WO2022160278A1 - 用于驱动微流控芯片的设备和驱动方法 - Google Patents

用于驱动微流控芯片的设备和驱动方法 Download PDF

Info

Publication number
WO2022160278A1
WO2022160278A1 PCT/CN2021/074474 CN2021074474W WO2022160278A1 WO 2022160278 A1 WO2022160278 A1 WO 2022160278A1 CN 2021074474 W CN2021074474 W CN 2021074474W WO 2022160278 A1 WO2022160278 A1 WO 2022160278A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
threshold
fluid
microfluidic chip
control
Prior art date
Application number
PCT/CN2021/074474
Other languages
English (en)
French (fr)
Inventor
徐为峰
范蓓媛
李达
丁丁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/074474 priority Critical patent/WO2022160278A1/zh
Priority to US17/605,348 priority patent/US20230116464A1/en
Priority to CN202180000100.2A priority patent/CN115244169A/zh
Priority to EP21921882.3A priority patent/EP4141098A4/en
Publication of WO2022160278A1 publication Critical patent/WO2022160278A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00039Transport arrangements specific to flat sample substrates, e.g. pusher blade

Definitions

  • the present disclosure relates to the field of biological detection, and more particularly, to an apparatus and a driving method for driving a microfluidic chip.
  • Microfluidic chip also known as Lab-on-a-chip, refers to the integration of basic operating units such as sample preparation, reaction, separation, and detection involved in the fields of biology, chemistry and medicine. The entire process of reaction and analysis is automatically completed on a chip with micron-scale microchannels.
  • the analysis and detection device based on the microfluidic chip can have the following advantages: small sample consumption, fast analysis speed, and very suitable for instant, on-site analysis.
  • the microfluidic chip can be designed as a one-time-use product, which can save complicated liquid circuit systems such as cleaning and waste liquid treatment.
  • an apparatus for driving a microfluidic chip comprising: a carrying part configured to carry the microfluidic chip; and a releasing part configured to electrically conduct electricity with the microfluidic chip Connecting and controlling the release of the reagent of the microfluidic chip; the valve control part, the valve control part is configured to control the opening of the flow channel within the threshold control region when the threshold control region of the microfluidic chip is within the threshold control range of the valve control part and off; a fluid driving part configured to drive the flow of fluid in the microfluidic chip; and a controller configured to control the driving process of the microfluidic chip.
  • the carrying part includes: a carrying tray, the carrying tray includes a carrying tray bottom wall, carrying tray side walls on both sides of the carrying tray bottom wall and connected with the carrying tray bottom wall; and a carrying tray driving part, carrying The tray driving part is configured to drive the carrying tray to move between the first position and the second position, wherein when the device drives the fluid of the microfluidic chip, the position of the carrying tray is the first position, and when the microfluidic chip is driven The position of the carrier tray when the chips are loaded and removed from the carrier tray is the second position.
  • the device further includes a housing at least partially surrounding the release member, the threshold control member, the fluid actuation member, and the controller, wherein the housing includes a housing bottom wall and a housing side wall, the housing The side walls are provided with openings, and the openings are located on the connecting line between the first position and the second position of the carrier tray.
  • the carrying tray driving part includes a carrying tray power module, a carrying tray transmission module and a carrying tray slide rail, the carrying tray transmission module is connected with the carrying tray, the carrying tray slide rail is fixed on the bottom wall of the casing, and the carrying tray is The power module drives the carrying tray transmission module to drive the carrying tray to move on the carrying tray slide rail.
  • the carrier tray power module includes a carrier tray motor
  • the carrier tray transmission module includes a carrier tray slider that moves on a carrier tray slide rail and a carrier tray connector, and the carrier tray slider is connected to the carrier tray through the carrier tray connector is fixedly connected, and the bearing tray motor drives the bearing tray slider to move on the bearing tray slide rail.
  • the carrying tray motor is a stepping motor
  • the stepping motor is fixed on the bottom wall of the casing
  • the carrying tray transmission module further includes a carrying tray sliding table and a carrying tray lead screw
  • the carrying tray sliding table and the carrying tray motor are connected to each other.
  • the rotor is coaxially connected by the lead screw of the bearing tray
  • the sliding table of the bearing tray is fixedly connected with the sliding block of the bearing tray
  • the extending direction of the lead screw is parallel to the extending direction of the sliding rail of the bearing tray.
  • the carrier tray driving part further includes a first carrier tray block and a second carrier tray block located on both sides of the carrier tray slide, and the carrier tray screw passes through the first carrier tray block and the second carrier tray A pallet stopper, and the first carrier pallet stopper and the second carrier pallet stopper are fixed on the bottom wall of the casing.
  • the fluid driving component includes a fluid driving component driving portion and a first motion module, the fluid driving component driving portion being configured to drive the first motion module to move in the first direction between the third position and the fourth position, And the third position and the fourth position respectively correspond to the end positions of both ends of the first motion module reciprocating in the first direction when the device drives the fluid of the microfluidic chip.
  • the fluid-driven component driving part includes a fluid-driven component power module, a fluid-driven component transmission module, and a fluid-driven component slide rail
  • the fluid-driven component transmission module is connected to the first motion module
  • the fluid-driven component slide rail is fixed to the housing on the bottom wall of the body
  • the fluid driving component power module drives the fluid driving component transmission module to drive the first motion module to move on the fluid driving component sliding rail.
  • the fluid driven component power module includes a fluid driven component motor
  • the fluid driven component transmission module includes a fluid driven component slide that moves on a fluid driven component slide rail and a fluid driven component connector through which the fluid driven component slide passes
  • the fluid driving component connecting piece is fixedly connected with the first motion module, and the fluid driving component motor drives the fluid driving component sliding block to move on the fluid driving component sliding rail.
  • the motor of the fluid driving part is a stepping motor
  • the stepping motor is fixed on the side wall of the housing
  • the transmission module of the fluid driving part further comprises a sliding table of the fluid driving part and a screw of the fluid driving part
  • the sliding table of the fluid driving part The rotor of the motor of the fluid drive part is coaxially connected by the fluid drive part screw
  • the fluid drive part slide table is fixedly connected with the fluid drive part slider
  • the extending direction of the lead screw is parallel to the extending direction of the fluid drive part slide rail.
  • the fluid driving component driving part further includes a first fluid driving component block and a second fluid driving component stop located on both sides of the fluid driving component slide table, and the fluid driving component screw passes through the first fluid driving component
  • the stop and the second fluid drive part stop, and the first fluid drive part stop and the second fluid drive part stop are fixed on the side wall of the housing.
  • the fluid driving component further includes: a second motion module configured to engage with the microfluidic chip when the microfluidic chip is carried on the carrier tray and the carrier tray is in the first position, And the second movement module moves together with the first movement module in the first direction.
  • the microfluidic chip includes a chip driving component
  • the chip driving component includes a first insert block
  • the second motion module includes: a first protruding portion, and the first protruding portion includes an inclined surface, wherein the microfluidic chip is carried on the microfluidic chip.
  • the inclined surface is opposite to the end face of the first insert block on the side close to the inclined surface; the first slot, in which the microfluidic chip is carried on the carrier tray and the carrier tray is in the first slot; In two positions, the first slot is located on the side of the first protruding portion away from the end face; and the second protruding portion is located on the side of the first slot away from the first protruding portion, and wherein the first insert block is configured to move in a second direction as the carrier tray moves between the second position and the first position, the second direction being in the same plane as and neither parallel nor perpendicular to the direction of extension of the ramp, wherein,
  • the fluid driving component further comprises: a shaft, the first motion module and the second motion module are coaxially connected through the shaft, the first motion module is slidable relative to the shaft in a third direction, and the third direction is in the extending direction from the second direction to the inclined plane in a defined plane; and an elastic member,
  • the second direction is parallel to the first direction
  • the third direction is perpendicular to the first direction
  • the proximity of the first plug when the microfluidic chip is carried on the carrier tray and the carrier tray is in the second position
  • the end face on one side of the inclined plane is perpendicular to the first direction.
  • the first protruding portion further includes: retaining walls, the retaining walls are located on both sides of the inclined surface along the extending direction of the inclined surface.
  • the chip driving component further includes a cylindrical syringe
  • the cylindrical syringe includes: a cylindrical body; a piston configured to move in the cylindrical body, and a push rod configured to control the piston, the push rod is fixedly connected with the first insert block .
  • the microfluidic chip includes two sets of chip drive components, the two sets of chip drive components are located on two sides of the microfluidic chip, respectively, and the device includes two sets of fluid drive components configured to control the two sets of chip drive components, respectively, Two sets of fluid drive components are located on both sides of the device, respectively, and the two sets of fluid drive components include two fluid drive component slide rails, and the orthographic projection of the carrier tray on the bottom wall of the housing is located at the bottom of the housing. between orthographic projections on the wall.
  • the carrier tray includes a recess that matches the shape and location of the barrel syringe.
  • the microfluidic chip further includes: a liquid storage part; and a control electrode for controlling the release of the reagent from the liquid storage part, wherein the release part is configured to be carried on the carrying tray and carried on the microfluidic chip The tray is electrically connected to the control electrode when in the first position.
  • the release part includes: a release part support seat, the release part support seat is fixed on the bottom wall of the housing; and an electrode contact mounted on the release part support seat; wherein the electrode contact is mounted on the microfluidic chip It is carried on the carrying tray and is electrically connected to the control electrode when the carrying tray is in the first position.
  • the electrode contacts comprise pogo pin connectors.
  • the microfluidic chip further includes a second insert block
  • the carrier tray further includes a second slot matching the shape and position of the second insert block.
  • the valve control component includes: a threshold control tray; a threshold control valve on the threshold control tray and configured to control the opening and closing of flow passages within the threshold control area, and a valve control tray drive portion , the valve-controlled tray driving part is configured to drive the threshold-controlled tray to move between a fifth position and a sixth position in the fourth direction, and the fifth position and the sixth position respectively correspond to when the device drives the microfluidic chip The end positions of the two ends of the reciprocating motion of the threshold control tray.
  • the valve-controlled tray driving part includes a threshold-controlled tray power module and a threshold-controlled tray transmission module, the threshold-controlled tray transmission module is connected to the threshold-controlled tray, and the threshold-controlled tray power module drives the threshold-controlled tray transmission module to drive the threshold-controlled tray The tray moves in the fourth direction between the fifth position and the sixth position.
  • the threshold-controlled tray power module includes a threshold-controlled component motor, the threshold-controlled component motor is a stepper motor, and the stepper motor is fixedly connected to the side wall of the housing, and the threshold-controlled tray transmission module further includes a threshold-controlled tray slide table and The threshold control tray lead screw, the threshold control tray slide table and the rotor of the threshold control component motor are coaxially connected through the threshold control tray lead screw, the threshold control tray slide table and the threshold control tray are fixedly connected, and the extension direction of the threshold control tray lead screw is the same as that of the first threshold control tray lead screw. The four directions are parallel.
  • the threshold-controlled tray driving part further includes a first threshold-controlled tray stopper and a second threshold-controlled tray stopper located on both sides of the threshold-controlled tray slide table, and the threshold-controlled tray lead screw passes through the first threshold-controlled tray
  • the first threshold control tray stopper is fixed on the side wall of the casing
  • the second threshold control tray stopper is fixed on the bottom wall of the casing.
  • the carrier tray slide rail includes two rails, the orthographic projection on the bottom wall of the thresholding member housing is located between the two rails, and the thresholding tray is located on the bottom wall of the carrier tray between the first position and the bottom wall of the housing.
  • the threshold-controlled region includes a membrane valve configured to control opening and closing of the flow passage, and the threshold-controlled valve is configured to control the membrane valve in response to a power state.
  • the valve-controlled valve includes a solenoid valve
  • the solenoid valve includes a de-energized solenoid
  • the bottom wall of the carrying tray is provided with a first through hole, wherein when the microfluidic chip is carried on the carrying tray, the projection of the threshold control area on the carrying tray along the fourth direction is the same as the first through hole.
  • the through holes at least partially overlap.
  • the apparatus further includes: a temperature control component configured to control the temperature of the temperature control area when the temperature control area of the microfluidic chip is within the temperature control range of the temperature control component.
  • the threshold tray is in a sixth position when the device drives the fluid of the microfluidic chip, the threshold tray is in a fifth position when the carrier tray is in a position other than the first position, and the threshold tray is in a fifth position when the device is in a position other than the first position.
  • the valve control valve In the sixth position, the valve control valve is inserted into the first through hole and the end face of the threshold control valve remote from the threshold control tray is flush with the surface of the bottom wall of the carrier tray remote from the threshold control tray, and when the threshold control tray is in the fifth position
  • the distance between the tray and the carrying tray is greater than the distance between the threshold-controlled tray and the carrying tray when the threshold-controlled tray is in the sixth position, and the valve-controlled valve is away from the end face of the threshold-controlled tray and the carrying tray when the threshold-controlled tray is in the fifth position
  • the trays are spaced apart.
  • the bottom wall of the carrying tray is further provided with a second through hole, wherein when the microfluidic chip is carried on the carrying tray, the temperature control area of the microfluidic chip is in the fourth direction on the carrying tray The projection on the at least partially overlaps the second through hole.
  • the temperature control component is mounted on the threshold control tray, the threshold control tray is in a sixth position when the device drives the fluid of the microfluidic chip, and the threshold control tray is in a position other than the first position when the carrying tray is in a position
  • the tray is in the fifth position, when the threshold control tray is in the sixth position, the temperature control part is inserted into the second through hole and the end face of the temperature control part away from the threshold control tray is flush with the surface of the bottom wall of the carrier tray away from the threshold control tray, and at The distance between the threshold-controlled tray and the carrying tray when the threshold-controlled tray is in the fifth position is greater than the distance between the threshold-controlled tray and the carrying tray when the threshold-controlled tray is in the sixth position, and the temperature is greater when the threshold-controlled tray is in the fifth position.
  • the end face of the control part away from the threshold control tray is separated from the carrying tray by a distance.
  • the temperature control component includes a PTC heater or a cermet heating element.
  • the release member support base is provided with a through hole, and the threshold tray is connected to the threshold tray slide through the through hole.
  • the device further includes: a display external to the housing configured to display drive status or receive control instructions.
  • the device is a portable automatic drive device.
  • a driving method for the aforementioned device comprising: loading a microfluidic chip on a carrier part, so that the releasing part is electrically connected to the microfluidic chip, and the fluid driving part is connected to the microfluidic chip.
  • the control chip is snapped together and the threshold control area of the microfluidic chip is within the threshold control range of the threshold control component; and the valve control component is sequentially turned on and off to control the opening and closing of the flow channel in the threshold control area, and the release component is sequentially turned on and off.
  • the power is turned on and off to control the release of reagents in the microfluidic chip, and the fluid driving components are controlled to drive the flow and reaction of the fluid in the microfluidic chip.
  • Figure 1a shows a schematic diagram of an apparatus for driving a microfluidic chip according to some embodiments of the present disclosure
  • Fig. 1b shows a schematic diagram of the internal structure of a device for driving a microfluidic chip according to some embodiments of the present disclosure
  • FIG. 1c shows a device for driving a microfluidic chip and a partial structural schematic diagram of the microfluidic chip according to some embodiments of the present disclosure, respectively;
  • Fig. 2a-Fig. 2b schematically show a partial structural schematic diagram of a device for driving a microfluidic chip according to some embodiments of the present disclosure
  • Figure 3a shows a schematic diagram of a carrier member and its associated structure according to some embodiments of the present disclosure
  • Figures 3b-3c respectively show schematic side views of the structure shown in Figure 3a, wherein the bearing members are in a second position and a first position, respectively;
  • Figure 4a shows a schematic diagram of a fluid drive component and its associated structure according to some embodiments of the present disclosure
  • Figure 4b schematically shows a front view of the structure shown in Figure 4a;
  • Figures 4c-4d schematically show side views of the structure shown in Figure 4a with the fluid drive components in different positions;
  • FIGS. 5a-5e are schematic diagrams showing a partial structure of an apparatus for driving a microfluidic chip according to some embodiments of the present disclosure, wherein FIGS. 5a-5c are respectively in the process of moving the carrier member from the second position to the first position. At different stages, the first motion module is in a third position in FIGS. 5a-5d, and the first motion module is in a fourth position in FIG. 5e; A schematic diagram of the device for driving the microfluidic chip and part of the structure of the microfluidic chip;
  • Figure 6a shows a schematic diagram of a release member and its associated structure according to some embodiments of the present disclosure
  • Figure 6b schematically shows a perspective view of the structure shown in Figure 6a from different perspectives;
  • Figure 6c schematically shows a side view of the structure shown in Figure 6a;
  • FIG. 7a shows a schematic diagram of a threshold control component and its related structure according to some embodiments of the present disclosure
  • Figures 7b-7c respectively show schematic side views of the structure shown in Figure 7a;
  • Figures 8a-8f respectively show six-view schematic diagrams of a nucleic acid extraction apparatus according to some embodiments of the present disclosure
  • FIG. 9 schematically shows a flowchart of a driving method according to some embodiments of the present disclosure.
  • FIG. 10 schematically shows a flowchart of a driving method according to another embodiment of the present disclosure.
  • the microfluidic chip needs to be used in conjunction with the device used to drive the microfluidic chip to complete the operation of driving the microfluidic chip, such as the purpose of moving, mixing, reacting, and detecting fluids.
  • the performance of the device used to drive the microfluidic chip directly affects the performance of the microfluidic chip and the efficiency and quality of task completion.
  • the inventors of the present application found that there are currently two mainstream development directions for devices used to drive microfluidic chips.
  • One is to develop large-scale and high-throughput devices, which are mainly used in large hospitals and inspection centers;
  • the other is a portable device that is developing towards miniaturization, portability and rapidity, and is mainly used for on-site and individualized rapid detection.
