WO2022160339A1 - 一种带自由冷却两相流空调系统 - Google Patents

一种带自由冷却两相流空调系统 Download PDF

Info

Publication number
WO2022160339A1
WO2022160339A1 PCT/CN2021/074677 CN2021074677W WO2022160339A1 WO 2022160339 A1 WO2022160339 A1 WO 2022160339A1 CN 2021074677 W CN2021074677 W CN 2021074677W WO 2022160339 A1 WO2022160339 A1 WO 2022160339A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
conditioning system
air conditioning
free cooling
condenser
Prior art date
Application number
PCT/CN2021/074677
Other languages
English (en)
French (fr)
Inventor
查晓东
Original Assignee
苏州必信空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州必信空调有限公司 filed Critical 苏州必信空调有限公司
Publication of WO2022160339A1 publication Critical patent/WO2022160339A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • the application relates to a two-phase flow air conditioning system with free cooling, which belongs to the technical field of refrigeration and air conditioning.
  • the lubricating oil of traditional oil-containing bearings circulates with the refrigerant.
  • the traditional data center mainly uses pure water or ethylene glycol aqueous solution as the secondary cooling and heat exchange method as the refrigerant.
  • the cold water is delivered to the inter-machine air conditioner of the data center, and the heat generated inside the data center is transferred to the cold water in the form of air cooling or heat pipe.
  • the data center application also has a refrigeration system that exchanges heat by direct expansion.
  • a refrigeration system that exchanges heat by direct expansion.
  • it is often necessary to control the flow through the superheat of the evaporator outlet.
  • the end of the evaporator is often sensible heat exchange.
  • the heat exchange coefficient of the heat exchanger is extremely low at this time, and the utilization efficiency of the heat exchanger area is very low.
  • the condensing temperature of the refrigeration cycle may be lower than the evaporating temperature, the active refrigeration cycle cannot operate safely, the traditional free cooling system is difficult to switch, and the start-up temperature difference is required to be high, so the free cooling utilization rate is low.
  • the purpose of this application is to overcome the deficiencies of the prior art, and to provide a refrigeration system with free cooling in combination with the feature that the data center has long working hours throughout the year.
  • a two-phase flow air conditioning system with free cooling comprising, at least one compressor, a condenser, a throttling device, a low-pressure circulating barrel, a refrigerant circulating pump, a flow regulating device, at least one evaporator, and a Several refrigerant control valves are used to switch operating conditions; by changing the opening and closing states of the refrigerant control valves, the refrigerant circulation path is changed to make the air conditioning system switch between two operating modes: active cooling and free cooling:
  • a refrigeration cycle is formed in which the refrigerant flows from the compressor through the condenser, the throttling device, the low-pressure circulating barrel, the refrigerant circulating pump, the flow regulating device, the evaporator, the low-pressure circulating barrel and then returns to the compressor;
  • a refrigeration cycle is formed in which the refrigerant flows from the evaporator through the condenser, the refrigerant circulation pump, the refrigerant control valve in turn, and then returns to the evaporator.
  • the compressor is an oil-free compressor.
  • the condenser is an evaporative condenser.
  • the refrigerant circulating pump is a positive displacement liquid pump.
  • the refrigerant circulating pump is a centrifugal liquid pump.
  • the refrigerant is R134a.
  • a liquid storage tank is also provided at the liquid outlet end of the condenser, and the refrigerant flowing out of the condenser first flows into the liquid storage tank, and then flows into the liquid storage tank.
  • the low-pressure circulating barrel or the refrigerant circulating pump is also provided at the liquid outlet end of the condenser, and the refrigerant flowing out of the condenser first flows into the liquid storage tank, and then flows into the liquid storage tank.
