, and 3 indicate that the first grayscale compensation difference in Table 23-3 is obtained from the initial grayscale values of the pixels in Table 23-1 and the first reference value selected in Table 22-4. . And for the generated negative numbers, set zero directly to get the first grayscale compensation difference in Table 23-4. This is to avoid the first optimized grayscale value of the subsequently obtained grayscale mask to exceed the maximum grayscale value of 255. scope.
  • Table 24-1 shows the grayscale value of the pixel point of the grayscale mask slice of the image to be printed, and the grayscale value of 255 indicates full light transmission; on the basis of Table 24-1, subtract the first in Table 24-2.
  • the grayscale compensation difference value can be used to obtain the optimized grayscale value of the first grayscale mask slice in Table 24-3; uniform light printing can be realized with sufficient light energy.
  • Table 24-4 is obtained by subtracting the values in Table 24-3 from 255, which represents the shading energy value caused by loading the gray-scale mask slice pixel on the LCD to block the irradiated light.
  • method 3 increases the collision probability of each value and the probability of the same value while rounding the initial gray value, which is equivalent to directly grabbing a maximum distribution interval to select a maximum probability distribution value, and then based on its
  • the compensation method for uniform light optimization is to use the digital rounding and high-frequency value compensation method; at the same time, in order to avoid the simultaneous occurrence of multiple high-probability numbers with the same probability, it is necessary to select a larger or smaller reference value, and the larger value means more sufficient light source illumination, so in steps 4 and 11 in this method, the method of rounding and extracting the largest and larger integer value with the same value is used as the reference value; if the reference value is not suitable, it is necessary to re-select the same value.
  • the integer value with the second largest value and the larger value is used as the reference value, that is, the integer value with the second largest value and the larger value is selected as the reference value; in the end, a reference value that can make the final printing light energy sufficient and uniform can always be found, so that Get the desired grayscale mask to optimize the grayscale value.
  • a uniform light optimization compensation device utilizes the visible characteristics of the UV ultraviolet light of the light source mixed with visible light and the soft light diffuse reflection characteristics of the semi-transparent unit to form semi-transparent light on the backlight surface of the semi-transparent unit.
  • Image so that the state of whether the UV ultraviolet light of the light source is uniform can be presented and can be directly captured by the image capturing unit.
  • the image capturing unit is used to directly capture and obtain the semi-transparent image and its pixel gray value.
  • the semi-transparent image and its pixel gray value can be directly obtained with the help of cameras and other devices, which avoids the light source penetrating and illuminating the camera device directly when shooting directly. overexposure problem.
  • the semi-transparent image and its pixel gray value can be directly obtained with the help of cameras and other devices, avoiding the need to convert the energy value measured by the ultraviolet test instrument into gray. The conversion process of degree value;
  • the three uniform light optimization compensation methods provided in this application can directly obtain grayscale values for all pixels of the semi-transparent image of the LCD full screen by using the image capture unit, and for all pixels of the grayscale mask slice image in the full screen range To perform grayscale compensation, it is easier to achieve absolute uniformity of the LCD full screen under ideal conditions, so it is the best and fastest solution for uniformity. This method does not make any changes to the original structure of the LCD, and can obtain a very good uniform light effect and can improve the printing accuracy.
  • the three methods of the application can re-select the reference value through the judgment step to ensure that most of the pixels are homogeneous and the illumination intensity is sufficient to ensure the success of 3D printing.
  • step 3 of the three methods the judgment process and adjustment process of the illumination intensity of the light source are added.
  • the illumination intensity is enhanced to compensate the gray value of the subsequent grayscale mask slices and the final 3D light curing printing. Sufficient light is provided to ensure smooth progress.
  • step 7 of the three methods the judgment process of the optimized gray value is added.
  • the selected reference value is too small, the gray value of the printed image will be excessively reduced, resulting in insufficient light intensity through the LCD screen, resulting in curing printing. If it fails, the additional judgment steps can be re-selected until the reference value is suitable, so that the final printing photosensitive curing reaction material is uniformly irradiated and the intensity is sufficient to ensure the smooth printing.
  • the uniform light optimization compensation method 1 provided by this application adopts the difference iterative value compensation method, and continuously selects the non-zero minimum value through the initial gray value difference table to select the reference value point by point from low to high in disguised form, Until the selected value is appropriate and reasonable enough to compensate for the gray value of the grayscale mask slice while ensuring sufficient printing illumination, the uniform light effect of most pixel points can be achieved.
  • the uniform light optimization compensation method 2 provided in this application adopts the minimum value sequential value compensation method, and selects the reference value point by point directly from low to high by comparing and sorting points, until the selected value is suitable and reasonable enough. While ensuring sufficient printing illumination, the gray value of the gray mask slice is compensated to achieve the uniform light effect of most pixel points.
  • the uniform light optimization compensation method 3 provided by this application adopts the digital rounding and high-frequency value value compensation method, and increases the repetition probability of each initial gray value after rounding the initial gray value, and then directly captures the repetition The maximum high-frequency value, in order to take into account the difference compensation of the initial gray value of each point as much as possible.
  • selecting the point with a higher value as the reference value is conducive to fast Find a more reasonable reference value to make the printing light enough and at the same time compensate the gray value of the grayscale mask slice to achieve the uniform light effect of most pixels.
  • FIG. 9 is a schematic diagram of an LCD light-curing 3D printing uniform light optimization compensation device provided in an embodiment of the application, the device includes: a control unit 1, an image capturing unit 2, an LCD screen 3, a light source 4, and a semi-transparent unit 5; the The semi-transparent unit 5 covers the backlight surface of the LCD screen 3; the illuminating light emitted by the light source 4 is exposed on the LCD screen 3 in full screen through the LCD screen 3 and irradiates the semi-transparent unit 5, and the UV ultraviolet light of the light source 4 is mixed with visible light.
  • the visible characteristics and the soft light diffuse reflection characteristics of the semi-transparent unit 5 form a semi-transparent image on its backlight surface; the image capturing unit 2 uses its shooting function to capture the semi-transparent image and send it to the control unit 1.
  • the control unit 1 extracts the initial grayscale value of the image pixels in the full-screen range on the semi-transparent image; after obtaining the grayscale compensation difference of each pixel and the optimized grayscale value of each pixel in the grayscale mask slice of the graphic to be printed, In order to achieve uniform light curing printing.
  • the translucent unit adopts translucent paper, or tissue paper, or diffuser paper, or diffuser film, or diffuser cloth, or diffuser board, or sulfuric acid paper, or copy paper, or tallow paper , or diffuser film, or matte film, or butterfly cloth, or temperature-resistant film film, or translucent acrylic sheet.
  • the light source is a UV point light source or a UV matrix light source.
  • the number of photosensitive pixels in the length and width directions of the image capture unit is greater than or equal to the number of display pixels in the length and width directions of the LCD screen; the total number of photosensitive pixels of the image capture unit is greater than or equal to the LCD screen. The total number of pixels displayed on the screen.
  • the number of photosensitive pixels in the length direction of the image capturing unit is greater than or equal to the number of display pixels in the length direction of the LCD screen.
  • the number of photosensitive pixels in the width direction of the image capturing unit is greater than or equal to the number of display pixels in the width direction of the LCD screen.
  • FIG. 10 is a schematic diagram of a light-curing 3D printer after light-homogenization optimization and compensation for LCD light-curing 3D printing of the present application.
  • the technical solution of the photo-curing 3D printer includes: control unit 1, LCD screen 3, light source 4, storage tank 6, storage tank bottom film 61, photosensitive curing reaction material 7, curing molding support plate 8.
  • the control unit 1 makes the LCD screen 3 load the grayscale mask slice image of the graphic to be printed, after the grayscale value is optimized and compensated by the uniform light, for the selective mask light transmission; the storage tank 6 stores the photosensitive curing reaction.
  • the photosensitive curing reaction material 7 generally adopts photosensitive resin
  • the bottom of the storage tank 6 is a translucent liquid tank bottom film 61 for illuminating light
  • the light source 4 generally adopts UVLED point light source or UVLED matrix light source to emit 405nm ultraviolet light irradiates the photosensitive curing reaction material 7 through the grayscale mask of the LCD screen 3 to perform curing and printing
  • the curing molding support plate 8 is used to attach the cured and molded gel during the curing reaction, so that it continues to grow and grow until 3D Printing is complete.
  • FIG. 11 shows a schematic flow chart of the method for optimizing and compensating for uniform light in LCD light-curing 3D printing provided by the present application. Referring to FIG. 11 , the details of the method are as follows:
  • the semi-transparent image includes a plurality of image pixels, and each image pixel corresponds to an initial gray value.
  • the semi-transparent image can be acquired directly from the image capture unit. Specifically, the LCD light curing printer is turned on and the semi-transparent unit is covered on the backlight surface of the LCD screen so that the light source illuminates the entire LCD screen, and the control unit can control the image capturing unit to shoot. The control unit may directly acquire the translucent image from the image capturing unit.
  • the translucent image may be an image displayed on the backlight surface of the translucent unit when the LCD screen is exposed to the full screen.
  • the initial grayscale value may be the grayscale value of the image pixels in the full-screen range of the semi-transparent image.
