WO2022160219A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022160219A1
WO2022160219A1 PCT/CN2021/074259 CN2021074259W WO2022160219A1 WO 2022160219 A1 WO2022160219 A1 WO 2022160219A1 CN 2021074259 W CN2021074259 W CN 2021074259W WO 2022160219 A1 WO2022160219 A1 WO 2022160219A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
trs
message
time
information
Prior art date
Application number
PCT/CN2021/074259
Other languages
English (en)
French (fr)
Inventor
魏冬冬
李争峰
秦彦
钱进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/074259 priority Critical patent/WO2022160219A1/zh
Publication of WO2022160219A1 publication Critical patent/WO2022160219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and apparatus.
  • a tracking reference signal is defined in the new radio (NR) system.
  • the TRS configurations include its period, time-frequency domain location, and the like.
  • the TRS configurations of adjacent base stations are different, for example, the TRS of two adjacent base stations are configured in different time slots, or the current base station is not configured with TRS, but the neighbor base station is configured with TRS, it will cause the neighbor base station to send TRS.
  • the time-frequency resources continue to cause interference to the cell of the base station, which affects the downlink performance of the cell of the base station.
  • the embodiments of the present application provide a communication method and apparatus, which can reduce the interference of neighboring stations during data transmission and help improve downlink performance.
  • an embodiment of the present application provides a communication method, including: a first network device receiving a first message from a second network device, where the first message is used to indicate a time-frequency resource of a tracking reference signal TRS of the second network device information; the first network device determines a rate matching pattern or a zero-power channel state information reference signal pattern according to the time-frequency resource information of the TRS of the second network device.
  • the first network device can determine the rate matching pattern or the zero-power channel state according to the time-frequency resource information of the TRS of the second network device Information reference signal pattern. In this way, when the downlink data is sent, the first network device may not perform data mapping on the corresponding position of the rate matching pattern or the zero-power channel state information reference signal pattern, thereby reducing the interference of neighboring stations during data transmission and helping to improve downlink. Network performance, such as downlink rate, throughput, etc.
  • the first message includes a first information element, and the first information element is used to indicate the time-frequency resource information of the TRS; optionally, the frequency domain resource information corresponding to the TRS includes a bandwidth part (bandwidth part, BWP) information, the BWP information includes at least one of the frequency domain starting position of the BWP, the number of frequency domain resource blocks (RBs), or the subcarrier spacing; optionally, the frequency domain resource information corresponding to the TRS includes the corresponding TRS RB; the time domain resource information corresponding to the TRS includes at least one of the time slot, symbol, period or offset corresponding to the TRS.
  • BWP bandwidth part
  • BWP information bandwidth part
  • the BWP information includes at least one of the frequency domain starting position of the BWP, the number of frequency domain resource blocks (RBs), or the subcarrier spacing
  • the frequency domain resource information corresponding to the TRS includes the corresponding TRS RB
  • the time domain resource information corresponding to the TRS includes at least one of the time slot, symbol
  • the frequency domain resource information (also referred to as TRS bandwidth information) corresponding to the TRS may include the following situations:
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes information of a neighbor cell, and the information of the neighbor cell
  • the information includes at least one of the subcarrier spacing or the cell bandwidth; optionally, the frequency domain resource information corresponding to the TRS may also include the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot, symbol, period or time corresponding to the TRS. at least one of the offsets. That is, TRS can be configured on the cell bandwidth to better perform frequency domain tracking on the cell bandwidth.
  • the first information element further includes information used to indicate a physical cell identity (identity, ID) of the second network device.
  • the physical cell ID can be used to determine the resource element (RE) mapping of the TRS.
  • the first message is an inter-node radio resource control message, that is, an Inter-node RRC message.
  • receiving the first message from the second network device by the first network device includes: when the first network device establishes a connection with the second network device, the first network device receives a message from the second network device. First news.
  • the first network device can obtain the time-frequency resource information of the TRS of the second network device, and then can determine the time-frequency resource information of the TRS of the second network device according to the time-frequency resource information of the TRS of the second network device. Rate matching pattern or zero power channel state information reference signal pattern.
