WO2022160544A1 - 车载充电机v2v快充系统及其控制方法 - Google Patents

车载充电机v2v快充系统及其控制方法 Download PDF

Info

Publication number
WO2022160544A1
WO2022160544A1 PCT/CN2021/097998 CN2021097998W WO2022160544A1 WO 2022160544 A1 WO2022160544 A1 WO 2022160544A1 CN 2021097998 W CN2021097998 W CN 2021097998W WO 2022160544 A1 WO2022160544 A1 WO 2022160544A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
charging
module
discharging
fast charging
Prior art date
Application number
PCT/CN2021/097998
Other languages
English (en)
French (fr)
Inventor
冯颖盈
姚顺
徐金柱
吴沛东
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2022160544A1 publication Critical patent/WO2022160544A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of charging and discharging of electric vehicles, in particular to a circuit and a charging control method for charging a power battery of another vehicle by outputting a high-voltage direct current voltage when an on-board charger works at V2V.
  • the discharge vehicle A When the vehicle works in the V2V mode, the discharge vehicle A inverts the voltage of the high-voltage battery pack into alternating current (AC220V, 50Hz), and inputs it to the electric vehicle B through the discharge gun, and the electric vehicle B rectifies and boosts the AC alternating current to the power battery.
  • Figure 1 shows the charging method in the traditional V2V mode: the charger of the discharge vehicle A inverts the battery pack voltage into alternating current (AC), and outputs it to the electric vehicle B through the discharge gun, and the electric vehicle B rectifies and boosts the alternating current (AC) to a high voltage
  • the power battery is charged after direct current (HV).
  • V2V mode is limited by the power of the discharge terminal and the charging terminal, which leads to slow rescue, and the scenes that need rescue are mostly emergencies. Therefore, the market urgently needs a vehicle-mounted charger V2V fast charging system with fast charging speed and low loss and its control method to solve the current situation of slow rescue of new energy vehicles.
  • the present invention proposes a V2V fast charging system for a vehicle-mounted charger and a control method thereof.
  • the technical solution adopted in the present invention is a V2V fast charging system for a vehicle-mounted charger, which includes a discharging vehicle A and a receiving vehicle B, and also includes a fast charging cable connecting the discharging vehicle A and the receiving vehicle B; A slow charging interface, an on-cable control box, and a fast charging interface, wherein the slow charging interface is used for plugging and discharging vehicle A, and the fast charging interface is used for plugging in and receiving tram B; the on-cable control box constructs discharging vehicle A and The signal channel and charging channel of the electric vehicle B transmit the high-voltage direct current output from the discharging vehicle A to the electric vehicle B.
  • the slow charging interface includes 5 pins: connection confirmation CC, communication CP, DC power positive DC+, DC power negative DC-, ground PE;
  • the charging and discharging module is connected to the power battery in the discharging vehicle A.
  • the fast charging interface includes 9 pins: charging connection confirmation CC1, charging connection confirmation CC2, auxiliary power positive A+, auxiliary power positive A-, communication CAN+, communication CAN-, DC power positive DC+, DC power negative DC-, grounding PE; the fast charging interface is connected to the battery management module in the electric vehicle B, and the battery management module is connected to the power battery in the electric vehicle B.
  • the control box on the cable includes a PWM signal generation module, a DCDC module, an MCU module, and a high-voltage relay, wherein the input end of the DCDC module is connected to the positive DC+ and negative DC- pins of the DC power supply of the slow charging interface, and its output
  • the terminal is connected to the auxiliary power positive A+ and auxiliary power positive A- pins of the fast charging interface to supply power to the battery management module of the electric vehicle B, and the DCDC module supplies power to the MCU module;
  • the high-voltage relay is connected to the positive DC power supply of the slow charging interface.
  • the signal input end of the MCU module is connected to the communication CAN+ and communication CAN- pins of the fast charging interface, and according to the electric car
  • the signal sent by the battery management module B controls the on-off of the high-voltage relay
  • the PWM signal generation module is controlled by the MCU module, and sends a discharge command to the on-board charging and discharging module of the discharging vehicle A through the communication CP pin of the slow charging interface
  • the connection confirmation CC pin and the ground PE pin in the charging interface, and the charging connection confirmation CC1 pin in the fast charging interface, the charging connection confirmation CC2 pin, the grounding PE pin are all connected to the ground of the control box on the cable.
  • the DCDC module outputs 12V direct current to the positive A+ of the auxiliary power supply and the positive A- pin of the auxiliary power supply.
  • the vehicle-mounted charging and discharging module includes an input and output port, a bidirectional conversion unit, a DCDC unit, and a controller, and the DCDC unit is connected to the power battery; wherein the L terminal in the input and output port is connected to the C terminal through the inductor L1, and the N terminal is connected to the D connection.
  • the bidirectional conversion unit includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4, and the first switch Q1 is connected to Between the C terminal and the positive electrode BUS+ of the DCDC unit, the third switch Q3 is connected between the D terminal and the positive electrode BUS+ of the DCDC unit, and the second switch Q2 is connected between the C terminal and the negative electrode BUS- of the DCDC unit.