  • the translucent image can also be obtained from a storage device.
  • the translucent image may be stored corresponding to the acquisition time during storage.
  • the average gray value can be directly calculated.
  • the average gray value can also be obtained directly from the storage device.
  • the average gray value is obtained, it is necessary to judge whether the average gray value is greater than or equal to the preset threshold, so as to determine whether the intensity of the light source meets the requirements. If the average gray value is greater than or equal to the preset threshold, it is determined that the intensity of the light source meets the requirements. If the average gray value is smaller than the preset threshold, it is determined that the intensity of the light source does not meet the requirements. If the intensity of the light source does not meet the requirements, you can manually adjust or control the unit to increase the illumination intensity of the 3D printer light source to brighten the backlight surface of the translucent unit until the average gray value is greater than or equal to the preset threshold. Preset thresholds can be set as required.
  • the first grayscale compensation difference value may be organized into a grayscale compensation difference value table. If there is a negative value in the first grayscale compensation difference, the negative value needs to be set to 0.
  • the mask grayscale value may be obtained by analyzing the grayscale mask slice image after obtaining the grayscale mask slice image to obtain the mask grayscale value of each pixel.
  • the grayscale mask slice image can be obtained from a mobile storage device, a network or a computer. There can be one or more grayscale mask slice images. When there are multiple grayscale mask slice images, the mask grayscale value of each pixel in each grayscale mask slice image needs to be obtained.
  • each first optimized grayscale value is obtained based on the mask grayscale value of each pixel and the first grayscale compensation difference.
  • the first optimized grayscale value may be sorted into an optimized grayscale table.
  • step S104 may include:
  • the mask grayscale value since the mask grayscale values are arranged in order, when calculating the difference between the mask grayscale value of each pixel and the first grayscale compensation difference, the mask grayscale value needs to be
  • the first optimized grayscale value of the position is obtained by subtracting the intensity value from the first grayscale compensation difference value of the corresponding position. It should be noted that, if there is a negative value in the first optimized grayscale value, the negative value needs to be set to 0.
  • the printing may fail. Therefore, after obtaining the first optimized grayscale, it is necessary to judge whether the first optimized grayscale values are all greater than or equal to the preset value, so as to determine the printing light Is the energy sufficient. Preset values can be set as required.
  • each of the first optimized grayscale values is greater than or equal to the preset value, it is determined that the printing light energy is sufficient, and the first optimized grayscale value can be directly used for printing. On the contrary, it means that the printing light energy is insufficient, and the optimized gray value needs to be re-determined, which will be described in detail below.
  • step S102 may include:
  • S1021 Determine a first reference value based on each of the initial grayscale values.
  • the negative value needs to be set to 0.
  • step S1021 may include:
  • step S1021 may include:
  • S10212 Determine that there is a first integer value with the most identical values in the rounded initial grayscale values.
  • the initial gray value includes 5 123; 6 121; 8 143. Then 143 has the most identical values, and 143 is taken as the first integer value.
  • the first integer value in the initial grayscale value includes 8 143 and 8 155, then 155 is used as the first reference value.
  • S1022 Calculate the difference between each initial grayscale value and the first reference value, and use the difference between each initial grayscale value and the first reference value as a first grayscale compensation difference.
  • the above method may further include:
  • step S201 may include:
  • S2011 Determine a non-zero minimum value in the i-th grayscale compensation difference value, and use the non-zero minimum value in the i-th grayscale compensation difference value as an i+1-th reference value.
  • the non-zero minimum value in the first grayscale compensation difference is determined, and the non-zero minimum value is used as the second reference value, and then each initial grayscale value is calculated.
  • the difference between the intensity value and the second reference value obtains the second grayscale compensation difference.
  • this step is the same as the method in the above-mentioned step S104, please refer to the step S104.