  • the first network device may not perform data mapping on the corresponding position of the rate matching pattern or the zero-power channel state information reference signal pattern, thereby reducing the interference of neighboring stations during data transmission and helping to improve downlink.
  • Network performance such as downlink rate, throughput, etc.
  • the method further includes: the first network device sends a second message to the second network device, where the second message is used to request time-frequency resource information of the TRS of the second network device.
  • the first network device can acquire the time-frequency resource information of the TRS of the second network device more flexibly.
  • the method further includes: the first network device receives a third message from the second network device, where the third message includes time-frequency resource information of the TRS updated by the second network device. That is, after the second network device updates the time-frequency resource information of the TRS, it can notify the first network device of the updated time-frequency resource information of the TRS through a third message.
  • the third message also carries the updated effective time of the time-frequency resource information of the TRS of the second network device, and the updated time-frequency resource information of the TRS takes effect at the effective time.
  • receiving the third message from the second network device by the first network device includes: the first network device receives the third message from the second network device within the first period, and the second network device updates The time-frequency resource information of the subsequent TRS takes effect in the next cycle of the first cycle.
  • the relevant information of the first period may be negotiated in advance by the first network device and the second network device.
  • the method further includes: the first network device sends radio resource control (radio resource control, RRC) signaling to the terminal device, where the RRC signaling is used to indicate a first pattern, and the first pattern includes rate matching At least one of a pattern or a zero-power channel state information reference signal pattern, and the first pattern is related to the time-frequency resource information of the TRS of the first network device and/or the second network device.
  • RRC radio resource control
  • the terminal equipment performs rate matching according to the rate matching pattern or the zero-power channel state information reference signal pattern.
  • the rate matching pattern or the zero-power channel state information reference signal pattern may indicate some time-frequency resources to which data is not mapped, and the terminal equipment does not need to receive data on these time-frequency resources.
  • the method further includes: the first network device sends RRC signaling and downlink control information (DCI) signaling to the terminal device, where the RRC signaling is used to indicate at least one first pattern,
  • the first pattern includes at least one of a rate matching pattern or a zero-power channel state information reference signal pattern, and at least one of the first patterns is related to the time-frequency resource information of the TRS of the first network device and/or the second network device, and the DCI signal Command is used to indicate a first pattern.
  • the terminal equipment performs rate matching according to the rate matching pattern or the zero-power channel state information reference signal pattern.
  • the rate matching pattern or the zero-power channel state information reference signal pattern may indicate some time-frequency resources to which data is not mapped, and the terminal equipment does not need to receive data on these time-frequency resources.
  • an embodiment of the present application provides a communication method, including: a second network device determining time-frequency resource information of a tracking reference signal TRS of the second network device; and the second network device sending a first message to the first network device, The first message is used to indicate time-frequency resource information of the TRS of the second network device.
  • the second network device may send the time-frequency resource information of the TRS to the first network device, so that the first network device may determine the rate matching pattern or the rate matching pattern according to the time-frequency resource information of the TRS of the second network device.
  • Zero power channel state information reference signal pattern In this way, when the downlink data is sent, the first network device may not perform data mapping on the corresponding position of the rate matching pattern or the zero-power channel state information reference signal pattern, thereby reducing the interference of neighboring stations during data transmission and helping to improve downlink.
  • Network performance such as downlink rate, throughput, etc.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes BWP information, and the BWP information includes BWP information. At least one of the starting position of the frequency domain, the number of RBs in the frequency domain resource block, or the subcarrier interval; or, the frequency domain resource information corresponding to the TRS includes the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot corresponding to the TRS at least one of , sign, period, or offset.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes information of a neighbor cell, and the information of the neighbor cell
  • the information includes at least one of the subcarrier spacing or the cell bandwidth; optionally, the frequency domain resource information corresponding to the TRS may also include the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot, symbol, period or time corresponding to the TRS. at least one of the offsets.