  • the refrigerant control valves are all solenoid valves or electric valves, which are controlled to be opened or closed by the electric control system.
  • gas-liquid separation is performed on the return gas of the evaporator through a low-pressure circulating barrel, and the refrigerant liquid without phase change is pressurized by a liquid pump to overcome the pipeline resistance and enter the evaporator for further heat exchange and evaporation,
  • the flow of refrigerant in the evaporator can be adjusted, the refrigerant still retains a part of the liquid at the outlet of the evaporator, and the proportion of the liquid can be adjusted according to the actual operating conditions to maximize the boiling of the refrigerant in the evaporator.
  • the heat exchange area can reduce the heat exchange temperature difference and improve the operating efficiency of the system.
  • Fig. 1 is the flow chart of the direct refrigeration mode of the refrigeration system of embodiment 1;
  • Fig. 2 is the flow chart of the free cooling mode of the refrigeration system of embodiment 1;
  • Fig. 3 is the flow chart of the direct refrigeration mode of the refrigeration system with liquid accumulator of embodiment 2;
  • FIG. 4 is a flow chart of the free cooling mode of the refrigeration system with accumulator according to the second embodiment.
  • This embodiment provides a two-phase flow air conditioning system with free cooling, including:
  • the closed state changes the refrigerant flow path to switch the air conditioning system between active cooling and free cooling operating modes:
  • the first valve 5, the second valve 6, the third valve 10, and the fourth valve 15 are preferably solenoid valves, which can be opened or closed through the control of the electronic control system; the refrigerant flow can be changed by changing the opening and closing states of the refrigerant control valves. Passage to switch the air conditioning system between active cooling and free cooling operating modes;
  • a refrigeration cycle of compressor 1-condenser 2-throttle device 3-low pressure circulation barrel 4-refrigerant circulation pump 7-flow regulating device 8-evaporator 9-low pressure circulation barrel 4-compressor 1 is formed;
  • the condensate enters the compressor 1 from the compressor inlet, and after being compressed, the condensate becomes a high-temperature and high-pressure gas and enters the condenser 2 through the compressor outlet and the connecting pipeline, and is cooled in the condenser 2 into a high-pressure medium-temperature liquid. It is discharged from the outlet of the condenser 2, depressurized and cooled at the throttling device 3 through the connecting pipe, and becomes a low-temperature and low-pressure gas-liquid mixed state, and enters the low-pressure circulation barrel 4 from the first inlet 13, and the gas-liquid two-phase refrigerant circulates at a low pressure.
  • the liquid refrigerant flows out through the first outlet 14 of the low-pressure circulation barrel 4, passes through the refrigerant control valve 5, enters the refrigerant circulation pump 7, and is boosted by the refrigerant circulation pump 7, and then enters the flow regulating device 8. Adjust the flow, and then enter the evaporator 9 for heat exchange.
  • the fourth valve 15 enters the low-pressure circulation barrel 4 from the second inlet 11 for gas-liquid separation, and the gas passes through the second outlet 12 of the low-pressure circulation barrel 4. Connected
  • the pipeline enters the compressor to form a refrigeration cycle.
  • the compressor 1 stops running, the second valve 6 and the third valve 10 are opened, the first valve 5 and the fourth valve 15 are closed, and the throttling device 3 is closed;
  • a refrigeration cycle of evaporator 9-condenser 2-refrigerant circulating pump 7-flow regulating device 8-evaporator 9 is formed;
  • the condensate absorbs heat in the evaporator 9, it enters the condenser 2 through the connecting pipe, is cooled into a medium-temperature liquid in the condenser 2, and is discharged from the outlet of the condenser.