  • the fourth switch Q4 is connected between the D terminal and the negative electrode BUS- of the DCDC unit, and the second capacitor C2 is connected between the positive electrode BUS+ of the DCDC unit and the negative electrode BUS- of the DCDC unit.
  • the bidirectional conversion unit is controlled by the controller, and can convert the alternating current or direct current of the input and output ports into direct current and transmit it to the DCDC unit, and can also convert the direct current of the DCDC unit into alternating current or direct current and transmit it to the input and output ports.
  • the present invention also designs a control method of a vehicle-mounted charger V2V fast charging system.
  • the fast charging system is the above-mentioned vehicle-mounted charger V2V fast charging system, and the control method includes the following steps:
  • Step 1 Connect the discharging vehicle A and the receiving vehicle B with the fast charging cable
  • Step 2 When the discharge vehicle A confirms that the slow charge interface is plugged normally through the connection confirmation CC pin in the slow charge interface, the vehicle-mounted charge and discharge module outputs high-voltage direct current through the positive DC+ and negative DC- pins of the DC power supply of the slow charge interface;
  • Step 3 The DCDC module of the control box on the cable accepts high-voltage direct current, and the power conversion outputs 12V direct current to the auxiliary power positive A+ and auxiliary power positive A- pins through the module of the fast charging interface;
  • Step 4 The electric vehicle B starts to work after obtaining the auxiliary power supply, and confirms that the CC1 pin and the charging connection confirm the CC2 pin through the charging connection of the fast charging interface.
  • Communication CAN-pin sends out charging request information;
  • Step 5 After the MCU module receives the charging request information, it controls the PWM signal generation module to convert the charging request information into a PWM signal, and sends a PWM signal through the communication CP pin of the slow charging interface;
  • Step 6 the controller of the discharging vehicle A analyzes the PWM signal, obtains the charging request information of the receiving vehicle B, and controls the on-board charging and discharging module to adjust the high-voltage direct current;
  • Step 7 The MCU module controls the high-voltage relay to close, and the discharge vehicle A charges the electric vehicle B with high-voltage direct current.
  • the charging request information includes a charging voltage value and a charging current value.
  • the high-voltage DC power output from the on-board charger of the discharging vehicle A of the present invention is used to charge the high-voltage battery of the receiving vehicle B without passing through the charging circuit of the receiving vehicle B, and is no longer limited by the power of the charging circuit of the receiving vehicle B, and can be compatible with various specifications of the battery.
  • the charging module of the discharging vehicle A the charging speed reaches the maximum power of the discharging vehicle A, which shortens the charging time, improves the charging efficiency, and greatly reduces the charging loss.
  • Fig. 1 is the charging principle block diagram of the existing V2V mode
  • Fig. 2 is the charging principle block diagram of the present invention
  • Fig. 3 is the circuit schematic diagram of the control box on the cable of the present invention.
  • FIG. 4 is a schematic diagram of the on-board charger outputting AC through a bidirectional conversion unit
  • FIG. 5 is a schematic diagram of the on-board charger outputting DC through a bidirectional conversion unit
  • FIG. 6 is a flow chart of a preferred embodiment of the present invention.
  • the discharging car needs to invert the battery voltage to AC output, while the receiving car needs to rectify and boost the AC power to DC high voltage to charge the power battery.
  • inverting to alternating current is a step that can be omitted, and the charging car needs high-voltage direct current that can charge the power battery.
  • the present invention upgrades the V2V charging scheme, partially cancels the inversion of the discharge end to alternating current and the rectification of the vehicle end to direct current, and directly transmits high-voltage direct current from the discharge vehicle to the charging vehicle for rescue charging.
  • the traditional V2V process requires the charging and discharging module at the discharge end and the charging module at the charging end to participate in the charging process at the same time.
  • the charging power is limited by the power of the two modules.
  • the discharge module is 44KW
  • the charging module is 7KW
  • the maximum charging process can only be 7KW. Since most of the rescue vehicles at the discharge end choose high-power modules, they are often limited by the power of the charging end, resulting in a slow charging process.
  • the on-board charger of the discharging vehicle outputs high-voltage direct current to charge the battery of the receiving vehicle without going through the charging circuit of the receiving vehicle. Therefore, when V2V is used, it is no longer limited by the power of the charging module, and can be compatible with charging of various specifications.
  • the module is charged at a rate that discharges the vehicle's own maximum power.
  • FIG. 2 is a block diagram of the charging principle of the present invention.
  • the on-board charger of the discharging vehicle A boosts the voltage of the battery pack through the internal circuit without performing inverter processing, but outputs it in the form of high-voltage direct current (HV), which is input to the electric vehicle through the discharging gun.
  • the B fast charging port charges the power battery of the electric vehicle B.
  • the invention discloses a V2V fast charging system for a vehicle-mounted charger, comprising a discharging vehicle A and a receiving vehicle B, as well as a fast charging cable connecting the discharging vehicle A and the receiving vehicle B;
  • the fast charging cable includes a slow charging interface connected in sequence , On-cable control box, fast charging interface, wherein the slow charging interface is used to plug and discharge vehicle A, and the fast charging interface is used to plug in and receive tram B;
  • the on-cable control box constructs discharge vehicle A and tram B It transmits the high-voltage DC output from the discharging vehicle A to the receiving vehicle B.