  • the main driving principle of the equipment in the related art is the pipetting type or the magnetic rod type.
  • the outstanding problem of the liquid pipetting type is that it is easy to cause dead volume residue and reagent loss, while the magnetic rod type is characterized by a relatively high flux.
  • only specific specifications of consumables and kits can be used, the consumption of reagents is large, and the extracted samples need to be further manually transferred for subsequent research, which is a cumbersome process.
  • the inventor of the present application further found that the equipment in the related art usually uses a robotic arm to perform liquid pipetting or other sample transfer operations, which is complicated in structure and operation, and occupies a large volume and is not easy to carry.
  • the present invention provides a device for driving a microfluidic chip and a driving method thereof.
  • Figure 1a shows a schematic diagram of an apparatus for driving a microfluidic chip according to some embodiments of the present disclosure.
  • FIG. 1b shows a schematic diagram of the internal structure of an apparatus for driving a microfluidic chip according to some embodiments of the present disclosure.
  • FIG. 1c shows a device for driving a microfluidic chip and a partial structural schematic diagram of the microfluidic chip according to some embodiments of the present disclosure.
  • an embodiment of the present disclosure provides an apparatus 100 for driving a microfluidic chip 145, including: a carrying part 140 configured to carry the microfluidic chip 145; a releasing part 170, releasing The component 170 is configured to be electrically connected to the microfluidic chip 145 and to control the release of reagents from the microfluidic chip 145; Controls the opening and closing of the flow channel within the threshold control region when it is within the threshold control range of To control the driving process of the microfluidic chip 145 .
  • the present disclosure provides a device for driving a microfluidic chip.
  • the device for driving a microfluidic chip of the present disclosure integrates all functional modules in a miniaturized housing, has a simple and compact structure, is easy to carry, and can realize the driving process of the microfluidic chip with one click, namely, the reaction of fluid, Mixing, reaction, detection, extraction and other processes.
  • the equipment has the advantages of functional integration, saving reagents, good versatility and strong sealing, and cancels the complicated mechanical arm device and positioning structure, which greatly reduces the equipment cost.
  • Figures 2a-2b schematically show partial structural schematic diagrams of devices for driving a microfluidic chip according to some embodiments of the present disclosure.
  • Figure 3a shows a schematic diagram of a carrier member and its associated structure according to some embodiments of the present disclosure.
  • Figures 3b-3c respectively show schematic side views of the structure shown in Figure 3a, wherein the carrier tray is in a second position and a first position, respectively.
  • the carrier member 140 includes a carrier tray 1410, the carrier tray includes a carrier tray bottom wall 1412, a carrier tray on both sides of the carrier tray bottom wall and connected to the carrier tray side walls a side wall 1414; and a carrier tray drive 300 configured to drive the carrier tray 1410 to move between the first position 220 and the second position 210 in which the fluid of the microfluidic chip 145 is driven at the device 100
  • the position of the carrier tray 1410 is the first position 220
  • the position of the carrier tray 1410 when the microfluidic chip 145 is loaded and removed from the carrier tray 1410 is the second position 210 .
  • the carrier tray 1410 is in the second position 210 and the first position 220, respectively.
  • the apparatus 100 for driving the microfluidic chip 145 is performed It can be powered on to perform operations, such as reacting, mixing, reacting, detecting, extracting and other processes to the fluid in the microfluidic chip 145 under the control of the controller 190 .
  • the carrier tray 1410 is simple and compact, improving the portability of the device 100 for driving the microfluidic chip 145 .
  • the device 100 further includes a housing 110 that at least partially encloses the release member 170, the threshold control member 150, the fluid drive member 180, and the controller 190, wherein the housing
  • the body 110 includes a casing bottom wall 1102 and a casing side wall 1104, the casing side wall 1104 is provided with an opening 112, and the opening 112 is located on the connecting line between the first position 220 and the second position 210 of the carrier tray 1410 .
  • the apparatus 100 for driving a microfluidic chip further includes a hatch (not shown) for closing the opening when no components pass through the opening.
  • the carrier tray 1410 is configured to move between the first position 220 and the second position 210 through the opening 112 and at least a portion of the carrier tray 1410 in the second position 210 is located in the housing 110
  • two kinds of work stations namely, a warehouse-out station and a work station of the carrier tray 1410 can be realized, which facilitates the loading and disassembly of the microfluidic chip.
  • the device 100 for driving a microfluidic chip may adopt a flip-up structure, and the carrier member 140 does not need to be partially movable, but only needs to be in a fixed position.
  • the housing 110 can be divided into upper and lower parts, and the upper part can be opened to directly load the microfluidic chip 145 on the carrier part 140 .
  • the carrier tray drive part 300 includes a carrier tray power module 310, a carrier tray transmission module 320 and a carrier tray slide rail 330, the carrier tray transmission module 320 is connected to the carrier tray 1410, and the carrier tray The slide rail 330 is fixed on the bottom wall 1102 of the casing, and the carrier tray power module 310 drives the carrier tray transmission module 320 to drive the carrier tray 1410 to move on the carrier tray slide rail 330 . In this way, movement of the carrier tray 1410 between the first position 220 and the second position 210 is achieved.
  • the carrier tray power module 310 includes a carrier tray motor 312, the carrier tray transmission module 320 includes a carrier tray slider 332 that moves on a carrier tray slide rail 330, and a carrier tray connector 334, through which the carrier tray slider 332 passes
  • the carrier tray connector 334 is fixedly connected to the carrier tray 1410 , and the carrier tray motor 312 drives the carrier tray slider 332 to move on the carrier tray slide rail 330 . In this way, the driving of the carrying tray 1410 by the carrying tray power module 310 is realized.
  • the carrier tray motor 312 is a stepper motor, and the stepper motor is fixed on the bottom wall 1102 of the casing.
  • the carrier tray transmission module 320 further includes a carrier tray slide table 322 and a carrier tray lead screw 324.
  • the carrier tray slide table 322 is coaxially connected with the rotor of the carrier tray motor 312 through the carrier tray lead screw 324 , the carrier tray slide table 322 is fixedly connected with the carrier tray slider 332 , and the extension direction of the lead screw 324 is parallel to the extension direction of the carrier tray slide rail 330 .
  • the carrier tray driving part 300 further includes a first carrier tray block 342 and a second carrier tray block 344 located on both sides of the carrier tray slide 322, and the carrier tray screw 324 passes through the first carrier tray block Block 342 and second carrier tray stop 344 , and the first carrier tray stop 342 and the second carrier tray stop 344 are fixed to the bottom wall 1102 of the housing.
  • the first carrier tray stopper 342 and the second carrier tray stopper 344 By setting the first carrier tray stopper 342 and the second carrier tray stopper 344 , the movement range of the carrier tray slide table 322 is limited, and the carrier tray 1410 is further limited to move between the first position 220 and the second position 210 .
  • Figure 4a shows a schematic diagram of a fluid driven component and its associated structure according to some embodiments of the present disclosure.
  • Figure 4b schematically shows a front view of the structure shown in Figure 4a.
  • Figures 4c-4d schematically show side views of the structure shown in Figure 4a with the fluid drive components in different positions, respectively.
  • the fluid driving component 180 includes a fluid driving component driving portion 400 and a first motion module 450, the fluid driving component driving portion 400 being configured to drive the first motion module 450 in a first direction 470 moves between a third position and a fourth position, and the third position and the fourth position respectively correspond to the first motion module 450 in the first direction 470 when the device 100 drives the fluid of the microfluidic chip 145 The end positions of both ends of the reciprocating motion. In this way, the movement of the first motion module 450 between the third position and the fourth position is realized, which facilitates driving the fluid of the microfluidic chip.
  • movement of the fluid driven components is controlled by commands from the controller 190 .
  • the actuation of the fluid in the microfluidic chip 145 can be achieved, for example, by pneumatic actuation.
  • the fluid-driven component driving part 400 includes a fluid-driven component power module 410, a fluid-driven component transmission module 420, and a fluid-driven component slide rail 430, and the fluid-driven component transmission module 420 is connected to the first
  • the motion module 450 is connected, the fluid drive part slide rail 430 is fixed on the bottom wall 1102 of the casing, and the fluid drive part power module 410 drives the fluid drive part transmission module 420 to drive the first motion module 450 to move on the fluid drive part slide rail 430 .
  • the first motion modules 450 are respectively in different positions between the third position and the fourth position.
  • the fluid driven component power module 410 includes a fluid driven component motor 412
  • the fluid driven component transmission module 420 includes a fluid driven component slider 432 that moves on a fluid driven component slide rail 430, and a fluid driven component connector 434
  • the fluid driving component slider 432 is fixedly connected with the first motion module 450 through the fluid driving component connecting piece 434
  • the fluid driving component motor 412 drives the fluid driving component sliding block 432 to move on the fluid driving component sliding rail 430 . In this way, the driving of the first motion module 450 by the fluid driving component power module 410 is realized.
  • the fluid driving component motor 412 is a stepping motor, and the stepping motor is fixed on the side wall 1104 of the housing.
  • the fluid driving component transmission module 420 further includes a fluid driving component sliding table 422 and a fluid driving component lead screw 424,
  • the fluid driving part slide table 422 is coaxially connected with the rotor of the fluid driving part motor 412 through the fluid driving part lead screw 424, the fluid driving part slide table 422 is fixedly connected with the fluid driving part sliding block 432, and the extension direction of the lead screw 424 is related to the fluid driving part.
  • the extending directions of the driving member slide rails 430 are parallel.
  • the fluid driving component driving part 400 further includes a first fluid driving component block 442 and a second fluid driving component stop 444 located on both sides of the fluid driving component slide table 422, and the fluid driving component lead screw 424 passes through A first fluid drive member stop 442 and a second fluid drive member stop 444 are secured to the housing side wall 1104 .
  • the first fluid driving component block 442 and the second fluid driving component stop 444 By arranging the first fluid driving component block 442 and the second fluid driving component stop 444, the moving range of the fluid driving component slide table 422 is limited, and the first motion module 450 is further limited between the third position and the fourth position move.
  • the fluid driving component 180 further includes a second motion module 460 configured to interact with the microfluidic chip 145 when the microfluidic chip 145 is carried on the carrier tray 1410 and the carrier tray 1410 is in the first position 220 .
  • the microfluidic chip 145 is engaged, and the second movement module 460 moves together with the first movement module 450 in the first direction 470 .
  • the microfluidic chip can be controlled. Fluid drive in 145.
  • FIGS. 5a-5e show partial structural schematic diagrams of an apparatus for driving a microfluidic chip according to some embodiments of the present disclosure, wherein FIGS. 5a-5c are respectively in the process of moving the carrier tray 1410 from the second position 210 to the first position The different stages of the position 220, the first motion module 450 is in the third position in Figures 5a-5d, and the first motion module 450 is in the fourth position in Figure 5e.
  • 5f-5g respectively show a device for driving a microfluidic chip according to some embodiments of the present disclosure and a schematic diagram of a part of the structure of the microfluidic chip (it should be understood that, for the sake of clarity of illustration, in FIGS. 5f-5g The microfluidic chip 145 is shown separate from the release member 170).
  • the microfluidic chip 145 includes a chip driving component 1450
  • the chip driving component 1450 includes a first plug 510
  • the second motion module 460 includes: a first protrusion 520, a first protrusion
  • the portion 520 includes an inclined surface 522, wherein when the microfluidic chip 145 is carried on the carrying tray 1410 and the carrying tray 1410 is in the second position 210, the inclined surface 522 is opposite to the end surface 512 of the first plug 510 on the side close to the inclined surface 522;
  • the first slot 530 wherein when the microfluidic chip 145 is carried on the carrier tray 1410 and the carrier tray 1410 is in the second position 210, the first slot 530 is located on the side of the first protrusion 520 away from the end surface 512; and Two protruding portions 540 , the second protruding portion 540 is located on the side of the first slot 530 away from the first protruding portion 520 , and wherein the first insert
  • the elastic member 5110 surrounds the shaft 5100, and the elastic member 5110 is between the first movement module 450 and the second movement module 460.
  • the elastic member 5110 is configured to deform in the third direction 5130 in response to the compression of the second motion module 460 in the third direction 5130 and to generate a resilient force opposite to the deformation direction when deformed.
  • the first motion module 450 when the first motion module 450 is in the third position (as shown in FIGS. 5a-5d ), as the carrier tray 1410 moves from the second position 210 to the first position 220 , the first insertion block 510 The moving second direction 5120 is in the same plane as the extending direction of the inclined surface 522 and is neither parallel nor perpendicular to the extending direction of the inclined surface 522 , so the first plug 510 of the microfluidic chip 145 can be along the extending direction of the inclined surface 522 By sliding, pressure is applied to the second movement module 460 , so that the second movement module 460 moves downward along the third direction 5130 , thereby compressing the elastic member 5110 .
  • the first plug 510 of the microfluidic chip 145 enters the first slot 530 , thereby losing pressure on the second motion module 460 , which is due to the elastic member 5110
  • the elastic force rebounds upward along the third direction 5130 to realize the engagement between the second motion module 460 and the first plug 510 of the microfluidic chip 145 .
  • the first motion module 450 moves between the third position and the fourth position in the first direction 470 .
  • the movement of the first movement module 450 between the third position and the fourth position can drive the second movement module 460 to follow the first movement
  • the motion modules 450 move together, so as to apply a force to the first plug 510 through the first protrusion 520 or the second protrusion 540 , to pull and push the first plug 510 of the microfluidic chip 145 to move in the first direction 470 (as shown in FIG. 5e ), thereby realizing the driving and mixing operations of the fluid in the microfluidic chip 145 .
  • the structures of the first motion module 450 , the second motion module 460 and their related structures are simple and compact, which improves the portability of the device 100 for driving the microfluidic chip 145 .
  • the second direction 5120 is parallel to the first direction 470
  • the third direction 5130 is perpendicular to the first direction 470
  • the microfluidic chip 145 is carried on the carrier tray 1410 and the carrier tray 1410 is in the second position
  • the end surface 512 of the first insert block 510 on the side close to the inclined surface 522 is perpendicular to the first direction 470 . In this way, it is convenient for the first insert block 510 to slide along the extending direction of the inclined surface 522 so as to apply pressure to the second motion module 460 .
  • the carrier tray slides 330 and the fluid drive component slides 430 may share the same slides. In this way, the structure is further simplified.
  • the first protruding portion 520 further includes: retaining walls 524 , and the retaining walls 524 are located on both sides of the inclined surface 522 along the extending direction of the inclined surface 522 .
  • the first insert block 510 can be prevented from slipping off the inclined plane 522 when the pressure is applied to the second motion module 460, which increases the reliability and stability of the system.
  • the chip drive component 1450 further includes a barrel syringe 550 comprising: a barrel 552; a piston 554 configured to move within the barrel 552, and configured to control the piston
  • the push rod 556 of 554 is fixedly connected with the first insert block 510 .
  • the second motion module 460 can apply force to the first insert block 510 through the first protrusion 520 or the second protrusion 540, so as to pull and push the push rod 556 of the barrel-shaped syringe 550, and then can The fluid in the barrel syringe 550 is driven into other areas of the microfluidic chip and mixed with the fluid.
  • the microfluidic chip 145 includes two groups of chip driving components 1450, and the two groups of chip driving components 1450 are located on two sides of the microfluidic chip 145, respectively.
  • the two groups of fluid drive parts 180 that control the two groups of chip drive parts 1450, the two groups of fluid drive parts 180 are located on both sides of the device 100 respectively, the two groups of fluid drive parts 180 include two fluid drive part slide rails 430, and the carrying tray 1410 is located on both sides of the device 100.
  • the orthographic projection on the housing bottom wall 1102 is located between the orthographic projections of the two fluid drive member slide rails 430 on the housing bottom wall 1102 .
  • the carrier tray 1410 may include a recess 740 that matches the shape and location of the barrel syringe 550 .
  • the recess 740 can be used to accommodate the cylindrical syringe 550, which further provides positioning and makes the structure more compact.
  • the microfluidic chip 145 further includes: a liquid storage part 560; and a control electrode 570 for controlling the release of the reagent from the liquid storage part 560, wherein the release part 170 is configured to be in the microfluidic
  • the fluidic chip 145 is carried on the carrier tray 1410 and the carrier tray 1410 is electrically connected to the control electrode 570 when the carrier tray 1410 is in the first position 220 . In this way, by electrically connecting the release member 170 to the control electrode 570 , the release of the reagent in the liquid storage portion 560 can be controlled.
  • Figure 6a shows a schematic diagram of the release member 170 and its associated structure according to some embodiments of the present disclosure.
  • Figure 6b schematically shows a perspective view of the structure shown in Figure 6a from different perspectives.
  • Figure 6c schematically shows a side view of the structure shown in Figure 6a (with the electrode contacts shown in a compressed state). 5a-5g and FIGS.
  • the release member 170 includes: a release member support base 172, the release member support base 172 is fixed on the housing bottom wall 1102; and the release member support base 172 is installed Electrode contacts 174 on; wherein the electrode contacts 174 are electrically connected to the control electrodes 570 when the microfluidic chip 145 is carried on the carrier tray 1410 and the carrier tray 1410 is in the first position 220 . In this way, through the electrical connection between the electrode contact 174 and the control electrode 570, the release of the reagent in the liquid storage part 560 can be controlled.
  • the electrode contacts 174 are simple and compact, improving the portability of the device 100 for driving the microfluidic chip 145 .
  • the electrode contacts 174 comprise pogo pin connectors. In this way, stable electrical connection between the electrode contact 174 and the microfluidic chip 145 can be ensured by the resilience of the spring, the operation is simple, and the structure is compact.
  • the control electrodes 570 of the microfluidic chip 145 are brought into contact with the electrode contacts 174, forming an electrical connection (eg, turn on the circuit), so that the controller 190 provides the required voltage to the microfluidic chip 145 through the electrode contact 174, and issues corresponding instructions, such as controlling the release of the reagent in the liquid storage part 560.
  • the control electrode 570 remains electrically connected to the electrode contacts 174 during the process of driving the fluid of the microfluidic chip 145 by the apparatus 100 for driving the microfluidic chip 145. connect.
  • the number of electrode contacts 174 is 6 to 16, for example.
  • the microfluidic chip 145 further includes a second insert block 750
  • the carrier tray 1410 further includes a second slot matching the shape and position of the second insert block 750 730.
  • the second insert block 750 is configured to be inserted into the second slot 730 when the microfluidic chip 145 is carried on the carrier tray 1410 .
  • the microfluidic chip may further include a reaction zone (not shown) for reagent reaction, a waste liquid chamber (not shown) for containing waste liquid, and a collection for containing products A pool (not shown), a flow channel (not shown) for fluid flow, and the like.
  • FIG. 7a shows a schematic diagram of the threshold control component 150 and its related structure according to some embodiments of the present disclosure.
  • Figures 7b-7c respectively show schematic side views of the structure shown in Figure 7a, wherein the threshold control trays are respectively in different positions.
  • the valve control component 150 includes: a threshold control tray 1510; a threshold control valve 1520 located on the threshold control tray 1510 and configured to control flow passages within the threshold control area opening and closing, and the valve-controlled tray drive 700 configured to drive the threshold-controlled tray 1510 to move in the fourth direction 5140 between the fifth position and the sixth position, and the fifth position and the sixth position
