WO2022160261A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2022160261A1
WO2022160261A1 PCT/CN2021/074445 CN2021074445W WO2022160261A1 WO 2022160261 A1 WO2022160261 A1 WO 2022160261A1 CN 2021074445 W CN2021074445 W CN 2021074445W WO 2022160261 A1 WO2022160261 A1 WO 2022160261A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
message
dci
carriers
terminal
Prior art date
Application number
PCT/CN2021/074445
Other languages
English (en)
French (fr)
Inventor
娄崇
王瑞
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/074445 priority Critical patent/WO2022160261A1/zh
Publication of WO2022160261A1 publication Critical patent/WO2022160261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and device.
  • a serving cell may be called a component carrier (carrier component, CC).
  • a serving cell may be associated with one CC; it may also be associated with multiple CCs.
  • Carrier aggregation (CA) means that different CCs can be aggregated together, and a terminal can simultaneously establish a wireless link with one or more CCs to send and receive data, thereby obtaining greater throughput.
  • CA carrier aggregation
  • the fifth generation mobile communication system (5th generation mobile communication system) generation communication system, 5G) introduces dynamic spectrum sharing (DSS) technology.
  • DSS dynamic spectrum sharing
  • the embodiments of the present application provide a data transmission method and apparatus.
  • the PDCCH of the primary carrier operating in the LTE frequency band is transferred to the secondary carrier, thereby allowing the secondary carrier to cross the carrier.
  • the main carrier is scheduled, thereby solving the problem of limited PDCCH capacity in the LTE frequency band under DSS, reducing the PDCCH load in the LTE frequency band, and improving the efficiency of data transmission.
  • an embodiment of the present application provides a data transmission method.
  • the method is used for a terminal, and an access network device provides the terminal with multiple carriers, where the multiple carriers include a primary carrier and one or more a secondary carrier, the primary carrier is associated with the primary cell of the terminal, the secondary carrier is associated with the secondary cell of the terminal, the method includes: receiving a first message from the access network device, the The first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the secondary carrier that schedules the primary carrier across the carriers is the first secondary carrier; The first downlink control information DCI is received on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one secondary carrier in the one or more secondary carriers; the carrier scheduled by the first DCI.
  • the first message includes first information, where the first information is used to instruct the first secondary carrier to schedule the primary carrier across carriers.
  • the terminal may use the first information to indicate that the first secondary carrier can schedule the primary carrier across carriers.
  • the first information is further used to indicate the primary carrier self-scheduling.
  • the terminal can indicate through the first information that the first secondary carrier can schedule the primary carrier across the carriers and the primary carrier self-scheduling, thereby improving the flexibility of data transmission.
  • the first message includes second information, and the second information is used to distinguish whether the DCI on the first secondary carrier is scheduled by the primary carrier or the one or one of the multiple secondary carriers; wherein the second information includes at least one of the following: a scheduling carrier identifier, where the scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the primary carrier The carrier identifier; the cross-carrier indicator, which is used to indicate the value of the carrier indicator field CIF in the DCI of the primary carrier for cross-carrier scheduling by the first secondary carrier; the CIF appearance indicator, the The CIF appearance indicator is used to indicate whether the CIF is carried in the DCI of the primary carrier in the cross-carrier scheduling of the first secondary carrier;
  • the determining the carrier scheduled by the first DCI according to the first message includes: if the value of the CIF is obtained from the first DCI, according to the cross-carrier indication in the first information Indication of the identifier, it is determined that the first DCI scheduling is the primary carrier or one secondary carrier in the one or more secondary carriers.
  • the carrier scheduled by the first DCI can be determined by the meaning of the fields in the DCI, so that the existing DCI format does not need to be modified, and only the cross-carrier scheduling IE on the first secondary carrier needs to be reconfigured Either way, the efficiency of differentiating scheduling carriers is improved.
  • the first message includes third information, and the third information is used to distinguish whether the DCI on the first secondary carrier is scheduled by the primary carrier or the one or one of the multiple secondary carriers; the third information includes at least one of the following: a DCI format, or a search space corresponding to the DCI format; wherein, the DCI format and the search space are both used to indicate the The DCI on the first secondary carrier is the primary carrier, or one secondary carrier in the one or more secondary carriers; a cross-carrier scheduling indicator, or a value of the cross-carrier scheduling indicator; Wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier or one of the one or more secondary carriers.
  • the third information includes at least one of the following: a DCI format, or a search space corresponding to the DCI format; wherein, the DCI format and the search space are both used to indicate where the DCI on the first secondary carrier is located What is scheduled is the primary carrier or one of the one or more secondary carriers; a cross-carrier scheduling indicator, or a value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the values are all used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier or one secondary carrier in the one or more secondary carriers;
  • the determining the carrier scheduled by the first DCI according to the first message includes at least one of the following: determining a DCI format of the first DCI, and determining the first DCI scheduling according to the DCI format of the first DCI is the primary carrier, or one of the one or more secondary carriers; or determine the search space for transmitting the first DCI, and determine according to the search space for transmitting the first DCI
  • the first DCI schedules the primary carrier or one of the one or more secondary carriers; or determines whether the first DCI includes a cross-carrier scheduling indicator, and according to the first DCI Whether the DCI includes a cross-carrier scheduling indicator determines whether the first DCI schedules the primary carrier or one of the one or more secondary carriers; or determines the value of the cross-carrier scheduling indicator , and according to the value, it is determined that the first DCI scheduling is the primary carrier or one of the one or more secondary carriers.
  • the carrier scheduled by the first DCI can be determined by the DCI format distinction, so that the cross-carrier scheduling IE of the RRC configuration does not need to be modified, and the DCI is used to indicate the scheduling of the CC, thereby realizing that the PCell supports self-scheduling and sSCell schedules PCell across carriers, and also improves the flexibility of different scheduling carriers.
  • the first message is a radio resource control RRC message or a medium access control MAC message.
  • it also includes:
  • the terminal can accurately monitor the first secondary carrier according to the RLM function configured by the access network device on the first secondary carrier.
  • the quality of the communication link of the carrier and the primary carrier so that RRC re-establishment can be triggered as soon as possible, or accurate RLF event information indication can be used to avoid RRC re-establishment.
  • the detecting an RLF event includes: if the number of out-of-sync indications continuously detected by the terminal on the first secondary carrier is greater than a first threshold value, determining that RLF is detected event; or if the number of random access failures of the terminal on the first secondary carrier is greater than the second threshold, it is determined that an RLF event is detected; or if the number of RLC retransmissions of the terminal reaches The third threshold value is to determine that an RLF event is detected; or if the number of times of LBT failures that the terminal continuously detects is greater than the fourth threshold value, it is determined that an RLF event is detected.
  • the RLF event may include multiple situations, and as long as one of them is detected, it can be determined that the RLF event is detected.
  • the number of times of RLC retransmissions includes any one of the following: the number of times of first RLC retransmissions on the first secondary carrier; The second RLC retransmission times on a carrier other than the first secondary carrier; or the third RLC retransmission times on the primary carrier;
  • the LBT failure times include any of the following: The first number of LBT failures on the carrier; or the second number of LBT failures on the one or more secondary carriers other than the first secondary carrier; or the third LBT on the primary carrier number of failures.
  • the third message includes at least one of the following items: an identifier of the carrier where the RLF event occurred; signal quality information of an adjacent carrier, where the adjacent carrier is the same as the carrier in the multiple carriers that occurred.
  • the carrier adjacent to the carrier of the RLF event includes at least one of the following items: an identifier of the carrier where the RLF event occurred; signal quality information of an adjacent carrier, where the adjacent carrier is the same as the carrier in the multiple carriers that occurred.
  • the third message in addition to informing the access network device of the carrier on which the RLF event is sent, can also inform the signal quality information of the adjacent carrier, which is convenient for the base station to reconfigure the first secondary carrier or release the first secondary carrier. a secondary carrier, or deactivate the first secondary carrier.
  • the method further includes: receiving a fourth message from the access network device, where the fourth message is used to activate or deactivate the first secondary carrier; if the fourth message is Deactivating the first secondary carrier, determining the backup carrier of the first secondary carrier, and instructing the backup carrier to cross-carrier scheduling the primary carrier function to take effect; or instructing the primary carrier's self-scheduling function to take effect; If the fourth message is to activate the first secondary carrier, it indicates that the function of the secondary carrier to schedule the primary carrier across the carriers is disabled, and the function of the first secondary carrier to schedule the primary carrier across the carriers is valid.
  • the first secondary carrier is allowed to be dynamically activated and deactivated.
  • a backup carrier can be introduced, and the backup carrier can be used to replace the first secondary carrier to schedule the primary carrier across the carriers, thereby maintaining the Data transmission is not interrupted, which improves the communication quality of data transmission.
  • the fourth message includes fourth information, where the fourth information is used to indicate the spare carrier.
  • the spare carrier can be carried in the fourth message, and the terminal can directly learn the spare carrier according to the fourth message, which improves the efficiency of the terminal in determining the spare carrier.
  • the method further includes: receiving a fifth message from the access network device, where the fifth message is used to indicate the backup carrier.
  • the backup carrier may be in the fifth message specially used to indicate the backup carrier, and the terminal may directly learn the backup carrier according to the fifth message, which improves the flexibility of the terminal to determine the backup carrier.
  • an embodiment of the present application provides a data transmission method.
  • the method is used for an access network device, and the access network device provides a terminal with multiple carriers, and the multiple carriers include a primary carrier and a or multiple secondary carriers, the primary carrier is associated with the primary cell of the terminal, the secondary carrier is associated with the secondary cell of the terminal, the method includes: sending a first message to the terminal, the first The message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the secondary carrier for the cross-carrier scheduling of the primary carrier is the first secondary carrier; The first downlink control information DCI is sent on the carrier, where the first DCI is used to schedule the primary carrier or one of the one or more secondary carriers.
  • the DSS since the DSS requires the NR primary cell to work in the LTE frequency band, but considering that the PDCCH resources in the LTE frequency band are limited, if the NR PCell also consumes the LTE frequency band PDCCH resources, it will cause the LTE and NR PDCCH resources.
  • the capacity is limited.
  • the PDCCH of the PCell can be transferred to the secondary cell (secondary cell, SCell) through the first message, thereby allowing the SCell to schedule the PCell across carriers, which solves the problem of LTE under DSS.
  • the problem of limited PDCCH capacity in the frequency band reduces the PDCCH load in the LTE frequency band and improves the efficiency of data transmission.
  • the first message includes first information, where the first information is used to instruct the first secondary carrier to schedule the primary carrier across carriers.
  • the first secondary carrier may be configured for the terminal through the first information, and the primary carrier may be scheduled across carriers.
  • the first information is further used to indicate the primary carrier self-scheduling.
  • the first secondary carrier can be configured for the terminal through the first information, the primary carrier can be scheduled across the carriers and the primary carrier can be self-scheduled, thereby improving the flexibility of data transmission.
  • the first message includes first information, and the first information is used to distinguish whether the DCI on the first secondary carrier is scheduled by the primary carrier or the one or one of the multiple secondary carriers; wherein the first information includes at least one of the following: a scheduling carrier identifier, where the scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the primary carrier The carrier identifier; the cross-carrier indicator, which is used to indicate the value of the carrier indicator field CIF in the DCI of the primary carrier for cross-carrier scheduling by the first secondary carrier; the CIF appearance indicator, the The CIF presence indicator is used to indicate whether the CIF is carried in the DCI of the primary carrier that is scheduled across the carrier by the first secondary carrier.
  • a scheduling carrier identifier where the scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the primary carrier The carrier identifier
  • the cross-carrier indicator which is used to indicate the value of the carrier indicator field CIF in the DCI of the primary carrier for cross-carrier scheduling by the first
  • the carrier scheduled by the first DCI can be determined by the meaning of the fields in the DCI, so that the existing DCI format does not need to be modified, and only the cross-carrier scheduling IE on the first secondary carrier needs to be reconfigured Either way, the efficiency of differentiating scheduling carriers is improved.
  • the first message includes third information, and the third information is used to distinguish whether the DCI on the first secondary carrier is scheduled by the primary carrier or the one or one of the multiple secondary carriers; the third information includes at least one of the following: a DCI format, or a search space corresponding to the DCI format; wherein, the DCI format and the search space are both used to indicate the The DCI on the first secondary carrier is the primary carrier, or one secondary carrier in the one or more secondary carriers; a cross-carrier scheduling indicator, or a value of the cross-carrier scheduling indicator; Wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier or one of the one or more secondary carriers. carrier.
  • the carrier scheduled by the first DCI can be determined by the DCI format distinction, so that the cross-carrier scheduling IE of the RRC configuration does not need to be modified, and the DCI is used to indicate the scheduling of the CC, thereby realizing that the PCell supports self-scheduling and sSCell schedules PCell across carriers, and also improves the flexibility of different scheduling carriers.
  • the first message is a radio resource control RRC message or a medium access control MAC message.
  • the method further includes: sending a second message to the terminal, where the second message is used to configure the radio link monitoring RLM function of the first secondary carrier; is a third message, where the third message is used to indicate an RLF event, then it is determined according to the third message that the terminal detects the RLF event.
  • the access network device can configure the RLM function on the first secondary carrier to accurately monitor the first secondary carrier and the primary carrier.
  • the quality of the communication link of the carrier so that the terminal can trigger RRC re-establishment as soon as possible, or accurately indicate the RLF event information and avoid RRC re-establishment.
  • the third message includes at least one of the following:
  • the adjacent carrier is a carrier adjacent to the carrier on which the RLF event occurs among the multiple carriers
  • the determining that the terminal detects the RLF event according to the third message includes:
  • Another first secondary carrier is configured for the terminal according to the signal quality information of the adjacent carrier.
  • the third message in addition to informing the access network device of the carrier on which the RLF event is sent, can also inform the signal quality information of the adjacent carrier, which is convenient for the base station to reconfigure the first secondary carrier or release the first secondary carrier. a secondary carrier, or deactivate the first secondary carrier.
  • it also includes:
  • a fourth message is sent to the terminal, where the fourth message is used to activate or deactivate the first secondary carrier.
  • the fourth message includes fourth information, where the fourth information is used to indicate a backup carrier of the first secondary carrier.
  • the method further includes: sending a fifth message to the terminal, where the fifth message is used to indicate a backup carrier of the first secondary carrier.
  • the first secondary carrier is allowed to be dynamically activated and deactivated.
  • a backup carrier can be introduced, and the backup carrier can be used to replace the first secondary carrier to schedule the primary carrier across the carriers, thereby maintaining the Data transmission is not interrupted, which improves the communication quality of data transmission.
  • an embodiment of the present application provides a data transmission apparatus, the method is used for a terminal, and an access network device provides multiple carriers for the terminal, and the multiple carriers include a primary carrier and one or more a secondary carrier, the primary carrier is associated with the primary cell of the terminal, the secondary carrier is associated with the secondary cell of the terminal, and the apparatus includes: a first receiving module configured to receive data from the access network The first message of the device, the first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the secondary carrier for the cross-carrier scheduling of the primary carrier is the first a secondary carrier; a second receiving module configured to receive first downlink control information DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or the one or more secondary carriers A secondary carrier in ; a carrier determination module, configured to determine the carrier scheduled by the first DCI according to the first message.
  • an embodiment of the present application provides a data transmission apparatus, and the method is used for an access network device, and the access network device provides a terminal with multiple carriers, the multiple carriers include a primary carrier, and a or multiple secondary carriers, the primary carrier is associated with the primary cell of the terminal, the secondary carrier is associated with the secondary cell of the terminal, and the apparatus includes: a first sending module, configured to send a first sending module to the terminal A message, the first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the secondary carrier for the cross-carrier scheduling of the primary carrier is the first secondary carrier a second sending module, configured to send the first downlink control information DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one of the one or more secondary carriers Secondary carrier.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a storage medium, the storage medium stores instructions, and when the instructions are executed by the processor, the communication device causes the communication device The method described in the first aspect or the second aspect above is performed.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the communication apparatus executes the first aspect or the second aspect the method described.
  • embodiments of the present application provide a computer program product, where the computer program product includes a computer program, and when the computer program is run by a computer, the computer causes the computer to execute the method described in the first aspect or the second aspect.
  • the data transmission method and device provided by the present application receive a first message from an access network device, where the first message is used to configure at least one secondary carrier among one or more secondary carriers to schedule primary carriers across carriers, and to schedule primary carriers across carriers.
  • the secondary carrier of the carrier is the first secondary carrier;
  • the first downlink control information DCI is received on the first secondary carrier, and the first DCI is used to schedule the primary carrier or one secondary carrier in one or more secondary carriers;
  • the message determines the carrier scheduled by the first DCI, thereby realizing the transfer of the PDCCH of the primary carrier operating in the LTE frequency band to the secondary carrier, that is, allowing the secondary carrier to schedule the primary carrier across carriers, thus solving the PDCCH capacity of the LTE frequency band under DSS.
  • the limited problem reduces the PDCCH load in the LTE frequency band, and also improves the efficiency of data transmission.
  • 1 is a schematic diagram of cross-carrier scheduling
  • 2 is a schematic diagram of cross-carrier scheduling
  • 3 is a schematic diagram of cross-carrier scheduling
  • Fig. 4 is a kind of double link schematic diagram
  • 5 is a schematic diagram of a user plane protocol stack
  • FIG. 6 is a schematic diagram of cross-carrier scheduling
  • FIG. 7 is a schematic diagram of cross-carrier scheduling
  • Fig. 9 is a kind of SCG failure recovery schematic diagram
  • FIG. 10 is a schematic diagram of a MAC-CE format
  • FIG. 11 is a schematic diagram of a MAC-CE format
  • Fig. 12 is a kind of LTE system architecture diagram
  • FIG. 13 is an information interaction diagram of a data transmission method provided by an embodiment of the present application.
  • 15 is an information interaction diagram of a data transmission method provided by an embodiment of the present application.
  • 16 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • 17 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • 20 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • 21 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • a serving cell may also be called a component carrier (carrier component, CC).
  • a serving cell may be associated with one CC; it may also be associated with multiple CCs.