  • the slow charging interface includes 5 pins: connection confirmation CC, communication CP, DC power positive DC+, DC power negative DC-, ground PE; the slow charging port is connected to the discharge vehicle.
  • the vehicle-mounted charging and discharging module in A is connected to the power battery in the discharging vehicle A.
  • the fast charging interface includes 9 pins: charging connection confirmation CC1, charging connection confirmation CC2, auxiliary power supply positive A+, auxiliary power supply positive A-, communication CAN+, communication CAN-, DC
  • the power supply is positive DC+
  • the DC power supply is negative DC-
  • the grounding PE the fast charging interface is connected to the battery management module in the electric vehicle B, and the battery management module is connected to the power battery in the electric vehicle B.
  • the control box on the cable includes a PWM signal generation module, a DCDC module, an MCU module, and a high-voltage relay, wherein the input end of the DCDC module is connected to the slow charging interface.
  • the positive DC+ and negative DC- pins of the DC power supply are connected to the auxiliary power positive A+ and auxiliary power positive A- pins of the fast charging interface, and the DCDC module supplies power to the MCU module; the high-voltage relay is connected to the slow charging interface.
  • the signal input end of the MCU module is connected to the communication CAN+ and communication CAN- pins of the fast charging interface , and control the on-off of the high-voltage relay according to the signals in the communication CAN+ and communication CAN- pins;
  • the PWM signal generation module is controlled by the MCU module, and sends a discharge command to the discharge vehicle A through the communication CP pin of the slow charging interface;
  • the connection confirmation CC pin and the ground PE pin in the slow charging interface, and the charging connection confirmation CC1 pin in the fast charging interface, the charging connection confirmation CC2 pin, and the ground PE pin are all connected to the ground of the control box on the cable.
  • the DCDC module outputs 12V direct current to the positive A+ of the auxiliary power supply and the positive A- pin of the auxiliary power supply.
  • the control system of the electric vehicle B only works normally when it obtains the auxiliary power supply, and only sends the charging request information to the electric vehicle A.
  • the DCDC circuit in the vehicle charger can output alternating current or direct current.
  • the following is an example of how the on-board charger works when the on-board charger works in the inverter mode, and the circuit outputs alternating current (AC) and output high-voltage direct current (HV).
  • AC alternating current
  • HV high-voltage direct current
  • the vehicle charging and discharging module includes an input and output port, a bidirectional conversion unit, a DCDC unit, and a controller, and the DCDC unit is connected to the power battery; wherein the L terminal in the input and output port is connected to the C terminal through the inductor L1, and the N terminal is connected to the D connection.
  • the bidirectional conversion unit includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4, and the first switch Q1 is connected to Between the C terminal and the positive electrode BUS+ of the DCDC unit, the third switch Q3 is connected between the D terminal and the positive electrode BUS+ of the DCDC unit, and the second switch Q2 is connected between the C terminal and the negative electrode BUS- of the DCDC unit.
  • the fourth switch Q4 is connected between the D terminal and the negative electrode BUS- of the DCDC unit, and the second capacitor C2 is connected between the positive electrode BUS+ of the DCDC unit and the negative electrode BUS- of the DCDC unit.
  • the bidirectional conversion unit accepts the control of the controller, and can convert the alternating current or direct current of the input and output ports into direct current and transmit it to the DCDC unit, and can also convert the direct current of the DCDC unit into alternating current or direct current and transmit it to the input and output ports.
  • FIG. 4 is a schematic diagram of the on-board charger outputting AC through the bidirectional conversion unit.
  • the bidirectional conversion unit increases the voltage of the battery pack and forms a high-voltage DC voltage at both ends of the capacitor.
  • the PFC circuit acts as a chopper.
  • the solid line arrow is the current flow direction when Q1 and Q4 are turned on, and voltage L>voltage N at this time.
  • the dashed arrow is the current flow direction when Q2 and Q3 are turned on, and the voltage L ⁇ voltage N at this time.
  • the power tubes Q3 and Q4 are turned on alternately at the common frequency, that is, the dashed arrows and the solid arrows are alternately interleaved at a frequency of 50Hz, to convert the DC voltage into an AC square wave voltage, and Q1 and Q2 adjust the voltage to a sine wave.
  • the final output is 220V50Hz AC voltage.
  • FIG. 5 is a schematic diagram of the on-board charger outputting DC through the bidirectional conversion unit.
  • the bidirectional conversion unit increases the voltage of the battery pack, the Q3 and Q4 tubes are no longer turned on alternately, the fixed Q4 is turned on, the PWM control Q1 is turned on, and the inductor and capacitor are combined to form a BUCK circuit, Adjust the voltage output DC high voltage.
  • the present invention also discloses a method for controlling a V2V fast charging system for an on-board charger.
  • the above-mentioned V2V fast charging system for an on-board charger can refer to the flowchart of the preferred embodiment of the present invention shown in FIG. 6 .