  • the six positions respectively correspond to the end positions of both ends of the reciprocating motion of the threshold control tray 1510 when the device 100 drives the microfluidic chip 145 . In this way, movement of the threshold tray 1510 between the fifth position and the sixth position is achieved, thereby driving the threshold valve 1520 towards and away from the threshold area.
  • the valve-controlled tray driving part 700 includes a threshold-controlled tray power module 710 and a threshold-controlled tray transmission module 720, the threshold-controlled tray transmission module 720 is connected to the threshold-controlled tray 1510, and the threshold-controlled tray power module 710 drives the threshold-controlled tray
  • the transmission module 720 drives the threshold tray 1510 to move in the fourth direction 5140 between the fifth position and the sixth position. In this way, movement of the thresholded tray 1510 between the fifth and sixth positions is achieved.
  • the threshold control tray 1510 is in different positions between the fifth position and the sixth position, respectively.
  • the threshold control tray power module 710 includes a threshold control component motor 712, the threshold control component motor is a stepper motor, and the stepper motor is fixed to the side wall 1104 of the housing
  • the threshold control tray transmission module 720 also includes a threshold control tray slide 722 and a threshold control tray lead screw 724.
  • the threshold control tray slide 722 and the rotor of the threshold control component motor 712 are coaxially connected through the threshold control tray lead screw 724.
  • the tray slide 722 is fixedly connected to the threshold control tray 1510 , and the extension direction of the threshold control tray lead screw 724 is parallel to the fourth direction 5140 .
  • the threshold-controlled tray driving part 700 further includes a first threshold-controlled tray stopper 742 and a second threshold-controlled tray stopper 744 located on both sides of the threshold-controlled tray slide table 722 , and the threshold-controlled tray lead screw 724 passes through The first threshold control tray stop 742 and the second threshold control tray stop 744, and the first threshold control tray stop 742 is fixed on the side wall 1104 of the casing, and the second threshold control tray stop 744 is fixed on the bottom wall of the casing 1102 on.
  • the movement range of the threshold-controlled tray slide table 722 is limited, thereby limiting the threshold-controlled tray 1510 in the fourth direction 5140 between the fifth position and the Move between sixth positions.
  • the carrier tray slide rail 330 includes two rails 3302, 3304, and the orthographic projection of the threshold control member 150 on the bottom wall 1102 of the housing is located on the two rails 3302, 3304. 3304 is between the orthographic projections on the housing bottom wall 1102, and the threshold tray 1510 is located between the first position 220 of the carrier tray 1410 and the housing bottom wall 1102. In this way, the structure of the whole device is made more compact, and the distance that the threshold control tray 1510 moves is reduced.
  • the threshold region includes a membrane valve (not shown) configured to control the opening and closing of the flow passage, and the threshold valve 1520 is configured to control the membrane valve in response to a power state. With the membrane valve, the opening and closing of the flow channel can be realized.
  • the valve-controlled valve 1520 includes a solenoid valve (not shown), and the solenoid valve includes a de-energized solenoid.
  • the solenoid valve is configured to control the membrane valve to descend or pop up in response to the power supply state, so as to realize the closing or opening of the flow channel in the microfluidic chip 145 .
  • De-energized electromagnets show or disappear magnetically in response to the power supply state, thereby controlling the membrane valve to drop or pop up.
  • the valve control component 150 has a simple and compact structure, which improves the portability of the device 100 for driving the microfluidic chip 145 .
  • the bottom wall 1412 of the carrier tray is provided with a first through hole 810 , wherein when the microfluidic chip 145 is carried on the carrier tray 1410 , the threshold region is along the fourth The projection of the direction 5140 on the carrier tray 1410 at least partially overlaps the first through hole 810 .
  • the threshold control valve 1520 can be made closer to the threshold control area, thereby improving the threshold control effect.
  • the cross section of the first through hole 810 in a plane parallel to the bottom wall 1412 of the carrier tray has the shape of three circles communicating with each other, so that the first through hole 810 can accommodate three threshold control valves 1520.
  • the device 100 further includes a temperature control component 160 configured to control when the temperature control region of the microfluidic chip 145 is within the temperature control range of the temperature control component 160 The temperature of the temperature-controlled area.
  • a temperature control component 160 configured to control when the temperature control region of the microfluidic chip 145 is within the temperature control range of the temperature control component 160 The temperature of the temperature-controlled area.
  • the thresholding tray 1510 is in a sixth position when the apparatus 100 is driving the fluid of the microfluidic chip 145, and the thresholding tray 1510 is in a fifth position when the carrier tray 1410 is in a position other than the first position 220
  • the valve control valve 1520 is inserted into the first through hole 810 and the end face 1522 of the threshold control valve 1520 away from the threshold control tray 1510 is aligned with the surface of the bottom wall 1412 of the carrier tray away from the threshold control tray 1510 flat (as shown in Figure 2b), and the distance between the threshold tray 1510 and the carrier tray 1410 when the threshold tray 1510 is in the fifth position is greater than the distance between the threshold tray 1510 and the carrier tray when the threshold tray 1510 is in the sixth position 1410, and when the threshold tray 1510 is in the fifth position, the end face 1522 of the valve control valve 1520 away from the threshold tray 1510 and the carrier tray 1410 are at a distance.
  • the threshold control valve 1520 can be close to the threshold control area, so as to achieve a good threshold control effect; and when the threshold control tray 1510 is in the fifth position, the threshold control valve 1520 will not interfere with the carrying tray 1410 moves.
  • the threshold control component 150 is simple and compact, improving the portability of the device 100 for driving the microfluidic chip 145 .
  • the bottom wall 1412 of the carrying tray is further provided with a second through hole 820 , wherein when the microfluidic chip 145 is carried on the carrying tray 1410 , the temperature control area of the microfluidic chip 145 runs along the second through hole 820 .
  • the projection of the four directions on the carrier tray 1410 at least partially overlaps with the second through hole 820 .
  • the temperature control component 160 is mounted on the threshold control tray 1510 , and the threshold control tray 1510 is in the sixth position when the device 100 drives the fluid of the microfluidic chip 145 , and the carrier tray 1410 is in the first position 220 .
  • the threshold control tray 1510 is in the fifth position
  • the threshold control tray 1510 is in the sixth position
  • the temperature control part 160 is inserted into the second through hole 820 and the temperature control part 160 is away from the end face 162 of the threshold control tray 1510 and the bearing
  • the surface of the tray bottom wall 1412 away from the threshold tray 1510 is flush (as shown in FIG.
  • the distance between the threshold tray 1510 and the carrier tray 1410 is greater when the threshold tray 1510 is in the fifth position than in the threshold tray 1510
  • the tray corresponding to the temperature control component 160 and the threshold control valve 1520 may be the same (ie, the threshold control tray 1510 ), which further saves space and simplifies the structure.
  • the temperature control part 160 is simple and compact, which improves the portability of the device 100 for driving the microfluidic chip 145 .
  • the threshold control tray 1510 may be in two stations, namely a working station and a non-working station, wherein the threshold control area of the microfluidic chip 145 is at the threshold control valve 1520 in the working station. and the temperature control area of the microfluidic chip 145 is within the temperature control range of the temperature control component 160 .
  • the threshold control tray 1510 is lifted up along the fourth direction 5140 (refer to FIG. 7b), for example, the threshold control valve 1520 enters the first through hole 810 of the carrier tray 1410 and warms up The control part 160 enters the second through hole 820 of the carrier tray 1410 .
  • the threshold control valve 1520 can control the threshold control area and the temperature control component 160 can control the temperature control area.
  • the threshold-controlled tray 1510 falls down along the fourth direction 5140 .
  • the number of threshold valves 1520 may be three to four.
  • the temperature control component 160 may include a material that heats up when energized.
  • the temperature control components include PTC heaters or cermet heating elements to provide the desired temperature to the temperature control area.
  • the temperature control component 160 may further include a temperature sensor for sensing the temperature of the temperature control area.
  • the release member support base 172 is provided with a through hole 1710 , and the threshold tray 1510 is connected to the threshold tray slide 722 via the through hole 1710 . In this way, space is further saved and the structure is more compact.
  • the device 100 for driving a microfluidic chip can also adopt a flip-up structure.
  • part of the structure of the valve control component 150 does not need to be moved, for example, the threshold control valve 1520 can always remain in the first through hole 810 , the temperature control part 160 may always remain in the second through hole 820 .
  • the device 100 further includes a display 130 located outside the housing 110, configured to display a driving status or receive control commands.
  • the user can issue an instruction to the controller 190 through the control screen, and can also display the received controller feedback on the control screen, which improves the operation efficiency and facilitates real-time monitoring of the equipment status.
  • the device 100 for driving the microfluidic chip 145 further includes: other user interfaces located outside the housing 110 , such as a mouse, a keyboard, a joystick, etc., which are not repeated here.
  • controller 190 may be electrically connected to one or more of user interface 130, carrier member 140, valve control member 150, temperature control member 160, release member 170, and fluid actuation member 180, respectively, to transmit control instruction.
  • one or more of carrier tray 1410 , valve control member 150 , temperature control member 160 , release member 170 , fluid drive member 180 , and controller 190 in the first position may be located inside housing 110 .
  • the carrier tray slide rail may include two rails 3302, 3304, which may be fixedly mounted on the bottom wall 1102 of the housing.
  • the orthographic projection of the carrier tray on the housing bottom wall 1102 may lie between the orthographic projections of the two rails 3302 , 3304 on the housing bottom wall 1102 .
  • the bearing tray motor, the bearing tray slide, the first bearing tray stopper and the second bearing tray stopper may be coaxially connected by the bearing tray screw, and the bearing tray motor, the first bearing tray stopper and the second bearing tray stopper may be Fixed to the housing bottom wall 1102 and the carrier tray motor, carrier tray slide, carrier tray screw, first carrier tray stop and second carrier tray stop can be located on the same side of the two rails 3302, 3304. In this way, the space utilization rate is improved, the bearing components and their related structures are made as compact as possible, the structure is simplified, and the cost is reduced.
  • the carrier tray slide rails and the fluid drive component slide rails may share the same slide rails, ie share two rails 3302, 3304.
  • the carrier tray slider and the fluid drive member slider can move within different ranges of a single track, respectively, thereby preventing the carrier tray slider from colliding with the fluid drive member slider.
  • Two sets of fluid driving components 180 may be located on either side of the device 100, respectively.
  • the two sets of first motion modules in the two sets of fluid driving components 180 may both be located on a side of the first position of the carrier tray away from the second position.
  • the fluid drive unit motor, fluid drive unit slide, first fluid drive unit stop, and second fluid drive unit stop in each of the two sets of fluid drive units 180 may be coaxially connected by a fluid drive unit lead screw.
  • the fluid drive part motor, the first fluid drive part stop and the second fluid drive part stop of each of the two sets of fluid drive parts 180 may be secured to the housing side wall 1104 .
  • the orthographic projections of the fluid drive part motor, the first fluid drive part stop and the second fluid drive part stop on the housing bottom wall 1102 of one of the two sets of fluid drive parts 180 can be respectively aligned with the carrier tray.
  • the orthographic projections of the motor, the first carrier tray stop, and the second carrier tray stop on the housing bottom wall 1102 at least partially overlap.
  • the orthographic projections of the two sets of fluid-driven component motors, the first fluid-driven component block, and the second fluid-driven component stop on the housing bottom wall 1102 may all be located on the positive side of the two rails 3302 , 3304 on the housing bottom wall 1102 .
  • the outer side of the projection, and the orthographic projections of the two sets of first motion modules on the bottom wall of the housing 1102 may both be located between the orthographic projections of the two rails 3302 and 3304 on the bottom wall of the housing 1102 . In this way, the space utilization rate is improved, the fluid driving components and their related structures are made as compact as possible, the structure is simplified, and the cost is reduced.
  • the release member 170 may be located on a side of the carrier tray in the first position away from the second position, and the release member 170 may be proximate the carrier tray in the first position.
  • the release part support seat can avoid the position of the chip driving part of the microfluidic chip 145, so that the orthographic projection of the release part support seat on the bottom wall 1102 of the casing can be located on the respective motion trajectories of the two sets of first motion modules (that is, in the third The motion trajectory of the movement between the position and the fourth position) is between the orthographic projections on the bottom wall 1102 of the housing.
  • the space utilization rate is improved, the release component and its related structure are made as compact as possible, the structure is simplified, and the cost is reduced.
  • the orthographic projection of the thresholding member 150 on the housing bottom wall 1102 may be located between the orthographic projections of the two rails 3302, 3304 on the housing bottom wall 1102, and the thresholding tray It may be located between the first position of the carrier tray and the bottom wall 1102 of the housing.
  • the threshold control part motor, the threshold control tray slide table and the threshold control tray lead screw, the first threshold control tray stopper and the second threshold control tray stopper may be located on the side of the release part support seat away from the first position of the carrier tray 1410 .
  • the release member support base may be provided with a through hole, and the threshold control tray may be connected to the threshold control tray slide via the through hole.
  • the threshold control component motor and the first threshold control tray stopper can be fixed to the housing side walls 1104 located on both sides of the device 100 through the threshold control connection members 1106 .
  • Controller 190 may be mounted on threshold connection 1106 . In this way, the space utilization rate is improved, the threshold control components, the temperature control components, the controller and their related structures are made as compact as possible, the structure is simplified, and the cost is reduced.
  • the device 100 for driving the microfluidic chip 145 is a portable automatic driving device, that is, the device 100 can automatically complete the entire driving process in response to a user's simple operation or even without user operation.
  • the device 100 can automatically complete the entire driving process in response to a user's simple operation or even without user operation.
  • the apparatus 100 for driving the microfluidic chip 145 provided by the present disclosure can be used as a nucleic acid extractor that meets these needs.
  • Figures 8a-8f respectively show six-view schematic diagrams of a nucleic acid extraction apparatus 800 according to some embodiments of the present disclosure.
  • Nucleic acid extractor 800 can integrate all modules of nucleic acid extraction into one device, so that rapid extraction of sample nucleic acid can be realized with one click.
  • Embodiments of the present disclosure also provide a driving method for the aforementioned device 100 for driving the microfluidic chip 145 .
  • FIG. 9 schematically shows a flowchart of a driving method 900 according to some embodiments of the present disclosure. Referring to FIG.
  • the driving method 900 includes: S910, loading a microfluidic chip on the carrier component, so that the release component is electrically connected to the microfluidic chip, the fluid driving component is engaged with the microfluidic chip, and the threshold control of the microfluidic chip is performed The region is within the threshold control range of the threshold control component; and S920, turn on and off the valve control component in sequence to control the opening and closing of the flow channel in the threshold control area, and turn on and off the release component in sequence to control the flow of the microfluidic chip. Reagent release, and control of fluid actuation components to drive fluid flow and reaction in the microfluidic chip.
  • step S910 may include: moving the carrier tray to the second position; loading the microfluidic chip on the carrier tray; moving the carrier tray from the second position to the first position through the opening, while releasing the component and the The microfluidic chip is electrically connected and the fluid driving component is engaged with the microfluidic chip; and the valve control tray is moved so that the threshold control area is within the threshold control range of the threshold control component.
  • the driving method has advantages and effects similar to those of the apparatus 100 for driving the microfluidic chip 145 described above, and will not be repeated here.
  • Step 1 prepare the microfluidic chip 145, inject the sample to be subjected to nucleic acid extraction into the microfluidic chip 145, and seal the microfluidic chip 145;
  • Step 2 move the carrying tray 1410 to the second position 210;
  • Step 3 Load the microfluidic chip 145 on the carrier tray 1410;
  • Step 4 The carrier tray 1410 is moved from the second position 210 to the first position 220 through the opening 112, while the control electrode 570 of the microfluidic chip 145 is in electrical contact with the release part 170, and the release part 170 is compressed by force; and at the same time the fluid
  • the first motion module 450 of the driving part 180 is in the third position, and the elastic part 5110 of the fluid driving part 180 is in the third direction 5130 in response to the movement of the first plug 510 of the microfluidic chip 145 in the second direction 5120. undergo the process of uncompression-compression-rebound, so as to realize the engagement of the first slot 530 and the first insert block 510;
  • Step 5 control the threshold control component motor 712 to make the threshold control tray 1510 rise upward, so that the threshold control valve 1520 and the temperature control component 160 are respectively close to the threshold control area and the temperature control area of the microfluidic chip 145;
  • Step 6 applying a voltage to the release part 170 to open the valve of the liquid storage part 560 corresponding to the microfluidic chip 145 to control the release of the reagent of the microfluidic chip 145;
  • Step 7 The threshold control valve 1520 controls the valve corresponding to the liquid storage part 560 and the valve corresponding to the flow channel connected to the liquid storage part 560 in the microfluidic chip 145 to open, other valves are kept closed, and the fluid driving part 180 starts to flow
  • the fourth position moves to drive the reagent released by the liquid storage part 560 into the reaction area of the microfluidic chip 145, wherein the temperature control part 160 is selectively turned on according to needs during this process to provide an appropriate temperature for the reaction;
  • Step 8 The fluid driving component 180 reciprocates to perform a mixing operation on the reagents released into the microfluidic chip 145;
  • Step 9 The fluid driving component 180 continues to move to the fourth position, and drives the reagent that has completed the reaction into the waste liquid chamber or the collection tank.
  • Step 6, Step 7, Step 8 and Step 9 can be repeated many times, so as to complete the release of lysis solution, magnetic beads, binding solution, cleaning solution, eluent, etc. in nucleic acid extraction and reaction.
  • FIG. 10 schematically shows a flowchart of a driving method (nucleic acid extraction process) according to another embodiment of the present disclosure.
  • the driving method (nucleic acid extraction process) 1000 includes the following steps:
  • step S1050 determine whether the release part is electrically connected to the microfluidic chip, if "yes”, go to step S1060, if "no", return to step S1040;
  • step S1070 determine whether the valve control area is within the threshold control range of the threshold control valve, if "yes”, go to step S1080, if "no", return to step S1060;
  • step S1080 Determine whether the fluid driving component is well engaged with the microfluidic chip, if "Yes”, proceed to step S1110, if "No”, proceed to step S1090 (move the fluid driving component), and proceed again after performing step S1090 Step S1080;
  • the driving method (nucleic acid extraction process) 1000 may include determination steps S1050 , S1070 , S1080 , S1160 and corresponding feedback adjustment.
  • step S1080 if it is determined that the fluid driving component is not properly engaged with the microfluidic chip, the fluid driving component can be moved to correct it, which ensures the success rate of the driving method and improves the efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)