  • SUL supplementary uplink
  • a serving cell is associated with multiple CCs, and CCs at low frequency points can ensure coverage, and CCs at high frequency points can ensure data throughput;
  • serving cells can be divided into the following types:
  • PCell Primary cell
  • SCell Secondary cell: For scenarios where carrier aggregation (CA) is configured, the cell that provides additional radio resources other than PCell is SCell
  • PSCell Primary secondary cell group cell
  • SpCell Special cell (special cell, SpCell): Both PCell and PSCell can be called SpCell.
  • SCells for cross-carrier scheduling of PCells are referred to as sSCells.
  • CA Carrier aggregation
  • CA Channel Control Coding
  • DCI downlink control information
  • Cross-carrier scheduling DCI transmitted through the PDCCH is transmitted on one CC, while the corresponding uplink and downlink data are transmitted on another CC.
  • PDCCH can not be configured on some CCs, thereby reducing the complexity of terminal PDCCH blind detection, and reducing co-channel interference in actual network deployment, and only perform PDCCH scheduling through some specific CCs.
  • scheduled CC is called “scheduled CC”
  • scheduled CC the corresponding scheduled CC is called “scheduling CC”.
  • PCell is self-scheduling
  • SCell2 is self-scheduling
  • SCell1 is cross-carrier scheduling by SCell2.
  • PCell is self-scheduling
  • SCell1 is cross-carrier scheduling by PCell
  • SCell2 is self-scheduling
  • a terminal can maintain a connection with two base stations at the same time and receive services, which is called a dual-connection architecture.
  • the dual-connection architecture currently supported by the new radio (NR) system is also called a multi-radio interface.
  • dual connectivity, MR-DC that is, a dual connection composed of base stations through long term evolution (LTE) and new radio (NR), or a dual connection composed of NR and NR base stations.
  • LTE long term evolution
  • NR new radio
  • the dual-link architecture includes an evolved node B (evolved node B, eNB) and a further evolved node B (next generation node B, gNB).
  • the user's quality of service (QoS) flow goes through the service data adaptation protocol (SDAP) layer, and the QoS flow is sent to the data radio bearer (DRB).
  • DAP data radio bearer
  • Mapping thereby determining the corresponding radio bearer (RB) of the QoS flow, processed by the packet data convergence protocol (PDCP) of the corresponding RB, completing functions such as encryption, and then passing through the radio link control layer (
  • the radio link control (RLC) protocol and the media access control (media access control, MAC) protocol are processed to generate the MAC protocol data unit (protocol data unit, PDU) for transmission on the air interface.
  • RLC radio link control
  • MAC media access control
  • the 5th generation communication system introduces the DSS technology.
  • the NR air interface technology can work in the LTE frequency band and share spectrum resources with the LTE air interface technology.
  • PCell of NR can work in the LTE frequency band.
  • the PDCCH of the PCell can be transferred to the SCell, thereby allowing the SCell to schedule the PCell across carriers, thereby solving the problem of limited PDCCH capacity in the LTE frequency band under DSS.
  • SCells for cross-carrier scheduling of PCells are referred to as sSCells.
  • the base station configures cross-carrier scheduling through RRC messages, which can be configured through the following message elements (information elements, IEs). Each CC can independently configure whether to enable cross-carrier scheduling and which other CC to perform scheduling on.
  • Added "carrier indicator field (CIF)" to indicate which CC the PDCCH corresponds to the physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) , where the value of CIF represents the CC.
  • the terminal does not configure cross-carrier scheduling, for PCell, SCell1 and SCell2, the first type (ie own type) is selected, and the CIF presence indicator (cif-Presence) field is set to FALSE, indicating The PDCCH sent by the cell does not include the CIF field, that is, the DCI does not include the CIF field.
  • the first type ie, the own type is used to indicate that the PDCCH corresponding to the PDSCH or PUSCH resource of the current cell must be sent on the carrier of the same cell.
  • PCell can schedule resources of this CC, and can also schedule resources of SCell1 across carriers, and SCell2 can only schedule resources of this CC:
  • the first type (that is, the own type) can be selected, and the CIF presence indicator (cif-Presence) field is set to TRUE, indicating that the PDCCH sent by this cell includes the CIF field, that is, the DCI includes the CIF field;
  • the CIF presence indicator cif-Presence
  • the second type (ie, the other type) is used to indicate that the PDCCH of the current cell is sent on other cells specified by the scheduling cell identifier (schedulingCellId).
  • the first type ie own type
  • the CIF presence indicator (cif-Presence) field is set to FALSE, indicating that the PDCCH sent by the cell does not include the CIF field, that is, the DCI does not include the CIF field.
  • PCell can only schedule resources of this CC
  • SCell2 not only schedules resources of this cell, but also schedules resources of SCell1 across carriers:
  • the first type ie own type
  • the CIF presence indicator (cif-Presence) field is set to FALSE, indicating that the PDCCH sent by the cell does not include the CIF field, that is, the DCI does not include the CIF field;
  • the first type ie own type
  • the CIF presence indicator (cif-Presence) field is set to TRUE, indicating that the PDCCH sent by the cell includes the CIF field, that is, the DCI includes the CIF field.
  • cross-carrier scheduling configurations are all two-choice structures, that is, a CC is either self-scheduling, that is, the PDCCH schedules the resources of the cell, or it is cross-carrier scheduling by other CCs, that is, it is scheduled through the PDCCH of other CCs.
  • a CC is either self-scheduling, that is, the PDCCH schedules the resources of the cell, or it is cross-carrier scheduling by other CCs, that is, it is scheduled through the PDCCH of other CCs.
  • the terminal In order to maintain the reliability of the communication link between the terminal and the base station, the terminal needs to detect the quality of the communication link (radiolink motorining, RLM) on the PCell. If dual connectivity (DC) is configured, the terminal also needs to detect the quality of the communication link on the PSCell. Communication link quality. When at least one of the following conditions is met, the radio link failure process is triggered, so that the base station can restore the current communication link:
  • Condition 1 When the terminal detects continuous "out-of-sync" indications, for example, when the terminal detects that the channel quality of PDCCH or PDSCH is lower than a certain threshold within a time window, it reports an "out-of-sync" to RRC. Indication", if the detected channel quality is higher than a certain threshold within a time window, an "in-sync indication” is reported to the RRC. If the number of "out-of-sync indications" continuously detected by the terminal in RRC is higher than a threshold, and no "synchronized indications" are received within a time window, it can be considered that there is a problem with the current communication link and RLF is triggered.
  • Condition 2 When there is a problem in the random access process of the terminal, that is, the number of random access failures is higher than a threshold value, the terminal considers that there is a problem in the random access process, that is, the current communication link has a problem, and triggers RLF.
  • Condition 3 When the terminal's RLC retransmission reaches the maximum number of transmissions, that is, an RLC service data unit (SDU) has not been successfully transmitted for many times, the terminal considers that there is a problem with the current communication link and triggers RLF.
  • SDU RLC service data unit
  • Condition 4 For unlicensed spectrum, if the continuous listen-before-talk (LBT) failure is detected, that is, the terminal fails to preempt the channel for many times in a row, it is considered that the current communication link has a problem and RLF is triggered. .
  • LBT listen-before-talk
  • Method 2 If RLF occurs in PSCell, since the air interface link of the master cell group (MCG) is not in trouble, in order to avoid the data interruption and delay caused by triggering RRC re-establishment, the terminal can trigger the secondary cell group (secondary cell group).
  • cell group, SCG cell group recovery process
  • the terminal reports an SCG failure message to the master station (master node, MN); wherein, the SCG failure information will include the type of RLF that occurs, and optionally, the SCG failure information may also carry the measurement result, which is convenient for the MN make a judgment.
  • the master station can perform SCG failure recovery, for example, release the air interface link of the SCG, or trigger the handover process to change the primary cell of the SCG, etc., so as to restore the communication link between the terminal and the SCG.
  • the above RLF is only applicable to PCell, and the terminal only detects air interface link quality on PCell.
  • PCell is scheduled across carriers by sSCell, that is, the PUSCH and PDSCH corresponding to PDCCH scheduling sent by sSCell are transmitted on PCell.
  • the quality of the air interface link of the sSCell is deteriorated, it means that the communication of the PCell cannot be guaranteed, so the existing RLF cannot detect this situation and cannot solve the problem.
  • the above RLF may be caused by the failure of RLC transmission.
  • the terminal thinks that there is a problem with the current communication link and triggers the RLF. Distinguish whether it is PCell or SCell transmission failure. If the RLC transmission failure is due to the air interface link problem of the SCell, not the link problem of the PCell, triggering the RLF will cause the PCell communication to be interrupted.
  • LTE and NR have introduced the secondary cell activation and deactivation mechanism, which controls the secondary cell status by displaying or implicitly.
  • the terminal does not monitor the PDCCH on the CC, and cannot receive and transmit data on the CC through the PDSCH and the PUSCH.
  • the implicit deactivation method when the user has no service data transmission within the duration of the pre-configured timer, it can be considered that the service throughput requirement becomes lower.
  • the timer When the terminal has data communication, the timer will be restarted to avoid timeout, and when the timer expires, the terminal will actively deactivate the CC.
  • CE MAC Control element
  • the present application provides a data transmission method and device.
  • the SCell is allowed to schedule the PCell across the carriers, thereby solving the problem that the PDCCH capacity of the LTE frequency band is limited by the DSS under DSS. limit issue.
  • This application can be applied to universal mobile telecommunications system (UMTS), LTE system, code division multiple access (code division multiple access, CDMA) system, wireless local area network (wireless local area network, WLAN) or future fifth The fifth generation (5G) wireless communication system, etc.
  • UMTS universal mobile telecommunications system
  • LTE Long Term Evolution
  • CDMA code division multiple access
  • WLAN wireless local area network
  • 5G fifth generation
  • the terminal is located within the coverage of one or more cells (carriers) provided by the access network equipment, and there may be one or more cells serving the terminal. When there are multiple cells serving the terminal, the terminal can work in the CA or DC or coordinated multipoint transmission mode.
  • the terminal in this application may be a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), etc., and refers to a device that provides voice and/or data connectivity to a user.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • some examples of terminals are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the access network device in this application refers to a radio access network (radio access network, RAN) node or RAN device that accesses a terminal to a wireless network, and may also be referred to as a base station.
  • RAN nodes are: next generation Node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (home Node B, HNB), baseband unit ( base band unit, BBU), or wireless fidelity (wireless fidelity, WiFi) access point (access point, AP), etc.
  • gNB next generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B, NB
  • BSC base station controller
  • base transceiver station base transceiver
  • Embodiment 1 PCell supports self-scheduling + sSCell cross-carrier scheduling. As shown in Figure 13, including terminals and access network equipment, the specific implementation process is as follows:
  • the access network device sends a first message to the terminal to enable sSCell to schedule PCell across carriers.
  • the first message may be an RRC message, or may be a MAC message, such as an RRC reconfiguration message, an RRC recovery message, etc., which is not limited in this application.
  • the first message may include first information, and the first information may be used to configure sSCell cross-carrier scheduling PCell, and may also configure PCell self-scheduling, or configure PCell self-scheduling while configuring sSCell cross-carrier scheduling PCell.
  • the first information includes cross-carrier scheduling information, where the cross-carrier scheduling information is used to instruct the sSCell to schedule the PCell across the carriers.
  • the cross-carrier scheduling information can be applied to each CC, and can also be applied to all or part of the SCells except the PCell; if the cross-carrier scheduling information is applied to part of the SCell, the part of the SCell contains at least one SCell, and the access network equipment Indicates which SCells can use cross-carrier scheduling information.
  • the first message may further include second information for indicating that the PCell can be both self-scheduled and cross-carrier scheduled by the sSCell.
  • the second information may also include at least one of the following information:
  • the scheduling cell identifier which can be used to indicate the cell identifier of the sSCell that schedules the PCell, that is, the resources of the PCell can be indicated by the PDCCH resources on the sSCell; it can also be used to indicate the cell identifier of the self-scheduling PCell, that is, the resources of the PCell can be indicated by the PDCCH resources on the sSCell. Indicated by the PDCCH resource on the PCell.
  • Another possible way is to not include the cross-carrier indicator, such as the default CIF value, that is, when the CIF value is 0 or an illegal value, it indicates that the DCI on the sSCell schedules the resources of the PCell.
  • the cross-carrier indicator such as the default CIF value, that is, when the CIF value is 0 or an illegal value, it indicates that the DCI on the sSCell schedules the resources of the PCell.
  • a CIF presence indicator (optional), that is, cif-Presence, is used to indicate whether the DCI in the PDCCH sent by the scheduling cell carries the CIF field.
  • the CIF presence indicator needs to be configured; otherwise, the CIF presence indicator does not need to be configured.
  • the first message may further include third information, where the third information is used to distinguish whether the DCI scheduled on the sSCell is a PCell or an SCell (including the sSCell).
  • the third information may be the DCI format, or the search space corresponding to the DCI, for example, the DCI of the sSCell scheduling PCell and the DCI of the scheduling SCell are indicated by different DCI formats, or different search spaces for transmitting the DCI, so that After receiving the DCI, the terminal can judge whether the DCI is used for scheduling PCell according to the corresponding format or search space.
  • the third information may be a special cross-carrier scheduling indicator, which is used to indicate that the DCI on the sSCell is scheduled as a PCell resource. For example, if the third information is carried in the DCI, or when the value is an agreed value , means that the DCI schedules the resources of the PCell, otherwise, it schedules the resources of the SCell.
  • the base station sends DCI in the sSCell for scheduling the PCell or the SCell.
  • the SCell may include the sSCell itself, or other SCells.
  • the terminal determines the CC scheduled by the DCI.
  • the terminal may determine the CC scheduled by the DCI according to the first message, and the CC may be a PCell or an SCell.
  • the sSCell scheduling PCell can be enabled through the first message, and there are two different ways.
  • the way 1 does not need to modify the existing DCI format, but only needs to reconfigure the cross-carrier scheduling IE on the sSCell. 2.
  • the present application can realize sSCell scheduling PCell through the first message, which solves the problem of limited PDCCH capacity in the LTE frequency band under DSS.
  • Embodiment 2 The sSCell is configured with RLM and RLF functions, and when the sSCell detects RLF, a failure indication or RRC re-establishment is triggered.
  • the specific implementation process is as follows:
  • the access network device sends a second message to the terminal, where the second message is used to configure the RLM function of the sSCell.
  • the second message may be an RRC message, and may be a MAC message, such as RRC reconfiguration, RRC recovery, etc., which is not limited in this application.
  • the second message may include at least one of the following parameters:
  • Reference signal indication used to indicate the reference signal to be detected by the RLM of the sSCell
  • the detection purpose is used to indicate the purpose of performing RLM on the reference signal, such as RLF for PCell or RLF for sSCell.
  • the terminal detects whether an RLF event occurs in the sSCell.
  • the event that the terminal detects that RLF has occurred may include at least one of the following:
  • Event 1 When the terminal detects continuous "out-of-sync" on the sSCell, for example: if the terminal detects that the channel quality of PDCCH or PDSCH is lower than a certain threshold within a time window, it will be reported to RRC has an "out-of-sync indication"; if the channel quality detected by the terminal is higher than a certain threshold within a time window, it will report an "in-sync indication (in-sync)" to RRC; if the terminal continuously detects "in-sync” in RRC If the number of "out-of-sync indications" is higher than a threshold, and no "synchronized indications" are received within a time window, it can be considered that there is a problem with the current communication link and RLF is triggered.
  • Event 2 When there is a problem in the random access process of the terminal on the sSCell, that is, when the number of random access failures is higher than a threshold, the terminal considers that there is a problem in the random access process, that is, the current communication link RLF.
  • the terminal may only count the number of random access failures on the sSCell, excluding the number of random access failures on the PCell.
  • Event 3 When the terminal's RLC retransmission reaches the maximum number of transmissions, that is, an RLC SDU has not been successfully transmitted after multiple transmissions, the terminal considers that there is a problem with the current communication link and triggers RLF.
  • event 3 can also be divided into events 3a and 3b:
  • Event 3a The terminal can count the number of RLC retransmissions that occur on the SCell, for example, the terminal records whether the current RLC transmission or retransmission occurs in the SCell, and if it occurs in the SCell, it can be recorded as one time.
  • the SCell may be an sSCell, or any SCell except PCell.
  • Event 3b The terminal may also count the number of RLC retransmissions that occur on the PCell. For example, the terminal records whether the current RLC transmission or retransmission occurs on the PCell. If it occurs on the PCell, it can be recorded as one time.
  • Event 4 For unlicensed spectrum, if continuous LBT (Listen-Before-Talk) failure is detected, that is, the terminal fails to preempt the channel for several consecutive times, it is considered that the current communication link has a problem, and RLF is triggered. .
  • LBT Listen-Before-Talk
  • event 4 can also be divided into events 4a and 4b:
  • Event 4a The terminal can count the number of LBT failures that occur on the SCell, for example, the terminal records whether the current LBT failure occurs in the SCell, and if it occurs in the SCell, it can be recorded as one time.
  • the SCell may be an sSCell, or any SCell except PCell.
  • Event 4b Further, the terminal can also count the number of LBT failures that occur on the PCell, for example, the terminal records whether the LBT failure occurs on the PCell this time, and if it occurs on the PCell, it can be recorded as one time.
  • the terminal may select different processing methods according to different events, that is, the following S1403 or step S1404.
  • a possible way is that the terminal determines that at least one of the above events 1 to 4 has occurred, such as event 3b and event 4b, and considers that there is a problem with the communication link of the PCell, so RRC re-establishment can be triggered, and the terminal can re-select A PCell is connected and data communication is resumed.
  • the terminal determines that at least one of the above events 1 to 4 has occurred, and the terminal determines that the RLF of the PCell has occurred, so RRC re-establishment can be triggered, and the terminal reselects a PCell for access and resumes data communication.
  • the terminal sends a third message, where the third message is used to indicate an RLF event.
  • the terminal determines that at least one of the above events 1 to 4 has occurred, such as event 1, event 3a, and event 3a, it considers that there is a problem with the communication link of the sSCell, because there is no problem with the quality of the communication link of the PCell itself For example, RLF does not occur in PCell, so the third message can be sent to avoid RRC re-establishment.
  • the third message may be an RRC message or a MAC message, which is not limited in this application.
  • corresponding scheduling request (SR) resources can also be configured for the MAC CE, and when there is no available uplink resource to transmit the MAC CE, the SR can also be triggered.