  • the second valve 6 After passing through the second valve 6 through the connecting pipe , enters the refrigerant circulating pump 7, and after the pressure is boosted by the refrigerant circulating pump 7, it enters the flow regulating device 8 to adjust the flow rate, and then enters the evaporator 9 for heat exchange to form a refrigeration cycle.
  • the compressor is an oil-free compressor.
  • the condenser 2 is an evaporative condenser.
  • the refrigerant circulating pump 7 is a positive displacement liquid pump or a centrifugal liquid pump.
  • the refrigerant is various common refrigerants such as R134a.
  • This embodiment provides a two-phase flow air conditioning system with free cooling, including:
  • a compressor 1 a condenser 2, a throttling device 3, a low-pressure circulating tank 4, a refrigerant circulating pump 7, at least one flow regulating device 8, at least one evaporator 9, at least one liquid storage tank 16, and
  • refrigerant control valves (respectively, the first valve 5, the second valve 6, the third valve 10, and the fourth valve 15) used to switch operating conditions, change the refrigerant by changing the opening and closing states of the refrigerant control valves Flow passages to switch the air conditioning system between active cooling and free cooling operating modes:
  • the first valve 5, the second valve 6, the third valve 10, and the fourth valve 15 are preferably solenoid valves, which can be opened or closed through the control of the electronic control system; the refrigerant flow can be changed by changing the opening and closing states of the refrigerant control valves. Passage to switch the air conditioning system between active cooling and free cooling operating modes;
  • the condensate enters the compressor 1 from the compressor inlet, and after being compressed, the condensate becomes a high-temperature and high-pressure gas and enters the condenser 2 through the compressor outlet and the connecting pipeline, and is cooled in the condenser 2 into a high-pressure medium-temperature liquid. It is discharged from the outlet of the condenser 2, and enters the liquid storage tank 16 from the first inlet 13, and then is discharged from the first outlet 14 of the liquid storage tank 16. The pressure is reduced and lowered at the throttling device 3 through the connecting pipe to become a low temperature and low pressure.
  • the gas-liquid mixed state enters the low-pressure circulating barrel 4 from the second inlet 11, and the gas-liquid two-phase refrigerant is separated in the low-pressure circulating barrel 4, wherein the liquid refrigerant flows out through the second outlet 12 of the low-pressure circulating barrel 4, and passes through the refrigerant.
  • the valve 5 After the valve 5 is controlled, it enters the refrigerant circulation pump 7, and after the pressure is increased by the refrigerant circulation pump 7, it enters the flow regulating device 8 to adjust the flow rate, and then enters the evaporator 9 for heat exchange.
  • the refrigerant after heat exchange passes through the fourth valve 15. Then it enters the low-pressure circulating barrel 4 for gas-liquid separation, and the gas flows out through the second outlet 12 of the low-pressure circulating barrel 4, and enters the compressor 1 through the connecting pipeline to form a refrigeration cycle.
  • the compressor 1 stops running, the second valve 6 and the third valve 10 are opened, the first valve 5 and the fourth valve 15 are closed, and the throttling device 3 is closed;
  • a refrigeration cycle of evaporator 9-condenser 2-liquid storage tank 16-refrigerant circulation pump 7-flow regulating device 8-evaporator 9 is formed;
  • the condensate absorbs heat in the evaporator 9, it enters the condenser 2 through the connecting pipeline, is cooled in the condenser 2 into a medium-temperature liquid, and is discharged from the outlet of the condenser into the liquid storage tank 16.
  • the liquid storage tank After passing through the second valve 6 through the connecting pipe, 16 enters the refrigerant circulating pump 7, and after boosting the pressure by the refrigerant circulating pump 7, it enters the flow regulating device 8 to adjust the flow rate, and then enters the evaporator 9 for heat exchange to form a refrigeration cycle.