  • the above method may further include:
  • the j+1th non-zero minimum value is the j+1th value after the initial grayscale values are arranged from small to large.
  • the difference between each initial grayscale value and the j+1th reference value is calculated to obtain the j+1th grayscale compensation difference.
  • the method of this step is the same as that of the above-mentioned step S104, please refer to the step S104.
  • the above method may further include:
  • S402 Determine the m+1th integer value in the rounded initial grayscale value, and record the m+1th integer value as the m+1th reference value, where m ⁇ 1, the The m+1 integer value is the target integer value that has the most same value except the first integer value to the mth integer value among the initial grayscale values. If the target integer value is more than one, then The maximum value among the target integer values is used as the m+1th integer value.
  • the target integer value As an example, if there is an optimized grayscale value smaller than the preset value in the first optimized grayscale value, it is determined that the target integer value with the most the same value exists among the initial grayscale values except the first integer value. If the target integer value is 8 155s, use 155 as the second integer value. If the target integer is 8 155s and 8 169s, 169 is used as the second integer value.
  • the difference between each initial grayscale value and the m+1th reference value is calculated to obtain the m+1th grayscale compensation difference.
  • this step is the same as the method in the above-mentioned step S104, please refer to the step S104.
  • the terminal device 400 may include: at least one processor 410 , a memory 420 , and a terminal device stored in the memory 420 and available on the at least one processor 410 A running computer program, when the processor 410 executes the computer program, it implements the steps in any of the foregoing method embodiments, for example, steps SA01 to SA11 in the embodiment shown in FIG. 1 , or steps SA01 to SA11 in the embodiment shown in FIG. of steps S101 to S105.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned LCD light-curing 3D printing uniform light optimization compensation method can be realized. steps in various embodiments.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the mobile terminal can implement the steps in each embodiment of the above-mentioned LCD light curing 3D printing uniform light optimization compensation method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供一种LCD光固化3D打印均光优化补偿方法、装置、终端设备及存储介质,其方法包括获取半透光图像上各个图像像素的初始灰度值和各个初始灰度值的平均灰度值;在平均灰度值大于或等于预设阈值时,基于各个初始灰度值,得到第1灰度补偿差值;获取待打印图形的灰度掩膜切片图像中各像素的掩膜灰度值;基于各像素的掩膜灰度值和第1灰度补偿差值,得到各个第1优化灰度值;若各个第1优化灰度值均大于或等于预设值,基于各个第1优化灰度值对灰度掩膜切片图像进行光固化打印;通过初始灰度值对灰度掩膜切片图像中各像素的掩膜灰度值进行灰度补偿,得到优化后的灰度值,利用优化后的灰度值对灰度掩膜切片图像进行光固化打印,可以使曝光均匀,打印效果更好。

Description

一种LCD光固化3D打印均光优化补偿方法及装置
本申请要求于2021年01月26日在中国专利局提交的、申请号为202110104012.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,具体涉及一种LCD光固化3D打印均光优化补偿方法、装置、终端设备及存储介质。
背景技术
目前光固化3D打印机通常都是采用单光源或者矩阵光源。由于灯珠本身的使用寿命、制造误差、光学器件的制造精度限制和LCD路径能量值损耗的不同,导致紫外光源穿透掩膜像素照射光敏固化反应材料时平面上各点的照射光能量值大小不一致,曝光不均匀;一般情况下,光敏固化反应材料固化反应所在平面上各点的能量值会存在中间位置能量高,四周能量低,或者平面上各点能量值大小不一、感光不均问题;这就会导致LCD光固化打印时,光敏固化反应材料生成模型时感光不均,打印面不光滑,打印效果不理想。
技术问题
本申请提供一种LCD光固化3D打印均光优化补偿方法、装置、终端设备及存储介质,可以解决由于曝光不均匀导致打印效果不理想的问题。
技术解决方案
第一方面,本申请实施例提供了一种LCD光固化3D打印均光优化补偿方法,包括:
SA01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
SA02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
SA03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SA09;如果判断平均灰度值不低于预设阈值,则进行步骤SA04;
SA04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
SA05、控制单元提取各个初始灰度值中的非零最小值作为第N参考值并将各个初始灰度值减第N参考值得到各像素第N灰度补偿差值并形成灰度补偿差值表;
SA06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
SA07、控制单元判断各个优化灰度值是否都大于或等于预设值;如果判断出各个优化灰度值中存在小于预设值的数值,则执行步骤SA10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SA08;
SA08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SA11;
SA09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SA02;
SA10、控制单元提取第N灰度补偿差值中的非零最小值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SA06;
SA11、流程结束。
第二方面,本申请实施例提供了一种LCD光固化3D打印均光优化补偿方法,包括:
SB01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
SB02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
SB03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SB09;如果判断平均灰度值不低于预设阈值,则进行步骤SB04;
SB04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
SB05、控制单元提取各个初始灰度值中的非零第N小值作为第N参考值,再将各个初始灰度值减第N参考值得到第N灰度补偿差值并形成灰度补偿差值表;
SB06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
SB07、控制单元判断各个优化灰度值是否都大于或等于预设值,则执行步骤SB10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SB08;
SB08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SB11;
SB09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SB02;
SB10、控制单元提取各个初始灰度值中的非零第N+1小值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SB06;
SB11、流程结束。
第三方面,本申请实施例提供了一种LCD光固化3D打印均光优化补偿方法,包括:
SC01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
SC02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
SC03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SC09;如果判断平均灰度值不低于预设阈值,则进行步骤SC04;
SC04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
SC05、控制单元对各个初始灰度值取整并提取同值最多且更大的整值作为第N参考值,再将各个初始灰度值减第N参考值得到第N灰度补偿差值并形成灰度补偿差值表;
SC06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
SC07、控制单元判断各个优化灰度值是否都大于或等于预设值;如果判断出各个优化灰度值中存在小于预设值的数值,则执行步骤SC10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SC08;
SC08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SC11;
SC09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SC02;
SC10、控制单元对各个初始灰度值取整并提取同值最多且更大的整值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SC06;
SC11、流程结束。
第四方面,本申请实施例提供了一种LCD光固化3D打印均光优化补偿装置,包括:控制单元、图像拍摄单元、LCD屏、光源、半透光单元;所述半透光单元覆盖于LCD屏的背光面;光源发出的照射光在LCD屏全屏曝光时透过LCD屏照射于半透光单元,并利用光源的UV紫外光与可见光混合后的可见特性以及半透光单元的柔光漫反射特性在其背光面形成半透光图像;所述图像拍摄单元利用其拍摄功能拍摄获取半透光图像并送至控制单元,由控制单元提取半透光图像上全屏范围内的图像像素的初始灰度值;再求得各个像素灰度补偿差值和待打印图形灰度掩膜切片中各像素的优化灰度值后,以实现均光光固化打印。
第五方面,本申请实施例提供了一种LCD光固化3D打印均光优化补偿方法,包括:
获取所述半透光图像上各个图像像素的初始灰度值和各个初始灰度值的平均灰度值;
在所述平均灰度值大于或等于预设阈值时,基于所述各个初始灰度值,得到第1灰度补偿差值;
获取待打印图形的灰度掩膜切片图像中各像素的掩膜灰度值;
基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值;
若所述各个第1优化灰度值均大于或等于预设值,基于所述各个第1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
有益效果
本申请实施例提供的LCD光固化3D打印均光优化补偿方法的有益效果在于:本申请获取半透光图像上各个图像像素的初始灰度值和各个初始灰度值的平均灰度值;在平均灰度值大于或等于预设阈值时,基于各个初始灰度值,得到第1灰度补偿差值;获取待打印图形的灰度掩膜切片图像中各像素的掩膜灰度值;基于各像素的掩膜灰度值和第1灰度补偿差值,得到各个第1优化灰度值;若各个第1优化灰度值均大于或等于预设值,基于各个第1优化灰度值对灰度掩膜切片图像进行光固化打印;本申请通过初始灰度值对灰度掩膜切片图像中各像素的掩膜灰度值进行灰度补偿,利用优化后的灰度值对灰度掩膜切片图像进行光固化打印,可以使曝光均匀,打印效果更好。
附图说明
图1为本申请LCD光固化3D打印均光优化补偿方法1的流程图;
图2为本申请LCD光固化3D打印均光优化补偿方法1的均光计算过程篇幅1;
图3为本申请LCD光固化3D打印均光优化补偿方法1的均光计算过程篇幅2;
图4为本申请LCD光固化3D打印均光优化补偿方法2的流程图;
图5为本申请LCD光固化3D打印均光优化补偿方法2的均光计算过程篇幅1;
图6为本申请LCD光固化3D打印均光优化补偿方法2的均光计算过程篇幅2;
图7为本申请LCD光固化3D打印均光优化补偿方法3的流程图;
图8为本申请LCD光固化3D打印均光优化补偿方法3的均光计算过程;
图9为本申请LCD光固化3D打印均光优化补偿装置的原理图;
图10为本申请LCD光固化3D打印均光优化补偿后进行光固化3D打印机的原理图;
图11为本申请LCD光固化3D打印均光优化补偿方法的流程示意图;
图12为本申请一实施例提供的终端设备的结构示意图。
本发明的实施方式
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
目前的LCD光固化3D打印机通常都是采用单光源或者矩阵光源。由于灯珠本身的使用寿命、制造误差、光学器件的制造精度限制和LCD路径能量值损耗的不同,导致紫外光源穿透掩膜像素照射光敏固化反应材料时平面上各点的照射光能量值大小不一致,曝光不均匀;并且在遇到LCD屏存在坏点时如果LCD屏预存的灰度值过小或者光源照射强度不够时,也会存在打印失败的问题;此外,现有技术中采用紫外光测试仪器点对点测得LCD屏全屏曝光时屏幕上各个像素点投射能量值进而作均光处理的方法,工作量过大实现起来不现实;针对这些问题,本申请公开了LCD光固化3D打印均光优化补偿的一种装置和三种方法。
由于灰度值的取值范围为0-255;而光源能量值范围更广,如0μW/cm2-2550μW/ cm2,为了便于将灰度值和能量值统一到相同数值范围内便于阐述均光原理和表达计算过程,在后续各表中假设光源发出的能量值最小为0μW/cm2,最大为255μW/cm2;可根据能量值与灰度值的对应关系式为:Y ij=kX ij+b来计算;其中,Y ij为LCD全屏曝光时能量采集单元所获取的LCD屏上第i行第j列像素点的能量值;X ij为LCD全屏曝光时LCD屏上第i行第j列像素点的能量值的灰度值;所述k和b为经验值常数、或经过计算所获得的实际推算值;所述能量值的最大值对应于与灰度值的最大值255,所述能量值的最小值对应于与灰度值的最小值0,由此代入关系式Y ij=kX ij+b计算获得k和b的推算值;而在本申请方法下的均光原理和计算,全程只涉及图像灰度值的计算与处理,不涉及光源能量值与图像灰度值的转换过程。
图1示出了本申请提供的LCD光固化3D打印均光优化补偿方法1的示意性流程图,该方法采用差值迭代取值补偿法,图1中步骤5和步骤10中的N的取值为1、2、3~N。
图2为本申请LCD光固化3D打印均光优化补偿方法1的均光计算过程篇幅1。由于运算展示过程篇幅过长,故分为篇幅1和篇幅2两部分。计算过程主要描述的是方法1采用差值迭代取值补偿方法时的取值及计算比较过程。各个表中的4*4格表示为LCD屏上、全屏范围内半透光图像上、灰度掩膜切片图像上一一相互对应的16个任意像素点对应的位置。如图所示,表1-1表示在理想状态下光源提供充足且均匀的照射光使16个像素点受到的均匀照射强度是一致的,表1-2表示在理想状态下LCD屏无坏点且各像素点的透光路径中损耗一致,表1-3表示如果采用的半透光单元材质理想,相对就柔光效果均匀,因此在该环节各像素点的处照射光穿过时能量损耗也就均匀;如果此时不载入灰度掩膜切片图像,那么在半透光单元的背光面对应16个像素点处必然形成如表1-4所示能量充足且亮度均匀的半透光图像,且各像素点也亮度均匀。
表2-1表示在一般实际情况下,光源发出能量充足的不均匀照射光,主要是光源中间位置照射光能量充足,边缘位置照射光能量偏弱;表2-2表示在照射光穿透LCD屏时存在能量值损耗,其中数字125位置表示老化像素点,光透能力偏弱,导致光能量损耗偏高,其中数字0位置表示该像素点完全透光;表2-3表示LCD屏载入了打印切片的掩膜图像,根据LCD灰度掩膜切片全透光且都为0的标定值,可知打印切片掩膜图像的16个对应像素点处灰度值应当全为255以此实现全透光,因为灰度值255表示的是白色,灰度值0表示的是黑色;表2-4表示光敏固化材料采用光敏树脂时定像素点对应处所受到的照射光的能量值;由表中大小不均的各值可以分析出,如果不对LCD光固化打印装置进行均光优化补偿,那么最后光敏树脂受到的光照必然不均,导致打印效果变差。
表3-1表示在采用低光能量值的弱光源时,光源由于可能会中间高四周低,或者还会遇到灯珠由于老化原因导致发光偏低,形成强弱不均的照射;表3-2表示光源发出的照射光在穿透LCD屏时会存在散射、发热等能量损耗,其中数字0位置表示这是一个LCD像素上的坏点,完全透光,不能载入储存图像原色;其中数字125位置表示这是一个LCD像素上的老化点,透光能力较低,光损耗较大;如果该点是一个坏点,则应当用255来表示完全不透光,此时如果还采用现有技术里的一次性取最小值进行灰度补偿打印的方法,由于取值不当,那么最后光敏树脂的感光能量就会全部为零导致打印失败;表3-3表示采用的半透光单元相对柔光效果均匀,因此在该环节照射光穿过时能量损耗也就均匀;如果此时不载入灰度掩膜切片图像,那么在半透光单元的背光面必然形成如表3-4所示能量低且亮度不均匀的半透光图像,且各像素亮度也不均匀;由这四个表可以看出当光源的射出光较弱时,半透光单元的背光面形成的图像能量亮度均较低,如果在此光源照射强度下,去掉半透光单元后载入灰度掩膜切片图像进行光固化打印,那么光敏成型所需光照不足,打印必然失败;因此需要调控光源增加照射光的照射强度。
由表4-1到表10-4的一系列表格可以非常清晰的了解到本申请中的均光优化补偿方法1的计算及比较全过程。表4-1表示光源在像素点处发出能量充足的不均匀照射光;表4-2表示在照射光穿透LCD屏时像素点处存在能量值损耗;表4-3表示半透光单元均匀损耗照射光能量;表4-4表示图像拍摄单元在半透光单元的背光面获取到半透光图像中各像素亮度充足但不均匀,各像素灰度值也不均匀的图像。
表5-1中就是表4-4所述的图像拍摄单元获取的半透光图像中像素点的初始灰度值;表5-2表示在上述值中第1次提取出非零最小值85,之所以提取非零最小值也是为了排除对完全不透光的坏点的参考选择,因此需要将图像拍摄单元获取的初始灰度值统一减去该参考值,由此得到表5-4中的第1灰度补偿差值。
图3为本申请LCD光固化3D打印均光优化补偿方法1的均光计算过程篇幅2。计算过程主要描述的是方法1采用差值迭代取值补偿方法时的取值及计算比较过程。各个表中的4*4格表示为16个任意像素点对应的位置。如图所示,表6-1表示灰度掩膜切片的像素点的灰度值均为255,表6-2中的第1灰度补偿差值即为表5-4中取得的第1灰度补偿差值;将表6-1中各值对应减去表6-2中各值即可得到表6-3中灰度掩膜切片第1次优化灰度值,该灰度值即为LCD掩膜环节各个像素点的掩膜像素灰度值,也即是进行LCD光固化打印时载入LCD屏内的灰度掩膜切片各个像素点第1次灰度值。下面计算经过均光优化补偿后,求取光敏树脂感光能量值以验证光敏树脂的感光是否均匀,通过灰度值与像素遮光能力的反转计算,将切片灰度值255减去表6-3中各值,得到表6-4的LCD图像像素遮损能量值。
表7-1中光照不均匀但是能量充足的光源发出能量值,减去表7-2中照射光穿透LCD屏时存在的能量值损耗,再减去表7-3中LCD中载入的灰度掩膜所遮损的能量值即表6-4所求,可得表7-4中光敏树脂感光能量值,由7-4表可知光敏树脂的感光平面各点在受到光照时是感光均匀的;特别的,由此可知在进行LCD光固化3D打印均光优化补偿时,最后光敏固化反应材料的感光的均匀值和感光照射强度,由表5-3中所选参考值85与表4-3中半透光单元对照射光能量遮损两者之和来决定的,所以在本申请3种方法的步骤4中选取参考值时,需要排除零值影响,并且如果选取的参考值过小,也会导致打印光照能量不足,所以在本申请3种方法的步骤7中,还要对最后的灰度掩膜切片图像的优化灰度值进行取舍,从而重新选取参考值;例如,假设方法1中步骤7中的预设值为200,那么表6-3中存在小于200的值,那么就需要进入步骤11重新选取参考值获取灰度补偿差值;而现有技术中,直接选取最小值时,如果遇到LCD屏存在不透光坏点时,那么其参考值一定为零,由此会导致灰度掩膜切片图像的优化灰度值会过低,使最后打印光敏树脂受光能量值全为25,导致光照能量不足使打印失败。