  • SR scheduling request
  • the third message may contain at least one of the following information:
  • Cell identity information used to indicate the identity of the cell where RLF occurs
  • Signal quality information of neighboring cells which is used by the base station to reselect an appropriate SCell according to the information.
  • the communication link quality of the PCell and the sSCell can be accurately monitored, the RRC reconstruction can be accurately controlled or the sSCell link quality failure of the base station can be indicated, and the source of the RLF problem can be identified.
  • PCell is still sSCell. If it occurs in sSCell and there is no problem with the communication link quality of PCell, RRC re-establishment can be avoided. Instead, the base station is notified through failure indication information, which is convenient for the base station to reconfigure the sSCell or release or deactivate the sSCell.
  • the above embodiment 2 only supports monitoring of the communication link quality on the PCell, and does not consider the communication link quality of the sSCell associated with the PCell. Since the sSCell communication link is directly related to the data transmission of the PCell, the present application can trigger RRC re-establishment as soon as possible. Or precise information indication to avoid RRC reconstruction.
  • Embodiment 3 The sSCell is dynamically activated and deactivated, and the standby CC is started. As shown in Figure 15, including terminals and access network equipment, the specific implementation process is as follows:
  • Standby CC indication used to indicate the standby CC after the sSCell is deactivated. in. This step is an optional step.
  • the access network device sends a fourth message to the terminal, where the fourth message is used to activate or deactivate the CC.
  • the fourth message may be a MAC message, such as MAC CE; it may also be physical layer signaling, such as DCI, which is not limited in this application.
  • the fourth message may also indicate activated or deactivated CCs, eg by means of a bitmap.
  • CC may be sSCell.
  • the access network device configures the standby CC after sSCell deactivation through the RRC message (ie S1500).
  • the sSCell is SCell1
  • the standby CC can be PCell or SCell2.
  • the standby CC can be used.
  • Alternative sSCell uses the same functionality.
  • the fourth message may also include a backup CC indication, for example, when the sSCell is deactivated, the backup CC indication can also replace the CC of the sSCell, so that after the sSCell is deactivated, the backup CC can replace the sSCell and use the same Function.
  • Another possible way is: in a way predefined by the protocol, after the sSCell is deactivated, the PCell resumes the self-scheduling function, and the sSCell cross-carrier scheduling function of the PCell automatically becomes invalid.
  • the terminal determines a backup CC.
  • the terminal determines a backup CC according to the method in step 15-1, and the backup CC may be a PCell or a CC other than the PCell and the sSCell.
  • the terminal automatically restores the function of sSCell cross-carrier scheduling PCell, and the backup CC cross-carrier scheduling CC is invalid.
  • a possible way is: after the terminal receives an instruction to activate or deactivate the sSCell, the terminal automatically disables or automatically takes effect the standby CC cross-carrier scheduling PCell.
  • the terminal needs an additional indication signaling, such as DCI, to indicate whether the backup CC cross-carrier scheduling PCell is invalid or valid.
  • the third embodiment above allows the sSCell to be dynamically activated and deactivated.
  • a backup CC is introduced, and the backup CC is used to replace the sSCell to schedule PCell across carriers, so as to keep data uninterrupted.
  • the PCell after deactivating the sSCell, the PCell cannot perform data scheduling, resulting in data interruption of the PCell.
  • the backup CC can still realize the data communication of the PCell after the sSCell is dynamically deactivated.
  • Embodiment 4 sSCell is not allowed to be deactivated. That is, the sSCell does not allow the CC to be deactivated through the fourth message in the above S1501.
  • the fourth message in the above S1501 is only used to activate the CC, and the CC can be an sSCell, so that the terminal can automatically disable the standby CC cross-carrier scheduling PCell after receiving the instruction to activate the sSCell, or an additional
  • the indication signaling, such as DCI, indicates whether the backup CC cross-carrier scheduling PCell is invalid.
  • the access network device configures the sSCell for the terminal.
  • the configuration of the sSCell through an RRC message takes effect, or takes effect after a period of time, that is, the fourth message in S1501 is not required to activate the CC.
  • FIG. 16 is a schematic flowchart of a data transmission method provided by an embodiment of the present application; the method can be used for a terminal, and an access network device provides multiple carriers for the terminal, and the multiple carriers include a primary carrier. , and one or more secondary carriers, the primary carrier is associated with the primary cell of the terminal (that is, the PCell in the above-mentioned Embodiment 1 to Embodiment 4), and the secondary carrier is associated with the secondary cell of the terminal (that is, the SCell in the above-mentioned Embodiment 1 to Embodiment 4) Associated.
  • the terminal may be the terminal in any of the embodiments in FIG. 12 to FIG. 15
  • the access network device may be the access network device in any of the embodiments in FIG. 12 to FIG. 15 .
  • the data transmission method may include the following steps:
  • the first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the secondary carrier that schedules the primary carrier across the carriers is the first secondary carrier .
  • the first secondary carrier is associated with the secondary cell (sSCell in the above-mentioned Embodiment 1 to Embodiment 4) of the primary cell for cross-carrier scheduling.
  • the access network device may be configured with one or more first secondary carriers. For example, multiple carriers are associated with PCell, SCell1, and SCell2.
  • the access network device can configure SCell1 to schedule PCell across carriers, SCell2 to schedule PCell across carriers, and both SCell1 and SCell2 to schedule PCell across carriers.
  • the first message may include first information, and the first information may be used to instruct the first secondary carrier to schedule the primary carrier across carriers, for example, the first information indicates that SCell1 schedules PCell across carriers.
  • the first information may also be used to indicate the main carrier self-scheduling, for example, the first information indicates PCell self-scheduling and SCell1 cross-carrier scheduling PCell.
  • the first message may include second information, which is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier, or one secondary carrier among one or more secondary carriers; wherein the second information includes the following: At least one:
  • scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the carrier identifier of the primary carrier
  • cross-carrier indicator is used to indicate the value of the CIF in the DCI of the first secondary carrier for cross-carrier scheduling of the primary carrier
  • a CIF presence indicator where the CIF presence indicator is used to indicate whether the DCI of the primary carrier of the cross-carrier scheduling of the first secondary carrier carries the CIF.
  • the scheduling carrier identifier may be the identifier of the sSCell; if the PCell schedules itself, the scheduling carrier identifier is the identifier of the PCell.
  • the cross-carrier indication flag is 2, that is, when the CIF value is 2, it indicates that the DCI on the sSCell schedules the resources of the PCell.
  • the first message may include third information, which is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier, or one secondary carrier among one or more secondary carriers; the third information includes at least one of the following: item:
  • the DCI format, or the search space corresponding to the DCI format are both used to indicate that what the DCI on the first secondary carrier is scheduled is the primary carrier or one or more secondary carriers in a secondary carrier;
  • the cross-carrier scheduling indicator or the value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier, or one or more One of the secondary carriers.
  • DCI format 1 or search space 1 indicates that sSCell schedules PCell across carriers
  • DCI format 2 or search space 2 indicates that sSCell self-schedules or schedules other SCells.
  • the sSCell is instructed to schedule the PCell across the carriers; if the DCI does not include the cross-carrier scheduling indicator, the sSCell is instructed to sub-schedule or to schedule other SCells.
  • the cross-carrier scheduling indicator is a predetermined value, it indicates that the sSCell schedules PCell across carriers; if the DCI is not a predetermined value, it indicates that the sSCell sub-schedules or schedules other SCells.
  • the specific content of the above-mentioned third information is the same as that of the above-mentioned method 2 in S1301, that is, it is distinguished by the DCI format, which is not repeated here.
  • the first message may be an RRC message or a MAC message, such as an RRC reconfiguration message, an RRC recovery message, etc., which is not limited in this application.
  • S1602. Receive the first DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one secondary carrier in one or more secondary carriers.
  • the first DCI on the first secondary carrier may schedule the primary carrier, may also schedule the first secondary carrier, and may also schedule other secondary carriers.
  • multiple carriers are associated with PCell, SCell1 and SCell2, SCell1 is sSCell, and the first DCI on the sSCell can schedule PCell, SCell1, and SCell2.
  • the carrier scheduled by the first DCI is the primary carrier or the secondary carrier according to the information included in the first message.
  • the first message may include first information, and the first information may be used to instruct the first secondary carrier to schedule the primary carrier across the carriers, and may also be used to instruct the primary carrier to self-schedule.
  • the terminal may determine, according to the first information, whether the first DCI schedule is the primary carrier or one secondary carrier among one or more secondary carriers.
  • the first message may include second information, and the second information is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier or one secondary carrier among one or more secondary carriers; wherein the second The information includes at least one of the following: a scheduling carrier identifier, which is used to indicate a carrier identifier of the first secondary carrier or a carrier identifier of the primary carrier; a cross-carrier indication identifier, which is used to indicate that the first secondary carrier crosses The value of the CIF in the DCI of the carrier scheduling primary carrier; the CIF presence indicator, the CIF presence indicator is used to indicate whether the first secondary carrier cross-carrier scheduling primary carrier DCI carries the CIF.
  • the terminal obtains the value of the CIF from the first DCI, it can determine that the first DCI schedules one of the primary carrier or one or more secondary carriers according to the indication of the cross-carrier indicator in the first information. Secondary carrier.
  • the first message may include third information, where the third information is used to distinguish whether the DCI on the first secondary carrier is the primary carrier or one of the one or more secondary carriers;
  • the third information includes At least one of the following: a DCI format, or a search space corresponding to the DCI format; wherein both the DCI format and the search space are used to indicate that the DCI on the first secondary carrier is scheduled on the primary carrier or one or more secondary carriers a secondary carrier of the first secondary carrier; the cross-carrier scheduling indicator, or the value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier, or one of the one or more secondary carriers.
  • the terminal can adopt the following determination methods:
  • determining a search space for transmitting the first DCI and determining, according to the search space for transmitting the first DCI, whether the first DCI is scheduled to be the primary carrier, or one of the one or more secondary carriers; or
  • the first DCI includes a cross-carrier scheduling indicator, and determining whether the first DCI schedules the primary carrier or one of the one or more secondary carriers according to whether the first DCI includes the cross-carrier scheduling indicator;
  • a value of the cross-carrier scheduling indicator is determined, and according to the value, it is determined whether the first DCI is scheduled to be the primary carrier or one of the one or more secondary carriers.
  • the terminal in addition to performing the cross-carrier function configured by the access network device in the above S1601 to S1603, the terminal also needs to perform the RLM function and the activation or deactivation function configured by the access network device, as shown in Figure 17. Show.
  • FIG. 17 is a schematic flowchart of a data transmission method provided by an embodiment of the present application; the method can be used in a terminal and is established on the basis of FIG. 16 . As shown in FIG. 17 , the data transmission method may include the following steps:
  • the second message may be an RRC message, and may be a MAC message, such as RRC reconfiguration, RRC recovery, etc., which is not limited in this application.
  • the second message may include at least one of the following parameters: reference signal indication, used to indicate the reference signal to be detected by the RLM of the sSCell; detection purpose, used to indicate the purpose of performing RLM on the reference signal, such as for PCell RLF, or RLF of sSCell.
  • detecting the occurrence of an RLF event by the terminal includes: if the number of out-of-synchronization indications continuously detected by the terminal on the first secondary carrier is greater than a first threshold, determining that an RLF event has been detected; or if the terminal is on the first secondary carrier If the number of random access failures on the carrier is greater than the second threshold, it is determined that an RLF event is detected; or if the number of RLC retransmissions of the terminal reaches the third threshold, it is determined that an RLF event is detected; or if If the number of times of listening-before-talking LBT failures continuously detected by the terminal is greater than the fourth threshold value, it is determined that an RLF event is detected.
  • the number of RLC retransmissions includes any of the following: the number of first RLC retransmissions on the first secondary carrier; or the second RLC retransmission on a carrier other than the first secondary carrier among one or more secondary carriers number of transmissions; or the number of third RLC retransmissions on the primary carrier;
  • the number of LBT failures includes any of the following: a first number of LBT failures on the first secondary carrier; or a second number of LBT failures on a carrier other than the first secondary carrier among the one or more secondary carriers; or on The number of third LBT failures on the primary carrier.
  • RLF event If an RLF event is detected, trigger RRC re-establishment or send a third message to the access network device, where the third message is used to indicate the RLF event.
  • the terminal may trigger RRC re-establishment, and may also send a third message to the access network device.
  • the terminal can choose different processing methods according to different events.
  • the terminal determines to detect an RLF event, and thinks that there is a problem in the communication link of the PCell, so it can trigger RRC re-establishment, and the terminal selects a PCell for access again and resumes data communication.
  • the terminal terminal determines that an RLF event has been detected, and judges that the RLF of the PCell has occurred. Therefore, RRC re-establishment can be triggered, and the terminal can re-select a PCell for access and resume data communication.
  • the terminal determines to detect an RLF event, and thinks that there is a problem with the communication link of the sSCell, because there is no problem with the quality of the communication link of the PCell itself, for example, no RLF occurs in the PCell, it can send a third message to avoid the problem. RRC rebuild.
  • the above-mentioned third message may be an RRC message or a MAC message, which is not limited in this application.
  • the third message is a MAC message, such as a MAC CE
  • the corresponding SR resource can also be configured for the MAC CE, and when there is no available uplink resource to transmit the MAC CE, the SR can also be triggered.
  • the third message may include at least one of the following information: cell identification information, used to indicate the identification of the cell where RLF occurs; signal quality information of neighboring cells, used by the base station to reselect an appropriate SCell according to the information.
  • the fourth message may be a MAC message, such as MAC CE; it may also be physical layer signaling, such as DCI, which is not limited in this application.
  • the fourth message is to deactivate the first secondary carrier, determine the backup carrier of the first secondary carrier, and instruct the backup carrier to cross-carrier scheduling of the primary carrier to take effect; or to indicate that the self-scheduling function of the primary carrier takes effect.
  • the terminal determines the backup carrier of the first secondary carrier, the following two methods may be adopted:
  • the fourth information is used to indicate the backup carrier, and the terminal may determine the backup carrier of the first secondary carrier according to the fourth information;
  • the fifth message is used to indicate the backup carrier, and the terminal may determine the backup carrier of the first secondary carrier according to the fifth message.
  • the fifth message is different from the fourth message, and the fifth message may be a message sent by the access network device specifically for indicating the standby carrier, such as an RRC message.
  • the fourth message is to activate the first secondary carrier, it indicates that the function of the secondary carrier to schedule the primary carrier across the carriers is disabled, and the function of the first secondary carrier to schedule the primary carrier across the carriers is valid.
  • the terminal automatically restores the function of sSCell scheduling PCell across carriers, and the backup CC scheduling CC across carriers becomes invalid.
  • a possible way is: after the terminal receives the instruction to activate the sSCell, the terminal automatically disables the standby CC to schedule the PCell across the carriers.
  • the terminal needs an additional indication signaling, such as DCI, to indicate whether the backup CC cross-carrier scheduling PCell fails.
  • the above S1701 to S1703 are for executing the RLM function, and the above S1704 to S1706 are for executing the activation or deactivation function, and the two have no sequence in the execution order. S1706, and then execute S1701 to S1703; the two may also be executed at the same time, which is not limited in this application.
  • FIG. 18 is a schematic flowchart of a data transmission method provided by an embodiment of the present application; the method can be used in an access network device, and the access network device provides a terminal with multiple carriers, and multiple carriers It includes a primary carrier and one or more secondary carriers.
  • the primary carrier is associated with the primary cell of the terminal (that is, the PCell in the above-mentioned Embodiment 1 to Embodiment 4), and the secondary carrier is associated with the secondary cell of the terminal (that is, the above-mentioned Embodiment 1 to Embodiment 4). SCell) associated with it.
  • the terminal may be the terminal in any of the embodiments in FIG. 12 to FIG. 15
  • the access network device may be the access network device in any of the embodiments in FIG. 12 to FIG. 15 .
  • the data transmission method may include the following steps:
  • the access network device may be configured with one or more first secondary carriers. For example, multiple carriers are associated with PCell, SCell1, and SCell2.
  • the access network device can configure SCell1 to schedule PCell across carriers, SCell2 to schedule PCell across carriers, and both SCell1 and SCell2 to schedule PCell across carriers.
  • the first message may include first information, and the first information may be used to instruct the first secondary carrier to schedule the primary carrier across carriers, for example, the first information indicates that SCell1 schedules PCell across carriers.
  • the first information may also be used to indicate the main carrier self-scheduling, for example, the first information indicates PCell self-scheduling and SCell1 cross-carrier scheduling PCell.
  • the first message may include second information, which is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier, or one secondary carrier among one or more secondary carriers; wherein the second information includes the following: At least one:
  • scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the carrier identifier of the primary carrier
  • cross-carrier indicator is used to indicate the value of the CIF in the DCI of the first secondary carrier for cross-carrier scheduling of the primary carrier
  • a CIF presence indicator where the CIF presence indicator is used to indicate whether the DCI of the primary carrier of the cross-carrier scheduling of the first secondary carrier carries the CIF.
  • the scheduling carrier identifier may be the identifier of the sSCell; if the PCell schedules itself, the scheduling carrier identifier is the identifier of the PCell.
  • the cross-carrier indication flag is 2, that is, when the CIF value is 2, it indicates that the DCI on the sSCell schedules the resources of the PCell.
  • the first message may include third information, and the third information is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier or one of the one or more secondary carriers; the third information includes at least one of the following: item:
  • the cross-carrier scheduling indicator or the value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier, or one or more One of the secondary carriers.
  • DCI format 1 or search space 1 indicates that sSCell schedules PCell across carriers
  • DCI format 2 or search space 2 indicates that sSCell self-schedules or schedules other SCells.
  • the sSCell is instructed to schedule the PCell across the carriers; if the DCI does not include the cross-carrier scheduling indicator, the sSCell is instructed to sub-schedule or to schedule other SCells.
  • the cross-carrier scheduling indicator is a predetermined value, it indicates that the sSCell schedules the PCell across the carriers; if the DCI is not a predetermined value, it indicates that the sSCell sub-schedules or schedules other SCells.
  • the specific content of the above-mentioned third information is the same as that of the above-mentioned method 2 in S1301, that is, it is distinguished by the DCI format, which is not repeated here.