  • the first information element further includes information used to indicate the physical cell ID of the second network device.
  • the first message is an inter-node radio resource control message.
  • the method further includes: when the first network device establishes a connection with the second network device, the second network device sends the first message to the first network device.
  • the method further includes: the second network device receives a second message from the first network device, where the second message is used to request time-frequency resource information of the TRS of the second network device.
  • the method further includes: after the time-frequency resource information of the TRS of the second network device is updated, the second network device sends a third message to the first network device, where the third message includes the updated second Time-frequency resource information of the TRS of the network device.
  • the third message also carries the updated effective time of the time-frequency resource information of the TRS of the first network device.
  • the sending of the third message by the second network device to the first network device includes: the second network device sends the third message to the second network device within the first period, and the TRS updated by the second network device The time-frequency resource information takes effect in the next cycle of the first cycle.
  • an embodiment of the present application provides a communication apparatus, which may be a first network device, and includes: a transceiver unit configured to receive a first message from a second network device, where the first message is used to indicate a second network device Time-frequency resource information of the tracking reference signal TRS of the network device; and a processing unit configured to determine a rate matching pattern or a zero-power channel state information reference signal pattern according to the time-frequency resource information of the TRS of the second network device.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; optionally, the frequency domain resource information corresponding to the TRS includes BWP information, and the BWP information includes At least one of the starting position of the frequency domain of the BWP, the number of RBs in the frequency domain resource block, or the subcarrier interval; optionally, the frequency domain resource information corresponding to the TRS includes the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the TRS At least one of a corresponding slot, symbol, period, or offset.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes information of a neighbor cell, and the information of the neighbor cell
  • the information includes at least one of the subcarrier spacing or the cell bandwidth; optionally, the frequency domain resource information corresponding to the TRS may also include the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot, symbol, period or time corresponding to the TRS. at least one of the offsets.
  • the first information element further includes information used to indicate the physical cell ID of the second network device.
  • the first message is an inter-node radio resource control message.
  • the transceiver unit is configured to receive the first message from the second network device when the first network device establishes a connection with the second network device.
  • the transceiver unit is further configured to: send a second message to the second network device, where the second message is used to request time-frequency resource information of the TRS of the second network device.
  • the transceiver unit is further configured to: receive a third message from the second network device, where the third message includes time-frequency resource information of the TRS updated by the second network device.
  • the third message also carries the updated effective time of the time-frequency resource information of the TRS of the second network device.
  • the transceiver unit is configured to: receive the third message from the second network device in the first cycle, and the time-frequency resource information of the TRS updated by the second network device is in the next cycle of the first cycle. Period is in effect.
  • the transceiver unit is further configured to: send RRC signaling to the terminal device, where the RRC signaling is used to indicate a first pattern, where the first pattern includes a rate matching pattern or a zero-power channel state information reference signal pattern At least one of the first pattern is related to the time-frequency resource information of the TRS of the first network device and/or the second network device.
  • the transceiver unit is further configured to: send RRC signaling and DCI signaling to the terminal device, where the RRC signaling is used to indicate at least one first pattern, and the first pattern includes a rate matching pattern or a zero-power channel
  • the status information refers to at least one of the signal patterns, the at least one first pattern is related to the time-frequency resource information of the TRS of the first network device and/or the second network device, and the DCI signaling is used to indicate one first pattern.
  • an embodiment of the present application provides a communication apparatus, which may be a second network device, including: a processing unit configured to determine time-frequency resource information of a tracking reference signal TRS of the second network device; a transceiver unit, is used to send a first message to the first network device, where the first message is used to indicate time-frequency resource information of the TRS.
  • a communication apparatus which may be a second network device, including: a processing unit configured to determine time-frequency resource information of a tracking reference signal TRS of the second network device; a transceiver unit, is used to send a first message to the first network device, where the first message is used to indicate time-frequency resource information of the TRS.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes BWP information, and the BWP information includes BWP information. At least one of the starting position of the frequency domain, the number of RBs in the frequency domain resource block, or the subcarrier interval; or, the frequency domain resource information corresponding to the TRS includes the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot corresponding to the TRS at least one of , sign, period, or offset.