Abstract

公开了用于驱动微流控芯片的设备和驱动方法。用于驱动微流控芯片的设备,包括:承载部件,承载部件配置成承载微流控芯片;释放部件,释放部件配置成与微流控芯片进行电连接以及控制微流控芯片的试剂释放;阀控部件,阀控部件配置成在微流控芯片的阈控区域处于阀控部件的阈控范围内时控制在阈控区域内的流道的打开和关闭;流体驱动部件,流体驱动部件配置成驱动微流控芯片中流体的流动;以及控制器,控制器配置成控制对微流控芯片的驱动过程。

Description

用于驱动微流控芯片的设备和驱动方法 技术领域
本公开涉及生物检测领域,并且更特别地涉及用于驱动微流控芯片的设备和驱动方法。
背景技术
微流控芯片又称为芯片实验室(Lab-on-a-chip),是指把生物、化学和医学等领域中所涉及的样本制备、反应、分离、检测等基本操作单元集成到一块具有微米尺度微通道的芯片上,自动完成反应和分析的全过程。基于微流控芯片的分析检测装置可以具有下列优点:样本用量少、分析速度快以及非常适用于即时、现场分析。而且,微流控芯片可以设计为一次性使用产品,这样可省去复杂的清洗和废液处理等液路系统。
发明内容
在本公开的一方面,提供了一种用于驱动微流控芯片的设备,包括:承载部件,承载部件配置成承载微流控芯片;释放部件,释放部件配置成与微流控芯片进行电连接以及控制微流控芯片的试剂释放;阀控部件,阀控部件配置成在微流控芯片的阈控区域处于阀控部件的阈控范围内时控制在阈控区域内的流道的打开和关闭;流体驱动部件,流体驱动部件配置成驱动微流控芯片中流体的流动;以及控制器,控制器配置成控制对微流控芯片的驱动过程。
在一些实施例中,承载部件包括:承载托盘,承载托盘包括承载托盘底壁、在承载托盘底壁的两侧并且与承载托盘底壁相连接的承载托盘侧壁;和承载托盘驱动部,承载托盘驱动部配置成驱动承载托盘在第一位置与第二位置之间移动,其中在设备对微流控芯片的流体进行驱动时承载托盘所处的位置为第一位置,并且在将微流控芯片在承载托盘上装载和拆卸时承载托盘所处的位置为第二位置。
在一些实施例中,设备还包括:壳体,壳体至少部分地包围释放部件、阈控部件、流体驱动部件和控制器,其中,壳体包括壳体底壁和壳体侧壁,壳体侧壁上设置有开口,并且开口位于在承载托盘的第 一位置与第二位置之间的连线上。
在一些实施例中,承载托盘驱动部包括承载托盘动力模块、承载托盘传动模块以及承载托盘滑轨,承载托盘传动模块与承载托盘连接,承载托盘滑轨固定于壳体底壁上,并且承载托盘动力模块带动承载托盘传动模块以驱动承载托盘在承载托盘滑轨上移动。
在一些实施例中,承载托盘动力模块包括承载托盘电机,承载托盘传动模块包括在承载托盘滑轨上移动的承载托盘滑块以及承载托盘连接件,承载托盘滑块通过承载托盘连接件与承载托盘固接,并且承载托盘电机驱动承载托盘滑块在承载托盘滑轨上移动。
在一些实施例中,承载托盘电机为步进电机,步进电机固定于壳体底壁上,承载托盘传动模块还包括承载托盘滑台以及承载托盘丝杠,承载托盘滑台与承载托盘电机的转子通过承载托盘丝杠同轴连接,承载托盘滑台与承载托盘滑块固接,并且丝杠的延伸方向与承载托盘滑轨的延伸方向平行。
在一些实施例中,承载托盘驱动部还包括位于承载托盘滑台两侧的第一承载托盘挡块和第二承载托盘挡块,承载托盘丝杠穿过第一承载托盘挡块和第二承载托盘挡块,并且第一承载托盘挡块和第二承载托盘挡块固定于壳体底壁上。
在一些实施例中,流体驱动部件包括流体驱动部件驱动部以及第一运动模块,流体驱动部件驱动部配置成驱动第一运动模块在第一方向上在第三位置和第四位置之间移动,并且第三位置和第四位置分别对应于在设备对微流控芯片的流体进行驱动时第一运动模块在第一方向上往复运动的两端终点位置。
在一些实施例中,流体驱动部件驱动部包括流体驱动部件动力模块、流体驱动部件传动模块以及流体驱动部件滑轨,流体驱动部件传动模块与第一运动模块连接,流体驱动部件滑轨固定于壳体底壁上,并且流体驱动部件动力模块带动流体驱动部件传动模块以驱动第一运动模块在流体驱动部件滑轨上移动。
在一些实施例中,流体驱动部件动力模块包括流体驱动部件电机,流体驱动部件传动模块包括在流体驱动部件滑轨上移动的流体驱动部件滑块以及流体驱动部件连接件,流体驱动部件滑块通过流体驱动部件连接件与第一运动模块固接,并且流体驱动部件电机驱动流体驱动 部件滑块在流体驱动部件滑轨上移动。
在一些实施例中,流体驱动部件电机为步进电机,步进电机固定于壳体侧壁上,流体驱动部件传动模块还包括流体驱动部件滑台以及流体驱动部件丝杠,流体驱动部件滑台与流体驱动部件电机的转子通过流体驱动部件丝杠同轴连接,流体驱动部件滑台与流体驱动部件滑块固接,并且丝杠的延伸方向与流体驱动部件滑轨的延伸方向平行。
在一些实施例中,流体驱动部件驱动部还包括位于流体驱动部件滑台两侧的第一流体驱动部件挡块和第二流体驱动部件挡块,流体驱动部件丝杠穿过第一流体驱动部件挡块和第二流体驱动部件挡块,并且第一流体驱动部件挡块和第二流体驱动部件挡块固定于壳体侧壁上。
在一些实施例中,流体驱动部件还包括:第二运动模块,第二运动模块配置成在微流控芯片被承载于承载托盘上并且承载托盘处于第一位置时与微流控芯片卡合,并且第二运动模块在第一方向上随第一运动模块一起运动。
在一些实施例中,微流控芯片包括芯片驱动部件,芯片驱动部件包括第一插块,第二运动模块包括:第一突起部,第一突起部包括斜面,其中在微流控芯片被承载于承载托盘上并且承载托盘处于第二位置时,斜面与第一插块的靠近斜面一侧的端面相对;第一插槽,其中在微流控芯片被承载于承载托盘上并且承载托盘处于第二位置时,第一插槽位于第一突起部远离端面一侧;和第二突起部,第二突起部位于第一插槽远离第一突起部的一侧,以及其中,第一插块配置成当承载托盘在第二位置与第一位置之间移动时在第二方向上移动,第二方向与斜面的延伸方向在同一平面内并且与斜面的延伸方向既不平行也不垂直,其中,流体驱动部件还包括:轴,第一运动模块与第二运动模块通过轴同轴连接,第一运动模块相对于轴在第三方向上可滑动,第三方向在由第二方向与斜面的延伸方向限定的平面内;和弹性部件,弹性部件包围轴,并且弹性部件在第一运动模块与第二运动模块之间。
在一些实施例中,第二方向平行于第一方向,第三方向垂直于第一方向,并且在微流控芯片被承载于承载托盘上并且承载托盘处于第二位置时第一插块的靠近斜面一侧的端面垂直于第一方向。
在一些实施例中,第一突起部还包括:挡墙,挡墙沿着斜面的延伸方向位于斜面的两侧。
在一些实施例中,芯片驱动部件还包括筒状注射器,筒状注射器包括:筒体;配置成在筒体内移动的活塞,以及配置成控制活塞的推杆,推杆与第一插块固接。
在一些实施例中,微流控芯片包括两组芯片驱动部件,两组芯片驱动部件分别位于微流控芯片的两侧,设备包括配置成分别控制两组芯片驱动部件的两组流体驱动部件,两组流体驱动部件分别位于设备的两侧,两组流体驱动部件包括两条流体驱动部件滑轨,并且承载托盘在壳体底壁上的正投影位于两条流体驱动部件滑轨在壳体底壁上的正投影之间。
在一些实施例中,承载托盘包括与筒状注射器的形状和位置相匹配的凹部。
在一些实施例中,微流控芯片还包括:储液部;和用于控制储液部的试剂释放的控制电极,其中,释放部件配置成在微流控芯片被承载于承载托盘上并且承载托盘处于第一位置时与控制电极电连接。
在一些实施例中,释放部件包括:释放部件支撑座,释放部件支撑座固定于壳体底壁上;和安装在释放部件支撑座上的电极触点;其中电极触点在微流控芯片被承载于承载托盘上并且承载托盘处于第一位置时与控制电极电连接。
在一些实施例中,电极触点包括弹簧针连接器。
在一些实施例中,微流控芯片还包括第二插块,承载托盘还包括与第二插块的形状和位置相匹配的第二插槽。
在一些实施例中,阀控部件包括:阈控托盘;阈控阀,阈控阀位于阈控托盘上并且配置成控制在阈控区域内的流道的打开和关闭,和阀控托盘驱动部,阀控托盘驱动部配置成驱动阈控托盘在第四方向上在第五位置和第六位置之间移动,并且第五位置和第六位置分别对应于在设备对微流控芯片进行驱动时阈控托盘往复运动的两端终点位置。
在一些实施例中,阀控托盘驱动部包括阈控托盘动力模块以及阈控托盘传动模块,阈控托盘传动模块与阈控托盘连接,阈控托盘动力模块带动阈控托盘传动模块以驱动阈控托盘在第四方向上在第五位置和第六位置之间移动。
在一些实施例中,阈控托盘动力模块包括阈控部件电机,阈控部件电机为步进电机,步进电机与壳体侧壁固接,阈控托盘传动模块还 包括阈控托盘滑台和阈控托盘丝杠,阈控托盘滑台与阈控部件电机的转子通过阈控托盘丝杠同轴连接,阈控托盘滑台与阈控托盘固接,阈控托盘丝杠的延伸方向与第四方向平行。
在一些实施例中,阈控托盘驱动部还包括位于阈控托盘滑台两侧的第一阈控托盘挡块和第二阈控托盘挡块,阈控托盘丝杠穿过第一阈控托盘挡块和第二阈控托盘挡块,并且第一阈控托盘挡块固定于壳体侧壁上,第二阈控托盘挡块固定于壳体底壁上。
在一些实施例中,承载托盘滑轨包括两条轨道,阈控部件壳体底壁上的正投影位于两条轨道壳体底壁上的正投影之间,并且阈控托盘位于处于承载托盘的第一位置与壳体底壁之间。
在一些实施例中,阈控区域包括配置成控制流道的打开和关闭的薄膜阀,并且阈控阀配置成响应于供电状态控制薄膜阀。
在一些实施例中,阀控阀包括电磁阀,并且电磁阀包括失电型电磁铁。
在一些实施例中,承载托盘底壁上设置有第一通孔,其中,在微流控芯片被承载于承载托盘上时,阈控区域沿着第四方向在承载托盘上的投影与第一通孔至少部分重叠。
在一些实施例中,设备还包括:温控部件,温控部件配置成在微流控芯片的温控区域处于温控部件的温控范围内时控制温控区域的温度。
在一些实施例中,在设备对微流控芯片的流体进行驱动时阈控托盘处于第六位置,在承载托盘处于第一位置之外的位置时阈控托盘处于第五位置,在阈控托盘处于第六位置时阀控阀插入第一通孔中并且阈控阀远离阈控托盘的端面与承载托盘底壁远离阈控托盘的表面齐平,以及在阈控托盘处于第五位置时阈控托盘与承载托盘之间的距离大于在阈控托盘处于第六位置时阈控托盘与承载托盘之间的距离,并且在阈控托盘处于第五位置时阀控阀远离阈控托盘的端面与承载托盘相距一距离。
在一些实施例中,承载托盘底壁上还设置有第二通孔,其中,在微流控芯片被承载于承载托盘上时,微流控芯片的温控区域沿着第四方向在承载托盘上的投影与第二通孔至少部分重叠。
在一些实施例中,温控部件安装于阈控托盘上,在设备对微流控 芯片的流体进行驱动时阈控托盘处于第六位置,在承载托盘处于第一位置之外的位置时阈控托盘处于第五位置,在阈控托盘处于第六位置时温控部件插入第二通孔中并且温控部件远离阈控托盘的端面与承载托盘底壁远离阈控托盘的表面齐平,以及在阈控托盘处于第五位置时阈控托盘与承载托盘之间的距离大于在阈控托盘处于第六位置时阈控托盘与承载托盘之间的距离,并且在阈控托盘处于第五位置时温控部件远离阈控托盘的端面与承载托盘相距一距离。
在一些实施例中,温控部件包括PTC加热器或金属陶瓷发热体。
在一些实施例中,释放部件支撑座设置有通孔,并且阈控托盘穿过通孔连接到阈控托盘滑台。
在一些实施例中,设备还包括:位于壳体的外部的显示器,配置成显示驱动状态或接收控制指令。
在一些实施例中,设备为便携式自动驱动设备。
在本公开的另一方面,还提供了一种用于前述设备的驱动方法,包括:在承载部件上装载微流控芯片,使得释放部件与微流控芯片电连接、流体驱动部件与微流控芯片卡合以及微流控芯片的阈控区域处于阈控部件的阈控范围内;以及对阀控部件按顺序通断电以控制阈控区域中流道的打开和关闭,对释放部件按顺序通断电以控制微流控芯片的试剂释放,以及控制流体驱动部件以驱动流体在微流控芯片中的流动和反应。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例。
图1a示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的示意图;
图1b示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的内部结构示意图;
图1c分别示出了根据本公开的一些实施例的用于驱动微流控芯片的设备以及微流控芯片的部分结构示意图;
图2a-图2b示意性的示出了根据本公开的一些实施例的用于驱动 微流控芯片的设备的部分结构示意图;
图3a示出了根据本公开的一些实施例的承载部件及其相关结构的示意图;
图3b-3c分别示出了图3a所示的结构的侧视示意图,其中承载部件分别处于第二位置和第一位置;
图4a出了根据本公开的一些实施例的流体驱动部件及其相关结构的示意图;
图4b示意性地示出了图4a所示的结构的正视图;
图4c-4d示意性地示出了图4a所示的结构的侧视图,其中流体驱动部件分别处于不同的位置;
图5a-5e示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的部分结构示意图,其中图5a-5c分别处于在将承载部件从第二位置移动至第一位置的不同阶段,在图5a-5d中第一运动模块处于第三位置,以及在图5e中第一运动模块处于第四位置;图5f-5g分别示出了根据本公开的一些实施例的用于驱动微流控芯片的设备以及微流控芯片的部分结构示意图;
图6a示出了根据本公开的一些实施例的释放部件及其相关结构的示意图;
图6b示意性地示出了图6a所示的结构的不同视角的透视图;
图6c示意性地示出了图6a所示的结构的侧视图;
图7a示出了根据本公开的一些实施例的阈控部件及其相关结构的示意图;
图7b-7c分别示出了图7a所示结构的侧视示意图;
图8a-8f分别示出了根据本公开的一些实施例的核酸提取仪的六视图示意图;
图9示意性地示出了根据本公开的一些实施例的驱动方法的流程图;以及
图10示意性的示出了根据本公开的另一实施例的驱动方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结 合附图对本公开实施例的技术方案作进一步地详细描述。
在一些情况下,微流控芯片需要同用于驱动微流控芯片的设备配合使用才能够完成驱动微流控芯片的操作,例如实现流体的移动、混合、反应、检测等目的。用于驱动微流控芯片的设备的性能直接影响微流控芯片的性能以及任务完成的效率和质量。
本申请的发明人发现,针对用于驱动微流控芯片的设备,当前的主流发展方向有2个,一种是向大型化、高通量发展的设备,主要用在大型医院、检验中心;另一种是向小型化、便携化、快速化发展的便携式设备,主要用于现场、个体化快速检测。在相关技术中的设备主要采用的驱动原理是移液式或磁棒式,其中,移液式的突出问题是容易造成死体积残留和试剂损失,而磁棒式的特点是通量相对较高,但只能采用特定规格的耗材和试剂盒,试剂消耗量较大,且提取后的样品需要经进一步人工转移才可进行后续研究,过程繁琐。
本申请的发明人进一步发现,在相关技术中的设备通常采用机械臂进行移液或者其他样品转移操作,结构和操作繁琐,占用体积大而不便于携带。
为了解决上述问题中的至少部分,本发明提供了一种用于驱动微流控芯片的设备及其驱动方法。
图1a示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的示意图。图1b示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的内部结构示意图。图1c示出了根据本公开的一些实施例的用于驱动微流控芯片的设备以及微流控芯片的部分结构示意图。参照图1a-1c,本公开的实施例提供了一种用于驱动微流控芯片145的设备100,包括:承载部件140,承载部件140配置成承载微流控芯片145;释放部件170,释放部件170配置成与微流控芯片145进行电连接以及控制微流控芯片145的试剂释放;阀控部件150,阀控部件150配置成在微流控芯片145的阈控区域处于阀控部件145的阈控范围内时控制在阈控区域内的流道的打开和关闭;流体驱动部件180,流体驱动部件180配置成驱动微流控芯片145中流体的流动;以及控制器190,控制器配置成控制对微流控芯片145的驱动过程。
本公开提供了一种用于驱动微流控芯片的设备。通过设置承载部件、释放部件、阀控部件、流体驱动部件以及控制器,能够实现对微 流控芯片的承载、供电、流道控制以及流体驱动。本公开的用于驱动微流控芯片的设备将所有功能模块集成于小型化的壳体内,结构简单、紧凑,便于携带,可一键式实现微流控芯片的驱动过程,即流体的反应、混合、反应、检测、提取等过程。该设备具有功能集成、节约试剂、通用性好、封闭性强的优点,且取消了复杂的机械臂装置和定位结构,极大地降低了设备成本。
图2a-图2b示意性的示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的部分结构示意图。图3a示出了根据本公开的一些实施例的承载部件及其相关结构的示意图。图3b-3c分别示出了图3a所示的结构的侧视示意图,其中承载托盘分别处于第二位置和第一位置。参照图1a-图3c,在一些实施例中,承载部件140包括:承载托盘1410,承载托盘包括承载托盘底壁1412、在承载托盘底壁的两侧并且与承载托盘侧壁相连接的承载托盘侧壁1414;和承载托盘驱动部300,承载托盘驱动部300配置成驱动承载托盘1410在第一位置220与第二位置210之间移动,其中在设备100对微流控芯片145的流体进行驱动时承载托盘1410所处的位置为第一位置220,并且在将微流控芯片145在承载托盘1410上装载和拆卸时承载托盘1410所处的位置为第二位置210。示例地,在图2a和2b中,承载托盘1410分别处于第二位置210和第一位置220。在一些实施例中,在承载托盘1410位于第二位置210时,进行微流控芯片145的装载和拆卸;在承载托盘1410处于第一位置220时,用于驱动微流控芯片145的设备100可以通电进行操作,例如在控制器190的控制下对微流控芯片145的流体进行反应、混合、反应、检测、提取等过程。承载托盘1410简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