表8-1到表8-4表示在前面步骤中,如果参考值85选值不合适,就需要重新选值,所以在表8-1同表5-4的第1灰度补偿差值里,再次选取非零最小值80作为第2参考值80,然后将第1灰度补偿差值减去第2参考值80,得到表8-4的第2灰度补偿差值,并且对于所产生的负数直接置零,这是为了避免后续得到的灰度掩膜第2次优化灰度值超出255最大灰度值物理范围。特别的,在每一次的灰度补偿差值里反复选取非零最小值,其实就是差值迭代取值补偿法,相当于在一列逐渐增大的值中,逐个排除最小值,逐级向上选值,最终总能找到一个能够使最后打印光照能量充足且又均匀的参考值,从而得到所需要的灰度掩膜优化灰度值。
表9-1表示的是要打印图像的灰度掩膜切片对应的像素点的灰度值,灰度值255表示的是全透光;在表9-1基础上减去表9-2中的第2灰度补偿差值,即可得到表9-3中第2次灰度掩膜切片的像素点的优化灰度值,即可实现光照能量充足下的均光打印。表9-4是根据255减去表9-3中各值得到的,其表示LCD载入灰度掩膜切片像素灰度遮挡照射光,所带来的遮损能量值。
表10-1、2、3所组成的运算式中,代入表9-4中的LCD灰度掩膜遮损能量值,可得到表10-4的光敏树脂所受到的感光值,这是一个验算过程,由此可知在经过第2次产值选取和补偿后,光敏树脂感光能量值相较于表7-4有明显提高。
图4示出了本申请提供的LCD光固化3D打印均光优化补偿方法2的示意性流程图,该方法采用极小值按序取值补偿法,图4中步骤5和步骤10中的N的取值为1、2、3~N。
图5为本申请LCD光固化3D打印均光优化补偿方法2的均光计算过程篇幅1。计算过程主要描述的是方法2采用极小值按序取值补偿方法时的取值及计算比较过程。由于运算展示过程篇幅过长,故分为篇幅1和篇幅2两部分。各个表中的4*4格表示为LCD屏上、全屏范围内半透光图像上、灰度掩膜切片图像上一一相互对应的16个任意像素点对应的位置。如图所示,表11-1表示光源发出能量充足的不均匀照射光;表11-2表示在照射光穿透LCD屏时存在能量值损耗;表11-3表示不载入灰度掩膜切片图像故光能量无损耗;表11-4表示图像拍摄单元获取的半透光图像中像素点的初始灰度值。
表12-1、2、3表示从图像拍摄单元获得的感光能量值中选取非零最小值作为第1次参考值,然后得到表12-4中的第1灰度补偿差值。
表13-1、2、3表示根据表13-1中的灰度掩膜切片灰度值和表13-2中的掩膜切片灰度补偿差值得到13-3中的灰度掩膜1次优化灰度值,其中表13-2中的掩膜切片灰度补偿差值,即为表12-4中的第1灰度补偿差值。假设方法2中步骤7中的预设值为220,那么表16-3中存在小于220的值,那么就需要进入步骤11重新选取参考值获取差值。表13-4是根据255减去表13-3中各值得到的,其表示LCD载入灰度掩膜切片像素灰度遮挡照射光,所带来的遮损能量值。
表14-1、2、3所组成的运算式中,代入表13-4中的LCD灰度掩膜遮损能量值,可得到表14-4的光敏树脂所受到的感光值,由表可知照射光是均匀的,但是可能偏低,这是一个验算过程。
表15-1、2表示在排除上一次的最小值基础上重新提取第2最小值,即按序由小到大提取参考值,得到表15-3中的第2参考值后,将表15-1中各值减去第2参考值,得到表15-4中的第2灰度补偿差值,并且对于所产生的负数直接置零,这是为了避免后续得到的灰度掩膜第2次优化灰度值超出255最大灰度值物理范围。
图6为本申请LCD光固化3D打印均光优化补偿方法2的均光计算过程篇幅2。计算过程主要描述的是方法2采用极小值按序取值补偿方法时的取值及计算比较过程。各个表中的4*4格表示为16个任意像素点对应的位置。如图所示,表16-1表示的是要打印图像的灰度掩膜切片像素点灰度值,灰度值255表示的是全透光;在表16-1基础上减去表16-2中的第2灰度补偿差值,即可得到表16-3中的第2次灰度掩膜切片的优化灰度值。假设方法2中步骤7中的预设值为220,那么表16-3中存在小于220的值,那么就需要进入步骤11重新选取参考值获取差值。表16-4是根据255减去表16-3中各值得到的,其表示LCD载入灰度掩膜切片像素灰度遮挡照射光,所带来的遮损能量值。
表17-1、2、3所组成的运算式中,代入表16-4中的LCD灰度掩膜遮损能量值,可得到表17-4的光敏树脂所受到的感光值,这是一个验算过程,由此可知在经过第2次产值选取和补偿后,光敏树脂感光能量值相较于表14-4有明显提高。
在以上两次选取参考值和均光补偿后,假如技术人员设定步骤7中的预设值为220,那么表16-3中存在小于220的值,那么就需要进入步骤11重新选取参考值获取差值,进行第三次均光补偿优化。
表18-1、2表示在排除上一次的最小值基础上重新提取第3最小值,即按序由小到大提取参考值,得到表18-3中的第3次参考值后,将表18-1中各值减去第3次参考值,得到表18-4中的第3灰度补偿差值,并且对于所产生的负数直接置零,这是为了避免后续得到的灰度掩膜第3次优化灰度值超出255最大灰度值物理范围。
表19-1表示的是要打印图像的灰度掩膜切片像素点灰度值,灰度值255表示的是全透光;在表19-1基础上减去表19-2中的第3灰度补偿差值,即可得到表19-3中的第3次灰度掩膜切片的优化灰度值,根据方法2中的步骤7,假设步骤7中的预设值为220,那么表19-3中各值全部大于220,即可实现光照能量充足下的均光打印。表19-4是根据255减去表19-3中各值得到的,其表示LCD载入灰度掩膜切片像素灰度遮挡照射光,所带来的遮损能量值。
表20-1、2、3所组成的运算式中,代入表19-4中的LCD灰度掩膜遮损能量值,可得到表20-4的光敏树脂所受到的感光值,这是一个验算过程,由此可知在经过第3次产值选取和补偿后,光敏树脂感光能量值相较于表17-4有明显提高,但是在均光效果上,舍弃了对绝对均光的追求,但是在实际3D光固化打印中,只要打印照射足够,光敏树脂照射平面上的个像素光照满足大部分均衡,其实对于实际打印效果的负面影响不大。
特别的,在图像拍摄单元感光能量值中由低到高逐步选取非零最小值作为参考值,其实就是采用极小值按序取值补偿法,相当于在一列逐渐增大的值中,逐个排除最小值,逐级向上选值,最终总能找到一个能够使最后打印光照能量充足且又均匀的参考值,从而得到所需要的灰度掩膜优化灰度值。
图7示出了本申请提供的LCD光固化3D打印均光优化补偿方法3的示意性流程图,该方法采用数字取整加高频值取值补偿法,图7中步骤5和步骤10中的N的取值为1、2、3~N。
图8为本申请LCD光固化3D打印均光优化补偿方法3的均光计算过程。计算过程主要描述的是方法3采用数字取整加高频值取值补偿方法时的取值及计算比较过程。各个表中的4*4格表示为LCD屏上、全屏范围内半透光图像上、灰度掩膜切片图像上一一相互对应的16个任意像素点对应的位置。如图所示,表21-1表示光源发出能量充足的不均匀照射光;表21-2表示在照射光穿透LCD屏时存在能量值损耗;表24-6表示不载入灰度掩膜切片图像故光能量无损耗;表21-4表示图像拍摄单元获取的半透光图像中像素点的初始灰度值。
表22-1、2表示先需要对图像拍摄单元获得的初始灰度值进行灰度值取整,因为表22-1中的原始采集感光初始灰度值总会存在非整数,如不加以取整处理,则在后续表22-3环节根据同值频次选取参考值时,数值分散不容易提取到同值频次最高的数,且数据处理过程也会消耗控制单元过多的运算能力;经过取整后,得到表22-2中的整数初始灰度值;特别的,如表22-3所示,选取同值最多的整值时,出现了两组同值数最多的整值,这时就需要在两组整值中选取更大的整值作为参考值;然后得到表22-4中的初始灰度值第1次参考值。
表23-1、2、3表示由表23-1中像素点的初始灰度值和表22-4中所选取第1次参考值,得到表23-3中的第1灰度补偿差值。并且对于所产生的负数直接置零,得到表23-4中的第1灰度补偿差值,这是为了避免后续得到的灰度掩膜第1次优化灰度值超出255最大灰度值物理范围。
表24-1表示的是要打印图像的灰度掩膜切片像素点灰度值,灰度值255表示的是全透光;在表24-1基础上减去表24-2中的第1灰度补偿差值,即可得到表24-3中的第1次灰度掩膜切片的优化灰度值;即可实现光照能量充足下的均光打印。表24-4是根据255减去表24-3中各值得到的,其表示LCD载入灰度掩膜切片像素灰度遮挡照射光,所带来的遮损能量值。
表25-1、2、3所组成的运算式中,代入表24-4中的LCD灰度掩膜遮损能量值,可得到表25-4的光敏树脂所受到的感光值,这是一个验算过程,由此可知在经过第1次产值选取和补偿后,光敏树脂感光能量值的能量是充足的,但是均光程度并非绝对均匀,其在均光效果上,舍弃了对绝对均光的追求,但是在实际3D光固化打印中,只要打印照射足够,光敏树脂照射平面上的个像素光照满足大部分均衡,其实对于实际打印效果的负面影响不大。
特别的,方法3对初始灰度值在取整的同时,提高了各值的碰撞概率,提高了同值几率,相当于直接抓取一个最大分布区间选取一个最大概率分布值,再在其基础上进行均光优化补偿,其实就是采用数字取整加高频值取值补偿法;同时为了避免同时出现多个同几率高概率数,需要选取更大或更小的参考值,而更大值意味着更充足的光源照射,所以在本方法中步骤4和步骤11采用取整和提取同值最多且更大的整值作为参考值的方法;如果参考值选取不合适,就需要重新选取同值第2多且更大的整值作为参考值,即选取同值次多且更大的整值作为参考值;最终总能找到一个能够使最后打印光照能量充足且又均匀的参考值,从而得到所需要的灰度掩膜优化灰度值。
本申请的有益效果是:
1、本申请提供的一种均光优化补偿装置,利用光源的UV紫外光与可见光混合后的可见特性以及半透光单元的柔光漫反射特性在半透光单元的背光面形成半透光图像,使光源的UV紫外光是否均光的状态可呈现且可被图像拍摄单元直接捕捉获取。利用图像拍摄单元直接捕捉获取半透光图像及其像素灰度值,相比现有技术采用紫外光测试仪器直接点对点采集照射光透光能量值的技术方案,拍摄装置的安装结构更简单,更利于小型化设备的安装和使用,且无需挨个取点用紫外光测试仪照射取值,因此使用更方便。利用柔光纸等半透光单元的柔光漫反射特性,就可以借助摄像头等装置直接获取半透光图像及其像素灰度值,避免了拍摄装置直接拍摄时光源穿透照射光直射摄像装置带来的过曝光问题。利用柔光纸等半透光单元的柔光漫反射特性,就可以借助摄像头等装置直接获取半透光图像及其像素灰度值,避免了需要将紫外光测试仪器测得能量值转化为灰度值的换算过程;
2、本申请提供的三种均光优化补偿方法,利用图像拍摄单元能够直接对LCD全屏的半透光图像的所有像素取得灰度值,针对全屏范围内灰度掩膜切片图像的所有像素点进行灰度补偿,在理想情况下更容易实现LCD全屏的绝对均光,所以是均光效果最好,同时也是最快捷的方案。该方法在不对LCD的原有结构进行任何改变且能获得非常好的均光效果且能提高打印精度的同时,在遇到LCD屏出现不透光坏点导致灰度参考值过低时,本申请的三种方法均可通过判断步骤来重新选择参考值来保证大部分像素点均光且照射强度足以保证3D打印成功。三种方法的步骤3中都增加了对光源照射强度的判断过程及调节过程,当光照不足时通过增强光照强度,来为后续灰度掩膜切片灰度值补偿和最后的3D光固化打印的顺利进行提供了充足的光照保证。三种方法的步骤7中都增加了对优化灰度值大小的判断过程,当选取参考值偏小时,打印图像的灰度值会被过度降低使透过LCD屏照射光强全面不足导致固化打印失败,增加判断步骤可重新选择直至参考值大小合适,使最后打印时光敏固化反应材料受到均匀照射且强度足以保证打印顺利进行。