  • the first message includes a first information element, and the first information element is used to indicate time-frequency resource information of the TRS; wherein, the frequency domain resource information corresponding to the TRS includes information of a neighbor cell, and the information of the neighbor cell
  • the information includes at least one of the subcarrier spacing or the cell bandwidth; optionally, the frequency domain resource information corresponding to the TRS may also include the RB corresponding to the TRS; the time domain resource information corresponding to the TRS includes the time slot, symbol, period or time corresponding to the TRS. at least one of the offsets.
  • the first information element further includes information used to indicate the physical cell ID of the second network device.
  • the first message is an inter-node radio resource control message.
  • the transceiver unit is configured to: when the first network device establishes a connection with the second network device, send the first message to the first network device.
  • the transceiver unit is further configured to: receive a second message from the first network device, where the second message is used to request time-frequency resource information of the TRS of the second network device.
  • the transceiver unit is further configured to: after the time-frequency resource information of the TRS of the second network device is updated, send a third message to the first network device, where the third message includes the updated second network device The time-frequency resource information of the TRS.
  • the third message also carries the updated effective time of the time-frequency resource information of the TRS of the first network device.
  • the transceiver unit is configured to: send a third message to the second network device in the first cycle, and the time-frequency resource information of the TRS updated by the second network device takes effect in the next cycle of the first cycle .
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus may be a first network device or a chip.
  • the communication apparatus includes a processor, configured to implement any one of the communication methods provided in the first aspect.
  • the communication device may further include a memory for storing program instructions and data, and the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the communication methods provided in the first aspect.
  • the communication apparatus may also include a communication interface for the communication apparatus to communicate with other devices (eg, a second network device).
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus may be a second network device or a chip.
  • the communication apparatus includes a processor, configured to implement any one of the communication methods provided in the second aspect above.
  • the communication device may further include a memory for storing program instructions and data, and the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the communication methods provided in the second aspect above.
  • the communication apparatus may also include a communication interface for the communication apparatus to communicate with other devices (eg, the first network device).
  • an embodiment of the present application provides a computer-readable storage medium, including instructions that, when executed on a computer, cause the computer to execute any one of the communication methods provided in the first aspect or the second aspect. .
  • an embodiment of the present application provides a computer program product including instructions, which, when run on a computer, enables the computer to execute any one of the communication methods provided in the first aspect or the second aspect.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing any one of the communication methods provided in any one of the foregoing first aspect or the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes the communication device in the third aspect and the communication device in the fourth aspect.
  • FIG. 1 is a schematic diagram of a scenario of an MR-DC provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another system architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first network device or a second network device according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of signal interaction provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frequency domain resource corresponding to a TRS according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a time domain resource corresponding to a TRS according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a time-frequency resource corresponding to a TRS according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another first network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another second network device according to an embodiment of the present application.
  • TRS configuration in the NR system Since the channel state information reference signal (CSI-RS) has a flexible structure, and the time-frequency density can be increased through flexible configuration, a special configuration is adopted in the NR system.
  • the CSI-RS is used as the design scheme of TRS, that is, the CSI-RS marked with trs-Info as True is configured as TRS.
  • the configuration part of the CSI-RS in the protocol is as follows:
  • trs-Info indicates that the antenna ports of all NZP-CSI-RS resources in the CSI-RS resource set are the same (that is, Indicates that the antenna port for all NZP-CSI-RS resources in the CSI-RS resource set is the same).
  • TS 38.214 [19], clause 5.2.2.3.1 which is not repeated in this application.
  • the base station schedules data transmission and notifies the terminal equipment of the scheduling result.
  • the base station when receiving downlink data sent by a base station, unless otherwise specified, all RE/RB resources are mapped to a downlink data shared channel (physical data shared channel, PDSCH) by default.