  • the control method includes the following steps:
  • Step 1 Connect the discharging vehicle A and the receiving vehicle B with the fast charging cable
  • Step 2 When the discharge vehicle A confirms the CC pin through the connection in the slow charging interface and confirms that the slow charging interface is properly plugged in, the vehicle charging and discharging module outputs high-voltage direct current through the positive DC+ and negative DC- pins of the DC power supply of the slow charging interface;
  • Step 3 The DCDC module of the control box on the cable accepts high-voltage direct current, and the power conversion outputs 12V direct current to the auxiliary power positive A+ and auxiliary power positive A- pins through the module of the fast charging interface;
  • Step 4 The electric vehicle B starts to work after obtaining the auxiliary power supply, and confirms that the CC1 pin and the charging connection confirm the CC2 pin through the charging connection of the fast charging interface.
  • Communication CAN-pin sends out charging request information;
  • Step 5 After the MCU module receives the charging request information, it controls the PWM signal generation module to convert the charging request information into a PWM signal, and sends a PWM signal through the communication CP pin of the slow charging interface;
  • Step 6 the controller of the discharging vehicle A analyzes the PWM signal, obtains the charging request information of the receiving vehicle B, and controls the on-board charging and discharging module to adjust the high-voltage direct current;
  • Step 7 The MCU module controls the high-voltage relay to close, and the discharge vehicle A charges the electric vehicle B with high-voltage direct current.
  • the charging request information includes a charging voltage value and a charging current value.
  • the present invention includes, but is not limited to, examples.
  • Other topological circuits can realize the DC output function, or bypass the inverter circuit, and output the high-voltage DC voltage are all included in the scope of this scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了车载充电机V2V快充系统及其控制方法,V2V快充系统将电池调压输出,快充电缆包括缆上控制盒、设置在缆上控制盒两端的快充接口和慢充接口;慢充接口插放电车A,快充接口插受电车B;放电车A搭载车载充电机从放电车A高压电池包获取能量,经V2V快动系统调节为受电车B请求的高压直流电;缆上控制盒构建放电车A和受电车B的信号通道和充电通道,将放电车A输出的高压直流电传输给受电车B;采用本发明不需要经过受电车B的充电电路,不再受到受电车B充电电路的功率的限制,可以兼容各种规格的放电车A的充电模块,充电速度达到放电车A自身的最大功率,缩短了充电时间,提高了充电效率,充电损耗也大大降低。

Description

车载充电机V2V快充系统及其控制方法 技术领域
本发明涉及电动汽车充放电技术领域,具体涉及一种车载充电机工作在V2V时输出高压直流电压对另一车辆的动力电池进行充电电路和充电控制方法。
背景技术
车辆工作在V2V模式时,放电车A将高压电池包的电压逆变为交流电(AC220V,50Hz),经放电枪输入受电车B,受电车B再将AC交流电整流升压等操作后给动力电池充电。附图1为传统V2V模式的充电方式:放电车A充电机将电池包电压逆变为交流电(AC),经放电枪输出给受电车B,受电车B将交流电(AC)整流升压为高压直流电(HV)后对动力电池充电。