Abstract

一种带自由冷却两相流空调系统,包含至少一个压缩机(1),一个冷凝器(2),一个节流装置(3),一个低压循环桶(4),一个制冷剂循环泵(7),至少一个直膨流量调节装置(8),至少一个直膨式蒸发器(9),及用于切换运行工况的若干控制阀门(5、6、10、15),本装置通过液泵增压实现蒸发器的满液运行,提高蒸发器的使用效率,同时在室外低环境温度时,停止压缩机的运行,通过阀切换实现自由冷却,进一步降低冷却能耗,提高社会资源的利用率。

Description

一种带自由冷却两相流空调系统 技术领域
本申请涉及一种带自由冷却两相流空调系统,属于制冷与空调技术领域。
背景技术
随着数据中心的紧凑性越来越提高,传统空调冷却系统的能耗也越来越大,数据中心的冷却能耗逐步成为数据中心运营商的重要支出,降低数据中心的冷却能耗是衡量一个数据中心管理水平的重要标志。
传统含油轴承的润滑油随着制冷剂循环,为了保证压缩机的运行安全可靠,因此传统的数据中心主要采用纯水或乙二醇水溶液作为载冷剂的二次冷却换热方法,通过冷冻水泵将冷水输送到数据中心的机间空调,通过空气冷却或热管的形式将数据中心内部产生的热量传递给冷水,冷水升温后回到冷水机降温后形成热传递循环。
由于采用纯水或乙二醇水溶液作为载冷剂,虽然水的比热容较高,但其载热形式仍然是显热载热,载热能力差,载冷剂吸热后温度上升,降低了换热温差,载冷剂的循环量大,载冷剂的循环泵功耗也很大。
另外,数据中心应用还有通过直接膨胀的方式进行换热的制冷系统,为了防止压缩机回液,往往需要通过蒸发器出口过热度的方式进行流量控制,蒸发器末段往往是显热换热为主,换热器在此时换热系数极低,换热器面积利用效率很低。
而且,当环境温度较低时,制冷循环冷凝温度有可能低于蒸发温度,主动制冷循环不能安全运行,传统的自由冷却系统切换困难,启动温差要求高,因此自由冷却利用率较低。
申请内容
本申请的目的是克服现有技术存在的不足,结合数据中心全年工作时间长 的特点,提供一种带有自由冷却的制冷系统。
本申请的目的通过以下技术方案来实现:
一种带自由冷却两相流空调系统,包括,至少一个压缩机,一个冷凝器,一个节流装置,一个低压循环桶,一个制冷剂循环泵,一个流量调节装置,至少一个蒸发器,及用于切换运行工况的若干制冷剂控制阀门;通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换:
所述主动制冷模式下:
形成制冷剂依次从压缩机流经冷凝器、节流装置、低压循环桶、制冷剂循环泵、流量调节装置、蒸发器、低压循环桶再回到压缩机的制冷循环;
所述自由冷却模式下:
形成制冷剂依次从蒸发器流经冷凝器、制冷剂循环泵、制冷剂控制阀门再回到蒸发器的制冷循环。
优选地,本申请的带自由冷却两相流空调系统,所述压缩机为无油压缩机。
优选地,本申请的带自由冷却两相流空调系统,所述冷凝器为蒸发式冷凝器。
优选地,本申请的带自由冷却两相流空调系统,所述制冷剂循环泵为容积式液泵。
优选地,本申请的带自由冷却两相流空调系统,所述制冷剂循环泵为离心式液泵。
优选地,本申请的带自由冷却两相流空调系统,所述制冷剂为R134a。
优选地,本申请的带自由冷却两相流空调系统,所述冷凝器的出液端还设置有储液桶,所述冷凝器流出的制冷剂先流入所述储液桶中,再流入所述低压循环桶或者制冷剂循环泵。
优选地,本申请的带自由冷却两相流空调系统,所述制冷剂控制阀门均为电磁阀或者电动阀,受电控系统控制而开启或者关闭。
本申请的技术方案的特点和进步主要体现在:
本申请的带有自由冷却的制冷系统,通过低压循环桶对蒸发器回气进行气液分离,未相变的制冷剂液体通过液泵加压,克服管路阻力进入蒸发器进一步换热蒸发,通过这一设计,可以通过调节制冷剂在蒸发器内的流量,制冷剂在蒸发器出口处仍保留一部分液体,根据实际运行的状况调整液体的比例,最大程度上增大蒸发器内制冷剂沸腾换热面积,降低换热温差,提高系统的运行效率。
附图说明
下面结合附图对本申请技术方案作进一步说明:
图1为实施例1的制冷系统的直接制冷模式的流程图;
图2为实施例1的制冷系统的自由冷却模式的流程图;
图3为实施例2的带储液器的制冷系统的直接制冷模式的流程图;
图4为实施例2的带储液器的制冷系统的自由冷却模式的流程图。
其中:
1 压缩机;
2 冷凝器;
3 节流装置;
4 低压循环桶;
5 第一阀门;
6 第二阀门;
7 制冷剂循环泵;
8 流量调节装置;
9 蒸发器;
10 第三阀门;
11 第二入口;
12 第二出口;
13 第一入口;
14 第一出口;
15 第四阀门;
16 储液桶。
具体实施方式
实施例1
本实施例提供一种带自由冷却两相流空调系统,包括:
一个压缩机1,一个冷凝器2,一个节流装置3,一个低压循环桶4,一个制冷剂循环泵7,至少一个流量调节装置8,至少一个蒸发器9,及用于切换运行工况的四个制冷剂控制阀门(分别为第一阀门5,第二阀门6,第三阀门10,第四阀门15,制冷剂控制阀门可以选择电磁阀或者电动阀),通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换:
第一阀门5,第二阀门6,第三阀门10,第四阀门15优选为电磁阀,可以通过电控系统的控制而开启或者关闭;通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换;
所述主动制冷模式下,如图1所示:
关闭第二阀门6、第三阀门10;打开第一阀门5、第四阀门15;
形成压缩机1-冷凝器2-节流装置3-低压循环桶4-制冷剂循环泵7-流量调节装置8-蒸发器9-低压循环桶4-压缩机1的制冷循环;
具体地,冷凝剂从压缩机进口进入压缩机1,冷凝剂被压缩后成为高温高压的气体经过压缩机出口及连接管路进入冷凝器2,在冷凝器2内被冷却成为高压中温的液体,自冷凝器2出口排出,通过连接管在节流装置3处降压降温,成为低温低压的气液混合状态,进入从第一入口13进入低压循环桶4,气液两相制冷剂在低压循环桶4中分离,其中液态制冷剂通过低压循环桶4的第一出口14流出,经过制冷剂控制阀门5后,进入制冷剂循环泵7,通过制冷剂循环泵7升压后,进入流量调节装置8调整流量,然后进入蒸发器9进行换热,换热后的第四阀门15后从第二入口11进入低压循环桶4进行气液分离,气体经过低压循环桶4的第二出口12经连接管路进入压缩机,形成制冷循环。
所述自由冷却模式下,如图2所示:
压缩机1停止运行,第二阀门6、第三阀门10打开,第一阀门5、第四阀门15关闭,节流装置3关闭;
形成蒸发器9-冷凝器2-制冷剂循环泵7-流量调节装置8-蒸发器9的制冷循环;
具体地,冷凝剂在蒸发器9内吸热后,通过连接管路进入冷凝器2,在冷凝器2内被冷却成为中温的液体,自冷凝器出口排出,通过连接管经第二阀门6后,进入制冷剂循环泵7,通过制冷剂循环泵7升压后,进入流量调节装置8调整流量,然后进入蒸发器9进行换热,形成制冷循环。
作为一种具体的可选的实施方式,所述压缩机为无油压缩机。
作为一种具体的可选的实施方式,所述冷凝器2为蒸发式冷凝器。
优选地,所述制冷剂循环泵7为容积式液泵或者离心式液泵。
优选地,所述制冷剂为R134a等各类常见的制冷剂。
实施例2
本实施例提供一种带自由冷却两相流空调系统,包括:
一个压缩机1,一个冷凝器2,一个节流装置3,一个低压循环桶4,一个制冷剂循环泵7,至少一个流量调节装置8,至少一个蒸发器9,至少一个储液桶16,及用于切换运行工况的四个制冷剂控制阀门(分别为第一阀门5,第二阀门6,第三阀门10,第四阀门15),通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换:
第一阀门5,第二阀门6,第三阀门10,第四阀门15优选为电磁阀,可以通过电控系统的控制而开启或者关闭;通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换;
所述主动制冷模式下,如图3所示:
关闭第二阀门6、第三阀门10;打开第一阀门5、第四阀门15;
形成压缩机1-冷凝器2-储液桶16-节流装置3-低压循环桶4-制冷剂循环泵7-流量调节装置8-蒸发器9-低压循环桶4-压缩机1的制冷循环;
具体地,冷凝剂从压缩机进口进入压缩机1,冷凝剂被压缩后成为高温高压的气体经过压缩机出口及连接管路进入冷凝器2,在冷凝器2内被冷却成为高压中温的液体,自冷凝器2出口排出,并从第一入口13进入储液桶16内,而后再由储液桶16的第一出口14排出,通过连接管在节流装置3处降压降温,成为低温低压的气液混合状态,从第二入口11进入低压循环桶4,气液两相制冷剂在低压循环桶4中分离,其中液态制冷剂通过低压循环桶4的第二出口12流出,经过制冷剂控制阀门5后,进入制冷剂循环泵7,通过制冷剂循环泵7升压后,进入流量调节装置8调整流量,然后进入蒸发器9进行换热,换热后的制冷剂经第四阀门15后进入低压循环桶4进行气液分离,气体经过低压循环桶4的第二出口12流出,经连接管路进入压缩机1,形成制冷循环。
所述自由冷却模式下,如图4所示:
压缩机1停止运行,第二阀门6、第三阀门10打开,第一阀门5、第四阀门15关闭,节流装置3关闭;
形成蒸发器9-冷凝器2-储液桶16-制冷剂循环泵7-流量调节装置8-蒸发器9的制冷循环;
具体地,冷凝剂在蒸发器9内吸热后,通过连接管路进入冷凝器2,在冷凝器2内被冷却成为中温的液体,自冷凝器出口排出进入储液桶16内,储液桶16通过连接管经第二阀门6后,进入制冷剂循环泵7,通过制冷剂循环泵7升压后,进入流量调节装置8调整流量,然后进入蒸发器9进行换热,形成制冷循环。
需要理解到的是:以上所述仅是本申请的优选实施方式,文中所提方案只是便于技术人员理解的实例,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (8)