  • PDSCH downlink data shared channel
  • some RE/RBs do not perform data mapping (ie, cannot be used by PDSCH), such as time-frequency positions corresponding to reference signals used for downlink data demodulation, or time-frequency positions where some base stations do not transmit data.
  • the base station will notify the terminal of the corresponding configuration of the reference signal, and the terminal will not demodulate the PDSCH at this position when receiving data; for those RBs/REs that are not used for PDSCH, the base station will The terminal will also be notified through corresponding signaling, so that when the terminal receives downlink data, it will not perform downlink data reception at these locations. Due to the existence of such RBs/REs that are not used for PDSCH, the channel coding code rate will be adjusted to match the actual available transmission resources during channel coding, and this process is called rate matching.
  • Rate matching at the resource block (RB) level and the resource element (RE) level is defined in the NR system.
  • the rate matching at the RB level may be notified to the UE through RRC signaling, for example, the UE may be notified to the UE through the information element RateMatchPattern.
  • the UE receives the RateMatchPattern it determines that data scheduling will not be performed on the corresponding time-frequency resources, and these time-frequency resources can be ignored during data reception and demodulation.
  • the format of the information element RateMatchPattern may be as follows:
  • the specific RB can be indicated in the frequency domain, the symbol, slot and period can be indicated in the time domain, and information such as subcarrier spacing can also be indicated.
  • the rate matching at the RE level can be notified to the UE by configuring the RateMatchPattern LTE-CRS or ZP-CSI-RS, and the UE will not receive data on the time-frequency resources indicated by the ZP-CSI-RS.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or an independent (standalone, SA) 5G mobile communication system.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a future evolved public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an object Internet of things (IoT) network or other network.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of things
  • the technical solutions of the embodiments of the present application may be applied to an independent networking (standalone, SA) scenario or a dual connectivity (dual connectivity, DC) scenario.
  • SA standalone
  • DC dual connectivity
  • the SA scenario may refer to a base station serving a terminal device.
  • the DC scenario may refer to that a terminal device may be served by multiple base stations.
  • the master node (MN) also known as the master station or the primary base station
  • the secondary node (SN) also known as the secondary station or the secondary base station
  • the DC may include multi-RAT dual connectivity (MR-DC), and MR-DC is a dual connectivity technology that can support different access technologies.
  • MR-DC can include the following scenarios:
  • Evolved universal terrestrial radio access E-UTRA and new radio (NR) dual connectivity
  • E-UTRA-NR dual connectivity EN-DC
  • the core network element is an evolved packet core (EPC)
  • MN is an evolved node (evolved universal terrestrial radio access network NodeB, eNB)
  • SN is a new air interface Node (new radio nodeB, gNB).
  • the MN and the SN can be connected through the X2 interface, and there can be a user plane connection between the MN and the SN; the MN and the core network element can be connected through the S1 interface, and the MN and the core network element can have a user plane connection.
  • the SN and core network elements can be connected through the S1-U interface, and there can be user plane connections between the SN core network elements.
  • the eNB may provide air interface resources for terminal equipment through at least one long term evolution (long term evolution, LTE) cell, and the at least one LTE cell is called a master cell group (master cell group, MCG).
  • LTE long term evolution
  • MCG master cell group
  • the gNB can also provide air interface resources for the terminal device through at least one NR cell, and the at least one NR cell is called a secondary cell group (SCG) in this case.
  • SCG secondary cell group
  • the core network element is the fifth generation (5G, 5th Generation) core network (5G core, 5GC), the MN is the gNB, and the SN is the eNB.
  • the MN and SN can be connected, for example, through the Xn interface, and there can be a user plane connection between the MN and the SN; the MN and the core network element can be connected, for example, through the NG interface, and there can be a user plane between the MN and the core network element connection, and there may be a control plane connection between the MN and the core network element.
  • the SN and the core network elements may be connected, for example, through the NG-U interface, and there may be user plane connections between the SN core network elements.
  • the gNB may provide air interface resources for the terminal device through at least one NR cell, and the at least one NR cell is called an MCG in this case.