  • the first message may be an RRC message or a MAC message, such as an RRC reconfiguration message, an RRC recovery message, etc., which is not limited in this application.
  • S1802. Send the first DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one secondary carrier in one or more secondary carriers.
  • the first DCI on the first secondary carrier may schedule the primary carrier, may also schedule the first secondary carrier, and may also schedule other secondary carriers.
  • multiple carriers are associated with PCell, SCell1 and SCell2, SCell1 is sSCell, and the first DCI on the sSCell can schedule PCell, SCell1, and SCell2.
  • the access network device can configure the terminal with the RLM function and the activation or deactivation function in addition to the above-mentioned cross-carrier functions S1801 to S1802 for the terminal, as shown in FIG. 19 .
  • FIG. 19 is a schematic flowchart of a data transmission method provided by an embodiment of the present application; the method can be used for access network equipment, and on the basis of FIG. 18 , as shown in FIG. 19 , the data transmission method may include the following steps:
  • the second message may be an RRC message, and may be a MAC message, such as RRC reconfiguration, RRC recovery, etc., which is not limited in this application.
  • the second message may include at least one of the following parameters: reference signal indication, used to indicate the reference signal to be detected by the RLM of the sSCell; detection purpose, used to indicate the purpose of performing RLM on the reference signal, such as for PCell RLF, or RLF of sSCell.
  • the terminal may trigger RRC re-establishment, and may also send a third message to the access network device.
  • the terminal can choose different processing methods according to different events.
  • the third message may be an RRC message or a MAC message, which is not limited in this application.
  • the third message is a MAC message, such as a MAC CE
  • the corresponding SR resource can also be configured for the MAC CE, and when there is no available uplink resource to transmit the MAC CE, the SR can also be triggered.
  • the third message may include at least one of the following information: cell identification information, used to indicate the identification of the cell where RLF occurs; signal quality information of neighboring cells, used by the base station to reselect an appropriate SCell according to the information.
  • the terminal may configure another first secondary carrier for the terminal according to the signal quality information of the adjacent carrier.
  • the fourth message may be a MAC message, such as MAC CE; it may also be physical layer signaling, such as DCI, which is not limited in this application.
  • the access network device may add the fourth information to the fourth message, that is, the fourth message may include the fourth information, and the fourth information is used to indicate the backup carrier of the first secondary carrier.
  • the access network device may also send a fifth message to the terminal, where the fifth message is used to indicate the backup carrier of the first secondary carrier.
  • the fifth message is different from the fourth message, and the fifth message may be a message sent by the access network device specifically for indicating the standby carrier, such as an RRC message.
  • the above S1901 is to configure the RLM function
  • the above-mentioned S1903 is to configure the activation or deactivation function. There is no sequence in the execution order of the two. You can execute S1901 first, and then execute S1903; you can also execute S1903 first, and then execute S1901; or both Simultaneous execution, which is not limited in this application.
  • FIG. 20 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application; the apparatus can be used for a terminal, and an access network device provides multiple carriers for the terminal, and the multiple carriers include a primary carrier. , and one or more secondary carriers, the primary carrier is associated with the primary cell of the terminal (that is, the PCell in the above-mentioned Embodiment 1 to Embodiment 4), and the secondary carrier is associated with the secondary cell of the terminal (that is, the SCell in the above-mentioned Embodiment 1 to Embodiment 4) Associated.
  • the terminal may be the terminal in any of the embodiments in FIG. 12 to FIG. 15
  • the access network device may be the access network device in any of the embodiments in FIG. 12 to FIG. 15 .
  • the data transmission device may include:
  • a first receiving module 201 configured to receive a first message from the access network device, where the first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across carriers , the secondary carrier of the primary carrier in the cross-carrier scheduling is the first secondary carrier;
  • the second receiving module 202 is configured to receive first downlink control information DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one of the one or more secondary carriers secondary carrier;
  • a carrier determination module 203 configured to determine the carrier scheduled by the first DCI according to the first message.
  • the first message includes first information, where the first information is used to instruct the first secondary carrier to schedule the primary carrier across carriers.
  • the first information is further used to indicate the primary carrier self-scheduling.
  • the first message includes second information, and the second information is used to distinguish whether the DCI on the first secondary carrier is scheduled by the primary carrier or the one or more secondary carriers a secondary carrier in the carrier;
  • the second information includes at least one of the following:
  • scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the carrier identifier of the primary carrier
  • cross-carrier indicator is used to instruct the first secondary carrier to schedule the value of the carrier indicator field CIF in the DCI of the primary carrier across the carrier;
  • a CIF appearance indicator where the CIF appearance indicator is used to indicate whether the CIF is carried in the DCI of the first secondary carrier for cross-carrier scheduling of the primary carrier;
  • the carrier determination module 203 includes:
  • the first determination sub-module is configured to, if the value of the CIF is obtained from the first DCI, according to the indication of the cross-carrier indicator in the first information, determine whether the first DCI is scheduled to be the primary carrier, or one of the one or more secondary carriers.
  • the first message includes third information, and the third information is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier or the one or more secondary carriers a secondary carrier in the carrier;
  • the third information includes at least one of the following:
  • the cross-carrier scheduling indicator or the value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier, or one of the one or more secondary carriers;
  • the carrier determination module 203 includes:
  • the second determination submodule is used for at least one of the following:
  • determining a search space for transmitting the first DCI and determining, according to the search space for transmitting the first DCI, whether the first DCI is scheduled on the primary carrier or the one or more secondary carriers a secondary carrier of ; or
  • a value of the cross-carrier scheduling indicator is determined, and according to the value, it is determined whether the primary carrier or one of the one or more secondary carriers is scheduled by the first DCI.
  • the first message is a radio resource control RRC message or a medium access control MAC message.
  • the data transmission device further includes:
  • a third receiving module configured to receive a second message from the access network device, where the second message is used to configure the radio link monitoring RLM function of the first secondary carrier;
  • RLF detection module configured to perform RLF detection of radio link failure according to the second message
  • the RLF processing module is configured to, if an RLF event is detected, trigger RRC re-establishment or send a third message to the access network device, where the third message is used to indicate the RLF event.
  • the RLF detection module is specifically used for:
  • the number of RLC retransmissions includes any one of the following: the number of first RLC retransmissions on the first secondary carrier; or the first secondary carrier in the one or more secondary carriers except the first secondary carrier The number of times of second RLC retransmissions on a carrier other than the carrier; or the number of times of third RLC retransmissions on the primary carrier;
  • the number of LBT failures includes any one of the following: the number of first LBT failures on the first secondary carrier; or the number of failures on a carrier other than the first secondary carrier among the one or more secondary carriers.
  • the third message includes at least one of the following:
  • the adjacent carrier is a carrier adjacent to the carrier on which the RLF event occurs among the multiple carriers.
  • the data transmission device further includes:
  • a third receiving module configured to receive a fourth message from the access network device, where the fourth message is used to activate or deactivate the first secondary carrier
  • a deactivation module configured to determine a backup carrier of the first secondary carrier if the fourth message is to deactivate the first secondary carrier, and instruct the backup carrier to cross-carrier scheduling of the primary carrier to take effect ; or instructing the self-scheduling function of the primary carrier to take effect;
  • an activation module configured to indicate that the function of the backup carrier to schedule the primary carrier across carriers is disabled and the first secondary carrier to schedule the primary carrier across carriers if the fourth message is to activate the first secondary carrier
  • the function of the carrier takes effect.
  • the fourth message includes fourth information, where the fourth information is used to indicate the spare carrier.
  • the data transmission device further includes:
  • a fourth receiving module configured to receive a fifth message from the access network device, where the fifth message is used to indicate the backup carrier
  • 21 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application; the apparatus can be used in an access network device, and the access network device provides a terminal with multiple carriers, and the multiple carriers include a main carrier and one or more
  • the primary carrier is associated with the primary cell of the terminal (ie, the PCell in the first to fourth embodiments), and the secondary carrier is associated with the terminal's secondary cell (ie, the SCell in the first to fourth embodiments).
  • the terminal may be the terminal in any of the embodiments in FIG. 12 to FIG. 15
  • the access network device may be the access network device in any of the embodiments in FIG. 12 to FIG. 15 .
  • the data transmission device may include:
  • a first sending module 211 configured to send a first message to the terminal, where the first message is used to configure at least one of the one or more secondary carriers to schedule the primary carrier across the carrier, and the cross-carrier scheduling
  • the secondary carrier of the primary carrier is the first secondary carrier
  • the second sending module 212 is configured to send first downlink control information DCI on the first secondary carrier, where the first DCI is used to schedule the primary carrier or one of the one or more secondary carriers Secondary carrier.
  • the first message includes first information, where the first information is used to instruct the first secondary carrier to schedule the primary carrier across carriers.
  • the first information is further used to indicate the primary carrier self-scheduling.
  • the first message includes first information, and the first information is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier or the one or more secondary carriers a secondary carrier in the carrier;
  • the first information includes at least one of the following:
  • scheduling carrier identifier is used to indicate the carrier identifier of the first secondary carrier or the carrier identifier of the primary carrier
  • cross-carrier indicator is used to instruct the first secondary carrier to schedule the value of the carrier indicator field CIF in the DCI of the primary carrier across the carrier;
  • a CIF presence indicator where the CIF presence indicator is used to indicate whether the CIF is carried in the DCI of the primary carrier in the cross-carrier scheduling of the first secondary carrier.
  • the first message includes third information, and the third information is used to distinguish whether the DCI on the first secondary carrier is scheduled to be the primary carrier or the one or more secondary carriers a secondary carrier in the carrier;
  • the third information includes at least one of the following:
  • the cross-carrier scheduling indicator or the value of the cross-carrier scheduling indicator; wherein, the cross-carrier scheduling indicator or the value is used to indicate that the DCI on the first secondary carrier is scheduled to be the primary carrier, or one of the one or more secondary carriers.
  • the first message is a radio resource control RRC message or a medium access control MAC message.
  • the data transmission device further includes:
  • a third sending module configured to send a second message to the terminal, where the second message is used to configure the radio link monitoring RLM function of the first secondary carrier;
  • the RLF event processing module is configured to determine, according to the third message, that the terminal has detected the RLF event if a third message from the terminal is received, where the third message is used to indicate an RLF event.
  • the third message includes at least one of the following:
  • the adjacent carrier is a carrier adjacent to the carrier on which the RLF event occurs among the multiple carriers
  • the RLF event processing module is specifically configured to configure another first secondary carrier for the terminal according to the signal quality information of the adjacent carrier.
  • the data transmission device further includes:
  • a fourth sending module configured to send a fourth message to the terminal, where the fourth message is used to activate or deactivate the first secondary carrier.
  • the fourth message includes fourth information, where the fourth information is used to indicate a backup carrier of the first secondary carrier.
  • the data transmission device further includes:
  • a fifth sending module configured to send a fifth message to the terminal, where the fifth message is used to indicate a backup carrier of the first secondary carrier.
  • FIG. 22 is a schematic structural diagram of a terminal provided by an embodiment of the present application, and the terminal can implement the functions of the terminal in the foregoing method embodiments.
  • Figure 22 illustrates the main components of the terminal, as shown in Figure 22:
  • the terminal includes at least one processor 2211 , at least one transceiver 2212 and at least one memory 2213 .
  • the processor 2211, the memory 2213 and the transceiver 2212 are connected.
  • the terminal may further include an output device 2214 , an input device 2215 and one or more antennas 2216 .
  • the antenna 2216 is connected to the transceiver 2212 , and the output device 2214 and the input device 2215 are connected to the processor 2211 .
  • the processor 2211 is mainly used for processing communication protocols and communication data, as well as controlling the entire terminal, executing software programs, and processing data of the software programs.
  • the terminal may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal, execute software programs, and process data of the software programs.
  • the processor in FIG. 22 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal may include multiple baseband processors to adapt to different network standards, a terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory 2213 is mainly used to store software programs and data.
  • the memory 2213 may exist independently and be connected to the processor 2211 .
  • the memory 2213 may be integrated with the processor 2211, for example, integrated within a chip, that is, an on-chip memory, or the memory 2213 is an independent storage element, which is not limited in this embodiment of the present application.
  • the memory 2213 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 2211 .
  • the transceiver 2212 can be used for converting the baseband signal to the radio frequency signal and processing the radio frequency signal, and the transceiver 2212 can be connected to the antenna 2216 .
  • the transceiver 2212 includes a transmitter (Tx) and a receiver (Rx).
  • one or more antennas 2216 may receive radio frequency signals
  • the receiver Rx of the transceiver 2212 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 2211, so that the processor 2211 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 2212 is used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 2211, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass one or A plurality of antennas 2216 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transmitter Tx and the receiver Rx may be implemented by different physical structures/circuits, or may be implemented by the same physical structure/circuit, that is, the transmitter Tx and the receiver Rx may be inherited together.
  • a transceiver may also be referred to as a transceiver unit, a transceiver, a transceiver, or the like.
  • the device used to implement the receiving function in the transceiver unit may be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit also It can be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • a combination of Tx, Rx and antenna can be used as a transceiver.
  • the output device 2214 displays information in a variety of ways.
  • the output device 2214 may be a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display device, a Cathode Ray Tube (CRT) display device, or a projector (projector) Wait.
  • Input device 2215 may accept user input in a variety of ways.
  • the input device 2215 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • FIG. 23 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • the access network device can implement the functions of the access network device in the foregoing method embodiments, such as a gNB.
  • Figure 23 illustrates the main components of the access network equipment, as shown in Figure 23:
  • the access network device includes at least one processor 2311 , at least one memory 2312 , at least one transceiver 2313 , at least one network interface 2314 and one or more antennas 2315 .
  • the processor 2311, the memory 2312, the transceiver 2313 and the network interface 2314 are connected, for example, through a bus. In this embodiment of the application, the connection may include various interfaces, transmission lines, or buses, which are not limited in this embodiment. .
  • the antenna 2315 is connected to the transceiver 2313.
  • the network interface 2314 is used to connect the access network device with other access network devices through a communication link.
  • the transceiver 2313, the memory 2312 and the antenna 2315 can refer to the related description in FIG. 22 to achieve similar functions.
  • the embodiments of the present application also provide a data transmission system, including an access network device and a terminal; wherein, the access network device can execute the data transmission method for the access network device side; the terminal can execute the data transmission method for the terminal side transfer method.
  • Embodiments of the present application further provide a computer storage medium, where the computer storage medium includes computer instructions, and when the computer instructions are executed, the data transmission method on the access network device side is executed.
  • Embodiments of the present application further provide a computer storage medium, where the computer storage medium includes computer instructions, and when the computer instructions are executed, the data transmission method on the terminal side is executed.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes computer instructions, when the computer instructions are executed, the data transmission method on the access network device side is executed.