参照图1a-图3c,在一些实施例中,设备100还包括:壳体110,壳体110至少部分地包围释放部件170、阈控部件150、流体驱动部件180和控制器190,其中,壳体110包括壳体底壁1102和壳体侧壁1104,壳体侧壁1104上设置有开口112,并且开口112位于在承载托盘1410的第一位置220与第二位置210之间的连线上。可选地,用于驱动微流控芯片的设备100还包括舱门(未示出),舱门用于在没有部件穿过开口时封闭开口。通过在壳体侧壁1104上设置开口112,承载托盘1410配置成通过开口112在第一位置220与第二位置210之间移动并 且处于第二位置210的承载托盘1410的至少部分位于壳体110外部,可以实现承载托盘1410的出仓工位和工作工位这2种工位,方便微流控芯片的装载和拆卸。
在一些实施例中,用于驱动微流控芯片的设备100可以采用上翻盖式结构,承载部件140不需要设置成部分可移动,只需要处于固定位置。在这种情况下,壳体110可以分为上下两部分,翻开上部分可以直接将微流控芯片145装载于承载部件140上。
参照图2a-图3c,在一些实施例中,承载托盘驱动部300包括承载托盘动力模块310、承载托盘传动模块320以及承载托盘滑轨330,承载托盘传动模块320与承载托盘1410连接,承载托盘滑轨330固定于壳体底壁1102上,并且承载托盘动力模块310带动承载托盘传动模块320以驱动承载托盘1410在承载托盘滑轨330上移动。这样,实现了承载托盘1410在第一位置220与第二位置210之间移动。
在一些实施例中,承载托盘动力模块310包括承载托盘电机312,承载托盘传动模块320包括在承载托盘滑轨330上移动的承载托盘滑块332以及承载托盘连接件334,承载托盘滑块332通过承载托盘连接件334与承载托盘1410固接,并且承载托盘电机312驱动承载托盘滑块332在承载托盘滑轨330上移动。这样,实现了承载托盘动力模块310对承载托盘1410的驱动。
在一些实施例中,承载托盘电机312为步进电机,步进电机固定于壳体底壁1102上,承载托盘传动模块320还包括承载托盘滑台322以及承载托盘丝杠324,承载托盘滑台322与承载托盘电机312的转子通过承载托盘丝杠324同轴连接,承载托盘滑台322与承载托盘滑块332固接,并且丝杠324的延伸方向与承载托盘滑轨330的延伸方向平行。通过设置步进电机、滑台和丝杠结构,实现了承载托盘动力模块310对承载托盘1410的高效、紧凑、稳定且成本友好的驱动结构。
在一些实施例中,承载托盘驱动部300还包括位于承载托盘滑台322两侧的第一承载托盘挡块342和第二承载托盘挡块344,承载托盘丝杠324穿过第一承载托盘挡块342和第二承载托盘挡块344,并且第一承载托盘挡块342和第二承载托盘挡块344固定于壳体底壁1102上。通过设置第一承载托盘挡块342和第二承载托盘挡块344,限定了承载托盘滑台322的移动范围,进而限定了承载托盘1410在第一位置220 与第二位置210之间移动。
图4a出了根据本公开的一些实施例的流体驱动部件及其相关结构的示意图。图4b示意性地示出了图4a所示的结构的正视图。图4c-4d示意性地示出了图4a所示的结构的侧视图,其中流体驱动部件分别处于不同的位置。在一些实施例中,如图4a-4d所示,流体驱动部件180包括流体驱动部件驱动部400以及第一运动模块450,流体驱动部件驱动部400配置成驱动第一运动模块450在第一方向470上在第三位置和第四位置之间移动,并且第三位置和第四位置分别对应于在设备100对微流控芯片145的流体进行驱动时第一运动模块450在第一方向470上往复运动的两端终点位置。这样,实现了第一运动模块450在第三位置和第四位置之间移动,便于对微流控芯片的流体进行驱动。示例地,流体驱动部件的移动受控制器190的指令控制。通过第一运动模块450在第一方向470上在第三位置和第四位置之间移动,可以实现对微流控芯片145中的流体的驱动,例如通过气压驱动。
参照图4a-图4c,在一些实施例中,流体驱动部件驱动部400包括流体驱动部件动力模块410、流体驱动部件传动模块420以及流体驱动部件滑轨430,流体驱动部件传动模块420与第一运动模块450连接,流体驱动部件滑轨430固定于壳体底壁1102上,并且流体驱动部件动力模块410带动流体驱动部件传动模块420以驱动第一运动模块450在流体驱动部件滑轨430上移动。这样,实现了第一运动模块450在第三位置和第四位置之间移动。其中,在图4c-4d中第一运动模块450分别处于在第三位置与第四位置之间的不同位置。
在一些实施例中,流体驱动部件动力模块410包括流体驱动部件电机412,流体驱动部件传动模块420包括在流体驱动部件滑轨430上移动的流体驱动部件滑块432以及流体驱动部件连接件434,流体驱动部件滑块432通过流体驱动部件连接件434与第一运动模块450固接,并且流体驱动部件电机412驱动流体驱动部件滑块432在流体驱动部件滑轨430上移动。这样,实现了流体驱动部件动力模块410对第一运动模块450的驱动。
在一些实施例中,流体驱动部件电机412为步进电机,步进电机固定于壳体侧壁1104上,流体驱动部件传动模块420还包括流体驱动部件滑台422以及流体驱动部件丝杠424,流体驱动部件滑台422与流 体驱动部件电机412的转子通过流体驱动部件丝杠424同轴连接,流体驱动部件滑台422与流体驱动部件滑块432固接,并且丝杠424的延伸方向与流体驱动部件滑轨430的延伸方向平行。通过设置步进电机、滑台和丝杠结构,实现了流体驱动部件动力模块410对第一运动模块450的高效、紧凑、稳定且成本友好的驱动结构。
在一些实施例中,流体驱动部件驱动部400还包括位于流体驱动部件滑台422两侧的第一流体驱动部件挡块442和第二流体驱动部件挡块444,流体驱动部件丝杠424穿过第一流体驱动部件挡块442和第二流体驱动部件挡块444,并且第一流体驱动部件挡块442和第二流体驱动部件挡块444固定于壳体侧壁1104上。通过设置第一流体驱动部件挡块442和第二流体驱动部件挡块444,限定了流体驱动部件滑台422的移动范围,进而限定了第一运动模块450在第三位置和第四位置之间移动。
在一些实施例中,流体驱动部件180还包括:第二运动模块460,第二运动模块460配置成在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第一位置220时与微流控芯片145卡合,并且第二运动模块460在第一方向470上随第一运动模块450一起运动。通过设置第二运动模块460并且使得第二运动模块460与微流控芯片145卡合以及第二运动模块460在第一方向470上随第一运动模块450一起运动,能够实现对微流控芯片145中流体的驱动。
图5a-5e示出了根据本公开的一些实施例的用于驱动微流控芯片的设备的部分结构示意图,其中图5a-5c分别处于在将承载托盘1410从第二位置210移动至第一位置220的不同阶段,在图5a-5d中第一运动模块450处于第三位置,以及在图5e中第一运动模块450处于第四位置。图5f-5g分别示出了根据本公开的一些实施例的用于驱动微流控芯片的设备以及微流控芯片的部分结构示意图(应当理解,为了图示清楚,在图5f-5g中将微流控芯片145与释放部件170图示为分开)。
参照图4a-5g,在一些实施例中,微流控芯片145包括芯片驱动部件1450,芯片驱动部件1450包括第一插块510,第二运动模块460包括:第一突起部520,第一突起部520包括斜面522,其中在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第二位置210时,斜面522与第一插块510的靠近斜面522一侧的端面512相对; 第一插槽530,其中在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第二位置210时,第一插槽530位于第一突起部520远离端面512一侧;和第二突起部540,第二突起部540位于第一插槽530远离第一突起部520的一侧,以及其中,第一插块510配置成当承载托盘1410在第二位置210与第一位置220之间移动时在第二方向5120上移动,第二方向5120与斜面522的延伸方向在同一平面内并且与斜面522的延伸方向既不平行也不垂直,其中,流体驱动部件180还包括:轴5100,第一运动模块450与第二运动模块460通过轴5100同轴连接,第一运动模块450相对于轴5100在第三方向5130上可滑动,第三方向5130在由第二方向5120与斜面522的延伸方向限定的平面内;和弹性部件5110,弹性部件5110包围轴5100,并且弹性部件5110在第一运动模块450与第二运动模块460之间。弹性部件5110配置成响应于第二运动模块460在第三方向5130上的压缩而在第三方向5130上发生变形并且当变形时生成与变形方向相反的回弹力。
在一些实施例中,当第一运动模块450位于第三位置时(如图5a-5d所示),随着承载托盘1410由第二位置210向第一位置220移动,由于第一插块510移动的第二方向5120与斜面522的延伸方向在同一平面内并且与斜面522的延伸方向既不平行也不垂直,因此微流控芯片145的第一插块510可以沿着斜面522的延伸方向滑动,向第二运动模块460施加压力,使第二运动模块460沿第三方向5130向下运动,从而压缩弹性部件5110。在承载托盘1410到达第一位置220的同时,微流控芯片145的第一插块510进入第一插槽530,从而失去对第二运动模块460的压力,第二运动模块460由于弹性部件5110的回弹力而沿第三方向5130向上回弹,实现第二运动模块460与微流控芯片145的第一插块510的卡合。在后续驱动过程中,响应于控制器190的指令和驱动部件驱动部400的驱动,第一运动模块450在第一方向470上在第三位置和第四位置之间移动。由于相对于第一运动模块450第二运动模块460仅能够在第三方向5130上移动,因此第一运动模块450在第三位置和第四位置之间移动能够带动第二运动模块460随第一运动模块450一起移动,从而通过第一突起部520或第二突起部540而向第一插块510施加力,牵引和推动微流控芯片145的第一插块510在第一方向470上运动(如图5e所示),进而实现对微流控芯片145 中流体的驱动和混合操作。第一运动模块450、第二运动模块460及其相关结构的结构简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
在一些实施例中,第二方向5120平行于第一方向470,第三方向5130垂直于第一方向470,并且在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第二位置210时第一插块510的靠近斜面522一侧的端面512垂直于第一方向470。这样,便于第一插块510沿着斜面522的延伸方向滑动,从而向第二运动模块460施加压力。
在一些实施例中,承载托盘滑轨330与流体驱动部件滑轨430可以共用相同滑轨。这样,进一步简化了结构。
在一些实施例中,如图5a所示,第一突起部520还包括:挡墙524,挡墙524沿着斜面522的延伸方向位于斜面522的两侧。通过设置挡墙,可以防止第一插块510在向第二运动模块460施加压力时从斜面522滑脱,增加了系统的可靠性和稳定性。
在一些实施例中,参照图5a-5g,芯片驱动部件1450还包括筒状注射器550,筒状注射器550包括:筒体552;配置成在筒体552内移动的活塞554,以及配置成控制活塞554的推杆556,推杆556与第一插块510固接。通过筒状注射器结构,第二运动模块460可以通过第一突起部520或第二突起部540而向第一插块510施加力,从而牵引和推动筒状注射器550的推杆556,进而可以将筒状注射器550中流体驱动到微流控芯片的其他区域中以及对流体进行混合等操作。
应当理解,芯片驱动部件1450的具体数量可以根据实际需要进行设定。示例地,参照图1a-1c,图4a-5g,微流控芯片145包括两组芯片驱动部件1450,两组芯片驱动部件1450分别位于微流控芯片145的两侧,设备100包括配置成分别控制两组芯片驱动部件1450的两组流体驱动部件180,两组流体驱动部件180分别位于设备100的两侧,两组流体驱动部件180包括两条流体驱动部件滑轨430,并且承载托盘1410在壳体底壁1102上的正投影位于两条流体驱动部件滑轨430在壳体底壁1102上的正投影之间。
一些实施例中,参照图3a,在微流控芯片145包括筒状注射器550的情况下,承载托盘1410可以包括与筒状注射器550的形状和位置相匹配的凹部740。这样,凹部740可以用于容纳筒状注射器550,这进 一步起到定位作用,并且使得结构更加紧凑。
在一些实施例中,参照图5a-5g,微流控芯片145还包括:储液部560;和用于控制储液部560的试剂释放的控制电极570,其中,释放部件170配置成在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第一位置220时与控制电极570电连接。这样,通过释放部件170与控制电极570电连接,可以控制储液部560的试剂释放。
图6a示出了根据本公开的一些实施例的释放部件170及其相关结构的示意图。图6b示意性地示出了图6a所示的结构的不同视角的透视图。图6c示意性地示出了图6a所示的结构的侧视图(其中,电极触点示出为压缩状态)。参照图5a-5g以及图6a-6c,在一些实施例中,释放部件170包括:释放部件支撑座172,释放部件支撑座172固定于壳体底壁1102上;和安装在释放部件支撑座172上的电极触点174;其中电极触点174在微流控芯片145被承载于承载托盘1410上并且承载托盘1410处于第一位置220时与控制电极570电连接。这样,通过电极触点174与控制电极570电连接,可以控制储液部560的试剂释放。电极触点174简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
在一些实施例中,电极触点174包括弹簧针连接器。这样,通过弹簧的回弹力可以保证电极触点174与微流控芯片145稳定的电连接,操作简单,结构紧凑。
示例地,如图5a-5c所示,在承载托盘1410从第二位置220移动至第一位置210时,微流控芯片145的控制电极570与电极触点174相接触,形成电连接(例如导通电路),从而由控制器190通过电极触点174向微流控芯片145提供所需的电压,并发出相应指令,例如控制储液部560的试剂释放。在一些实施例中,如图5c-5e所示,在用于驱动微流控芯片145的设备100对微流控芯片145的流体进行驱动的过程中,控制电极570与电极触点174保持电连接。示例地,电极触点174的数量为6至16。
在一些实施例中,参照图3a-3c以及图5a,微流控芯片145还包括第二插块750,承载托盘1410还包括与第二插块750的形状和位置相匹配的第二插槽730。这样,第二插块750配置成在微流控芯片145被承载于承载托盘1410上时插入到第二插槽730中。在承载托盘1410 移动到第一位置220并且微流控芯片145与电极触点174电连接时,可以保证微流控芯片145与承载托盘1410之间不会发生相对移动,从而保证稳定的电连接以及定位。
应当理解,在一些实施例中,微流控芯片还可以包括用于试剂反应的反应区(未示出)、用于容纳废液的废液腔(未示出)、用于容纳产物的收集池(未示出)、以及供流体流动的流道(未示出)等。
图7a示出了根据本公开的一些实施例的阈控部件150及其相关结构的示意图。图7b-7c分别示出了图7a所示结构的侧视示意图,其中阈控托盘分别处于不同位置。在一些实施例中,参照图7a-7c,阀控部件150包括:阈控托盘1510;阈控阀1520,阈控阀1520位于阈控托盘1510上并且配置成控制在阈控区域内的流道的打开和关闭,和阀控托盘驱动部700,阀控托盘驱动部700配置成驱动阈控托盘1510在第四方向5140上在第五位置和第六位置之间移动,并且第五位置和第六位置分别对应于在设备100对微流控芯片145进行驱动时阈控托盘1510往复运动的两端终点位置。这样,实现了阈控托盘1510在第五位置和第六位置之间移动,从而驱动阈控阀1520靠近和远离阈控区域。
在一些实施例中,阀控托盘驱动部700包括阈控托盘动力模块710以及阈控托盘传动模块720,阈控托盘传动模块720与阈控托盘1510连接,阈控托盘动力模块710带动阈控托盘传动模块720以驱动阈控托盘1510在第四方向5140上在第五位置和第六位置之间移动。这样,实现了阈控托盘1510在第五位置和第六位置之间移动。其中,在图7b-7c中阈控托盘1510分别处于在第五位置与第六位置之间的不同位置。
参照图1b-1c和图7a-7c,在一些实施例中,阈控托盘动力模块710包括阈控部件电机712,阈控部件电机为步进电机,步进电机与壳体侧壁1104固接,阈控托盘传动模块720还包括阈控托盘滑台722和阈控托盘丝杠724,阈控托盘滑台722与阈控部件电机712的转子通过阈控托盘丝杠724同轴连接,阈控托盘滑台722与阈控托盘1510固接,阈控托盘丝杠724的延伸方向与第四方向5140平行。通过设置步进电机、滑台和丝杠结构,实现了阈控托盘动力模块710对阈控托盘1510的高效、紧凑、稳定且成本友好的驱动结构。