  • the eNB may also provide air interface resources for the terminal device through at least one LTE cell, in which case the at least one LTE cell is called an SCG.
  • NG Next generation radio access network
  • RAN radio access network
  • NR dual connectivity NG-RAN E-UTRA-NR dual connectivity, NGEN-DC.
  • the core network element is the 5GC
  • the MN is the eNB
  • the SN is the gNB.
  • the MN and the SN can be connected through the Xn interface, and there can be a user plane connection between the MN and the SN;
  • the MN and the core network element can be connected through the NG interface, the MN and the core network element can have a user plane connection, and the MN and the core network
  • the SN and the core network elements can be connected through the NG-U interface, and there can be user plane connections between the SN core network elements.
  • the eNB may provide air interface resources for the terminal device through at least one LTE cell, where the at least one LTE cell is called an MCG.
  • the gNB can also provide air interface resources for the terminal device through at least one NR cell, and the at least one NR cell is called an SCG in this case.
  • the core network is 5GC
  • the MN is a gNB
  • the SN is also a gNB.
  • the MN and the SN can be connected through the Xn interface, and there can be a user plane connection between the MN and the SN;
  • the MN and the core network element can be connected through the NG interface, the MN and the core network element can have a user plane connection, and the MN and the core network
  • the SN and the core network elements can be connected through the NG-U interface, and there can be user plane connections between the SN core network elements.
  • the gNB corresponding to the MN can provide air interface resources for the terminal device through at least one NR cell, and the at least one NR cell is called an MCG.
  • the gNB corresponding to the SN can also provide air interface resources for the terminal device through at least one NR cell, and the at least one NR cell is called an SCG.
  • FIG. 2 is a communication system 100 suitable for an SA scenario.
  • the communication system 100 includes a network device 110 and a terminal device 120, and the network device 110 communicates with the terminal device 120 through a wireless network. It should be understood that one or more cells may be included under the network device 110 in FIG. 2 .
  • the transmission direction of the communication system 100 is uplink transmission
  • the terminal device 120 is the sending end and the network device 110 is the receiving end.
  • the transmission direction of the communication system 100 is downlink transmission
  • the network device 110 is the sending end and the terminal device 120 is the receiving end. end.
  • FIG. 3 is yet another communication system 200 to which the present application is applied.
  • the communication system 200 is in a DC scenario.
  • the communication system 200 includes a network device 210 , a network device 220 and a terminal device 230 .
  • the network device 210 is a network device when the terminal device 230 is initially accessed and is responsible for RRC with the terminal device 230 .
  • the network device 220 is added during RRC reconfiguration to provide additional radio resources.
  • the terminal device 230 configured with CA is connected to the network device 210 and the network device 220.
  • the link between the network device 210 and the terminal device 230 can be called the first link.
  • the link between the network device 220 and the terminal device 230 The path can be called the second link.
  • the network device 210 may be an MN
  • the network device 220 may be an SN. For details of the MN and the SN, reference may be made to the relevant description in FIG. 1 , which will not be repeated here.
  • the above communication systems applicable to the present application are only examples, and the communication systems applicable to the present application are not limited thereto.
  • the number of network devices and terminal devices included in the communication system may also be other numbers.
  • a primary cell/primary serving cell (primary cell/primary serving cell, Pcell) is a high frequency or a low frequency
  • a secondary cell/secondary serving cell (secondary cell/secondary serving cell, Scell) is the case of high frequency or low frequency, for example, when Pcell is low frequency, Scell is high frequency.
  • Pcell primary cell/primary serving cell
  • Scell secondary cell/secondary serving cell
  • Usually low frequency and high frequency are relative, and can also be demarcated by a specific frequency, such as 6GHz.
  • the terminal device in this embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks, or terminal devices in PLMN, etc., are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Interconnection, the intelligent network of the interconnection of things and things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of terminals through, for example, a narrow band (narrow band, NB) technology.