  • Embodiments of the present application further provide a computer program product, where the computer program product includes computer instructions, and when the computer instructions are executed, the data transmission method on the terminal side is executed.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more of the available mediums integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,特别涉及一种数据传输方法及装置,该方法用于终端,接入网设备为终端提供多个载波,多个载波包括主载波、以及一个或多个辅载波,主载波与终端的主小区相关联,辅载波与终端的辅小区相关联,包括:接收来自接入网设备的第一消息,第一消息用于配置一个或多个辅载波中的至少一个辅载波跨载波调度主载波,跨载波调度主载波的辅载波为第一辅载波;在第一辅载波上接收第一下行控制信息DCI,第一DCI用于调度主载波、或一个或多个辅载波中的一个辅载波;根据第一消息确定第一DCI所调度的载波,从而实现了允许辅载波跨载波调度主载波,减轻了LTE频段的PDCCH负载,还提高了数据传输的效率。

Description

一种数据传输方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
服务小区(Serving Cell)可以称为成员载波(carrier component,CC),一个服务小区可以关联一个CC;也可以关联多个CC。载波聚合(carrier aggregation,CA)指的是不同的CC可以聚合在一起,终端可以同时与一个或者多个CC建立无线链路收发数据,从而获取更大的吞吐量。在CA的场景下,可以支持自调度和跨载波调度这两种调度方式。
为了实现频谱在长期演进(long term evolution,LTE)频段以及新空口(new radio,NR)频段的动态共享,并提高系统吞吐量,以及最大化空口频谱效率,第五代移动通信系统(5 th generation communication system,5G)引入了动态频率共享(dynamicspectrum sharing,DSS)技术。
但是,目前针对DSS技术中LTE频段的物理下行控制信道(physical downlink control channel,PDCCH)资源受限的问题,还没有更好的优化方案。
发明内容
本申请实施例提供了一种数据传输方法及装置,通过配置至少一个辅载波跨载波调度主载波的方式,将工作在LTE频段的主载波的PDCCH转移到辅载波上,从而允许辅载波跨载波调度主载波,从而解决了在DSS下,LTE频段的PDCCH容量受限的问题,减轻了LTE频段的PDCCH负载,还提高了数据传输的效率。
第一方面,本申请实施例提供了一种数据传输方法,所述方法用于终端,接入网设备为所述终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述方法包括:接收来自所述接入网设备的第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;在所述第一辅载波上接收第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波;根据所述第一消息确定所述第一DCI所调度的载波。
也就是说,该方法中,由于DSS需要NR的主小区(primary cell,PCell)工作在LTE频段,但是考虑到LTE频段的PDCCH资源受限,如果NR的PCell也消耗LTE频段的PDCCH资源,会造成LTE以及NR的PDCCH容量均受限,此时为了减轻LTE频段的PDCCH负载,可以通过第一消息将PCell的PDCCH转移到辅小区(secondary cell,SCell)上,从而允许SCell跨载波调度PCell,解决了在DSS下LTE频段的PDCCH 容量受限的问题,减轻了LTE频段的PDCCH负载,还提高了数据传输的效率。
在一种可能的实现方式中,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
也就是说,该实现方式中,终端可以通过第一信息指示第一辅载波可以跨载波调度主载波。
在一种可能的实现方式中,所述第一信息还用于指示所述主载波自调度。
也就是说,该实现方式中,终端可以通过第一信息指示第一辅载波可以跨载波调度主载波和主载波自调度,从而提高了数据传输的灵活性。
在一种可能的实现方式中,所述第一消息包括第二信息,所述第二信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;其中,所述第二信息包括以下至少一项:调度载波标识,所述调度载波标识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF;
所述根据所述第一消息确定所述第一DCI所调度的载波,包括:若从所述第一DCI中获取到CIF的取值,则根据所述第一信息中的所述跨载波指示标识的指示,确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
也就是说,该实现方式中,可以通过DCI中字段的含义来确定第一DCI所调度的载波,这样不需要修改现有的DCI格式,只需要重新配置第一辅载波上的跨载波调度IE既可,提高了区分调度载波的效率。
在一种可能的实现方式中,所述第一消息包括第三信息,所述第三信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;所述第三信息包括以下至少一项:DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;所述第三信息包括以下至少一项:DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
所述根据所述第一消息确定所述第一DCI所调度的载波,包括以下至少一项:确定所述第一DCI的DCI格式,并根据第一DCI的DCI格式确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或确定用于传输所述第一DCI的搜索空间,并根据用于传输所述第一DCI的搜索空间确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或确定所述第一DCI中是 否包括跨载波调度指示符,并根据所述第一DCI中是否包括跨载波调度指示符确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或确定所述跨载波调度指示符的取值,并根据所述取值确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
也就是说,该实现方式中,可以通过DCI格式区分来确定第一DCI所调度的载波,这样不需要修改RRC配置的跨载波调度IE,通过DCI指示调度CC,从而实现了PCell支持自调度和sSCell跨载波调度PCell,还提高了区分调度载波的灵活性。
在一种可能的实现方式中,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
在一种可能的实现方式中,还包括:
接收来自所述接入网设备的第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;根据所述第二消息进行无线链路失败RLF检测;若检测到RLF事件,则触发RRC重建或向所述接入网设备发送第三消息,所述第三消息用于指示所述RLF事件。
也就是说,该实现方式中,由于第一辅载波的通信链路直接关系到主载波的数据发送,终端可以根据接入网设备在第一辅载波上配置的RLM功能,精准监控第一辅载波以及主载波的通信链路质量,这样可以尽早触发RRC重建、或者精准RLF事件信息指示并避免RRC重建。
在一种可能的实现方式中,所述检测到RLF事件,包括:若所述终端在所述第一辅载波上连续检测到的失步指示次数大于第一门限值,则确定检测到RLF事件;或若所述终端在所述第一辅载波上的随机接入失败次数大于第二门限值,则确定检测到RLF事件;或若所述终端的无线链路控制RLC重传次数达到第三门限值,则确定检测到RLF事件;或若所述终端连续检测到的先听后说LBT失败次数大于第四门限值,则确定检测到RLF事件。
也就是说,该实现方式中,RLF事件可能包括多种情形,只要检测到其中一种就可以确定检测到RLF事件。
在一种可能的实现方式中,所述RLC重传次数包括以下任一项:在所述第一辅载波上的第一RLC重传次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二RLC重传次数;或在所述主载波上的第三RLC重传次数;所述LBT失败次数包括以下任一项:在所述第一辅载波上的第一LBT失败次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二LBT失败次数;或在所述主载波上的第三LBT失败次数。
在一种可能的实现方式中,所述第三消息包括以下至少一项:发生所述RLF事件的载波标识;邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波。
也就是说,该实现方式中,第三消息除了告知接入网设备发送RLF事件的载波之外,还可以将邻载波的信号质量信息告知,这样便于基站重配第一辅载波、或者释放第一辅载波、或者去激活第一辅载波。
在一种可能的实现方式中,还包括:接收来自所述接入网设备的第四消息,所述 第四消息用于激活或去激活所述第一辅载波;若所述第四消息为去激活所述第一辅载波,则确定所述第一辅载波的备用载波,并指示所述备用载波跨载波调度所述主载波的功能生效;或者指示所述主载波的自调度功能生效;若所述第四消息为激活所述第一辅载波,则指示所述备用载波跨载波调度所述主载波的功能失效、以及所述第一辅载波跨载波调度所述主载波的功能生效。
也就是说,该实现方式中,允许第一辅载波被动态激活去激活,为了避免无法调度主载波的资源,可以引入备用载波,利用备用载波替代第一辅载波跨载波调度主载波,从而保持数据传输不中断,提高了数据传输的通信质量。
在一种可能的实现方式中,所述第四消息中包括第四信息,所述第四信息用于指示所述备用载波。
也就是说,该实现方式中,备用载波可以携带在第四消息中,终端可以直接根据第四消息中获知备用载波,提高了终端确定备用载波的效率。
在一种可能的实现方式中,还包括:接收来自所述接入网设备的第五消息,所述第五消息用于指示所述备用载波。
也就是说,该实现方式中,备用载波可以在专门用于指示该备用载波的第五消息中,终端可以直接根据第五消息中获知备用载波,提高了终端确定备用载波的灵活性。
第二方面,本申请实施例提供了一种数据传输方法,所述方法用于接入网设备,所述接入网设备为终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述方法包括:向终端发送第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;在所述第一辅载波上发送第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波。
也就是说,该方法中,由于DSS需要NR的主小区工作在LTE频段,但是考虑到LTE频段的PDCCH资源受限,如果NR的PCell也消耗LTE频段的PDCCH资源,会造成LTE以及NR的PDCCH容量均受限,此时为了减轻LTE频段的PDCCH负载,可以通过第一消息将PCell的PDCCH转移到辅小区(secondary cell,SCell)上,从而允许SCell跨载波调度PCell,解决了在DSS下LTE频段的PDCCH容量受限的问题,减轻了LTE频段的PDCCH负载,还提高了数据传输的效率。
在一种可能的实现方式中,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
也就是说,该实现方式中,可以通过第一信息来为终端配置第一辅载波可以跨载波调度主载波。
在一种可能的实现方式中,所述第一信息还用于指示所述主载波自调度。
也就是说,该实现方式中,可以通过第一信息来为终端配置第一辅载波可以跨载波调度主载波和主载波自调度,从而提高了数据传输的灵活性。
在一种可能的实现方式中,所述第一消息包括第一信息,所述第一信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;其中,所述第一信息包括以下至少一项:调度载波标识,所述调度载波标 识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF。
也就是说,该实现方式中,可以通过DCI中字段的含义来确定第一DCI所调度的载波,这样不需要修改现有的DCI格式,只需要重新配置第一辅载波上的跨载波调度IE既可,提高了区分调度载波的效率。
在一种可能的实现方式中,所述第一消息包括第三信息,所述第三信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;所述第三信息包括以下至少一项:DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
也就是说,该实现方式中,可以通过DCI格式区分来确定第一DCI所调度的载波,这样不需要修改RRC配置的跨载波调度IE,通过DCI指示调度CC,从而实现了PCell支持自调度和sSCell跨载波调度PCell,还提高了区分调度载波的灵活性。
在一种可能的实现方式中,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
在一种可能的实现方式中,还包括:向所述终端发送第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;若接收到来自所述终端的第三消息,所述第三消息用于指示RLF事件,则根据所述第三消息确定所述终端检测到所述RLF事件。
也就是说,该实现方式中,由于第一辅载波的通信链路直接关系到主载波的数据发送,接入网设备可以在第一辅载波上配置RLM功能,精准监控第一辅载波以及主载波的通信链路质量,这样便于终端可以尽早触发RRC重建、或者精准RLF事件信息指示并避免RRC重建。
在一种可能的实现方式中,所述第三消息包括以下至少一项:
发生所述RLF事件的载波标识;
邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波;
所述根据所述第三消息确定所述终端检测到所述RLF事件,包括:
根据所述邻载波的信号质量信息为所述终端配置另一所述第一辅载波。
也就是说,该实现方式中,第三消息除了告知接入网设备发送RLF事件的载波之外,还可以将邻载波的信号质量信息告知,这样便于基站重配第一辅载波、或者释放第一辅载波、或者去激活第一辅载波。
在一种可能的实现方式中,还包括:
向所述终端发送第四消息,所述第四消息用于激活或去激活所述第一辅载波。
在一种可能的实现方式中,所述第四消息中包括第四信息,所述第四信息用于指示所述第一辅载波的备用载波。
在一种可能的实现方式中,还包括:向所述终端发送第五消息,所述第五消息用于指示所述第一辅载波的备用载波。
也就是说,该实现方式中,允许第一辅载波被动态激活去激活,为了避免无法调度主载波的资源,可以引入备用载波,利用备用载波替代第一辅载波跨载波调度主载波,从而保持数据传输不中断,提高了数据传输的通信质量。
第三方面,本申请实施例提供了一种数据传输装置,所述方法用于终端,接入网设备为所述终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述装置包括:第一接收模块,用于接收来自所述接入网设备的第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;第二接收模块,用于在所述第一辅载波上接收第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波;载波确定模块,用于根据所述第一消息确定所述第一DCI所调度的载波。
第四方面,本申请实施例提供了一种数据传输装置,所述方法用于接入网设备,所述接入网设备为终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述装置包括:第一发送模块,用于向终端发送第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;第二发送模块,用于在所述第一辅载波上发送第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波。
第五方面,本申请实施例提供了一种通信装置,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述通信装置执行上述第一方面或第二方面所述的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被运行时,使得通信装置执行上述第一方面或第二方面所述的方法。
第七方面,本申请实施例提供了计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被计算机运行时,使得所述计算机执行上述第一方面或第二方面所述的方法。
本申请提供的数据传输方法及装置,通过接收来自接入网设备的第一消息,第一消息用于配置一个或多个辅载波中的至少一个辅载波跨载波调度主载波,跨载波调度主载波的辅载波为第一辅载波;在第一辅载波上接收第一下行控制信息DCI,第一DCI用于调度主载波、或一个或多个辅载波中的一个辅载波;根据第一消息确定第一DCI所调度的载波,从而实现了将工作在LTE频段的主载波的PDCCH转移到辅载波上,即允许辅载波跨载波调度主载波,这样解决了在DSS下LTE频段的PDCCH容量受限 的问题,减轻了LTE频段的PDCCH负载,还提高了数据传输的效率。
附图说明
图1是一种跨载波调度示意图;
图2是一种跨载波调度示意图;
图3是一种跨载波调度示意图;
图4是一种双链接示意图;
图5是一种用户面协议栈示意图;
图6是一种跨载波调度示意图;
图7是一种跨载波调度示意图;
图8是一种跨载波调度示意图;
图9是一种SCG失败恢复示意图;
图10是一种MAC-CE格式示意图;
图11是一种MAC-CE格式示意图;
图12是一种LTE系统架构图;
图13是本申请实施例提供的一种数据传输方法的信息交互图;
图14是本申请实施例提供的一种数据传输方法的信息交互图;
图15是本申请实施例提供的一种数据传输方法的信息交互图;
图16是本申请实施例提供的一种数据传输方法的流程示意图;
图17是本申请实施例提供的一种数据传输方法的流程示意图;
图18是本申请实施例提供的一种数据传输方法的流程示意图;
图19是本申请实施例提供的一种数据传输方法的流程示意图;
图20是本申请实施例提供的一种数据传输装置的结构示意图;
图21是本申请实施例提供的一种数据传输装置的结构示意图;
图22是本申请实施例提供的一种终端的结构示意图;
图23是本申请实施例提供的一种接入网设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
在本说明书的描述中“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
其中,在本说明书的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
本说明书中出现类似于“A、B和C中的至少一个”表述时,如无特别说明,通常用于表达如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其它A、B和C的组合。以上是以A、B和C共3个元素进行举例来说明该项目的可选用条目,当表达中具有更多元素时,该表达的含义可以按照前述规则获得。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
下面先对本申请实施例涉及的关键技术进行介绍:
一、服务小区
服务小区(Serving Cell)还可以称为成员载波(carrier component,CC),一个服务小区可以关联一个CC;也可以关联多个CC。比如:在辅助上行载波(supplementary uplink,SUL)的场景下,一个服务小区关联多个CC,其中低频点的CC可以保证覆盖,高频点的CC可以保证数据吞吐量;
其中,服务小区又可以分为以下几种类型:
主小区(primary cell,PCell):终端一开始驻留的频点的服务小区,以及发起初始随机接入或者RRC连接重建立的小区为PCell
辅小区(secondary cell,SCell):对于配置了载波聚合(carrieraggregation,CA)的场景,用于提供除了PCell之外的额外无线资源的小区为SCell
主辅小区组小区(primary secondary cell group cell,PSCell):对于配置于双链接(dual connectivity,DC)的场景,对于辅站配置的辅小区组而言,提供初始随机接入的小区为PSCell
特殊小区(special cell,SpCell):PCell以及PSCell都可以称为SpCell。
值得说明的是:为了描述方便,以下针对跨载波调度PCell的SCell均称为sSCell。
二、载波聚合(carrier aggregation,CA)
多个CC可以聚合在一起,终端可以同时与一个或者多个CC建立无线链路收发数据,从而获取更大的吞吐量,这种技术称之为CA,其中在CA的场景下,可以支持以下两种调度方式:
自调度(Self-scheduling):通过物理下行控制信道(physical downlink control channel,PDCCH)传输的下行控制信息(downlink control information,DCI)与对应的上下行数据在同一个CC上传输。
跨载波调度(Cross-carrier scheduling):通过PDCCH传输的DCI在一个CC上传输,而对应的上下行数据在另一个CC上传输。通过这种方式可以不在一些CC上配置PDCCH,从而减少终端PDCCH盲检的复杂度,还可以减少在实际网络部署中减少同频干扰,只通过一些特定的CC进行PDCCH调度。
其中,被调度的CC称之为“scheduled CC”,对应的调度的CC称之为 “schedulingCC”。
比如:如图1所示,PCell自调度,SCell2自调度,SCell1由SCell2跨载波调度。
又比如:如图2所示,PCell自调度,SCell1由PCell跨载波调度,SCell2自调度。
又比如:如图3所示,PCell自调度,SCell1自调度,SCell2自调度。
三、双链接(dual connectivity,DC)
终端可以同时与两个基站保持连接,并接受服务,称之为双连接架构,新空口(new radio,NR)系统目前支持的双连接架构,又称之为多空口的双连接(multi-radio dual connectivity,MR-DC),即通过长期演进(long term evolution,LTE)以及新空口(new radio,NR)的基站组成的双连接,或者NR与NR基站组成的双连接。比如:如图4所示,双链接架构中包括演进型节点B(evolved node B,eNB)和继续演进的节点B(next generation node B,gNB)。
四、用户面协议栈
如图5所示,用户的业务质量(quality of service,QoS)流,经过业务数据适配协议(service data adaptation protocol,SDAP)层,进行QoS流到数据无线承载(data radio bearer,DRB)的映射,从而确定所述QoS流对应的无线承载(radio bearer,RB),经过对应RB的分组数据汇聚协议(packet data convergence protocol,PDCP)处理,完成加密等功能,进而经过无线链路控制层(radio link control,RLC)协议以及介质接入控制(media access control,MAC)协议处理,生成MAC协议数据单元(protocol data unit,PDU)在空口发送。
五、动态频率共享(dynamic spectrum sharing,DSS)