在一些实施例中,阈控托盘驱动部700还包括位于阈控托盘滑台 722两侧的第一阈控托盘挡块742和第二阈控托盘挡块744,阈控托盘丝杠724穿过第一阈控托盘挡块742和第二阈控托盘挡块744,并且第一阈控托盘挡块742固定于壳体侧壁1104上,第二阈控托盘挡块744固定于壳体底壁1102上。过设置第一阈控托盘挡块742和第二阈控托盘挡块744,限定了阈控托盘滑台722的移动范围,进而限定了阈控托盘1510在第四方向5140上在第五位置和第六位置之间移动。
在一些实施例中,参照图1b-1c和图7a-7c,承载托盘滑轨330包括两条轨道3302、3304,阈控部件150在壳体底壁1102上的正投影位于两条轨道3302、3304在壳体底壁1102上的正投影之间,并且阈控托盘1510位于承载托盘1410的第一位置220与壳体底壁1102之间。这样,使得整个设备的结构更加紧凑,并且减少了阈控托盘1510移动的距离。
在一些实施例中,阈控区域包括配置成控制流道的打开和关闭的薄膜阀(未示出),并且阈控阀1520配置成响应于供电状态控制薄膜阀。采用薄膜阀,可以实现流道的打开和关闭。
在一些实施例中,阀控阀1520包括电磁阀(未示出),并且电磁阀包括失电型电磁铁。电磁阀配置成响应于供电状态控制薄膜阀下降或弹起,从而实现微流控芯片145内流道的关闭或开启。失电型电磁铁磁性响应于供电状态而表现或消失,从而控制薄膜阀下降或弹起。这样,阀控部件150结构简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
在一些实施例中,参照图1a-2b,承载托盘底壁1412上设置有第一通孔810,其中,在微流控芯片145被承载于承载托盘1410上时,阈控区域沿着第四方向5140在承载托盘1410上的投影与第一通孔810至少部分重叠。通过设置第一通孔,可以使得阈控阀1520更加靠近阈控区域,从而改善阈控效果。
示例地,参照图1a-2b,第一通孔810在平行于承载托盘底壁1412的平面内的截面具有相互连通的三个圆的形状,使得第一通孔810可以容纳三个阈控阀1520。
在一些实施例中,参照图1a-2b,设备100还包括:温控部件160,温控部件160配置成在微流控芯片145的温控区域处于温控部件160的温控范围内时控制温控区域的温度。通过设置温控部件160,可以对 微流控芯片145的温控区域的温度进行控制,扩展了微流控芯片145以及用于驱动微流控芯片的设备100的使用环境和反应条件。
在一些实施例中,在设备100对微流控芯片145的流体进行驱动时阈控托盘1510处于第六位置,在承载托盘1410处于第一位置220之外的位置时阈控托盘1510处于第五位置,在阈控托盘1510处于第六位置时阀控阀1520插入第一通孔810中并且阈控阀1520远离阈控托盘1510的端面1522与承载托盘底壁1412远离阈控托盘1510的表面齐平(如图2b所示),以及在阈控托盘1510处于第五位置时阈控托盘1510与承载托盘1410之间的距离大于在阈控托盘1510处于第六位置时阈控托盘1510与承载托盘1410之间的距离,并且在阈控托盘1510处于第五位置时阀控阀1520远离阈控托盘1510的端面1522与承载托盘1410相距一距离。这样,在阈控托盘1510处于第六位置时阈控阀1520可以贴近阈控区域,从而取得良好的阈控效果;并且在阈控托盘1510处于第五位置时阈控阀1520不会干涉承载托盘1410的移动。阈控部件150简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
在一些实施例中,承载托盘底壁1412上还设置有第二通孔820,其中,在微流控芯片145被承载于承载托盘1410上时,微流控芯片145的温控区域沿着第四方向在承载托盘1410上的投影与第二通孔820至少部分重叠。通过设置第二通孔,可以使得温控部件160更加靠近温控区域,从而改善温控效果。
在一些实施例中,温控部件160安装于阈控托盘1510上,在设备100对微流控芯片145的流体进行驱动时阈控托盘1510处于第六位置,在承载托盘1410处于第一位置220之外的位置时阈控托盘1510处于第五位置,在阈控托盘1510处于第六位置时温控部件160插入第二通孔820中并且温控部件160远离阈控托盘1510的端面162与承载托盘底壁1412远离阈控托盘1510的表面齐平(如图2b所示),以及在阈控托盘1510处于第五位置时阈控托盘1510与承载托盘1410之间的距离大于在阈控托盘1510处于第六位置时阈控托盘1510与承载托盘1410之间的距离,并且在阈控托盘1510处于第五位置时温控部件160远离阈控托盘1510的端面162与承载托盘1410相距一距离。这样,在阈控托盘1510处于第六位置时温控部件160可以贴近温控区域,从 而取得良好的温控效果;并且在阈控托盘1510处于第五位置时温控部件160不会干涉承载托盘1410的移动。温控部件160和阈控阀1520对应的托盘可以是同一个(即阈控托盘1510),这样进一步节省了空间,简化了结构。温控部件160简单、紧凑,改善了用于驱动微流控芯片145的设备100的便携性。
示例地,在不同情况下,阈控托盘1510可以处于2个工位,分别是工作工位和非工作工位,其中在工作工位时微流控芯片145的阈控区域处于阈控阀1520的阈控范围内并且微流控芯片145的温控区域处于温控部件160的温控范围内。在前往工作工位时,响应于控制器190的指令,阈控托盘1510沿第四方向5140向上升起(参照图7b),例如阈控阀1520进入承载托盘1410的第一通孔810并且温控部件160进入承载托盘1410的第二通孔820。这样,可以实现阈控阀1520对阈控区域的控制以及温控部件160对温控区域的控制。在前往非工作工位时,响应于控制器190的指令,阈控托盘1510沿第四方向5140向下落下。示例地,阈控阀1520的数量可以为3至4。
在一些实施例中,温控部件160可以包括通电后发热的材料。示例地,温控部件包括PTC加热器或金属陶瓷发热体,从而向温控区域提供所需的温度。
在一些实施例中,温控部件160还可以包括温度传感器,用于感测温控区域的温度。
在一些实施例中,参照图1a-1c以及图6a-7c,释放部件支撑座172设置有通孔1710,并且阈控托盘1510经由通孔1710连接到阈控托盘滑台722。这样,进一步节省了空间,使得结构更加紧凑。
应当理解,用于驱动微流控芯片的设备100也可以采用上翻盖式结构。在一些实施例中,在用于驱动微流控芯片的设备采用上翻盖式结构的情况下,阀控部件150的部分结构不需要移动,例如阈控阀1520可以始终保持在第一通孔810中,温控部件160可以始终保持在第二通孔820中。
在一些实施例中,如图1a所示,设备100还包括:位于壳体110的外部的显示器130,配置成显示驱动状态或接收控制指令。用户可通过控制屏幕向控制器190发出指令,也可将接收到的控制器反馈显示在控制屏幕上,提升了操作效率,便于实时监测设备状态。
在一些实施例中,用于驱动微流控芯片145的设备100还包括:位于壳体110的外部的其他用户接口,诸如鼠标、键盘、控制杆等,在此不再赘述。
在一些实施例中,控制器190可以分别与用户接口130、承载部件140、阀控部件150、温控部件160、释放部件170和流体驱动部件180中的一个或多个电连接,从而发送控制指令。
在一些实施例中,处于第一位置的承载托盘1410、阀控部件150、温控部件160、释放部件170、流体驱动部件180以及控制器190中的一个或多个可以位于壳体110内部。
示例地,如图1a-1c所示,承载托盘滑轨可以包括两条轨道3302、3304,两条轨道3302、3304可以固定安装在壳体底壁1102上。承载托盘在壳体底壁1102上的正投影可以位于两条轨道3302、3304在壳体底壁1102上的正投影之间。承载托盘电机、承载托盘滑台、第一承载托盘挡块和第二承载托盘挡块可以由承载托盘丝杠同轴连接,承载托盘电机、第一承载托盘挡块和第二承载托盘挡块可以固定到壳体底壁1102上,并且承载托盘电机、承载托盘滑台、承载托盘丝杠、第一承载托盘挡块和第二承载托盘挡块可以位于两条轨道3302、3304的相同侧。这样,提升了空间利用率,使得承载部件及其相关结构尽量紧凑,简化了结构,降低了成本。
示例地,如图1a-1c所示,承载托盘滑轨与流体驱动部件滑轨可以共用相同滑轨,即共用两条轨道3302、3304。在这种情况下,承载托盘滑块与流体驱动部件滑块可以分别在单个轨道的不同范围内移动,从而防止承载托盘滑块与流体驱动部件滑块发生冲突。两组流体驱动部件180可以分别位于设备100的两侧。两组流体驱动部件180中的两组第一运动模块可以均位于承载托盘的第一位置远离第二位置的一侧。两组流体驱动部件180中的每组中的流体驱动部件电机、流体驱动部件滑台、第一流体驱动部件挡块以及第二流体驱动部件挡块可以由流体驱动部件丝杠同轴连接。两组流体驱动部件180中的每组流体驱动部件180的流体驱动部件电机、第一流体驱动部件挡块和第二流体驱动部件挡块可以固定到壳体侧壁1104上。两组流体驱动部件180中的一组流体驱动部件180的流体驱动部件电机、第一流体驱动部件挡块和第二流体驱动部件挡块在壳体底壁1102上的正投影可以分别与 承载托盘电机、第一承载托盘挡块和第二承载托盘挡块在壳体底壁1102上的正投影至少部分重叠。两组流体驱动部件电机、第一流体驱动部件挡块和第二流体驱动部件挡块在壳体底壁1102上的正投影可以均位于两条轨道3302、3304在壳体底壁1102上的正投影的外侧,并且两组第一运动模块在壳体底壁1102上的正投影可以均位于两条轨道3302、3304在壳体底壁1102上的正投影之间。这样,提升了空间利用率,使得流体驱动部件及其相关结构尽量紧凑,简化了结构,降低了成本。
示例地,如图1a-1c所示,释放部件170可以位于承载托盘的第一位置远离第二位置的一侧,并且释放部件170可以贴近处于第一位置的承载托盘。释放部件支撑座可以避让微流控芯片145的芯片驱动部件的位置,使得释放部件支撑座在壳体底壁1102上的正投影可以位于两组第一运动模块分别的运动轨迹(即在第三位置和第四位置之间移动的运动轨迹)在壳体底壁1102上的正投影之间。这样,提升了空间利用率,使得释放部件及其相关结构尽量紧凑,简化了结构,降低了成本。
示例地,如图1a-1c所示,阈控部件150在壳体底壁1102上的正投影可以位于两条轨道3302、3304在壳体底壁1102上的正投影之间,并且阈控托盘可以位于承载托盘的第一位置与壳体底壁1102之间。阈控部件电机、阈控托盘滑台和阈控托盘丝杠、第一阈控托盘挡块和第二阈控托盘挡块可以位于释放部件支撑座远离承载托盘1410的第一位置的一侧。释放部件支撑座可以设置有通孔,并且阈控托盘可以经由通孔连接到阈控托盘滑台。阈控部件电机和第一阈控托盘挡块可以通过阈控连接件1106固接到位于设备100两侧的壳体侧壁1104。控制器190可以安装在阈控连接件1106上。这样,提升了空间利用率,使得阈控部件、温控部件、控制器及其相关结构尽量紧凑,简化了结构,降低了成本。
在一些实施例中,用于驱动微流控芯片145的设备100为便携式自动驱动设备,即设备100可以响应于用户的简单操作或者甚至无需用户操作而自动完成整个驱动过程。示例地,随着对生命现象认识的不断加深,和对疾病、健康相互关系研究的不断深入,核酸作为生命体关键信息的载体,对其深入认知的重要性正在不断增加。越来越多 的研究集中于对核酸有无的鉴别、对核酸含量的测定。这些研究的基础就是将细胞、病毒内含的核酸提取出来,且需要尽可能高纯度、高回收率、高速度。本公开提供的用于驱动微流控芯片145的设备100可以用作满足这些需求的核酸提取仪。示例地,图8a-8f分别示出了根据本公开的一些实施例的核酸提取仪800的六视图示意图。核酸提取仪800可以将核酸提取的全部模块集成于一个设备中,从而可一键式实现样本核酸的快速提取。
本公开的实施例还提供一种用于前述的用于驱动微流控芯片145的设备100的驱动方法。图9示意性地示出了根据本公开的一些实施例的驱动方法900的流程图。参照图9,驱动方法900包括:S910、在承载部件上装载微流控芯片,使得释放部件与微流控芯片电连接、流体驱动部件与微流控芯片卡合以及微流控芯片的阈控区域处于阈控部件的阈控范围内;以及S920、对阀控部件按顺序通断电以控制阈控区域中流道的打开和关闭,对释放部件按顺序通断电以控制微流控芯片的试剂释放,以及控制流体驱动部件以驱动流体在微流控芯片中的流动和反应。
在一些实施例中,步骤S910可以包括:将承载拖盘移动至第二位置;在承载托盘上装载微流控芯片;将承载托盘通过开口从第二位置移动至第一位置,同时释放部件与微流控芯片电连接以及流体驱动部件与微流控芯片卡合;以及移动阀控托盘,使得阈控区域处于阈控部件的阈控范围内。
驱动方法具有与上文的用于驱动微流控芯片145的设备100相似的优点和效果,在此不再赘述。
参照图1a-1c,5a-5e以及图9,以下以一具体示例来说明用于设备100的驱动方法的过程,其中微流控芯片用于进行核酸提取:
步骤一:准备微流控芯片145,将待进行核酸提取的样本注入在微流控芯片145中,封闭微流控芯片145;
步骤二:将承载托盘1410移动至第二位置210;
步骤三:在承载托盘1410上装载微流控芯片145;
步骤四:将承载托盘1410通过开口112从第二位置210移动至第一位置220,同时微流控芯片145的控制电极570与释放部件170电接触,释放部件170受力被压缩;以及同时流体驱动部件180的第一运 动模块450处于第三位置,流体驱动部件180的弹性部件5110在第三方向5130上响应于微流控芯片145的第一插块510在第二方向5120上的移动而经受未压缩——压缩——回弹的过程,从而实现第一插槽530与第一插块510的卡合;
步骤五:控制阈控部件电机712,使阈控托盘1510向上升起,从而使阈控阀1520和温控部件160分别与微流控芯片145的阈控区域和温控区域贴近;
步骤六:向释放部件170中施加电压,使微流控芯片145对应的储液部560的阀开启,以控制微流控芯片145的试剂释放;
步骤七:阈控阀1520控制微流控芯片145中与储液部560对应的阀和与储液部560所连接的流道对应的阀打开,其他阀保持关闭,同时流体驱动部件180开始向第四位置移动,将储液部560释放的试剂驱动进入微流控芯片145的反应区中,其中温控部件160在此过程中根据需要而选择性开启,为反应提供适当的温度;
步骤八:流体驱动部件180往复运动,对释放到微流控芯片145内的试剂进行混匀操作;以及
步骤九:流体驱动部件180向第四位置继续移动,将完成反应的试剂驱动至废液腔或收集池内。
其中步骤六、步骤七、步骤八和步骤九中的一个或多个步骤可以被多次重复,从而完成在核酸提取中的裂解液、磁珠、结合液、清洗液、洗脱液等的释放和反应。
图10示意性的示出了根据本公开的另一实施例的驱动方法(核酸提取过程)的流程图。在图10所示的实施例中,驱动方法(核酸提取过程)1000包括下列步骤:
S1010、开始;
S1020、将承载托盘移动至第二位置;
S1030、在承载托盘上装载微流控芯片;
S1040、将承载托盘通过开口从第二位置移动至第一位置;
S1050、确定释放部件是否与微流控芯片电连接,如果“是”,则进行步骤S1060,如果“否”,则返回步骤S1040;
S1060、移动阀控托盘;
S1070、确定阀控区域是否处于阈控阀的阈控范围内,如果“是”, 则进行步骤S1080,如果“否”,则返回步骤S1060;
S1080、确定流体驱动部件是否与微流控芯片良好卡合,如果“是”,则进行步骤S1110,如果“否”,则进行步骤S1090(移动流体驱动部件),并且在进行步骤S1090后再次进行步骤S1080;
S1110、对阀控阀按顺序通断电以控制阈控区域中流道的开启和关闭;
S1120、对释放部件按顺序通断电以控制微流控芯片的试剂释放;
S1130、控制流体驱动部件,带动筒状注射器的活塞抽推,以驱动流体进入反应区;
S1140、设定流体驱动部件以低速移动,使得试剂在反应区混合反应;
S1150、控制流体驱动部件,将完成反应的试剂驱动至废液腔或收集池;
S1160、确定核酸提取是否完毕,如果“是”,则进行步骤S1170,如果“否”,则返回步骤S1110;以及
S1170、结束。
特别地,在图10所示的实施例中,驱动方法(核酸提取过程)1000可以包括确定步骤S1050、S1070、S1080、S1160以及对应的反馈调节。另外,在步骤S1080中,如果确定流体驱动部件未与微流控芯片良好卡合,则可以通过移动流体驱动部件来进行修正,这样保证了驱动方法的成功率,提升了效率。
如本领域技术人员将显而易见的,执行这些本公开实施例的方法的许多不同的方式是可能的。例如,可以改变步骤的顺序,或者可以并行执行一些步骤。此外,在步骤之间可以插入其他方法步骤。插入的步骤可以表示诸如本文所描述的方法的改进,或者可以与该方法无关。此外,在下一步骤开始之前,给定步骤可能尚未完全完成。应当理解,在不互相矛盾的前提下,本公开中的不同实施例的特征可以互相组合使用。
本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (40)