3、本申请提供的均光优化补偿方法1,采用差值迭代取值补偿法,通过初始灰度值差值表不断选取非零最小值,来变相地由低向高逐点选取参考值,直至选值合适合理足以在保证打印光照足够的同时来补偿灰度掩膜切片灰度值实现大部分像素点的均光效果。
4、本申请提供的均光优化补偿方法2,采用极小值按序取值补偿法,通过比较排序取点的方式,来直接由低向高逐点选取参考值,直至选值合适合理足以在保证打印光照足够的同时来补偿灰度掩膜切片灰度值实现大部分像素点的均光效果。
5、本申请提供的均光优化补偿方法3,采用数字取整加高频值取值补偿法,通过将初始灰度值取整后增加各个初始灰度值的重复几率,再直接抓取重复最多的高频值,以尽量多地兼顾各点初始灰度值的差值补偿,与此同时在出现两个或多个高频值时,选取数值更高的点来作为参考值有利于快速找到更合理的参考值使打印光照足够的同时来补偿灰度掩膜切片灰度值实现大部分像素点的均光效果。
图9为本申请实施例提供的LCD光固化3D打印均光优化补偿装置的示意图,该装置包括:控制单元1、图像拍摄单元2、LCD屏3、光源4、半透光单元5;所述半透光单元5覆盖于LCD屏3的背光面;光源4发出的照射光在LCD屏3全屏曝光透过LCD屏3照射于半透光单元5,并利用光源4的UV紫外光与可见光混合后的可见特性以及半透光单元5的柔光漫反射特性在其背光面形成半透光图像;所述图像拍摄单元2利用其拍摄功能拍摄获取半透光图像并送至控制单元1,由控制单元1提取半透光图像上全屏范围内的图像像素的初始灰度值;再求得各个像素灰度补偿差值和待打印图形灰度掩膜切片中各像素的优化灰度值后,以实现均光光固化打印。
在本实施例中,半透光单元采用半透明纸、或薄页纸、或柔光纸、或柔光膜、或柔光布、或柔光板、或硫酸纸、或拷贝纸、或牛油纸、或扩散膜、或哑光膜、或蝴蝶布、或耐温胶片膜、或半透明的亚克力板。
在本实施例中,光源采用UV点光源、或UV矩阵光源。
在本实施例中,图像拍摄单元在长、宽方向上的感光像素数量均大于或等于LCD屏在长、宽方向上的显示像素数量;所述图像拍摄单元的感光像素总数量大于或等于LCD屏的显示像素总数量。
在本实施例中,图像拍摄单元在长度方向上的感光像素数量大于或等于LCD屏在长度方向上的显示像素数量。图像拍摄单元在宽度方向上的感光像素数量大于或等于LCD屏在宽度方向上的显示像素数量。
图10为本申请LCD光固化3D打印均光优化补偿后进行光固化3D打印机的原理图。如图所示,进行光固化3D打印机的技术方案,包括:控制单元1、LCD屏3、光源4、储存液槽6、储液槽底膜61、光敏固化反应材料7、固化成型件托板8。所述控制单元1使LCD屏3载入待打印图形的灰度掩膜切片图像在灰度值被均光优化补偿后,用于选择性掩膜透光;储存液槽6内储存光敏固化反应材料7,其中,光敏固化反应材料7一般采用光敏树脂;储存液槽6的底部为透光性的液槽底膜61,用于照射透光;光源4一般采用UVLED点光源或UVLED矩阵光源发出405nm紫外光透过LCD屏3的灰度掩膜照射光敏固化反应材料7进行固化打印;固化成型件托板8用于在固化反应过程中附着固化成型后的凝结胶使其不断提升生长直至3D打印完成。
以下结合图9对本申请实施例的LCD光固化3D打印均光优化补偿方法进行详细说明,该方法可以在上述控制单元中实现。
图11示出了本申请提供的LCD光固化3D打印均光优化补偿方法的示意性流程图,参照图11,对该方法的详述如下:
S101,获取半透光图像上各个图像像素的初始灰度值和各个初始灰度值的平均灰度值。
在本实施例中,半透光图像中包括多个图像像素,每个图像像素对应一个初始灰度值。半透光图像可以从图像拍摄单元中直接获取。具体的,开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏,控制单元可以控制图像拍摄单元进行拍摄,图像拍摄单元拍摄完毕得到半透光图像后,控制单元可以直接从图像拍摄单元获取半透光图像。
在本实施例中,半透光图像可以是LCD屏在全屏曝光时半透光单元背光面上显示的图像。初始灰度值可以是半透光图像在全屏范围内的图像像素的灰度值。可选的,半透光图像还可以从存储设备中获得。可选的,半透光图像在存储时可以与采集时间对应存储。
在本实施例中,得到各个图像像素的初始灰度值后可以直接计算得到平均灰度值。另外,平均灰度值还可以直接从存储设备中获得。
S102,在所述平均灰度值大于或等于预设阈值时,基于所述各个初始灰度值,得到第1灰度补偿差值。
在本实施例中,在得到平均灰度值后,需要判断平均灰度值是否大于或等于预设阈值,以确定光源的强度是否满足要求。如果平均灰度值大于或等于预设阈值,则确定光源的强度满足要求。如果平均灰度值小于预设阈值,则确定光源的强度不满足要求。如果光源的强度不满足要求,可以手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,直至平均灰度值大于或等于预设阈值。预设阈值可以根据需要进行设置。
在本实施例中,得到第1灰度补偿差值后,可以将第1灰度补偿差值整理成灰度补偿差值表。如果第1灰度补偿差值中存在负数值,需要将负数值置0。
S103,获取待打印图形的灰度掩膜切片图像中各像素的掩膜灰度值。
在本实施例中,掩膜灰度值可以在获得灰度掩膜切片图像后,对灰度掩膜切片图像进行分析得到个像素的掩膜灰度值。可选的,灰度掩膜切片图像可以从移动存储设备、网络或计算机中获得。灰度掩膜切片图像可以是一个或多个。在灰度掩膜切片图像为多个时,需要获得各个灰度掩膜切片图像中各像素的掩膜灰度值。
S104,基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值。
在本实施例中,在得到第1优化灰度值后,可以将第1优化灰度值整理成优化灰度表。
具体的,步骤S104的实现过程可以包括:
计算所述各像素的掩膜灰度值与所述第1灰度补偿差值的差值,将各像素的掩膜灰度值与所述第1灰度补偿差值的差值作为所述各个第1优化灰度值。
在本实施例中,由于掩膜灰度值是按照顺序排列的,在计算所述各像素的掩膜灰度值与所述第1灰度补偿差值的差值时,需要将掩膜灰度值与对应位置的第1灰度补偿差值相减得到该位置的第1优化灰度值。需要说明的是,如果第1优化灰度值中存在负数值,则需要将负数值置0。
S105,若所述各个第1优化灰度值均大于或等于预设值,基于所述各个第1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
在本实施例中,如果打印光照能量不充足则可能会打印失败,因此,在得到第1优化灰度之后,需要判断第1优化灰度值是否均大于或等于预设值,以判断打印光照能量是否充足。预设值可以根据需要进行设置。
具体的,如果各个第1优化灰度值均大于或等于预设值,则确定打印光照能量充足,则可以直接使用第1优化灰度值进行打印。反之则说明打印光照能量不足,需要重新确定优化灰度值,下文中会具体介绍,可参照下文中的介绍。
在一种可能的实现方式中,步骤S102的实现过程可以包括:
S1021,基于所述各个初始灰度值,确定第1参考值。
在本实施例中,如果第1参考值中存在负数值,则需要将负数值置0。
具体的,步骤S1021的实现过程可以包括:
确定所述各个初始灰度值中的第1非零最小值,并将所述第1非零最小值作为所述第1参考值,其中,第1非零最小值为所述初始灰度值中除0值之外的最小值。
具体的,步骤S1021的实现过程可以包括:
S10211,对所述初始灰度值取整。
S10212,确定取整后的所述初始灰度值中存在相同值最多的第1整值。
作为举例,如果初始灰度值中包括5个123;6个121;8个143。则143存在的相同值最多,则将143作为第1整值。
S10213,若所述第1整值为一个,则将所述第1整值作为所述第1参考值。
S10214,若所述第1整值为多个,则将所述第1整值中的最大值作为所述第1参考值。
作为举例,如果初始灰度值中第1整值包括8个143和8个155,则将155作为第1参考值。
S1022,计算所述各个初始灰度值与所述第1参考值的差值,并将所述各个初始灰度值与所述第1参考值的差值作为第1灰度补偿差值。
在一种可能的实现方式中,在步骤S104之后,上述方法还可以包括:
S201,若所述各个第i优化灰度值中存在小于所述预设值的优化灰度值,基于所述第i灰度补偿差值和所述各个初始灰度值,得到第i+1灰度补偿差值,其中,i≥1。
具体的,步骤S201的实现过程可以包括:
S2011,确定所述第i灰度补偿差值中的非零最小值,并将所述第i灰度补偿差值中的非零最小值作为第i+1参考值。
S2012,计算所述各个初始灰度值与所述第i+1参考值的差值,并将所述初始灰度值与所述第i+1参考值的差值作为第i+1灰度补偿差值。
作为举例,如果第1优化灰度值均小于预设值,则确定第1灰度补偿差值中的非零最小值,并将该非零最小值作为第2参考值,然后计算各个初始灰度值和第2参考值的差值得到第2灰度补偿差值。
S202,基于所述各像素的掩膜灰度值和所述第i+1灰度补偿差值,得到各个第i+1优化灰度值。
在本实施例中,本步骤与上述步骤S104的方法相同,请参照步骤S104。
S203,直到所述各个第i+1优化灰度值均大于或等于预设值,基于所述各个第i+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
在一种可能的实现方式中,在步骤S104之后,上述方法还可以包括:
S301,若所述各个第j优化灰度值中存在小于所述预设值的优化灰度值,确定所述初始灰度值中除第1非零最小值至第j非零最小值以外的第j+1非零最小值,并将所述第j+1非零最小值作为第j+1参考值,其中,j≥1。
在本实施例中,第j+1非零最小值也就是初始灰度值从小到大排列后的第j+1个值。
S302,基于所述各个初始灰度值和所述第j+1参考值,得到第j+1灰度补偿差值。
在本实施例中,计算各个初始灰度值与第j+1参考值的差值,得到第j+1灰度补偿差值。
S303,基于所述各像素的掩膜灰度值和所述第j+1灰度补偿差值,得到各个第j+1优化灰度值。
在本实施例中,该步骤的与上述步骤S104的方法相同,请参照步骤S104。
S304,直到所述各个第j+1优化灰度值均大于或等于预设值,基于所述各个第j+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
在本实施例中,如果得到的优化灰度值中存在小于预设值的灰度值,则需要重复上述步骤S301至步骤S303,直至各个第j+1优化灰度值均大于或等于预设值。
在一种可能的实现方式中,在步骤S104之后,上述方法还可以包括:
S401,若所述各个第m优化灰度值中存在小于所述预设值的优化灰度值,对所述初始灰度值取整。
S402,确定取整后的所述初始灰度值中的第m+1整值,并将所述第m+1整值记为第m+1参考值,其中,m≥1,所述第m+1整值为所述初始灰度值中除所述第1整值至第m整值之外的、存在相同值最多的目标整值,若所述目标整值为多个,则将所述目标整值中的最大值作为所述第m+1整值。
作为举例,如果第1优化灰度值中存在小于所述预设值的优化灰度值,确定初始灰度值中除第1整值之外的存在相同值最多的目标整值。如果目标整值为8个155,则将155作为第2整值。如果目标整值为8个155,8个169,则将169作为第2整值。
S403,基于所述各个初始灰度值和所述第m+1参考值,得到第m+1灰度补偿差值。
在本实施例中,计算各个初始灰度值和第m+1参考值的差值得到第m+1灰度补偿差值。
S404,基于所述各像素的掩膜灰度值和所述第m+1灰度补偿差值,得到各个第m+1优化灰度值。