当前技术下,V2V模式受限于放电端与充电端的功率,导致救援缓慢,而需要救援的场景多是紧急情况,因此市场急需一种充电速度快、且损耗小的车载充电机V2V快充系统及其控制方法以解决新能源汽车救援迟缓的现状。
发明内容
为了解决现有技术中存在的上述缺陷,本发明提出车载充电机V2V快充系统及其控制方法。
本发明采用的技术方案是一种车载充电机V2V快充系统,包括放电车A和受电车B,还包括连接放电车A和受电车B的快充电缆;所述快充电缆包括依次连接的慢充接口、缆上控制盒、快充接口,其中所述慢充接口用于插接放电车A,所述快充接口用于插接受电车B;所述缆上控制盒构建放电车A和受电车B的信号通道和充电通道,将放电车A输出的高压直流电传输给受电车B。
所述慢充接口包括5个针脚:连接确认CC、通信CP、直流电源正DC+、直流电源负DC-、接地PE;所述慢充接口连接放电车A中的车载充放电模块,所述车载充放电模块连接放电车A中的动力电池。
所述快充接口包括9个针脚:充电连接确认CC1、充电连接确认CC2、辅助电源正A+、辅助电源正A-、通讯CAN+、通讯CAN-、直流电源正DC+、直流电源 负DC-、接地PE;所述快充接口连接受电车B中的电池管理模块,所述电池管理模块连接受电车B中的动力电池。
所述缆上控制盒包括PWM信号发生模块、DCDC模块、MCU模块、高压继电器,其中所述DCDC模块的输入端连接所述慢充接口的直流电源正DC+和直流电源负DC-针脚、其输出端连接所述快充接口的辅助电源正A+和辅助电源正A-针脚用以向受电车B电池管理模块供电,DCDC模块向MCU模块供电;所述高压继电器连接在慢充接口的直流电源正DC+直流电源负DC-针脚与快充接口的直流电源正DC+直流电源负DC-针脚之间;所述MCU模块的信号输入端连接快充接口的通讯CAN+和通讯CAN-针脚,并根据受电车B电池管理模块发来的信号控制高压继电器的通断;所述PWM信号发生模块受MCU模块的控制,通过慢充接口的通信CP针脚向放电车A车载充放电模块发出放电指令;所述慢充接口中的连接确认CC针脚和接地PE针脚、以及所述快充接口中的充电连接确认CC1针脚充电连接确认CC2针脚接地PE针脚皆连接所述缆上控制盒的地。
所述DCDC模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电。
所述车载充放电模块包括输入输出端口、双向变换单元、DCDC单元、控制器,DCDC单元连接所述动力电池;其中输入输出端口中的L端子通过电感L1连接C接线端、N端子连接D接线端,所述L端子和N端子之间连接第一电容C1;所述双向变换单元包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4,所述第一开关Q1连接在C接线端与DCDC单元正极BUS+之间,所述第三开关Q3连接在D接线端与DCDC单元正极BUS+之间,所述第二开关Q2连接在C接线端与DCDC单元负极BUS-之间,所述第四开关Q4连接在D接线端与DCDC单元负极BUS-之间,DCDC单元正极BUS+与DCDC单元负极BUS-之间连接第二电容C2。
所述双向变换单元接受控制器的控制,可将输入输出端口的交流电或直流电变换为直流电输送给DCDC单元,也可将DCDC单元的直流电变换为交流电或直流电输送至输入输出端口。
本发明还设计了一种车载充电机V2V快充系统的控制方法,所述快充系统上述的车载充电机V2V快充系统,所述控制方法包括以下步骤:
步骤1、用所述快充电缆连接放电车A和受电车B;
步骤2、放电车A通过所述慢充接口中的连接确认CC针脚确认慢充接口插 接正常时,车载充放电模块通过慢充接口直流电源正DC+和直流电源负DC-针脚输出高压直流电;
步骤3、所述缆上控制盒DCDC模块接受高压直流电,电源变换通过所述快充接口的模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电;
步骤4、所述受电车B得到辅助电源后开始工作,通过所述快充接口的充电连接确认CC1针脚和充电连接确认CC2针脚确认快充接口插接正常时,通过快充接口的通讯CAN+和通讯CAN-针脚发出充电请求信息;
步骤5、所述MCU模块接到所述充电请求信息后,控制PWM信号发生模块将充电请求信息转换为PWM信号,并通过慢充接口的通信CP针脚发出PWM信号;
步骤6、所述放电车A控制器解析所述PWM信号,获取受电车B的充电请求信息,控制车载充放电模块调整所述高压直流电;
步骤7、所述MCU模块控制所述高压继电器闭合,放电车A用高压直流电向受电车B充电。
所述充电请求信息包括充电电压值和充电电流值。
本发明提供的技术方案的有益效果是:
采用本发明放电车A车载充电机输出高压直流电对受电车B高压电池进行充电,不需要经过受电车B的充电电路,不再受限于受电车B充电电路的功率,可以兼容各种规格的放电车A的充电模块,充电速度达到放电车A自身的最大功率,缩短了充电时间,提高了充电效率,充电损耗也大大降低。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图1是现有V2V模式的充电原理框图;
图2是本发明充电原理框图;
图3是本发明缆上控制盒电路示意图;
图4是车载充电机通过双向变换单元输出交流的示意图;
图5是车载充电机通过双向变换单元输出直流的示意图;
图6是本发明较佳实施例流程框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
传统V2V模式中,放电车需要将电池电压逆变为交流电输出,而受电车需要将交流电整流并升压为直流高压电才能对动力电池充电。显然逆变为交流电是可省略的步骤,充电车需求的是能对动力电池充电的直流高压电。本发明基于该缺陷升级了V2V的充电方案,将放电端逆变为交流电以及车端整流为直流电部分取消,直接以高压直流电从放电车传输到充电车进行救援充电。
传统V2V过程需要放电端的充放电模块与充电端的充电模块同时参与充电过程,此时充电功率受两个模块自身功率限制,例如放电模块为44KW,充电模块为7KW,充电过程最大只能7KW。由于放电端的救援车大多选择功率大的模块,因此往往受限于充电端的功率而导致充电过程缓慢。
在本发明中,放电车车载充电机输出高压直流电对受电车电池进行充电,不需要经过受电车的充电电路,因此V2V时,不再受限于充电模块的功率,可以兼容各种规格的充电模块而充电速度达到放电车辆自身的最大功率。