  1. 一种用于驱动微流控芯片的设备,包括:
    承载部件,所述承载部件配置成承载所述微流控芯片;
    释放部件,所述释放部件配置成与所述微流控芯片进行电连接以及控制所述微流控芯片的试剂释放;
    阀控部件,所述阀控部件配置成在所述微流控芯片的阈控区域处于所述阀控部件的阈控范围内时控制在所述阈控区域内的流道的打开和关闭;
    流体驱动部件,所述流体驱动部件配置成驱动所述微流控芯片中流体的流动;以及
    控制器,所述控制器配置成控制对所述微流控芯片的驱动过程。
  2. 根据权利要求1所述的设备,其中所述承载部件包括:
    承载托盘,所述承载托盘包括承载托盘底壁、在所述承载托盘底壁的两侧并且与所述承载托盘底壁相连接的承载托盘侧壁;和
    承载托盘驱动部,所述承载托盘驱动部配置成驱动所述承载托盘在第一位置与第二位置之间移动,其中在所述设备对所述微流控芯片的流体进行驱动时所述承载托盘所处的位置为第一位置,并且在将所述微流控芯片在所述承载托盘上装载和拆卸时所述承载托盘所处的位置为第二位置。
  3. 根据权利要求2所述的设备,还包括:
    壳体,所述壳体至少部分地包围所述释放部件、所述阈控部件、所述流体驱动部件和所述控制器,
    其中,所述壳体包括壳体底壁和壳体侧壁,所述壳体侧壁上设置有开口,并且所述开口位于在所述承载托盘的第一位置与第二位置之间的连线上。
  4. 根据权利要求3所述的设备,其中,
    所述承载托盘驱动部包括承载托盘动力模块、承载托盘传动模块以及承载托盘滑轨,
    所述承载托盘传动模块与所述承载托盘连接,所述承载托盘滑轨固定于所述壳体底壁上,并且所述承载托盘动力模块带动所述承载托盘传动模块以驱动所述承载托盘在所述承载托盘滑轨上移动。
  5. 根据权利要求4所述的设备,其中,
    所述承载托盘动力模块包括承载托盘电机,
    所述承载托盘传动模块包括在所述承载托盘滑轨上移动的承载托盘滑块以及承载托盘连接件,所述承载托盘滑块通过所述承载托盘连接件与所述承载托盘固接,并且所述承载托盘电机驱动所述承载托盘滑块在所述承载托盘滑轨上移动。
  6. 根据权利要求5所述的设备,其中,
    所述承载托盘电机为步进电机,所述步进电机固定于所述壳体底壁上,
    所述承载托盘传动模块还包括承载托盘滑台以及承载托盘丝杠,所述承载托盘滑台与所述承载托盘电机的转子通过所述承载托盘丝杠同轴连接,所述承载托盘滑台与所述承载托盘滑块固接,并且所述丝杠的延伸方向与所述承载托盘滑轨的延伸方向平行。
  7. 根据权利要求6所述的设备,其中,
    所述承载托盘驱动部还包括位于所述承载托盘滑台两侧的第一承载托盘挡块和第二承载托盘挡块,所述承载托盘丝杠穿过所述第一承载托盘挡块和所述第二承载托盘挡块,并且所述第一承载托盘挡块和所述第二承载托盘挡块固定于所述壳体底壁上。
  8. 根据权利要求3-7中的任一项所述的设备,其中,所述流体驱动部件包括流体驱动部件驱动部以及第一运动模块,所述流体驱动部件驱动部配置成驱动所述第一运动模块在第一方向上在第三位置和第四位置之间移动,并且所述第三位置和第四位置分别对应于在所述设备对所述微流控芯片的流体进行驱动时所述第一运动模块在所述第一方向上往复运动的两端终点位置。
  9. 根据权利要求8所述的设备,其中,
    所述流体驱动部件驱动部包括流体驱动部件动力模块、流体驱动部件传动模块以及流体驱动部件滑轨,
    所述流体驱动部件传动模块与所述第一运动模块连接,所述流体驱动部件滑轨固定于所述壳体底壁上,并且所述流体驱动部件动力模块带动所述流体驱动部件传动模块以驱动所述第一运动模块在所述流体驱动部件滑轨上移动。
  10. 根据权利要求9所述的设备,其中,
    所述流体驱动部件动力模块包括流体驱动部件电机,
    所述流体驱动部件传动模块包括在所述流体驱动部件滑轨上移动的流体驱动部件滑块以及流体驱动部件连接件,所述流体驱动部件滑块通过所述流体驱动部件连接件与所述第一运动模块固接,
    并且所述流体驱动部件电机驱动所述流体驱动部件滑块在所述流体驱动部件滑轨上移动。
  11. 根据权利要求10所述的设备,其中,
    所述流体驱动部件电机为步进电机,所述步进电机固定于所述壳体侧壁上,
    所述流体驱动部件传动模块还包括流体驱动部件滑台以及流体驱动部件丝杠,所述流体驱动部件滑台与所述流体驱动部件电机的转子通过所述流体驱动部件丝杠同轴连接,所述流体驱动部件滑台与所述流体驱动部件滑块固接,并且所述丝杠的延伸方向与所述流体驱动部件滑轨的延伸方向平行。
  12. 根据权利要求11所述的设备,其中,
    所述流体驱动部件驱动部还包括位于所述流体驱动部件滑台两侧的第一流体驱动部件挡块和第二流体驱动部件挡块,所述流体驱动部件丝杠穿过所述第一流体驱动部件挡块和所述第二流体驱动部件挡块,并且所述第一流体驱动部件挡块和所述第二流体驱动部件挡块固定于所述壳体侧壁上。
  13. 根据权利要求12所述的设备,其中,所述流体驱动部件还包括:第二运动模块,
    所述第二运动模块配置成在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于第一位置时与所述微流控芯片卡合,并且所述第二运动模块在第一方向上随所述第一运动模块一起运动。
  14. 根据权利要求13所述的设备,其中,
    所述微流控芯片包括芯片驱动部件,所述芯片驱动部件包括第一插块,
    所述第二运动模块包括:
    第一突起部,所述第一突起部包括斜面,其中在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于所述第二位置时,所述斜面与所述第一插块的靠近所述斜面一侧的端面相对;
    第一插槽,其中在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于所述第二位置时,所述第一插槽位于所述第一突起部远离所述端面一侧;和
    第二突起部,所述第二突起部位于所述第一插槽远离所述第一突起部的一侧,以及
    其中,所述第一插块配置成当所述承载托盘在所述第二位置与所述第一位置之间移动时在第二方向上移动,所述第二方向与所述斜面的延伸方向在同一平面内并且与所述斜面的延伸方向既不平行也不垂直,
    其中,所述流体驱动部件还包括:
    轴,所述第一运动模块与所述第二运动模块通过所述轴同轴连接,所述第一运动模块相对于所述轴在第三方向上可滑动,所述第三方向在由所述第二方向与所述斜面的延伸方向限定的平面内;和
    弹性部件,所述弹性部件包围所述轴,并且所述弹性部件在所述第一运动模块与所述第二运动模块之间。
  15. 根据权利要求14所述的设备,其中,所述第二方向平行于所述第一方向,所述第三方向垂直于所述第一方向,并且在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于所述第二位置时所述第一插块的靠近所述斜面一侧的端面垂直于所述第一方向。
  16. 根据权利要求14或15所述的设备,其中,所述第一突起部还包括:
    挡墙,所述挡墙沿着所述斜面的延伸方向位于所述斜面的两侧。
  17. 根据权利要求14-16中的任一项所述的设备,其中,所述芯片驱动部件还包括筒状注射器,所述筒状注射器包括:
    筒体;
    配置成在所述筒体内移动的活塞,以及
    配置成控制所述活塞的推杆,所述推杆与所述第一插块固接。
  18. 根据权利要求14-17中的任一项所述的设备,其中,所述微流控芯片包括两组芯片驱动部件,所述两组芯片驱动部件分别位于所述微流控芯片的两侧,
    所述设备包括配置成分别控制所述两组芯片驱动部件的两组流体驱动部件,所述两组流体驱动部件分别位于所述设备的两侧,
    所述两组流体驱动部件包括两条流体驱动部件滑轨,并且所述承载托盘在所述壳体底壁上的正投影位于所述两条流体驱动部件滑轨在所述壳体底壁上的正投影之间。
  19. 根据权利要求17所述的设备,其中,所述承载托盘包括与所述筒状注射器的形状和位置相匹配的凹部。
  20. 根据权利要求3-19中的任一项所述的设备,其中,所述微流控芯片还包括:
    储液部;和
    用于控制所述储液部的试剂释放的控制电极,
    其中,所述释放部件配置成在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于所述第一位置时与所述控制电极电连接。
  21. 根据权利要求20所述的设备,其中,所述释放部件包括:
    释放部件支撑座,所述释放部件支撑座固定于所述壳体底壁上;和
    安装在所述释放部件支撑座上的电极触点;
    其中所述电极触点在所述微流控芯片被承载于所述承载托盘上并且所述承载托盘处于所述第一位置时与所述控制电极电连接。
  22. 根据权利要求21所述的设备,其中,所述电极触点包括弹簧针连接器。
  23. 根据权利要求22所述的设备,其中所述微流控芯片还包括第二插块,所述承载托盘还包括与所述第二插块的形状和位置相匹配的第二插槽。
  24. 根据权利要求2-23中的任一项所述的设备,其中所述阀控部件包括:
    阈控托盘;
    阈控阀,所述阈控阀位于所述阈控托盘上并且配置成控制在所述阈控区域内的流道的打开和关闭,和
    阀控托盘驱动部,所述阀控托盘驱动部配置成驱动所述阈控托盘在第四方向上在第五位置和第六位置之间移动,并且所述第五位置和第六位置分别对应于在所述设备对所述微流控芯片进行驱动时所述阈控托盘往复运动的两端终点位置。
  25. 根据权利要求24所述的设备,其中,
    所述阀控托盘驱动部包括阈控托盘动力模块以及阈控托盘传动模块,所述阈控托盘传动模块与所述阈控托盘连接,所述阈控托盘动力模块带动所述阈控托盘传动模块以驱动所述阈控托盘在第四方向上在所述第五位置和所述第六位置之间移动。
  26. 根据权利要求25所述的设备,其中,
    所述阈控托盘动力模块包括阈控部件电机,所述阈控部件电机为步进电机,所述步进电机与所述壳体侧壁固接,
    所述阈控托盘传动模块还包括阈控托盘滑台和阈控托盘丝杠,所述阈控托盘滑台与所述阈控部件电机的转子通过所述阈控托盘丝杠同轴连接,所述阈控托盘滑台与所述阈控托盘固接,所述阈控托盘丝杠的延伸方向与所述第四方向平行。
  27. 根据权利要求26所述的设备,其中,
    所述阈控托盘驱动部还包括位于所述阈控托盘滑台两侧的第一阈控托盘挡块和第二阈控托盘挡块,所述阈控托盘丝杠穿过所述第一阈控托盘挡块和所述第二阈控托盘挡块,并且所述第一阈控托盘挡块固定于所述壳体侧壁上,所述第二阈控托盘挡块固定于所述壳体底壁上。
  28. 根据权利要求24-27中的任一项所述的设备,其中,所述承载托盘滑轨包括两条轨道,所述阈控部件所述壳体底壁上的正投影位于所述两条轨道所述壳体底壁上的正投影之间,并且所述阈控托盘位于处于所述承载托盘的所述第一位置与所述壳体底壁之间。
  29. 根据权利要求24-28中的任一项所述的设备,其中,所述阈控区域包括配置成控制所述流道的打开和关闭的薄膜阀,并且所述阈控阀配置成响应于供电状态控制所述薄膜阀。
  30. 根据权利要求中29所述的设备,其中,所述阀控阀包括电磁阀,并且所述电磁阀包括失电型电磁铁。
  31. 根据权利要求29-30中的任一项所述的设备,其中,所述承载托盘底壁上设置有第一通孔,
    其中,在所述微流控芯片被承载于所述承载托盘上时,所述阈控区域沿着所述第四方向在所述承载托盘上的投影与所述第一通孔至少部分重叠。
  32. 根据权利要求31所述的设备,还包括:
    温控部件,所述温控部件配置成在所述微流控芯片的温控区域处 于所述温控部件的温控范围内时控制所述温控区域的温度。
  33. 根据权利要求31-32中的任一项所述的设备,其中,
    在所述设备对所述微流控芯片的流体进行驱动时所述阈控托盘处于所述第六位置,在所述承载托盘处于所述第一位置之外的位置时所述阈控托盘处于所述第五位置,
    在所述阈控托盘处于所述第六位置时所述阀控阀插入所述第一通孔中并且所述阈控阀远离所述阈控托盘的端面与所述承载托盘底壁远离所述阈控托盘的表面齐平,以及
    在所述阈控托盘处于所述第五位置时所述阈控托盘与所述承载托盘之间的距离大于在所述阈控托盘处于所述第六位置时所述阈控托盘与所述承载托盘之间的距离,并且在所述阈控托盘处于所述第五位置时所述阀控阀远离所述阈控托盘的端面与所述承载托盘相距一距离。
  34. 根据权利要求33所述的设备,其中,所述承载托盘底壁上还设置有第二通孔,
    其中,在所述微流控芯片被承载于所述承载托盘上时,所述微流控芯片的温控区域沿着所述第四方向在所述承载托盘上的投影与所述第二通孔至少部分重叠。
  35. 根据权利要求34所述的设备,其中,所述温控部件安装于所述阈控托盘上,
    在所述设备对所述微流控芯片的流体进行驱动时所述阈控托盘处于所述第六位置,在所述承载托盘处于所述第一位置之外的位置时所述阈控托盘处于所述第五位置,
    在所述阈控托盘处于所述第六位置时所述温控部件插入所述第二通孔中并且所述温控部件远离所述阈控托盘的端面与所述承载托盘底壁远离所述阈控托盘的表面齐平,以及
    在所述阈控托盘处于所述第五位置时所述阈控托盘与所述承载托盘之间的距离大于在所述阈控托盘处于所述第六位置时所述阈控托盘与所述承载托盘之间的距离,并且在所述阈控托盘处于所述第五位置时所述温控部件远离所述阈控托盘的端面与所述承载托盘相距一距离。
  36. 根据权利要求35所述的设备,其中,所述温控部件包括PTC加热器或金属陶瓷发热体。
  37. 根据权利要求26-27中的任一项所述的设备,其中,所述释放 部件支撑座设置有通孔,并且所述阈控托盘穿过所述通孔连接到所述阈控托盘滑台。
  38. 根据权利要求3-7中的任一项所述的设备,还包括:位于所述壳体的外部的显示器,配置成显示驱动状态或接收控制指令。
  39. 根据前述权利要求中的任一项所述的设备,其中,所述设备为便携式自动驱动设备。
  40. 一种用于权利要求1所述的设备的驱动方法,包括:
    在所述承载部件上装载所述微流控芯片,使得所述释放部件与所述微流控芯片电连接、所述流体驱动部件与所述微流控芯片卡合以及所述微流控芯片的阈控区域处于所述阈控部件的阈控范围内;以及
    对所述阀控部件按顺序通断电以控制所述阈控区域中流道的打开和关闭,对所述释放部件按顺序通断电以控制所述微流控芯片的试剂释放,以及控制所述流体驱动部件以驱动流体在所述微流控芯片中的流动和反应。
PCT/CN2021/074474 2021-01-29 2021-01-29 用于驱动微流控芯片的设备和驱动方法 WO2022160278A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/074474 WO2022160278A1 (zh) 2021-01-29 2021-01-29 用于驱动微流控芯片的设备和驱动方法
US17/605,348 US20230116464A1 (en) 2021-01-29 2021-01-29 Device and driving method for driving microfluidic chip
CN202180000100.2A CN115244169A (zh) 2021-01-29 2021-01-29 用于驱动微流控芯片的设备和驱动方法
EP21921882.3A EP4141098A4 (en) 2021-01-29 2021-01-29 DEVICE AND METHOD FOR CONTROLLING MICROFLUIDIC CHIP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074474 WO2022160278A1 (zh) 2021-01-29 2021-01-29 用于驱动微流控芯片的设备和驱动方法