为了实现频谱在LTE频段以及NR频段的动态共享,并提高系统吞吐量,以及最大化空口频谱效率,第五代移动通信系统(5 th generation communication system,5G)引入了DSS技术。并且,通过DSS技术,NR空口技术可以工作在LTE频段,与LTE空口技术共享频谱资源。比如:NR的PCell可以工作在LTE频段。
值得说明的是,由于考虑到LTE频段的PDCCH资源受限,如果NR的PCell也消耗LTE频段的PDCCH资源,会造成LTE以及NR的PDCCH容量均受限。
为了减轻LTE频段的PDCCH负载,可以将PCell的PDCCH转移到SCell上,从而允许SCell跨载波调度PCell,从而解决在DSS下,LTE频段的PDCCH容量受限的问题。
为了描述方便,以下针对跨载波调度PCell的SCell均称为sSCell。
六、跨载波调度配置
基站通过RRC消息来配置跨载波调度,可以通过以下消息元素(information element,IE)来配置,每个CC可以独立配置是否使能跨载波调度以及在其他哪个CC上进行调度,PDCCH传输的DCI中新增了“载波指示字段(carrier indicator field,CIF)”,用于指示该PDCCH对应哪个CC的物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH),其中CIF的取值即表示该CC。
比如:如图6所示,如果终端不配置跨载波调度,对于PCell、SCell1和SCell2,均选择第一类型(即own类型),且CIF出现指示符(cif-Presence)字段设置为FALSE, 指示本小区发送的PDCCH中不包括CIF字段,即DCI中不包括CIF字段。其中,第一类型(即own类型)用于表示本小区的PDSCH或PUSCH资源对应的PDCCH必定在同一小区的载波上发送。
又比如:如图7所示,如果终端配置了跨载波调度,PCell即可以调度本CC的资源,又可以跨载波调度SCell1的资源,SCell2只能调度本CC的资源:
对于PCell,可以选择第一类型(即own类型),且CIF出现指示符(cif-Presence)字段设置为TRUE,指示本小区发送的PDCCH中包括CIF字段,即DCI中包括CIF字段;
对于SCell1,可以选择第二类型(即other类型),并且,调度小区标识(schedulingCellId)字段设置为0(即为PCell),指示本小区的PDCCH在PCell调度;跨载波指示标识(cif-InSchedulingCell)设置为1,指示本小区在PCell的DCI中CIF取值为1,即当PCell中DCI中CIF=1时,表示该DCI调度的为本小区的资源。其中,第二类型(即other类型)用于表示本小区的PDCCH在调度小区标识(schedulingCellId)指定的其他小区上发送。
对于SCell2,可以选择第一类型(即own类型),且CIF出现指示符(cif-Presence)字段设置为FALSE,指示本小区发送的PDCCH中不包括CIF字段,即DCI中不包括CIF字段。
又比如:如图8所示,如果终端配置了跨载波调度,PCell只能调度本CC的资源,SCell2既调度本小区的资源,又跨载波调度SCell1的资源:
对于PCell,可以选择第一类型(即own类型),且CIF出现指示符(cif-Presence)字段设置为FALSE,指示本小区发送的PDCCH中不包括CIF字段,即DCI中不包括CIF字段;
对于SCell1,可以选择第二类型(即other类型),并且,调度小区标识(schedulingCellId)字段设置为2(即为SCell2),指示本小区的PDCCH在SCell2调度;跨载波指示标识(cif-InSchedulingCell)设置为2,指示本小区在PCell的DCI中CIF取值为2,即当PCell中DCI中CIF=2时,表示该DCI调度的为本小区的资源。
对于SCell2,可以选择第一类型(即own类型),且CIF出现指示符(cif-Presence)字段设置为TRUE,指示本小区发送的PDCCH中包括CIF字段,即DCI中包括CIF字段。
值得说明的是,上述跨载波调度配置均为二选一的结构,即一个CC要么是自调度,即PDCCH调度本小区的资源,要么是被其他CC跨载波调度,即通过其他CC的PDCCH调度本小区的资源,考虑到sSCell跨载波调度PCell,因此存在PCell既可以自调度,又可以由sSCell跨载波调度,但是上述跨载波调度配置结构无法支持该选项。
七、无线链路失败(radio link failure,RLF)
为了保持终端以及基站之间通信链路的可靠性,终端需要在PCell上检测通信链路质量(radiolink motorining,RLM),如果配置了双连接(dual connectivity,DC),终端还需要在PSCell上检测通信链路质量,当以下至少一个条件满足时,触发无线链路失败流程,便于基站对当前的通信链路进行恢复:
条件一、当终端检测到连续的“失步指示(out-of-sync)”,例如终端检测PDCCH 或者PDSCH的信道质量在一个时间窗口内低于某一个门限,就上报给RRC一个“失步指示”,如检测到的信道质量在一个时间窗口内高于某一个门限,就上报给RRC一个“同步指示(in-sync)”。若终端在RRC连续检测到的“失步指示”数量高于一个门限,并在一个时间窗口内收不到“同步指示”,就可以认为当前的通信链路出现问题,触发RLF。
条件二、当终端的随机接入过程出现问题,即随机接入失败的次数高于一个门限值时,终端认为随机接入过程出现问题,即当前的通信链路出现问题,触发RLF。
条件三、当终端的RLC重传达到最大传输次数,即一个RLC服务数据单元(service data unit,SDU)经过多次传输仍未成功,终端认为当前的通信链路出现问题,触发RLF。
条件四、对于非授权频谱,如果检测到持续的先听后说(listen-before-talk,LBT)失败,即终端连续多次未抢占到信道,就认为当前的通信链路出现问题,触发RLF。
另外,当终端检测到了RLF,可以采用以下处理方式:
方式一、如果RLF发生在PCell,终端可以触发RRC重建立,选择一个合适的小区进行驻留。
方式二、如果RLF发生在PSCell,由于主小区组(mastercell group,MCG)的空口链路未出问题,为了避免触发RRC重建立所带来的数据中断时延,终端可以触发辅小区组(secondary cell group,SCG)恢复过程,具体而言:
如图9所示,终端向主站(master node,MN)上报SCG失败消息;其中,SCG失败信息中会包含出现RLF的类型,可选地,SCG失败信息中还可以携带测量结果,便于MN做判决。主站接收到终端上报的SCG失败消息后,可以进行SCG失败恢复,例如,释放SCG的空口链路,或者触发切换过程变更SCG的主小区等,从而恢复终端与SCG的通信链路。
值得说明的是:上述RLF仅适用于PCell,终端仅在PCell检测空口链路质量,然而若PCell是由sSCell跨载波调度,即sSCell下发PDCCH调度对应的PUSCH以及PDSCH在PCell传输,因此当该sSCell的空口链路质量变差时,意味着PCell的通信无法保证,因此现有的RLF无法检测到该情况,从而无法解决该问题。
另外,上述RLF可以是由于RLC传输失败引起,当终端的RLC重传达到最大传输次数,即一个RLC SDU经过多次传输仍未成功,终端认为当前的通信链路出现问题,触发RLF,并不区分是PCell还是SCell传输失败,若RLC的传输失败是由于SCell的空口链路问题,而非PCell的链路问题,触发RLF会造成PCell通信中断。
八、辅小区激活去激活
为了对应用户的业务吞吐量速率的变化,以及降低终端的功耗等问题,LTE以及NR引入了辅小区激活去激活机制,通过显示或者隐式方式控制辅小区状态,当该CC去激活后,终端不在该CC监听PDCCH,并不能在该CC上通过PDSCH以及PUSCH进行数据接收以及发送。
对于隐式去激活方式:当用户在预配置的定时器的时长范围内没有业务数据传输,可以认为业务吞吐量需求变低,其中该定时器通过RRC信令由接入网设备配置给给定的CC,并且当终端有数据通信时,该定时器会进行重启从而避免超时,而当该定时器 超时时,终端主动去激活该CC。
对于显示激活/去激活方式:当业务吞吐量变大时,可以动态激活辅小区,从而可以实现高吞吐量的CA(Carrier Aggregation,载波聚合),而当业务吞吐量变小时,可以动态去激活辅小区,具体的指令通过MAC控制元素(control element,CE)承载,格式如图10或图11所示,通过比特位图(bitmap)的形式控制每个CC的状态,其中每个比特位Ci对应辅小区编号为i(SCell index=i)的CC的激活状态,如果Ci=0,代表其对应的CC被去激活,Ci=1,代表其对应的CC被激活;R为预留比特位,设置为0。
值得说明的是:上述辅小区激活去激活中,若sSCell被去激活后,由于PCell由该sSCell跨载波调度,因此当其去激活后,终端不会检测该CC上的PDCCH,从而造成PCell无法进行数据收发,造成数据传输中断。
因此,为了解决上述技术问题,本申请提供了一种数据传输方法及装置,通过将PCell的PDCCH转移到SCell上,允许SCell跨载波调度PCell,从而解决了在DSS下,LTE频段的PDCCH容量受限的问题。
本申请可以适用于通用移动通信系统(universal mobile mobile telecommunications system,UMTS)、LTE系统、码分多址(code division multiple access,CDMA)系统、无线局域网(wireless local area network,WLAN)或未来第五代(the fifth generation,5G)无线通信系统等。比如:如图12所示,以LTE系统为例,终端位于接入网设备提供的一个或多个小区(载波)的覆盖范围内,为终端服务的小区可以为一个或多个。当为终端服务的小区有多个时,终端可以按照CA或DC或协作多点传输方式工作。
本申请中的终端,可以是用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请中的接入网设备,是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点或RAN设备,又可以称为基站。目前,一些RAN节点的举例为:下一代节点(next generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。
下面通过具体实施例进行说明。
实施例一、PCell支持自调度+sSCell跨载波调度。如图13所示,包括终端和接入网设备,其具体实现过程如下:
S1301、接入网设备向终端发送第一消息,使能sSCell跨载波调度PCell。
具体地,第一消息可以是RRC消息,也可以是MAC消息,例如RRC重配置消息,RRC恢复消息等,本申请对此不做限定。
第一消息可以包括第一信息,可以通过第一信息配置sSCell跨载波调度PCell,也可以配置PCell自调度,还可以配置sSCell跨载波调度PCell的同时配置PCell自调度。
比如:第一信息包括跨载波调度信息,该跨载波调度信息用于指示sSCell跨载波调度PCell。其中,跨载波调度信息可以应用于每个CC,也可以应用于除PCell之外的全部或者部分SCell;若跨载波调度信息应用于部分SCell,该部分SCell包含至少一个SCell,由接入网设备指示哪些SCell可以使用跨载波调度信息。
至于如何区分sSCell调度的是PCell,还是SCell(包括sSCell),包括以下两种方式:
方式1、RRC配置DCI中字段的含义
第一消息还可以包含第二信息,用于指示PCell既可以自调度,又可以被sSCell跨载波调度。
其中,第二信息还可以包括以下至少一种信息:
(1)调度小区标识,可以用于指示调度PCell的sSCell的小区标识,即PCell的资源可以由sSCell上的PDCCH资源指示;还可以用于指示自调度的PCell的小区标识,即PCell的资源可以由PCell上的PDCCH资源指示。
(2)跨载波指示标识(可选地)
(显示)一种可能的方式是还包括跨载波指示标识,用于指示调度PCell的sSCell的PDCCH传输的DCI中的CIF字段的值,例如CIF=2,即CIF取值为2时,指示该sSCell上的DCI调度的为PCell的资源。
(隐式)另一种可能的方式是不包括跨载波指示标识,例如默认CIF的取值,即CIF取值为0或者非法值时,指示该sSCell上的DCI调度的为PCell的资源。
(3)CIF出现指示符(可选地),即cif-Presence,用于指示调度小区发送的PDCCH中的DCI是否携带CIF字段。
若PCell还可以调度其他的SCell,则需要配置CIF出现指示符,反之,不需要配置CIF出现指示符。
方式2、通过DCI格式区分
第一消息还可以包含第三信息,第三信息用于区分sSCell上的DCI调度的为PCell或者SCell(包括sSCell)。
一种可能的方式为第三信息可以是DCI格式,或者DCI对应的搜索空间,例如sSCell调度PCell的DCI跟调度SCell的DCI通过不同的DCI格式,或者传输DCI的不同的搜索空间来指示,这样终端收到DCI后,可以根据对应的格式或者搜索空间来判断该DCI是否用于调度PCell。
另一种可能的方式为第三信息可以是特殊跨载波调度指示符,用于指示sSCell上的DCI调度为PCell的资源,例如该第三信息若携带在DCI中,或者取值为约定值时, 意味着该DCI调度的为PCell的资源,否则,调度的为SCell的资源。
S1302、基站在sSCell发送DCI,用于调度PCell或者SCell。
具体地,该SCell可以包括sSCell本身,还可以其他的SCell。
S1303、终端确定DCI调度的CC。
具体地,终端可以根据第一消息,判断该DCI调度的CC,该CC可以是PCell,也可以是SCell。
可见,上述实施例一通过第一消息,能够使能sSCell调度PCell,并且通过两种不同的方式,方式1不需要修改现有的DCI格式,只需要重新配置sSCell上的跨载波调度IE,方式2不需要修改RRC配置的跨载波调度IE,通过DCI指示调度CC,从而实现了PCell支持自调度和sSCell跨载波调度PCell。
上述实施例一相对于只允许PCell调度SCell,不允许SCell跨载波调度PCell来讲,本申请通过第一消息可以实现sSCell调度PCell,解决了在DSS下LTE频段的PDCCH容量受限的问题。
实施例二、sSCell配置RLM以及RLF功能,当sSCell检测RLF后,触发失败指示或者RRC重建。如图14所示,包括终端和接入网设备,其具体实现过程如下:
S1401、接入网设备向终端发送第二消息,该第二消息用于配置sSCell的RLM功能。
具体地,第二消息可以是RRC消息,可以是MAC消息,例如RRC重配置,RRC恢复等,本申请对此不做限定。
其中,第二消息可以包括以下至少一种参数:
参考信号指示,用于指示sSCell的RLM所需检测的参考信号;
检测目的,用于指示该参考信号上做RLM的目的,例如用于PCell的RLF,或者sSCell的RLF。
S1402、终端检测sSCell是否发生了RLF事件。
具体地,终端检测发生了RLF的事件可以包括以下至少一种:
事件1:当终端在sSCell上检测到连续的“失步指示(out-of-sync)”,例如:若终端检测PDCCH或者PDSCH的信道质量在一个时间窗口内低于某一个门限,就上报给RRC一个“失步指示”;若终端检测到的信道质量在一个时间窗口内高于某一个门限,就上报给RRC一个“同步指示(in-sync)”;若终端在RRC连续检测到的“失步指示”数量高于一个门限,并在一个时间窗口内收不到“同步指示”,就可以认为当前的通信链路出现问题,触发RLF。
事件2:当终端在sSCell上的随机接入过程出现问题,即随机接入失败的次数高于一个门限值时,终端认为随机接入过程出现问题,即当前的通信链路出现问题,触发RLF。
具体地,终端可以仅统计在sSCell上的随机接入失败次数,不包括在PCell上的随机接入失败次数。
事件3:当终端的RLC重传达到最大传输次数,即一个RLC SDU经过多次传输仍未成功,终端认为当前的通信链路出现问题,触发RLF。
具体地,事件3还可以分为事件3a以及3b:
事件3a:终端可以统计发生在SCell上的RLC重传次数,例如终端记录本次RLC传输或者重传是否发生在SCell,若发生在SCell,可以记录为1次。
其中,SCell可以为sSCell,还可以是除了PCell之外的任意SCell。
事件3b:终端还可以统计发生在PCell上的RLC重传次数,例如终端记录本次RLC传输或者重传是否发生在PCell,若发生在PCell,可以记录为1次。
事件4:对于非授权频谱,如果检测到持续的LBT(Listen-Before-Talk,先听后说)失败,即终端连续多次未抢占到信道,就认为当前的通信链路出现问题,触发RLF。
具体地,事件4还可以分为事件4a以及4b:
事件4a:终端可以统计发生在SCell上的LBT失败次数,例如终端记录本次LBT失败是否发生在SCell,若发生在SCell,可以记录为1次。
其中,SCell可以为sSCell,还可以是除了PCell之外的任意SCell。
事件4b:进一步地,终端还可以统计发生在PCell上的LBT失败次数,例如终端记录本次LBT失败是否发生在PCell,若发生在PCell,可以记录为1次。
值得说明的是:注意:终端可以根据不同的事件,选择不同的处理方式,即下述S1403或者步骤S1404。
S1403、触发RRC重建。
具体地,一种可能的方式为终端判断发生了以上事件1至4中的至少一个事件,例如事件3b,事件4b,认为PCell的通信链路出现了问题,因此可以触发RRC重建,终端重新选择一个PCell进行接入,恢复数据通信。
另一种可能的方式为终端判断发生了以上事件1至4中的至少一个事件,并且终端判断发生了PCell的RLF,因此可以触发RRC重建,终端重新选择一个PCell进行接入,恢复数据通信。
S1404、终端发送第三消息,该第三消息用于指示RLF事件。
具体地,若终端判断发生了以上事件1至4中的至少一个事件,例如事件1,事件3a,事件3a,认为sSCell的通信链路出现了问题,由于PCell自身的通信链路质量没有出现问题,例如PCell没有发生RLF,因此可以发送第三消息,避免RRC重建。
第三消息可以是RRC消息,或者MAC消息,本申请对此不做限定。
其中,若第三消息为MAC消息,例如MAC CE,还可以给MAC CE配置对应的调度请求(scheduling request,SR)资源,当没有可用的上行资源传输MAC CE时,还可以触发SR。
进一步地,第三消息可以包含以下至少一种信息:
小区标识信息,用于指示发生RLF的小区标识;
邻小区的信号质量信息,用于基站根据该信息重新选择合适的SCell。
可见,上述实施例二,通过在sSCell上配置RLM功能,可以精准监控PCell以及sSCell的通信链路质量,精准控制RRC重建或者指示基站sSCell链路质量失败,并且还可以识别出RLF的问题源头在PCell还是sSCell,若发生在sSCell而PCell的通信链路质量没有问题时,可以避免RRC重建,而是通过失败指示信息通知基站,便于基站重配sSCell或者释放或者去激活sSCell。
上述实施例二相对于仅支持在PCell监控通信链路质量,没有考虑PCell关联的sSCell的通信链路质量来讲,由于sSCell通信链路直接关系到PCell的数据发送,本申请可以尽早触发RRC重建或者精准信息指示,避免RRC重建。
实施例三、sSCell动态激活去激活,启动备用CC。如图15所示,包括终端和接入网设备,其具体实现过程如下:
S1500、备用CC指示,用于指示sSCell去激活后的备用CC。其中。该步骤是可选地的一个步骤。
S1501、接入网设备向终端发送第四消息,该第四消息用于激活或者去激活CC。
具体地,第四消息可以是MAC消息,例如MAC CE;还可以是物理层信令,例如DCI,本申请对此不做限定。
第四消息还可以指示激活或者去激活的CC,例如通过位图(bitmap)的方式。其中的,CC可以是sSCell。
一种可能的方式为:接入网设备通过RRC消息(即S1500)配置sSCell去激活后的备用CC,例如sSCell为SCell1,备用CC可以是PCell,或者SCell2,这样sSCell去激活后,备用CC可以替代sSCell使用相同的功能。
另一种可能的方式为:第四消息还可以包含备用CC指示,例如当sSCell被去激活后,备用CC指示还可以替代sSCell的CC,这样sSCell去激活后,备用CC可以替代sSCell使用相同的功能。
另一种可能的方式为:通过协议预定义的方式,sSCell去激活后,PCell恢复自调度的功能,sSCell跨载波调度PCell的功能自动失效。
S1502、终端确定备用CC。
具体地,若第四消息为去激活sSCell,终端根据步骤15-1中的方式确定备用CC,该备用CC可以是PCell,也可以是除了PCell和sSCell之外的CC。
若第四消息为激活sSCell,终端自动恢复sSCell跨载波调度PCell的功能,备用CC跨载波调度CC失效。
一种可能的方式为:终端收到激活或者去激活sSCell的指令后,自动失效或者自动生效备用CC跨载波调度PCell。
另一种可能的方式为:终端需要一个额外的指示信令,例如DCI,指示备用CC跨载波调度PCell是否失效或者生效。
可见,上述实施例三,允许sSCell被动态激活去激活,为了避免无法调度PCell的资源,引入备用CC,利用备用CC替代sSCell跨载波调度PCell,从而保持数据不中断。
上述实施例三相对于去激活sSCell后,PCell无法进行数据调度,造成PCell的数据中断来讲,本申请通过备用CC,sSCell动态去激活后仍可以实现PCell的数据通信。
实施例四、sSCell不允许去激活。即sSCell不允许通过上述S1501中的第四消息去激活CC。
一种可能的方式为上述S1501中的第四消息只用于激活CC,该CC可以是sSCell, 这样终端收到激活sSCell的指令后,可以自动失效备用CC跨载波调度PCell,也可以需要一个额外的指示信令,例如DCI,指示备用CC跨载波调度PCell是否失效。
另一种可能的方式为接入网设备为终端配置sSCell,例如通过RRC消息配置sSCell后即生效,或者经过一段时间后生效,即无须上述S1501中的第四消息激活该CC。
接下来,请参阅图16,图16是本申请实施例提供的一种数据传输方法的流程示意图;该方法可以用于终端,接入网设备为终端提供多个载波,多个载波包括主载波、以及一个或多个辅载波,主载波与终端的主小区(即上述实施例一至实施例四的PCell)相关联,辅载波与终端的辅小区(即上述实施例一至实施例四的SCell)相关联。其中,终端可以为图12至图15任一实施例中的终端,接入网设备可以为图12至图15任一实施例中的接入网设备。如图16所示,该数据传输方法可以包括以下步骤:
S1601、接收来自接入网设备的第一消息,第一消息用于配置一个或多个辅载波中的至少一个辅载波跨载波调度主载波,跨载波调度主载波的辅载波为第一辅载波。其中,第一辅载波与跨载波调度主小区的辅小区(上述实施例一至实施例四的sSCell)相关联。
具体地,接入网设备可以配置一个或多个第一辅载波。比如:多个载波关联PCell、SCell1和SCell2,接入网设备可以配置SCell1跨载波调度PCell,也可以配置SCell2跨载波调度PCell,还可以配置SCell1和SCell2均跨载波调度PCell。
其中,第一消息可以包括第一信息,该第一信息可以用于指示第一辅载波跨载波调度主载波,比如:第一信息指示SCell1跨载波调度PCell。另外,第一信息还可以用于指示主载波自调度,比如:第一信息指示PCell自调度和SCell1跨载波调度PCell。
第一消息可以包括第二信息,第二信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;其中,第二信息包括以下至少一项:
调度载波标识,该调度载波标识用于指示第一辅载波的载波标识或主载波的载波标识;
跨载波指示标识,该跨载波指示标识用于指示第一辅载波跨载波调度主载波的DCI中的CIF的取值;
CIF出现指示符,该CIF出现指示符用于指示第一辅载波跨载波调度主载波的DCI中是否携带CIF。
比如:若sSCell跨载波调度PCell,则调度载波标识可以是该sSCell的标识;若PCell自调度,则调度载波标识为该PCell的标识。
又比如:跨载波指示标识为2,即即CIF取值为2时,指示该sSCell上的DCI调度的为PCell的资源。
上述第二信息的具体内容与上述S1301中的方式1相同,即RRC配置DCI中字段的含义,在这里不再赘述。