  1. 一种带自由冷却两相流空调系统,其特征在于,包括,至少一个压缩机(1),一个冷凝器(2),一个节流装置(3),一个低压循环桶(4),一个制冷剂循环泵(7),一个流量调节装置(8),至少一个蒸发器(9),及用于切换运行工况的若干制冷剂控制阀门;通过改变制冷剂控制阀门的开闭状态改变制冷剂流通通路以使空调系统在主动制冷及自由冷却两种运行模式之间切换:
    所述主动制冷模式下:
    形成制冷剂依次从压缩机(1)流经冷凝器(2)、节流装置(3)、低压循环桶(4)、制冷剂循环泵(7)、流量调节装置(8)、蒸发器(9)、低压循环桶(4)再回到压缩机(1)的制冷循环;
    所述自由冷却模式下:
    形成制冷剂依次从蒸发器(9)流经冷凝器(2)、制冷剂循环泵(7)、流量调节装置(8)再回到蒸发器(9)的制冷循环。
  2. 根据权利要求1所述的带自由冷却两相流空调系统,其特征在于,所述压缩机为无油压缩机。
  3. 根据权利要求1所述的带自由冷却两相流空调系统,其特征在于,所述冷凝器(2)为蒸发式冷凝器。
  4. 根据权利要求1所述的带自由冷却两相流空调系统,其特征在于,所述制冷剂循环泵(7)为容积式液泵。
  5. 根据权利要求1所述的带自由冷却两相流空调系统,其特征在于,所述制冷剂循环泵(7)为离心式液泵。
  6. 根据权利要求1所述的带自由冷却两相流空调系统,其特征在于,所述制冷剂为R134a。
  7. 根据权利要求1-6任一项所述的带自由冷却两相流空调系统,其特征在于,所述冷凝器(2)的出液端还设置有储液桶(16),所述冷凝器(2)流出的制冷剂先流入所述储液桶(16)中,再流入所述低压循环桶(4) 或者制冷剂循环泵(7)。
  8. 根据权利要求1-7任一项所述的带自由冷却两相流空调系统,其特征在于,所述制冷剂控制阀门均为电磁阀或者电动阀,受电控系统控制而开启或者关闭。
PCT/CN2021/074677 2021-01-27 2021-02-01 一种带自由冷却两相流空调系统 WO2022160339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110114577.5 2021-01-27
CN202110114577.5A CN112880244A (zh) 2021-01-27 2021-01-27 一种带自由冷却两相流空调系统