图2是本发明充电原理框图,放电车A车载充电机将电池包电压经内部电路升压后不做逆变处理,而是以高压直流电(HV)的形式输出,经放电枪输入到受电车B快充口对受电车B的动力电池充电。
本发明公开了一种车载充电机V2V快充系统,包括放电车A和受电车B,还包括连接放电车A和受电车B的快充电缆;所述快充电缆包括依次连接的慢充接口、缆上控制盒、快充接口,其中所述慢充接口用于插接放电车A,所述快充接口用于插接受电车B;所述缆上控制盒构建放电车A和受电车B的信号通道和充电通道,将放电车A输出的高压直流电传输给受电车B。
参看图3示出的较佳实施例,所述慢充接口包括5个针脚:连接确认CC、通信CP、直流电源正DC+、直流电源负DC-、接地PE;所述慢充接口连接放电车A中的车载充放电模块,所述车载充放电模块连接放电车A中的动力电池。
参看图3示出的较佳实施例,所述快充接口包括9个针脚:充电连接确认 CC1、充电连接确认CC2、辅助电源正A+、辅助电源正A-、通讯CAN+、通讯CAN-、直流电源正DC+、直流电源负DC-、接地PE;所述快充接口连接受电车B中的电池管理模块,所述电池管理模块连接受电车B中的动力电池。
参看图3示出的本发明缆上控制盒电路示意图,所述缆上控制盒包括PWM信号发生模块、DCDC模块、MCU模块、高压继电器,其中所述DCDC模块的输入端连接所述慢充接口的直流电源正DC+和直流电源负DC-针脚、其输出端连接所述快充接口的辅助电源正A+和辅助电源正A-针脚,DCDC模块向MCU模块供电;所述高压继电器连接在慢充接口的直流电源正DC+直流电源负DC-针脚与快充接口的直流电源正DC+直流电源负DC-针脚之间;所述MCU模块的信号输入端连接快充接口的通讯CAN+和通讯CAN-针脚,并根据通讯CAN+和通讯CAN-针脚中的信号控制高压继电器的通断;所述PWM信号发生模块受MCU模块的控制,通过慢充接口的通信CP针脚向放电车A发出放电指令;所述慢充接口中的连接确认CC针脚和接地PE针脚、以及所述快充接口中的充电连接确认CC1针脚充电连接确认CC2针脚接地PE针脚皆连接所述缆上控制盒的地。
所述DCDC模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电。受电车B的控制系统,在得到辅助电源时,才正常工作,才向放电车A发出充电请求信息。
实际工作中,车载充电机中的DCDC电路可以输出交流电,也可以输出直流电。以下以附图电路举例说明车载充电机工作在逆变模式时,电路分别输出交流电(AC)与输出高压直流电(HV)时如何工作。
所述车载充放电模块包括输入输出端口、双向变换单元、DCDC单元、控制器,DCDC单元连接所述动力电池;其中输入输出端口中的L端子通过电感L1连接C接线端、N端子连接D接线端,所述L端子和N端子之间连接第一电容C1;所述双向变换单元包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4,所述第一开关Q1连接在C接线端与DCDC单元正极BUS+之间,所述第三开关Q3连接在D接线端与DCDC单元正极BUS+之间,所述第二开关Q2连接在C接线端与DCDC单元负极BUS-之间,所述第四开关Q4连接在D接线端与DCDC单元负极BUS-之间,DCDC单元正极BUS+与DCDC单元负极BUS-之间连接第二电容C2。
所述双向变换单元接受控制器的控制,可将输入输出端口的交流电或直流 电变换为直流电输送给DCDC单元,也可将DCDC单元的直流电变换为交流电或直流电输送至输入输出端口。
图4是车载充电机通过双向变换单元输出交流的示意图,双向变换单元将电池包电压升高,在电容两端形成高压直流电压,逆变模式下,PFC回路起斩波作用。实线箭头为Q1、Q4导通时电流流向,此时电压L〉电压N。虚线箭头为Q2、Q3导通时电流流向,此时电压L〈电压N。功率管Q3、Q4以公频交替开启,即虚线箭头与实线箭头以50Hz频率互补交错,将直流电压转成交流方波电压,Q1、Q2调节电压为正弦波。最终以220V50Hz的交流电压输出。
图5是车载充电机通过双向变换单元输出直流的示意图,双向变换单元将电池包电压升高,Q3、Q4管不再交替开启,固定Q4开通,PWM控制Q1开通,结合电感电容构成BUCK电路,调节电压输出直流高压。
本发明还公开了一种车载充电机V2V快充系统的控制方法,所述快充系统上述的车载充电机V2V快充系统,参看图6示出的本发明较佳实施例流程框图,所述控制方法包括以下步骤:
步骤1、用所述快充电缆连接放电车A和受电车B;
步骤2、放电车A通过所述慢充接口中的连接确认CC针脚确认慢充接口插接正常时,车载充放电模块通过慢充接口直流电源正DC+和直流电源负DC-针脚输出高压直流电;
步骤3、所述缆上控制盒DCDC模块接受高压直流电,电源变换通过所述快充接口的模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电;
步骤4、所述受电车B得到辅助电源后开始工作,通过所述快充接口的充电连接确认CC1针脚和充电连接确认CC2针脚确认快充接口插接正常时,通过快充接口的通讯CAN+和通讯CAN-针脚发出充电请求信息;
步骤5、所述MCU模块接到所述充电请求信息后,控制PWM信号发生模块将充电请求信息转换为PWM信号,并通过慢充接口的通信CP针脚发出PWM信号;
步骤6、所述放电车A控制器解析所述PWM信号,获取受电车B的充电请求信息,控制车载充放电模块调整所述高压直流电;
步骤7、所述MCU模块控制所述高压继电器闭合,放电车A用高压直流电向受电车B充电。
在较佳实施例中,所述充电请求信息包括充电电压值和充电电流值。
本发明包含但不限定于举例。其余拓扑电路可实现直流输出功能,或将逆变回路旁路,而以高压直流电压输出的方式均包含在此方案范畴内。

Claims (9)

  1. 一种车载充电机V2V快充系统,包括放电车A和受电车B,其特征在于,还包括连接放电车A和受电车B的快充电缆;所述快充电缆包括依次连接的慢充接口、缆上控制盒、快充接口,其中
    所述慢充接口用于插接放电车A,所述快充接口用于插接受电车B;
    所述缆上控制盒构建放电车A和受电车B的信号通道和充电通道,将放电车A输出的高压直流电传输给受电车B。