第一消息可以包括第三信息,第三信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;第三信息包括以下至少一项:
DCI格式,或者DCI格式对应的搜索空间;其中,DCI格式和搜索空间均用于指 示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;
跨载波调度指示符,或者跨载波调度指示符的取值;其中,跨载波调度指示符或取值均用于指示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波。
比如:DCI格式1或搜索空间1指示sSCell跨载波调度PCell,DCI格式2或搜索空间2指示sSCell自调度或调度其他的SCell。
又比如:若DCI中包括跨载波调度指示符,指示sSCell跨载波调度PCell;若DCI中不包括跨载波调度指示符,指示sSCell子调度或调度其他的SCell。
又比如:若跨载波调度指示符是约定值,指示sSCell跨载波调度PCell;若DCI中不是约定值,指示sSCell子调度或调度其他的SCell。
上述第三信息的具体内容与上述S1301中的方式2相同,即通过DCI格式区分,在这里不再赘述。
第一消息可以是RRC消息,也可以是MAC消息,例如RRC重配置消息,RRC恢复消息等,本申请对此不做限定。
S1602、在第一辅载波上接收第一DCI,第一DCI用于调度主载波、或一个或多个辅载波中的一个辅载波。
具体地,第一辅载波上的第一DCI可以调度主载波,也可以调度第一辅载波,还可以调度其他辅载波。比如:多个载波关联PCell、SCell1和SCell2,SCell1为sSCell,在sSCell上的第一DCI可以调度PCell,也可以调度SCell1,还可以调度SCell2。
S1603、根据第一消息确定第一DCI所调度的载波。
具体地,可以根据第一消息中包括的信息来确定第一DCI所调度的载波是主载波还是辅载波。
比如:第一消息可以包括第一信息,该第一信息可以用于指示第一辅载波跨载波调度主载波,还可以用于指示主载波自调度。此时终端可以根据该第一信息确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波。
又比如:第一消息可以包括第二信息,第二信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;其中,第二信息包括以下至少一项:调度载波标识,该调度载波标识用于指示第一辅载波的载波标识或主载波的载波标识;跨载波指示标识,该跨载波指示标识用于指示第一辅载波跨载波调度主载波的DCI中的CIF的取值;CIF出现指示符,该CIF出现指示符用于指示第一辅载波跨载波调度主载波的DCI中是否携带CIF。此时终端若从第一DCI中获取到CIF的取值,可以根据第一信息中的跨载波指示标识的指示,确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波。
又比如:第一消息可以包括第三信息,第三信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;第三信息包括以下至少一项:DCI格式,或者DCI格式对应的搜索空间;其中,DCI格式和搜索空间均用于指示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;跨载波调度指示符,或者跨载波调度指示符的取值;其中,跨载波调度指示符或取值均用于指示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个 辅载波。此时终端可以采用以下确定方式:
确定第一DCI的DCI格式,并根据第一DCI的DCI格式确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波;或
确定用于传输第一DCI的搜索空间,并根据用于传输第一DCI的搜索空间确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波;或
确定第一DCI中是否包括跨载波调度指示符,并根据第一DCI中是否包括跨载波调度指示符确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波;或
确定跨载波调度指示符的取值,并根据取值确定第一DCI调度的是主载波、或一个或多个辅载波中的一个辅载波。
另外,终端除了执行上述S1601至S1603接入网设备为其配置的跨载波功能之外,终端还需要执行接入网设备为其配置的RLM功能、以及激活或去激活功能,具体如图17所示。
图17是本申请实施例提供的一种数据传输方法的流程示意图;该方法可以用于终端,并建立在图16的基础上,如图17所示,该数据传输方法可以包括以下步骤:
S1701、接收来自接入网设备的第二消息,第二消息用于配置第一辅载波的RLM功能。
具体地,第二消息可以是RRC消息,可以是MAC消息,例如RRC重配置,RRC恢复等,本申请对此不做限定。其中,第二消息可以包括以下至少一种参数:参考信号指示,用于指示sSCell的RLM所需检测的参考信号;检测目的,用于指示该参考信号上做RLM的目的,例如用于PCell的RLF,或者sSCell的RLF。
S1702、根据第二消息进行RLF检测。
具体地,终端检测发生了RLF的事件,包括:若终端在第一辅载波上连续检测到的失步指示次数大于第一门限值,则确定检测到RLF事件;或若终端在第一辅载波上的随机接入失败次数大于第二门限值,则确定检测到RLF事件;或若终端的无线链路控制RLC重传次数达到第三门限值,则确定检测到RLF事件;或若终端连续检测到的先听后说LBT失败次数大于第四门限值,则确定检测到RLF事件。
其中,RLC重传次数包括以下任一项:在第一辅载波上的第一RLC重传次数;或在一个或多个辅载波中除了第一辅载波之外的载波上的第二RLC重传次数;或在主载波上的第三RLC重传次数;
LBT失败次数包括以下任一项:在第一辅载波上的第一LBT失败次数;或在一个或多个辅载波中除了第一辅载波之外的载波上的第二LBT失败次数;或在主载波上的第三LBT失败次数。
S1703、若检测到RLF事件,则触发RRC重建或向接入网设备发送第三消息,第三消息用于指示RLF事件。
具体地,终端可以触发RRC重建,也可以向接入网设备发送第三消息。终端可以根据不同的事件,选择不同的处理方式。
比如:终端确定检测到RLF事件,并认为PCell的通信链路出现了问题,因此可以触发RRC重建,终端重新选择一个PCell进行接入,恢复数据通信。
又比如:终端终端确定检测到RLF事件,并判断发生了PCell的RLF,因此可以 触发RRC重建,终端重新选择一个PCell进行接入,恢复数据通信。
又比如:若终端确定检测到RLF事件,并,并认为sSCell的通信链路出现了问题,由于PCell自身的通信链路质量没有出现问题,例如PCell没有发生RLF,因此可以发送第三消息,避免RRC重建。
上述第三消息可以是RRC消息,或者MAC消息,本申请对此不做限定。其中,若第三消息为MAC消息,例如MAC CE,还可以给MAC CE配置对应的SR资源,当没有可用的上行资源传输MAC CE时,还可以触发SR。进一步地,第三消息可以包含以下至少一种信息:小区标识信息,用于指示发生RLF的小区标识;邻小区的信号质量信息,用于基站根据该信息重新选择合适的SCell。
S1704、接收来自接入网设备的第四消息,第四消息用于激活或去激活第一辅载波。
具体地,第四消息可以是MAC消息,例如MAC CE;还可以是物理层信令,例如DCI,本申请对此不做限定。
S1705、若第四消息为去激活第一辅载波,则确定第一辅载波的备用载波,并指示备用载波跨载波调度主载波的功能生效;或者指示主载波的自调度功能生效。
具体地,终端在确定第一辅载波的备用载波时,可以采用以下两种方式:
若第四消息中包括第四信息,第四信息用于指示备用载波,终端可以根据第四信息确定第一辅载波的备用载波;
若终端接收到来自接入网设备的第五消息,第五消息用于指示备用载波,终端可以根据第五消息确定第一辅载波的备用载波。其中,第五消息与第四消息不同,第五消息可以是接入网设备发送的专门用于指示备用载波的消息,例如RRC消息。
S1706、若第四消息为激活第一辅载波,则指示备用载波跨载波调度主载波的功能失效、以及第一辅载波跨载波调度主载波的功能生效。
具体地,若第四消息为激活sSCell,终端自动恢复sSCell跨载波调度PCell的功能,备用CC跨载波调度CC失效。
一种可能的方式为:终端收到激活sSCell的指令后,自动失效备用CC跨载波调度PCell。
另一种可能的方式为:终端需要一个额外的指示信令,例如DCI,指示备用CC跨载波调度PCell是否失效。
上述S1701至S1703为执行RLM功能,上述S1704至S1706为执行激活或去激活功能,二者在执行顺序上没有先后顺序,可以先执行S1701至S1703,再执行1704至S1706;还可以先执行1704至S1706,再执行S1701至S1703;也可以二者同时执行,本申请对此不做限定。
接下来,请参阅图18,图18是本申请实施例提供的一种数据传输方法的流程示意图;该方法可以用于接入网设备,接入网设备为终端提供多个载波,多个载波包括主载波、以及一个或多个辅载波,主载波与终端的主小区(即上述实施例一至实施例四的PCell)相关联,辅载波与终端的辅小区(即上述实施例一至实施例四的SCell)相关联。其中,终端可以为图12至图15任一实施例中的终端,接入网设备可以为图12至图15任一实施例中的接入网设备。如图18所示,该数据传输方法可以包括以下 步骤:
S1801、向终端发送第一消息,第一消息用于配置一个或多个辅载波中的至少一个辅载波跨载波调度主载波,跨载波调度主载波的辅载波为第一辅载波;
具体地,接入网设备可以配置一个或多个第一辅载波。比如:多个载波关联PCell、SCell1和SCell2,接入网设备可以配置SCell1跨载波调度PCell,也可以配置SCell2跨载波调度PCell,还可以配置SCell1和SCell2均跨载波调度PCell。
其中,第一消息可以包括第一信息,该第一信息可以用于指示第一辅载波跨载波调度主载波,比如:第一信息指示SCell1跨载波调度PCell。另外,第一信息还可以用于指示主载波自调度,比如:第一信息指示PCell自调度和SCell1跨载波调度PCell。
第一消息可以包括第二信息,第二信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;其中,第二信息包括以下至少一项:
调度载波标识,该调度载波标识用于指示第一辅载波的载波标识或主载波的载波标识;
跨载波指示标识,该跨载波指示标识用于指示第一辅载波跨载波调度主载波的DCI中的CIF的取值;
CIF出现指示符,该CIF出现指示符用于指示第一辅载波跨载波调度主载波的DCI中是否携带CIF。
比如:若sSCell跨载波调度PCell,则调度载波标识可以是该sSCell的标识;若PCell自调度,则调度载波标识为该PCell的标识。
又比如:跨载波指示标识为2,即即CIF取值为2时,指示该sSCell上的DCI调度的为PCell的资源。
上述第二信息的具体内容与上述S1301中的方式1相同,即RRC配置DCI中字段的含义,在这里不再赘述。
第一消息可以包括第三信息,第三信息用于区分在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;第三信息包括以下至少一项:
DCI格式,或者DCI格式对应的搜索空间;其中,DCI格式和搜索空间均用于指示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波;
跨载波调度指示符,或者跨载波调度指示符的取值;其中,跨载波调度指示符或取值均用于指示在第一辅载波上的DCI所调度的是主载波、或一个或多个辅载波中的一个辅载波。
比如:DCI格式1或搜索空间1指示sSCell跨载波调度PCell,DCI格式2或搜索空间2指示sSCell自调度或调度其他的SCell。
又比如:若DCI中包括跨载波调度指示符,指示sSCell跨载波调度PCell;若DCI中不包括跨载波调度指示符,指示sSCell子调度或调度其他的SCell。
又比如:若跨载波调度指示符是约定值,指示sSCell跨载波调度PCell;若DCI中不是约定值,指示sSCell子调度或调度其他的SCell。
上述第三信息的具体内容与上述S1301中的方式2相同,即通过DCI格式区分,在这里不再赘述。
第一消息可以是RRC消息,也可以是MAC消息,例如RRC重配置消息,RRC 恢复消息等,本申请对此不做限定。
S1802、在第一辅载波上发送第一DCI,第一DCI用于调度主载波、或一个或多个辅载波中的一个辅载波。
具体地,第一辅载波上的第一DCI可以调度主载波,也可以调度第一辅载波,还可以调度其他辅载波。比如:多个载波关联PCell、SCell1和SCell2,SCell1为sSCell,在sSCell上的第一DCI可以调度PCell,也可以调度SCell1,还可以调度SCell2。
另外,接入网设备为终端配置上述S1801至S1802跨载波功能之外,还可以为终端配置RLM功能、以及激活或去激活功能,具体如图19所示。
图19本申请实施例提供的一种数据传输方法的流程示意图;该方法可以用于接入网设备,并建立图18的基础上,如图19所示,该数据传输方法可以包括以下步骤:
S1901、向终端发送第二消息,第二消息用于配置第一辅载波的RLM功能。
具体地,第二消息可以是RRC消息,可以是MAC消息,例如RRC重配置,RRC恢复等,本申请对此不做限定。其中,第二消息可以包括以下至少一种参数:参考信号指示,用于指示sSCell的RLM所需检测的参考信号;检测目的,用于指示该参考信号上做RLM的目的,例如用于PCell的RLF,或者sSCell的RLF。
S1902、若接收到来自终端的第三消息,第三消息用于指示RLF事件,则根据第三消息确定终端检测到RLF事件。
具体地,终端可以触发RRC重建,也可以向接入网设备发送第三消息。终端可以根据不同的事件,选择不同的处理方式。
第三消息可以是RRC消息,或者MAC消息,本申请对此不做限定。其中,若第三消息为MAC消息,例如MAC CE,还可以给MAC CE配置对应的SR资源,当没有可用的上行资源传输MAC CE时,还可以触发SR。进一步地,第三消息可以包含以下至少一种信息:小区标识信息,用于指示发生RLF的小区标识;邻小区的信号质量信息,用于基站根据该信息重新选择合适的SCell。
终端在根据第三消息确定终端检测到RLF事件时,可以根据邻载波的信号质量信息为终端配置另一第一辅载波。
S1903、向终端发送第四消息,第四消息用于激活或去激活第一辅载波。
具体地,第四消息可以是MAC消息,例如MAC CE;还可以是物理层信令,例如DCI,本申请对此不做限定。
接入网设备可以将第四信息添加到第四消息,即第四消息中可以包括第四信息,第四信息用于指示第一辅载波的备用载波。
接入网设备还可以向终端发送第五消息,第五消息用于指示第一辅载波的备用载波。其中,第五消息与第四消息不同,第五消息可以是接入网设备发送的专门用于指示备用载波的消息,例如RRC消息。
上述S1901为配置RLM功能,上述S1903为配置激活或去激活功能,二者在执行顺序上没有先后顺序,可以先执行S1901,再执行S1903;还可以先执行S1903,再执行S1901;也可以二者同时执行,本申请对此不做限定。
接下来,请参阅图20,图20是本申请实施例提供的一种数据传输装置的结构示 意图;该装置可以用于终端,接入网设备为终端提供多个载波,多个载波包括主载波、以及一个或多个辅载波,主载波与终端的主小区(即上述实施例一至实施例四的PCell)相关联,辅载波与终端的辅小区(即上述实施例一至实施例四的SCell)相关联。其中,终端可以为图12至图15任一实施例中的终端,接入网设备可以为图12至图15任一实施例中的接入网设备。如图20所示,该数据传输装置可以包括:
第一接收模块201,用于接收来自所述接入网设备的第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
第二接收模块202,用于在所述第一辅载波上接收第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波;
载波确定模块203,用于根据所述第一消息确定所述第一DCI所调度的载波。
作为一个实施例,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
作为一个实施例,所述第一信息还用于指示所述主载波自调度。
作为一个实施例,所述第一消息包括第二信息,所述第二信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
其中,所述第二信息包括以下至少一项:
调度载波标识,所述调度载波标识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;
跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;
CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF;
所述载波确定模块203包括:
第一确定子模块,用于若从所述第一DCI中获取到CIF的取值,则根据所述第一信息中的所述跨载波指示标识的指示,确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
作为一个实施例,所述第一消息包括第三信息,所述第三信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
所述第三信息包括以下至少一项:
DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
所述载波确定模块203包括:
第二确定子模块,用于以下至少一项:
确定所述第一DCI的DCI格式,并根据第一DCI的DCI格式确定所述第一DCI 调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
确定用于传输所述第一DCI的搜索空间,并根据用于传输所述第一DCI的搜索空间确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
确定所述第一DCI中是否包括跨载波调度指示符,并根据所述第一DCI中是否包括跨载波调度指示符确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
确定所述跨载波调度指示符的取值,并根据所述取值确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
作为一个实施例,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
作为一个实施例,该数据传输装置还包括:
第三接收模块,用于接收来自所述接入网设备的第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;
RLF检测模块,用于根据所述第二消息进行无线链路失败RLF检测;
RLF处理模块,用于若检测到RLF事件,则触发RRC重建或向所述接入网设备发送第三消息,所述第三消息用于指示所述RLF事件。
作为一个实施例,所述RLF检测模块具体用于:
若所述终端在所述第一辅载波上连续检测到的失步指示次数大于第一门限值,则确定检测到RLF事件;或
若所述终端在所述第一辅载波上的随机接入失败次数大于第二门限值,则确定检测到RLF事件;或
若所述终端的无线链路控制RLC重传次数达到第三门限值,则确定检测到RLF事件;或
若所述终端连续检测到的先听后说LBT失败次数大于第四门限值,则确定检测到RLF事件。
作为一个实施例,所述RLC重传次数包括以下任一项:在所述第一辅载波上的第一RLC重传次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二RLC重传次数;或在所述主载波上的第三RLC重传次数;
所述LBT失败次数包括以下任一项:在所述第一辅载波上的第一LBT失败次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二LBT失败次数;或在所述主载波上的第三LBT失败次数。
作为一个实施例,所述第三消息包括以下至少一项:
发生所述RLF事件的载波标识;
邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波。
作为一个实施例,该数据传输装置还包括:
第三接收模块,用于接收来自所述接入网设备的第四消息,所述第四消息用于激活或去激活所述第一辅载波;
去激活模块,用于若所述第四消息为去激活所述第一辅载波,则确定所述第一辅载波的备用载波,并指示所述备用载波跨载波调度所述主载波的功能生效;或者指示所述主载波的自调度功能生效;
激活模块,用于若所述第四消息为激活所述第一辅载波,则指示所述备用载波跨载波调度所述主载波的功能失效、以及所述第一辅载波跨载波调度所述主载波的功能生效。
作为一个实施例,所述第四消息中包括第四信息,所述第四信息用于指示所述备用载波。
作为一个实施例,该数据传输装置还包括:
第四接收模块,用于接收来自所述接入网设备的第五消息,所述第五消息用于指示所述备用载波;
应当理解的是,上述装置用于执行上述图16或图17所示实施例中的数据传输方法,装置中的相应的程序模块,其实现原理和技术效果与上述图16或图17所示实施例中的数据传输方法中的描述类似,该装置的工作过程可参考上述图16或图17所示实施例中的数据传输方法中的对应过程,此处不再赘述。
图21是本申请实施例提供的一种数据传输装置的结构示意图;该装置可以用于接入网设备,接入网设备为终端提供多个载波,多个载波包括主载波、以及一个或多个辅载波,主载波与终端的主小区(即上述实施例一至实施例四的PCell)相关联,辅载波与终端的辅小区(即上述实施例一至实施例四的SCell)相关联。其中,终端可以为图12至图15任一实施例中的终端,接入网设备可以为图12至图15任一实施例中的接入网设备。如图21所示,该数据传输装置可以包括:
第一发送模块211,用于向终端发送第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
第二发送模块212,用于在所述第一辅载波上发送第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波。
作为一个实施例,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
作为一个实施例,所述第一信息还用于指示所述主载波自调度。
作为一个实施例,所述第一消息包括第一信息,所述第一信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
其中,所述第一信息包括以下至少一项:
调度载波标识,所述调度载波标识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;
跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;
CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF。
作为一个实施例,所述第一消息包括第三信息,所述第三信息用于区分在所述第 一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
所述第三信息包括以下至少一项:
DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
作为一个实施例,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
作为一个实施例,该数据传输装置还包括:
第三发送模块,用于向所述终端发送第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;
RLF事件处理模块,用于若接收到来自所述终端的第三消息,所述第三消息用于指示RLF事件,则根据所述第三消息确定所述终端检测到所述RLF事件。
作为一个实施例,所述第三消息包括以下至少一项:
发生所述RLF事件的载波标识;
邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波;
所述RLF事件处理模块具体用于根据所述邻载波的信号质量信息为所述终端配置另一所述第一辅载波。
作为一个实施例,该数据传输装置还包括:
第四发送模块,用于向所述终端发送第四消息,所述第四消息用于激活或去激活所述第一辅载波。
作为一个实施例,所述第四消息中包括第四信息,所述第四信息用于指示所述第一辅载波的备用载波。
作为一个实施例,该数据传输装置还包括:
第五发送模块,用于向所述终端发送第五消息,所述第五消息用于指示所述第一辅载波的备用载波。
应当理解的是,上述装置用于执行上述图18或图19所示实施例中的数据传输方法,装置中的相应的程序模块,其实现原理和技术效果与上述图18或图19所示实施例中的数据传输方法中的描述类似,该装置的工作过程可参考上述图18或图19所示实施例中的数据传输方法中的对应过程,此处不再赘述。
接下来,请参阅图22,图22是本申请实施例提供的一种终端的结构示意图,该终端可以实现上述方法实施例中终端的功能。为了便于说明,图22示意了终端的主要部件,如图22所示:
终端包括至少一个处理器2211、至少一个收发器2212和至少一个存储器2213。处理器2211、存储器2213和收发器2212相连。可选的,终端还可以包括输出设备2214、 输入设备2215和一个或多个天线2216。天线2216与收发器2212相连,输出设备2214、输入设备2215与处理器2211相连。
处理器2211主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。
作为一种可选的实现方式,所述终端可以包括基带处理器和中央处理器。基带处理器主要用于对通信协议以及通信数据进行处理。中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。
图22中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器2213主要用于存储软件程序和数据。存储器2213可以是独立存在,与处理器2211相连。可选的,存储器2213可以和处理器2211集成在一起,例如集成在一个芯片之内,即片内存储器,或者存储器2213为独立的存储元件,本申请实施例对此不做限定。其中,存储器2213能够存储执行本申请实施例的技术方案的程序代码,并由处理器2211来控制执行,被执行的各类计算机程序代码也可被视为是处理器2211的驱动程序。
收发器2212可以用于基带信号与射频信号的转换以及对射频信号的处理,收发器2212可以与天线2216相连。收发器2212包括发射机(transmitter,Tx)和接收机(receiver,Rx)。具体地,一个或多个天线2216可以接收射频信号,该收发器2212的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器2211,以便处理器2211对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器2212中的发射机Tx用于从处理器2211接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线2216发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。可选的,发射机Tx和接收机Rx可以是由不同的物理结构/电路实现,或者可以由同一物理结构/电路实现,也就是说发射机Tx和接收机Rx可以继承在一起。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为 发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。或者,可以将Tx、Rx和天线的组合成为收发器。
输出设备2214以多种方式来显示信息。例如,输出设备2214可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备2215可以以多种方式接受用户的输入。例如,输入设备2215可以是鼠标、键盘、触摸屏设备或传感设备等。
图23是本申请实施例提供的一种接入网设备的结构示意图,该接入网设备可以实现上述方法实施例中接入网设备的功能,比如:gNB。为了便于说明,图23示意了接入网设备的主要部件,如图23所示:
接入网设备包括至少一个处理器2311、至少一个存储器2312、至少一个收发器2313、至少一个网络接口2314和一个或多个天线2315。处理器2311、存储器2312、收发器2313和网络接口2314相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线2315与收发器2313相连。网络接口2314用于使得接入网设备通过通信链路,与其它接入网设备相连。
收发器2313、存储器2312以及天线2315可以参考图22中的相关描述,实现类似功能。
本申请实施例还提供了一种数据传输系统,包括接入网设备和终端;其中,接入网设备可以执行用于接入网设备侧的数据传输方法;终端可以执行用于终端侧的数据传输方法。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质包括计算机指令,当计算机指令运行时,使得接入网设备侧的数据传输方法被执行。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质包括计算机指令,当计算机指令运行时,使得终端侧的数据传输方法被执行。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令运行时,使得接入网设备侧的数据传输方法被执行。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令运行时,使得终端侧的数据传输方法被执行。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能 够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (29)

  1. 一种数据传输方法,其特征在于,所述方法用于终端,接入网设备为所述终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述方法包括:
    接收来自所述接入网设备的第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
    在所述第一辅载波上接收第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波;
    根据所述第一消息确定所述第一DCI所调度的载波。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息还用于指示所述主载波自调度。
  4. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第二信息,所述第二信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    其中,所述第二信息包括以下至少一项:
    调度载波标识,所述调度载波标识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;
    跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;
    CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF;
    所述根据所述第一消息确定所述第一DCI所调度的载波,包括:
    若从所述第一DCI中获取到CIF的取值,则根据所述第一信息中的所述跨载波指示标识的指示,确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
  5. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第三信息,所述第三信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    所述第三信息包括以下至少一项:
    DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间 均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    所述根据所述第一消息确定所述第一DCI所调度的载波,包括以下至少一项:
    确定所述第一DCI的DCI格式,并根据第一DCI的DCI格式确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
    确定用于传输所述第一DCI的搜索空间,并根据用于传输所述第一DCI的搜索空间确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
    确定所述第一DCI中是否包括跨载波调度指示符,并根据所述第一DCI中是否包括跨载波调度指示符确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;或
    确定所述跨载波调度指示符的取值,并根据所述取值确定所述第一DCI调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    接收来自所述接入网设备的第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;
    根据所述第二消息进行无线链路失败RLF检测;
    若检测到RLF事件,则触发RRC重建或向所述接入网设备发送第三消息,所述第三消息用于指示所述RLF事件。
  8. 根据权利要求7所述的方法,其特征在于,所述检测到RLF事件,包括:
    若所述终端在所述第一辅载波上连续检测到的失步指示次数大于第一门限值,则确定检测到RLF事件;或
    若所述终端在所述第一辅载波上的随机接入失败次数大于第二门限值,则确定检测到RLF事件;或
    若所述终端的无线链路控制RLC重传次数达到第三门限值,则确定检测到RLF事件;或
    若所述终端连续检测到的先听后说LBT失败次数大于第四门限值,则确定检测到RLF事件。
  9. 根据权利要求8所述的方法,其特征在于,所述RLC重传次数包括以下任一 项:在所述第一辅载波上的第一RLC重传次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二RLC重传次数;或在所述主载波上的第三RLC重传次数;
    所述LBT失败次数包括以下任一项:在所述第一辅载波上的第一LBT失败次数;或在所述一个或多个辅载波中除了所述第一辅载波之外的载波上的第二LBT失败次数;或在所述主载波上的第三LBT失败次数。
  10. 根据权利要求7所述的方法,其特征在于,所述第三消息包括以下至少一项:
    发生所述RLF事件的载波标识;
    邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波。
  11. 根据权利要求1所述的方法,其特征在于,还包括:
    接收来自所述接入网设备的第四消息,所述第四消息用于激活或去激活所述第一辅载波;
    若所述第四消息为去激活所述第一辅载波,则确定所述第一辅载波的备用载波,并指示所述备用载波跨载波调度所述主载波的功能生效;或者指示所述主载波的自调度功能生效;
    若所述第四消息为激活所述第一辅载波,则指示所述备用载波跨载波调度所述主载波的功能失效、以及所述第一辅载波跨载波调度所述主载波的功能生效。
  12. 根据权利要求11所述的方法,其特征在于,所述第四消息中包括第四信息,所述第四信息用于指示所述备用载波。
  13. 根据权利要求11所述的方法,其特征在于,还包括:
    接收来自所述接入网设备的第五消息,所述第五消息用于指示所述备用载波。
  14. 一种数据传输方法,其特征在于,所述方法用于接入网设备,所述接入网设备为终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述方法包括:
    向终端发送第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
    在所述第一辅载波上发送第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波。
  15. 根据权利要求14所述的方法,其特征在于,所述第一消息中包括第一信息,所述第一信息用于指示所述第一辅载波跨载波调度所述主载波。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信息还用于指示所述主载波自调度。
  17. 根据权利要求14所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    其中,所述第一信息包括以下至少一项:
    调度载波标识,所述调度载波标识用于指示所述第一辅载波的载波标识或所述主载波的载波标识;
    跨载波指示标识,所述跨载波指示标识用于指示所述第一辅载波跨载波调度所述主载波的DCI中的载波指示字段CIF的取值;
    CIF出现指示符,所述CIF出现指示符用于指示所述第一辅载波跨载波调度所述主载波的DCI中是否携带所述CIF。
  18. 根据权利要求14所述的方法,其特征在于,所述第一消息包括第三信息,所述第三信息用于区分在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    所述第三信息包括以下至少一项:
    DCI格式,或者DCI格式对应的搜索空间;其中,所述DCI格式和所述搜索空间均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波;
    跨载波调度指示符,或者所述跨载波调度指示符的取值;其中,所述跨载波调度指示符或所述取值均用于指示在所述第一辅载波上的DCI所调度的是所述主载波、或所述一个或多个辅载波中的一个辅载波。
  19. 根据权利要求14至18任一项所述的方法,其特征在于,所述第一消息为无线资源控制RRC消息或介质接入控制MAC消息。
  20. 根据权利要求14所述的方法,其特征在于,还包括:
    向所述终端发送第二消息,所述第二消息用于配置所述第一辅载波的无线链路监控RLM功能;
    若接收到来自所述终端的第三消息,所述第三消息用于指示RLF事件,则根据所述第三消息确定所述终端检测到所述RLF事件。
  21. 根据权利要求20所述的方法,其特征在于,所述第三消息包括以下至少一项:
    发生所述RLF事件的载波标识;
    邻载波的信号质量信息,所述邻载波是所述多个载波中与发生所述RLF事件的载波相邻的载波;
    所述根据所述第三消息确定所述终端检测到所述RLF事件,包括:
    根据所述邻载波的信号质量信息为所述终端配置另一所述第一辅载波。
  22. 根据权利要求14所述的方法,其特征在于,还包括:
    向所述终端发送第四消息,所述第四消息用于激活或去激活所述第一辅载波。
  23. [根据细则91更正 09.03.2021] 
    根据权利要求22所述的方法,其特征在于,所述第四消息中包括第四信息,所述第四信息用于指示所述第一辅载波的备用载波。
  24. [根据细则91更正 09.03.2021] 
    根据权利要求22所述的方法,其特征在于,还包括:
    向所述终端发送第五消息,所述第五消息用于指示所述第一辅载波的备用载波。
  25. [根据细则91更正 09.03.2021] 
    一种数据传输装置,其特征在于,所述方法用于终端,接入网设备为所述终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述装置包括:
    第一接收模块,用于接收来自所述接入网设备的第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
    第二接收模块,用于在所述第一辅载波上接收第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波;
    载波确定模块,用于根据所述第一消息确定所述第一DCI所调度的载波。
  26. [根据细则91更正 09.03.2021] 
    一种数据传输装置,其特征在于,所述方法用于接入网设备,所述接入网设备为终端提供多个载波,所述多个载波包括主载波、以及一个或多个辅载波,所述主载波与所述终端的主小区相关联,所述辅载波与所述终端的辅小区相关联,所述装置包括:
    第一发送模块,用于向终端发送第一消息,所述第一消息用于配置所述一个或多个辅载波中的至少一个辅载波跨载波调度所述主载波,所述跨载波调度所述主载波的辅载波为第一辅载波;
    第二发送模块,用于在所述第一辅载波上发送第一下行控制信息DCI,所述第一DCI用于调度所述主载波、或所述一个或多个辅载波中的一个辅载波。
  27. [根据细则91更正 09.03.2021] 
    一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述通信装置执行根据权利要求1至24中任一项所述的方法。
  28. [根据细则91更正 09.03.2021] 
    一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被运行时,使得通信装置执行根据权利要求1至24中任一项所述的方法。
  29. [根据细则91更正 09.03.2021] 
    一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被计算机运行时,使得所述计算机执行根据权利要求1至24中任一项所述的方法。
PCT/CN2021/074445 2021-01-29 2021-01-29 一种数据传输方法及装置 WO2022160261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074445 WO2022160261A1 (zh) 2021-01-29 2021-01-29 一种数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074445 WO2022160261A1 (zh) 2021-01-29 2021-01-29 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022160261A1 true WO2022160261A1 (zh) 2022-08-04

Family

ID=82654137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074445 WO2022160261A1 (zh) 2021-01-29 2021-01-29 一种数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2022160261A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245870A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 处理无线链路失败方法、终端设备和基站
CN110710246A (zh) * 2017-11-14 2020-01-17 Oppo广东移动通信有限公司 处理无线链路失败的方法、终端设备和网络设备
WO2020068346A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Cross-carrier reference signal scheduling offset and threshold determination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245870A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 处理无线链路失败方法、终端设备和基站
CN110710246A (zh) * 2017-11-14 2020-01-17 Oppo广东移动通信有限公司 处理无线链路失败的方法、终端设备和网络设备
WO2020068346A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Cross-carrier reference signal scheduling offset and threshold determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on cross-carrier scheduling for NR DSS", 3GPP DRAFT; R1-2006362, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915332 *

Similar Documents

Publication Publication Date Title
EP3611995B1 (en) Communication method, communication device and communication system therefor
US10277453B2 (en) Master base station-controlled response to detected failure of radio link between secondary base station and mobile station in dual connectivity wireless networks
JP6581658B2 (ja) 非ライセンス無線周波数帯域における時間分割lte送信のための方法及び装置
US10701751B2 (en) Signaling for multiple radio access technology dual connectivity in wireless network
US11252755B2 (en) Uplink resource grant methods and apparatus
JP2023166438A (ja) 情報送信方法および装置
WO2020200171A1 (zh) 通信方法及装置
US9408195B2 (en) Method, system and device for cell management
US20230262599A1 (en) Power efficient pdcch monitoring
EP3993483A1 (en) Processing method and device for beam failure
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2019223696A1 (zh) 通信方法及装置
US20230095844A1 (en) Beam failure recovery method and apparatus, and device
CN105873115B (zh) 接入技术网络间的网络资源调整方法及终端
WO2021032007A1 (zh) 链路失败报告传输的方法和装置
CN116349162A (zh) 跨载波调度方法、终端设备和接入网设备
WO2020166021A1 (ja) ユーザ装置及び基地局装置
WO2020166020A1 (ja) ユーザ装置及び基地局装置
WO2022160261A1 (zh) 一种数据传输方法及装置
WO2022178893A1 (zh) 通信方法及装置
WO2014112514A1 (ja) 端末装置、基地局装置、通信システム及び通信方法
US20230138554A1 (en) Apparatus for wireless communications system and user equipment
EP2989845B1 (en) Methods and apparatus for communication scheduling
WO2021031044A1 (zh) Iab节点的接入方法、iab节点和通信系统
WO2024002096A1 (zh) 资源选择方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921866

Country of ref document: EP

Kind code of ref document: A1