Publications (1)

Publication Number Publication Date
WO2022160339A1 true WO2022160339A1 (zh) 2022-08-04

Family

ID=76053571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074677 WO2022160339A1 (zh) 2021-01-27 2021-02-01 一种带自由冷却两相流空调系统

Country Status (2)

Country Link
CN (1) CN112880244A (zh)
WO (1) WO2022160339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147217A (zh) * 2023-04-03 2023-05-23 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223773A (ja) * 1989-02-23 1990-09-06 Sanki Eng Co Ltd 低温媒体及び高温媒体兼用冷却用冷凍装置
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN201555311U (zh) * 2009-10-23 2010-08-18 清华大学 带自然冷却功能的液泵供液多联式空调机组
KR101390989B1 (ko) * 2013-12-23 2014-05-02 (주)에네스이엔지 하이브리드 냉각시스템
CN106016534A (zh) * 2016-05-23 2016-10-12 合肥工业大学 一种具有自然冷却功能的复合型空调系统
CN106051969A (zh) * 2016-05-23 2016-10-26 合肥工业大学 一种具有自然冷却功能的复合型空调系统的控制方法
KR101727561B1 (ko) * 2016-01-27 2017-05-02 한국이미지시스템(주) 에너지 절약형 산업용 공조기 및 그 운전방법
CN110094818A (zh) * 2019-06-10 2019-08-06 克莱门特捷联制冷设备(上海)有限公司 一种数据中心用复合型空调系统及其控制方法
CN210165500U (zh) * 2019-06-10 2020-03-20 克莱门特捷联制冷设备(上海)有限公司 一种数据中心用复合型空调系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278840A (zh) * 2011-06-25 2011-12-14 广东美的电器股份有限公司 一种用于机房的空调器
CN202675464U (zh) * 2012-03-22 2013-01-16 中兴能源(天津)节能服务有限公司 一种用于通信基站的节能型智能空调系统
CN203797788U (zh) * 2013-12-09 2014-08-27 浙江国祥空调设备有限公司 一种新型自由冷却的多联式空调机组
CN203657111U (zh) * 2013-12-09 2014-06-18 浙江国祥空调设备有限公司 一种自由冷却的多联式机房空调机组
CN109405318A (zh) * 2018-10-17 2019-03-01 苏州必信空调有限公司 一种带有自由冷却的制冷系统及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223773A (ja) * 1989-02-23 1990-09-06 Sanki Eng Co Ltd 低温媒体及び高温媒体兼用冷却用冷凍装置
CN101694311A (zh) * 2009-10-23 2010-04-14 清华大学 一种带自然冷却功能的液泵供液多联式空调机组
CN201555311U (zh) * 2009-10-23 2010-08-18 清华大学 带自然冷却功能的液泵供液多联式空调机组
KR101390989B1 (ko) * 2013-12-23 2014-05-02 (주)에네스이엔지 하이브리드 냉각시스템
KR101727561B1 (ko) * 2016-01-27 2017-05-02 한국이미지시스템(주) 에너지 절약형 산업용 공조기 및 그 운전방법
CN106016534A (zh) * 2016-05-23 2016-10-12 合肥工业大学 一种具有自然冷却功能的复合型空调系统
CN106051969A (zh) * 2016-05-23 2016-10-26 合肥工业大学 一种具有自然冷却功能的复合型空调系统的控制方法
CN110094818A (zh) * 2019-06-10 2019-08-06 克莱门特捷联制冷设备(上海)有限公司 一种数据中心用复合型空调系统及其控制方法
CN210165500U (zh) * 2019-06-10 2020-03-20 克莱门特捷联制冷设备(上海)有限公司 一种数据中心用复合型空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147217A (zh) * 2023-04-03 2023-05-23 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统
CN116147217B (zh) * 2023-04-03 2024-03-12 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统

Also Published As

Publication number Publication date
CN112880244A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN108759142B (zh) 一种特殊的复叠式空气源高温热泵冷暖系统
CN111707017A (zh) 一种低温强热空气源热泵系统
EP2584285A1 (en) Refrigerating air-conditioning device
CN111565543A (zh) 水冷自然冷却的冷媒直冷制冷系统
WO2022160339A1 (zh) 一种带自由冷却两相流空调系统
CN210951940U (zh) 一种氟泵多联制冷系统
CN217900220U (zh) 一种带水力模块的蒸发冷凝热泵机组
CN116390430A (zh) 一种多联式液冷源
CN215675897U (zh) 一种空调系统
CN214223467U (zh) 回热储液器及机房制冷系统
CN115289714A (zh) 一种带水力模块的蒸发冷凝热泵机组及其控制方法
CN109000392A (zh) 一种空调冷水机组的变频器冷却方法、空调冷水机组及空调
CN212324592U (zh) 水冷自然冷却的冷媒直冷制冷系统
CN214620154U (zh) 一种带自由冷却两相流空调系统
CN113310233A (zh) 热回收复合制冷系统
CN112146300A (zh) 一种服务于极大温差变化环境的降温机组
CN208720598U (zh) 一种空调冷水机组及空调
CN112361677A (zh) 换热组件、加湿装置和空调系统
CN112963979A (zh) 一种可实现工作循环转换的复叠热泵系统
CN208075369U (zh) 一种集中制冷分体供冷的空调冰箱联用系统
CN107101412B (zh) 一种污水作为直接冷热源的热泵机组
CN116147217B (zh) 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统
WO2022160340A1 (zh) 一种具有蓄冷功能的空调装置
CN111964188B (zh) 一种热虹吸管-蒸汽压缩复合制冷系统
CN212253218U (zh) 一种低温强热空气源热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921939

Country of ref document: EP

Kind code of ref document: A1