  2. 如权利要求1所述的车载充电机V2V快充系统,其特征在于,所述慢充接口包括5个针脚:连接确认CC、通信CP、直流电源正DC+、直流电源负DC-、接地PE;所述慢充接口连接放电车A中的车载充放电模块,所述车载充放电模块连接放电车A中的动力电池。
  3. 如权利要求2所述的车载充电机V2V快充系统,其特征在于,所述快充接口包括9个针脚:充电连接确认CC1、充电连接确认CC2、辅助电源正A+、辅助电源正A-、通讯CAN+、通讯CAN-、直流电源正DC+、直流电源负DC-、接地PE;所述快充接口连接受电车B中的电池管理模块,所述电池管理模块连接受电车B中的动力电池。
  4. 如权利要求3所述的车载充电机V2V快充系统,其特征在于,所述缆上控制盒包括PWM信号发生模块、DCDC模块、MCU模块、高压继电器,其中
    所述DCDC模块的输入端连接所述慢充接口的直流电源正DC+和直流电源负DC-针脚、其输出端连接所述快充接口的辅助电源正A+和辅助电源正A-针脚用以向受电车B电池管理模块供电,DCDC模块向MCU模块供电;
    所述高压继电器连接在慢充接口的直流电源正DC+直流电源负DC-针脚与快充接口的直流电源正DC+直流电源负DC-针脚之间;
    所述MCU模块的信号输入端连接快充接口的通讯CAN+和通讯CAN-针脚,并根据受电车B电池管理模块发来的信号控制高压继电器的通断;
    所述PWM信号发生模块受MCU模块的控制,通过慢充接口的通信CP针脚向放电车A车载充放电模块发出放电指令;
    所述慢充接口中的连接确认CC针脚和接地PE针脚、以及所述快充接口中的充电连接确认CC1针脚充电连接确认CC2针脚接地PE针脚皆连接所述缆上控 制盒的地。
  5. 如权利要求4所述的车载充电机V2V快充系统,其特征在于,所述DCDC模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电。
  6. 如权利要求2所述的车载充电机V2V快充系统,其特征在于,所述车载充放电模块包括输入输出端口、双向变换单元、DCDC单元、控制器,DCDC单元连接所述动力电池;其中输入输出端口中的L端子通过电感L1连接C接线端、N端子连接D接线端,所述L端子和N端子之间连接第一电容C1;所述双向变换单元包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4,所述第一开关Q1连接在C接线端与DCDC单元正极BUS+之间,所述第三开关Q3连接在D接线端与DCDC单元正极BUS+之间,所述第二开关Q2连接在C接线端与DCDC单元负极BUS-之间,所述第四开关Q4连接在D接线端与DCDC单元负极BUS-之间,DCDC单元正极BUS+与DCDC单元负极BUS-之间连接第二电容C2。
  7. 如权利要求6所述的车载充电机V2V快充系统,其特征在于,所述双向变换单元接受控制器的控制,可将输入输出端口的交流电或直流电变换为直流电输送给DCDC单元,也可将DCDC单元的直流电变换为交流电或直流电输送至输入输出端口。
  8. 一种车载充电机V2V快充系统的控制方法,其特征在于,所述快充系统权利要求1至7任一项所述的车载充电机V2V快充系统,所述控制方法包括以下步骤:
    步骤1、用所述快充电缆连接放电车A和受电车B;
    步骤2、放电车A通过所述慢充接口中的连接确认CC针脚确认慢充接口插接正常时,车载充放电模块通过慢充接口直流电源正DC+和直流电源负DC-针脚输出高压直流电;
    步骤3、所述缆上控制盒DCDC模块接受高压直流电,电源变换通过所述快充接口的模块向辅助电源正A+和辅助电源正A-针脚输出12V直流电;
    步骤4、所述受电车B得到辅助电源后开始工作,通过所述快充接口的充电连接确认CC1针脚和充电连接确认CC2针脚确认快充接口插接正常时,通过快充接口的通讯CAN+和通讯CAN-针脚发出充电请求信息;
    步骤5、所述MCU模块接到所述充电请求信息后,控制PWM信号发生模块将 充电请求信息转换为PWM信号,并通过慢充接口的通信CP针脚发出PWM信号;
    步骤6、所述放电车A控制器解析所述PWM信号,获取受电车B的充电请求信息,控制车载充放电模块调整所述高压直流电;
    步骤7、所述MCU模块控制所述高压继电器闭合,放电车A用高压直流电向受电车B充电。
  9. 如权利要求8所述的车载充电机V2V快充系统的控制方法,其特征在于,所述充电请求信息包括充电电压值和充电电流值。
PCT/CN2021/097998 2021-01-29 2021-06-02 车载充电机v2v快充系统及其控制方法 WO2022160544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110128659.5A CN112810470B (zh) 2021-01-29 2021-01-29 车载充电机v2v快充系统及其控制方法
CN202110128659.5 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160544A1 true WO2022160544A1 (zh) 2022-08-04

Family

ID=75860304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097998 WO2022160544A1 (zh) 2021-01-29 2021-06-02 车载充电机v2v快充系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112810470B (zh)
WO (1) WO2022160544A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613207B1 (ko) * 2019-07-12 2023-12-14 현대자동차주식회사 차대차 충전 케이블 및 그 제어방법
CN112810470B (zh) * 2021-01-29 2022-10-21 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法