在本实施例中,该步骤与上述步骤S104的方法相同,请参照步骤S104。
S405,直到所述各个第m+1优化灰度值均大于或等于预设值,基于所述各个第m+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
在本实施例中,如果得到的优化灰度值中存在小于预设值的灰度值,则需要重复上述步骤S401至步骤S404,直至各个第m+1优化灰度值均大于或等于预设值。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后。
本申请实施例还提供了一种终端设备,参见图12,该终端设备400可以包括:至少一个处理器410、存储器420以及存储在所述存储器420中并可在所述至少一个处理器410上运行的计算机程序,所述处理器410执行所述计算机程序时实现上述任意各个方法实施例中的步骤,例如图1所示实施例中的步骤SA01至步骤SA11,或图11所示实施例中的步骤S101至步骤S105。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述LCD光固化3D打印均光优化补偿方法各个实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述LCD光固化3D打印均光优化补偿方法各个实施例中的步骤。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种LCD光固化3D打印均光优化补偿方法,其特征在于,包括:
    SA01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
    SA02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
    SA03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SA09;如果判断平均灰度值不低于预设阈值,则进行步骤SA04;
    SA04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
    SA05、控制单元提取各个初始灰度值中的非零最小值作为第N参考值并将各个初始灰度值减第N参考值得到各像素第N灰度补偿差值并形成灰度补偿差值表;
    SA06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
    SA07、控制单元判断各个优化灰度值是否都大于或等于预设值;如果判断出各个优化灰度值中存在小于预设值的数值,则执行步骤SA10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SA08;
    SA08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SA11;
    SA09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SA02;
    SA10、控制单元提取第N灰度补偿差值中的非零最小值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SA06;
    SA11、流程结束。
  2. 一种LCD光固化3D打印均光优化补偿方法,其特征在于,包括:
    SB01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
    SB02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
    SB03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SB09;如果判断平均灰度值不低于预设阈值,则进行步骤SB04;
    SB04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
    SB05、控制单元提取各个初始灰度值中的非零第N小值作为第N参考值,再将各个初始灰度值减第N参考值得到第N灰度补偿差值并形成灰度补偿差值表;
    SB06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
    SB07、控制单元判断各个优化灰度值是否都大于或等于预设值,则执行步骤SB10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SB08;
    SB08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SB11;
    SB09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SB02;
    SB10、控制单元提取各个初始灰度值中的非零第N+1小值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SB06;
    SB11、流程结束。
  3. 一种LCD光固化3D打印均光优化补偿方法,其特征在于,包括:
    SC01、开启LCD光固化打印机并将半透光单元覆盖于LCD屏背光面使光源照射于整个LCD屏;
    SC02、控制单元通过图像拍摄单元获取在LCD屏全屏曝光时半透光单元背光面上显示的半透光图像并获取半透光图像上全屏范围内的图像像素的初始灰度值;
    SC03、控制单元判断所有初始灰度值的平均灰度值是否低于预设阈值;如果判断平均灰度值低于预设阈值,则进行步骤SC09;如果判断平均灰度值不低于预设阈值,则进行步骤SC04;
    SC04、控制单元通过移动存储设备或网络或计算机输入待打印图形的灰度掩膜切片图像并获取每个灰度掩膜切片中各像素的掩膜灰度值;
    SC05、控制单元对各个初始灰度值取整并提取同值最多且更大的整值作为第N参考值,再将各个初始灰度值减第N参考值得到第N灰度补偿差值并形成灰度补偿差值表;
    SC06、控制单元将每个灰度掩膜切片图像各像素点的掩膜灰度值对应减去灰度补偿差值表中各值得到每个灰度掩膜切片图像的优化灰度值并形成优化灰度表;
    SC07、控制单元判断各个优化灰度值是否都大于或等于预设值;如果判断出各个优化灰度值中存在小于预设值的数值,则执行步骤SC10;如果判断出优化灰度表中的各值都大于或等于预设值,则进行步骤SC08;
    SC08、控制单元根据得到的每个灰度掩膜切片图像优化灰度值对各个切片掩膜图像进行光固化打印,之后进入执行步骤SC11;
    SC09、手动调节或控制单元调节增强3D打印机光源照射强度使半透光单元背光面增亮,之后进入执行步骤SC02;
    SC10、控制单元对各个初始灰度值取整并提取同值最多且更大的整值作为第N+1参考值,再将各个初始灰度值减第N+1参考值得第N+1灰度补偿差值并形成灰度补偿差值表,之后进入执行步骤SC06;
    SC11、流程结束。
  4. 如权利要求1所述的LCD光固化3D打印均光优化补偿方法,其特征在于,包括:若第N参考值、所述第N灰度补偿差值、所述优化灰度值、所述第N+1参考值和所述第N+1灰度补偿差值中存在负数值,则将所述负数值置0。
  5. 一种LCD光固化3D打印均光优化补偿装置,其特征在于,包括:控制单元、图像拍摄单元、LCD屏、光源、半透光单元;所述半透光单元覆盖于LCD屏的背光面;光源发出的照射光在LCD屏全屏曝光时透过LCD屏照射于半透光单元,并利用光源的UV紫外光与可见光混合后的可见特性以及半透光单元的柔光漫反射特性在其背光面形成半透光图像;所述图像拍摄单元利用其拍摄功能拍摄获取半透光图像并送至控制单元,由控制单元提取半透光图像上全屏范围内的图像像素的初始灰度值;再求得各个像素灰度补偿差值和待打印图形灰度掩膜切片中各像素的优化灰度值后,以实现均光光固化打印。
  6. 根据权利要求5所述的一种LCD光固化3D打印均光优化补偿装置,其特征在于,所述半透光单元采用半透明纸、或薄页纸、或柔光纸、或柔光膜、或柔光布、或柔光板、或硫酸纸、或拷贝纸、或牛油纸、或扩散膜、或哑光膜、或蝴蝶布、或耐温胶片膜、或半透明的亚克力板。
  7. 根据权利要求5所述的一种LCD光固化3D打印均光优化补偿装置,其特征在于,所述光源采用UV点光源、或UV矩阵光源。
  8. 根据权利要求5所述的一种LCD光固化3D打印均光优化补偿装置,其特征在于,所述图像拍摄单元在长、宽方向上的感光像素数量均大于或等于LCD屏在长、宽方向上的显示像素数量;所述图像拍摄单元的感光像素总数量大于或等于LCD屏的显示像素总数量。
  9. 一种LCD光固化3D打印均光优化补偿方法,其特征在于,应用于LCD光固化3D打印均光优化补偿装置,该装置包括:光源、LCD屏和设置在所述LCD屏背光面的半透光单元,所述光源照射所述LCD屏后在所述半透光单元的背光面形成半透光图像;
    所述方法包括:
    获取所述半透光图像上各个图像像素的初始灰度值和各个初始灰度值的平均灰度值;
    在所述平均灰度值大于或等于预设阈值时,基于所述各个初始灰度值,得到第1灰度补偿差值;
    获取待打印图形的灰度掩膜切片图像中各像素的掩膜灰度值;
    基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值;
    若所述各个第1优化灰度值均大于或等于预设值,基于所述各个第1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
  10. 如权利要求9所述的LCD光固化3D打印均光优化补偿方法,其特征在于,所述基于所述各个初始灰度值,得到第1灰度补偿差值,包括:
    基于所述各个初始灰度值,确定第1参考值;
    计算所述各个初始灰度值与所述第1参考值的差值,并将所述各个初始灰度值与所述第1参考值的差值作为第1灰度补偿差值。
  11. 如权利要求10所述的LCD光固化3D打印均光优化补偿方法,其特征在于,所述基于所述各个初始灰度值,确定第1参考值,包括:
    确定所述各个初始灰度值中的第1非零最小值,并将所述第1非零最小值作为所述第1参考值,其中,第1非零最小值为所述初始灰度值中除0值之外的最小值。
  12. 如权利要求10所述的LCD光固化3D打印均光优化补偿方法,其特征在于,所述基于所述各个初始灰度值,确定第1参考值,包括:
    对所述初始灰度值取整;
    确定取整后的所述初始灰度值中存在相同值最多的第1整值;
    若所述第1整值为一个,则将所述第1整值作为所述第1参考值;
    若所述第1整值为多个,则将所述第1整值中的最大值作为所述第1参考值。
  13. 如权利要求9所述的LCD光固化3D打印均光优化补偿方法,其特征在于,所述基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值,包括:
    计算所述各像素的掩膜灰度值与所述第1灰度补偿差值的差值,将各像素的掩膜灰度值与所述第1灰度补偿差值的差值作为所述各个第1优化灰度值。
  14. 如权利要求11所述的LCD光固化3D打印均光优化补偿方法,其特征在于,在基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值之后,包括:
    若所述各个第i优化灰度值中存在小于所述预设值的优化灰度值,基于所述第i灰度补偿差值和所述各个初始灰度值,得到第i+1灰度补偿差值,其中,i≥1;