Publications (1)

Publication Number Publication Date
WO2022160278A1 true WO2022160278A1 (zh) 2022-08-04

Family

ID=82654065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074474 WO2022160278A1 (zh) 2021-01-29 2021-01-29 用于驱动微流控芯片的设备和驱动方法

Country Status (4)

Country Link
US (1) US20230116464A1 (zh)
EP (1) EP4141098A4 (zh)
CN (1) CN115244169A (zh)
WO (1) WO2022160278A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203825016U (zh) * 2014-02-28 2014-09-10 深圳市第二人民医院 人类免疫缺陷病毒检测装置
US9144799B2 (en) * 2009-11-24 2015-09-29 Lawrence Livermore National Security, Llc Modular microfluidic system for biological sample preparation
CN107090403A (zh) * 2017-03-22 2017-08-25 清华大学 一种细胞裂解系统和方法
CN207210442U (zh) * 2017-09-19 2018-04-10 德诺杰亿(北京)生物科技有限公司 微流体控制系统
CN109022274A (zh) * 2017-06-08 2018-12-18 北京万泰生物药业股份有限公司 微流控芯片、芯片操纵系统、微流控装置和核酸提取方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1186409A (en) * 1967-08-15 1970-04-02 Short Brothers & Harland Ltd Improvements in or relating to Fluidic Devices
US7097775B2 (en) * 2001-10-26 2006-08-29 Second Sight Medical Products, Inc. Coated microfluidic delivery system
US7452507B2 (en) * 2002-08-02 2008-11-18 Sandia Corporation Portable apparatus for separating sample and detecting target analytes
US7534097B2 (en) * 2004-10-15 2009-05-19 Nanyang Technological University Method and apparatus for controlling multi-fluid flow in a micro channel
WO2013074693A1 (en) * 2011-11-14 2013-05-23 Advanced Microlabs, Llc Fluidic and electrical interface for microfluidic chips
WO2014150798A1 (en) * 2013-03-15 2014-09-25 Pathogenetix, Inc. Interface for microfluidic chip
CN104730265B (zh) * 2015-03-27 2016-05-11 华南师范大学 手持式poct流式基因分析系统
CN104833812B (zh) * 2015-05-12 2016-05-11 天津微纳芯科技有限公司 便携式全自动生化分析装置
CN110805539A (zh) * 2018-08-06 2020-02-18 思纳福(北京)医疗科技有限公司 流体驱动机构及流体驱动方法
CN109647553B (zh) * 2018-12-29 2020-11-20 北京化工大学 多指标疾病联合检测微流控装置
CN110579594B (zh) * 2019-07-15 2021-06-29 北京化工大学 一种用于结核自动检测的装置及方法
CN110694702B (zh) * 2019-11-01 2021-12-14 上海中航光电子有限公司 一种微流控芯片及驱动方法、微流控装置
CN111135892B (zh) * 2020-02-21 2021-01-05 厦门大学 微流控芯片操控设备、微流控系统和微流控芯片
CN111514948B (zh) * 2020-04-27 2022-02-22 京东方科技集团股份有限公司 微流控芯片和检测系统
CN111537707B (zh) * 2020-05-28 2023-07-25 上海邦先医疗科技有限公司 一种化学发光免疫分析仪、分析系统及检测方法
CN115326788A (zh) * 2022-07-11 2022-11-11 中国科学院大学 电化学发光免疫分析系统及方法
CN116948782A (zh) * 2023-07-25 2023-10-27 嘉庚创新实验室 基于数字微流控技术的分析平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144799B2 (en) * 2009-11-24 2015-09-29 Lawrence Livermore National Security, Llc Modular microfluidic system for biological sample preparation
CN203825016U (zh) * 2014-02-28 2014-09-10 深圳市第二人民医院 人类免疫缺陷病毒检测装置
CN107090403A (zh) * 2017-03-22 2017-08-25 清华大学 一种细胞裂解系统和方法
CN109022274A (zh) * 2017-06-08 2018-12-18 北京万泰生物药业股份有限公司 微流控芯片、芯片操纵系统、微流控装置和核酸提取方法
CN207210442U (zh) * 2017-09-19 2018-04-10 德诺杰亿(北京)生物科技有限公司 微流体控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141098A4 *

Also Published As

Publication number Publication date
EP4141098A4 (en) 2023-11-22
CN115244169A (zh) 2022-10-25
EP4141098A1 (en) 2023-03-01
US20230116464A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
CN109289949B (zh) 一种全自动微液滴乳浊液生成装置及其生成方法
WO2020078410A1 (zh) 样本处理装置及方法,以及包括该处理装置的数字pcr系统
US8691592B2 (en) Mechanically actuated diagnostic device
TWI666398B (zh) 流體控制裝置
CN108998368B (zh) 样本处理系统
US20070286739A1 (en) Apparatus for driving microfluid and driving method thereof
CN109022274A (zh) 微流控芯片、芯片操纵系统、微流控装置和核酸提取方法
US10246675B2 (en) Biochemical cartridge, and biochemical cartridge and cartridge holder set
CN104117429B (zh) 一种加热振荡磁分离装置
WO2022160278A1 (zh) 用于驱动微流控芯片的设备和驱动方法
CN111394243A (zh) 微流控芯片核酸检测装置
CN105170210A (zh) 一种多通道液体转移装置
CN114558632B (zh) 液体转移装置、多通道液体转移装置以及方法
CN216727330U (zh) 便携式全自动核酸恒温扩增装置
CN114100722B (zh) 便携式全自动核酸恒温扩增装置
CN113856777B (zh) 一种基于多通道微流控芯片的试纸条卡盒
CN115044454A (zh) 核酸提取设备
KR20220035086A (ko) 검체 분석 디바이스 및 이의 제조 방법
WO2023206092A1 (zh) 液体转移装置、多通道液体转移装置以及方法
CN113000080B (zh) 检测仪
CN115151630A (zh) 核酸提取微流控芯片、核酸提取装置及提取方法
CN205042499U (zh) 一种多通道液体转移装置
CN100385227C (zh) 压电驱式微混合芯片
CN114222809A (zh) 单细胞处理仪器
CN218573679U (zh) 液体转移装置、多通道液体转移装置、目标物自动提取转移装置以及多通道目标物自动提取转移装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021921882

Country of ref document: EP

Effective date: 20221121

NENP Non-entry into the national phase

Ref country code: DE