  • NB narrow band
  • the terminal device may also include sensors such as smart printers, train detectors, and gas stations, and the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • sensors such as smart printers, train detectors, and gas stations
  • the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be a device for communicating with terminal devices, and the network device may be a base station (base transceiver station, BTS) in a GSM system or a CDMA system, or a base station (NodeB) in a WCDMA system , NB), it can also be an evolved NodeB (evolved NodeB, eNB or eNodeB) in the LTE system, it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device It may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network, etc., which are not limited in the embodiments of the present application.
  • the network device in this embodiment of the present application may be a device in a wireless network, for example, a radio access network (radio access network, RAN) node that accesses a terminal to the wireless network.
  • RAN nodes are: base station, next generation base station gNB, TRP, evolved Node B (evolved Node B, eNB), home base station, baseband unit (baseband unit, BBU), or access point in WiFi system (access point, AP), etc.
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • the terminal device or the network device in FIG. 2 or FIG. 3 in this embodiment of the present application may be implemented by one device, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application. It is to be understood that the above functions can be either network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform), or a system-on-a-chip. . In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 4 is a schematic diagram of a hardware structure of an apparatus 400 according to an embodiment of the present application.
  • the apparatus 400 includes at least one processor 401, which is configured to implement the functions of the terminal device provided by the embodiments of the present application.
  • the apparatus 400 may also include a bus 402 and at least one communication interface 404 .
  • a memory 403 may also be included in the apparatus 400 .
  • the processor may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a controller, microcontroller, programmable logic device (PLD).
  • the processor can also be any other device with processing functions, such as an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices , hardware components, software modules, or any combination thereof.
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the bus 402 may be used to transfer information between the aforementioned components.
  • the communication interface 404 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) and the like.
  • the communication interface 404 may be an interface, a circuit, a transceiver or other devices capable of implementing communication, which is not limited in this application.
  • Communication interface 404 may be coupled to processor 401 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory may be a read-only memory (ROM) or other types of static storage devices capable of storing static information and instructions, a random access memory (RAM) or a storage device capable of storing static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Other optical disc storage optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of being used to carry or store desired in the form of instructions or data structures
  • Program code and any other medium that can be accessed by a computer but is not limited thereto.
  • the memory may exist independently or may be coupled to the processor, such as through bus 402 .
  • the memory can also be integrated with the processor.
  • the memory 403 is used for storing program instructions, and can be controlled and executed by the processor 401, so as to implement the communication methods provided by the following embodiments of the present application.
  • the processor 401 is configured to call and execute the instructions stored in the memory 403, so as to implement the communication methods provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • memory 403 may be included in processor 401 .
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4 .
  • the apparatus 400 may include multiple processors, such as the processor 401 and the processor 407 in FIG. 4 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the apparatus 400 may further include an output device 405 and an input device 406 .
  • Output device 405 is coupled to processor 401 and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • Input device 406 is coupled to processor 401 and can receive user input in a variety of ways.
  • the input device 406 may be a touch screen device or a sensing device or the like.
  • the above-mentioned apparatus 400 may be a general-purpose device or a special-purpose device.
  • the terminal device 400 may be a vehicle-mounted terminal or a transportation device with a built-in computer (processor) or a device with a similar structure in FIG. 4 .
  • This embodiment of the present application does not limit the type of the apparatus 400 .
  • FIG. 5 is a schematic diagram of a hardware structure of an apparatus 500 according to an embodiment of the present application.
  • the apparatus 500 includes at least one processor 501, configured to implement the functions of the terminal device provided by the embodiments of the present application.
  • the apparatus 500 may also include a bus 502 and at least one communication interface 504 .
  • a memory 503 may also be included in the apparatus 500 .
  • the bus 502 may be used to transfer information between the aforementioned components.
  • the communication interface 504 may be an interface, a circuit, a transceiver or other devices capable of implementing communication, which is not limited in this application.
  • Communication interface 504 may be coupled to processor 501 .
  • the memory 503 is used for storing program instructions, and can be controlled and executed by the processor 501, so as to implement the communication methods provided by the following embodiments of the present application.