    基于所述各像素的掩膜灰度值和所述第i+1灰度补偿差值,得到各个第i+1优化灰度值;
    直到所述各个第i+1优化灰度值均大于或等于预设值,基于所述各个第i+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
  15. 如权利要求14所述的LCD光固化3D打印均光优化补偿方法,其特征在于,所述基于所述第i灰度补偿差值和所述初始灰度值,得到第i+1灰度补偿差值,包括:
    确定所述第i灰度补偿差值中的非零最小值,并将所述第i灰度补偿差值中的非零最小值作为第i+1参考值;
    计算所述各个初始灰度值与所述第i+1参考值的差值,并将所述初始灰度值与所述第i+1参考值的差值作为第i+1灰度补偿差值。
  16. 如权利要求11所述的LCD光固化3D打印均光优化补偿方法,其特征在于,在基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值之后,包括:
    若所述各个第j优化灰度值中存在小于所述预设值的优化灰度值,确定所述初始灰度值中除第1非零最小值至第j非零最小值以外的第j+1非零最小值,并将所述第j+1非零最小值作为第j+1参考值,其中,j≥1;
    基于所述各个初始灰度值和所述第j+1参考值,得到第j+1灰度补偿差值;
    基于所述各像素的掩膜灰度值和所述第j+1灰度补偿差值,得到各个第j+1优化灰度值;
    直到所述各个第j+1优化灰度值均大于或等于预设值,基于所述各个第j+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
  17. 如权利要求12所述的LCD光固化3D打印均光优化补偿方法,其特征在于,在基于所述各像素的掩膜灰度值和所述第1灰度补偿差值,得到各个第1优化灰度值之后,包括:
    若所述各个第m优化灰度值中存在小于所述预设值的优化灰度值,对所述初始灰度值取整;
    确定取整后的所述初始灰度值中的第m+1整值,并将所述第m+1整值记为第m+1参考值,其中,m≥1,所述第m+1整值为所述初始灰度值中除所述第1整值至第m整值之外的、存在相同值最多的目标整值,若所述目标整值为多个,则将所述目标整值中的最大值作为所述第m+1整值;
    基于所述各个初始灰度值和所述第m+1参考值,得到第m+1灰度补偿差值;
    基于所述各像素的掩膜灰度值和所述第m+1灰度补偿差值,得到各个第m+1优化灰度值;
    直到所述各个第m+1优化灰度值均大于或等于预设值,基于所述各个第m+1优化灰度值对所述灰度掩膜切片图像进行光固化打印。
  18. 如权利要求9所述的LCD光固化3D打印均光优化补偿方法,其特征在于,在获取所述半透光图像上各个图像像素的初始灰度值和所述初始灰度值的平均灰度值之后,包括:
    在所述平均灰度值小于所述预设阈值时,增大所述光源的照射强度。
  19. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4任一项所述的LCD光固化3D打印均光优化补偿方法或如权利要求9至18任一项所述的LCD光固化3D打印均光优化补偿方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4任一项所述的LCD光固化3D打印均光优化补偿方法或如权利要求9至18任一项所述的LCD光固化3D打印均光优化补偿方法。
PCT/CN2021/098211 2021-01-26 2021-06-03 一种lcd光固化3d打印均光优化补偿方法及装置 WO2022160545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110104012.9 2021-01-26
CN202110104012.9A CN112959662A (zh) 2021-01-26 2021-01-26 Lcd光固化3d打印均光优化补偿装置及方法

Publications (1)

Publication Number Publication Date
WO2022160545A1 true WO2022160545A1 (zh) 2022-08-04

Family

ID=76272891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098211 WO2022160545A1 (zh) 2021-01-26 2021-06-03 一种lcd光固化3d打印均光优化补偿方法及装置

Country Status (2)

Country Link
CN (1) CN112959662A (zh)
WO (1) WO2022160545A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116277982A (zh) * 2023-03-10 2023-06-23 深圳市纵维立方科技有限公司 一种打印控制方法、光固化三维打印机及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113469918B (zh) * 2021-07-22 2024-02-02 广州黑格智造信息科技有限公司 光学系统的曝光面校准方法、装置、计算机设备及存储介质
CN115002967A (zh) * 2022-06-23 2022-09-02 广州黑格智造信息科技有限公司 三维打印设备及其光源控制方法、装置
CN116442523B (zh) * 2023-06-09 2023-09-26 先临三维科技股份有限公司 一种光均匀性调节方法、装置、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329191A (ja) * 1994-06-09 1995-12-19 Denken Eng Kk 光造形法
CN106228598A (zh) * 2016-07-25 2016-12-14 北京工业大学 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN106273487A (zh) * 2016-08-17 2017-01-04 苏州秉创科技有限公司 一种dlp打印设备投影仪光强自动校准设备及校准方法
CN107756814A (zh) * 2017-11-28 2018-03-06 上海联泰科技股份有限公司 检测系统、方法及所适用的3d打印设备
CN107756784A (zh) * 2017-09-29 2018-03-06 深圳晗竣雅科技有限公司 基于dlp快速成型技术的切片图匀光方法及系统
CN107891596A (zh) * 2017-12-15 2018-04-10 博纳云智(天津)科技有限公司 一种dlp光固化3d打印机的光强均匀校正方法
CN111941846A (zh) * 2020-08-06 2020-11-17 深圳市纵维立方科技有限公司 一种用于lcd光固化3d打印机的均光方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329191A (ja) * 1994-06-09 1995-12-19 Denken Eng Kk 光造形法
CN106228598A (zh) * 2016-07-25 2016-12-14 北京工业大学 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN106273487A (zh) * 2016-08-17 2017-01-04 苏州秉创科技有限公司 一种dlp打印设备投影仪光强自动校准设备及校准方法
CN107756784A (zh) * 2017-09-29 2018-03-06 深圳晗竣雅科技有限公司 基于dlp快速成型技术的切片图匀光方法及系统
CN107756814A (zh) * 2017-11-28 2018-03-06 上海联泰科技股份有限公司 检测系统、方法及所适用的3d打印设备
CN107891596A (zh) * 2017-12-15 2018-04-10 博纳云智(天津)科技有限公司 一种dlp光固化3d打印机的光强均匀校正方法
CN111941846A (zh) * 2020-08-06 2020-11-17 深圳市纵维立方科技有限公司 一种用于lcd光固化3d打印机的均光方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116277982A (zh) * 2023-03-10 2023-06-23 深圳市纵维立方科技有限公司 一种打印控制方法、光固化三维打印机及可读存储介质

Also Published As

Publication number Publication date
CN112959662A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022160545A1 (zh) 一种lcd光固化3d打印均光优化补偿方法及装置
CN112959661B (zh) Lcd光固化3d打印均光优化补偿方法及装置
CN112848301B (zh) Lcd光固化3d打印均光优化补偿方法与装置
CN106273487B (zh) 一种dlp打印设备投影仪光强自动校准设备及校准方法
CN112976582B (zh) 光固化3d打印多套切片参数的打印执行控制方法及装置
CN113469918B (zh) 光学系统的曝光面校准方法、装置、计算机设备及存储介质
CN112848281B (zh) 一种光固化3d打印机光补偿方法
CN209176181U (zh) 光固化3d打印机投影仪光照校正装置
CN107071308A (zh) 一种cmos快速调整成像系统和方法
CN113442439B (zh) 一种3d打印机中光强智能控制方法
CN113352618A (zh) 3d打印机的灰度设置方法、装置及3d打印机
US20220105681A1 (en) Systems and methods for three-dimensional printing
CN109581824B (zh) 一种直写式光刻机光均匀性标定方法及系统
CN112929623B (zh) 一种校正过程中应用于整屏的镜头阴影修复方法及装置
CN114281274A (zh) 光亮度均匀性的调节方法、打印方法、打印系统及设备
CN108139495A (zh) 用于重塑直接射线照相系统的特性曝光响应和放射量测定的方法
CN108827465A (zh) 光照度测试系统、方法及设备
CN216032541U (zh) 一种lcd光固化3d打印均光优化补偿装置
CN115311977B (zh) 显示面板及其亮度补偿方法、补偿装置、补偿设备
CN117434060B (zh) 光固化3d打印用光敏树脂的测试系统、方法及控制设备
CN114536749A (zh) Lcd光固化3d打印机动态背光分布实时计算方法与光源模组
CN112165616B (zh) 一种摄像头模组的测试方法、装置、电子设备及存储介质
JPH10261557A (ja) パターン描画方法及び描画装置
KR100221697B1 (ko) 투과구멍판의 검사방법 및 검사장치
WO2022163002A1 (ja) 撮影条件設定システム、撮影条件設定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922143

Country of ref document: EP

Kind code of ref document: A1