CN114954046B (zh) * 2022-06-23 2022-11-15 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112586A1 (en) * 2017-12-07 2019-06-13 Ford Global Technologies, Llc Charging delivery system for a vehicle
CN110364851A (zh) * 2018-03-26 2019-10-22 蔚来汽车有限公司 电动汽车充电连接装置
CN111697403A (zh) * 2019-07-31 2020-09-22 比亚迪股份有限公司 电缆组件和车辆充电系统
CN211592274U (zh) * 2020-02-25 2020-09-29 北京新能源汽车股份有限公司 一种交直流转换装置及电动汽车
CN112455254A (zh) * 2020-11-24 2021-03-09 广州橙行智动汽车科技有限公司 输出高压直流电的系统及方法、线缆、控制方法及设备
CN112810470A (zh) * 2021-01-29 2021-05-18 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105835714A (zh) * 2015-11-04 2016-08-10 郑州宇通客车股份有限公司 一种车对车充电机和系统以及充电方法
DE102016211335A1 (de) * 2016-06-24 2017-12-28 Volkswagen Aktiengesellschaft Elektrisches Aufladen von Elektrofahrzeugen mittels Adapter zur Signalwandlung
CN107867186B (zh) * 2016-09-27 2021-02-23 华为技术有限公司 电动汽车以及电动汽车之间充电的方法
CN108923482B (zh) * 2018-07-06 2021-03-12 北京新能源汽车股份有限公司 一种电动汽车充放电控制装置及电动汽车
CN110920429B (zh) * 2019-12-04 2021-08-03 华人运通(江苏)技术有限公司 车辆充放电控制装置、方法及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112586A1 (en) * 2017-12-07 2019-06-13 Ford Global Technologies, Llc Charging delivery system for a vehicle
CN110364851A (zh) * 2018-03-26 2019-10-22 蔚来汽车有限公司 电动汽车充电连接装置
CN111697403A (zh) * 2019-07-31 2020-09-22 比亚迪股份有限公司 电缆组件和车辆充电系统
CN211592274U (zh) * 2020-02-25 2020-09-29 北京新能源汽车股份有限公司 一种交直流转换装置及电动汽车
CN112455254A (zh) * 2020-11-24 2021-03-09 广州橙行智动汽车科技有限公司 输出高压直流电的系统及方法、线缆、控制方法及设备
CN112810470A (zh) * 2021-01-29 2021-05-18 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法

Also Published As

Publication number Publication date
CN112810470B (zh) 2022-10-21
CN112810470A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022160544A1 (zh) 车载充电机v2v快充系统及其控制方法
CN103187759B (zh) 电动汽车之间相互充电的系统及充电连接器
CN102844220B (zh) 电源系统和装有电源系统的车辆
CN110190658A (zh) 使用牵引驱动部件的车载dc充电电路
CN201438644U (zh) 一种车载充电器
CN105762876A (zh) 一种车对车充电机及其充电系统和充电方法
CN205039570U (zh) 低电压dc-dc转换器一体式充电装置
CN104253464A (zh) 电动汽车之间相互充电的系统及充电连接器
CN104253465A (zh) 电动汽车的充电控制系统及具有其的电动汽车
KR20180127600A (ko) 차량용 배터리 충전 제어시스템
WO2022033369A1 (zh) 一种基于四象限整流的混合动力调车机车控制系统
CN205818960U (zh) 一种电动汽车用车载充电机及电动汽车
US11207999B2 (en) Charger and charging method for charging the battery of an electric motorcycle by using charging stations for cars
CN212289535U (zh) 一种双向车载充电机及电动汽车
CN213619646U (zh) 一种房车电源管理系统
CN205791582U (zh) 一种车对车充电机及其充电系统
KR20210015668A (ko) 발열 요소 및 온보드 충전기를 구비한 전기차
CN213937521U (zh) 具有高低压输出的三级拓扑结构充电机
CN203793114U (zh) 一种串联式混合动力电驱动系统
CN113381459B (zh) 一种充电控制方法、装置及电动汽车
CN209593007U (zh) 一种驱动交流负载的分布隔离式功率变换器的拓扑结构
CN112751352A (zh) 一种用于双向直流充电机的辅助电源模块及辅助供电方法
CN210027056U (zh) 一种电机驱动系统和一种新能源汽车
CN210027057U (zh) 一种电机驱动系统和一种新能源汽车
CN112455254A (zh) 输出高压直流电的系统及方法、线缆、控制方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922142

Country of ref document: EP

Kind code of ref document: A1