  • the processor 501 is configured to invoke and execute the instructions stored in the memory 503, so as to implement the communication methods provided by the following embodiments of the present application.
  • memory 503 may be included in processor 501 .
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the apparatus 500 may include multiple processors, such as the processor 501 and the processor 505 in FIG. 5 . Each of these processors can be a single-core processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the above-mentioned apparatus 500 may be a general-purpose device or a special-purpose device.
  • the apparatus 500 may be a vehicle-mounted terminal or a traffic device with a built-in computer (processor) or a device with a similar structure in FIG. 5 .
  • This embodiment of the present application does not limit the type of the apparatus 500 .
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as CPU, memory management unit (MMU), and memory (also known as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, CDs, digital versatile discs (DVDs), etc.), smart cards, and flash memory devices (eg EPROM, card, stick or key drive, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • signal may also refer to “channel” or “signal resource”, and sometimes the three may be replaced by each other, which is not limited in this application.
  • an embodiment of the present application provides a communication method, including:
  • the second network device determines time-frequency resource information of the TRS of the second network device.
  • the second network device may determine the TRS time-frequency resource information according to the protocol definition and its own implementation.
  • the second network device sends a first message to the first network device, where the first message is used to indicate time-frequency resource information of the TRS.
  • the second network device may send the first message to the first network device in a direct or indirect manner.
  • the following describes the process of the second network device sending the first information to the first network device in different scenarios:
  • the first network device may be an NR base station (eg, gNB1)
  • the second network device may be an NR base station (eg, gNB2)
  • gNB2 may directly send the first message to gNB1.
  • the primary node is an LTE base station (eg, eNB), and the secondary node is an NR base station (eg, gNB).
  • the first network device may be a secondary node/NR base station (eg, gNB1), and its corresponding master node/LTE base station may be eNB1, and the second network device may be another secondary node/NR base station (eg, gNB2), which corresponds to The master node/LTE base station may be eNB2.
  • the first information may be forwarded or transparently transmitted by the master node/LTE base station (eg, eNB1 and eNB2).
  • gNB2 may send the first information to eNB2, eNB2 may forward the first information to eNB1 through the X2 interface, and then eNB1 forwards the first information to gNB1.
  • the first network device may be an NR base station (eg, gNB1)
  • the second network device may be an NR base station (eg, gNB2)
  • gNB2 may directly send the first message to gNB1.
  • the primary node is the NR base station
  • the secondary node is the NR base station.
  • the first network device is the first master node (eg, gNB1) and the second network device is the second master node (eg, gNB2)
  • the first information can be directly exchanged between gNB1 and gNB2.
  • the first network device is the first secondary node (eg, gNB3)
  • the second network device is the second secondary node (eg, gNB4).
  • Information cannot be directly exchanged between two secondary nodes, and needs to be forwarded through the primary node.
  • the master node corresponding to gNB3 is gNB1
  • the master node corresponding to gNB4 is gNB2
  • gNB3 can send the first information to gNB1
  • gNB1 can forward the first information to gNB2 through the Xn interface
  • gNB2 forwards the first information to gNB4. That is, when the first information is exchanged between the two secondary nodes, it needs to be forwarded through the respective corresponding primary nodes.
  • the first message may be an inter-node radio resource control message (Inter-node RRC message).
  • Inter-node RRC message Inter-node radio resource control message
  • the first message may include a first information element (Information Element, IE), where the first information element is used to indicate time-frequency resource information of the TRS of the second network device.
  • Information Element Information Element
  • the frequency domain resource information (also referred to as TRS bandwidth information) corresponding to the TRS may include the following situations:
  • the TRS can be configured as full frequency band (full bandwidth). That is, in the second network device, the bandwidth configured by the TRS is equal to the BWP bandwidth.
  • the TRS may be configured as a non-full frequency band, that is, in the second network device, the bandwidth configured by the TRS is a part of the bandwidth in the BWP bandwidth.
  • each bit (bit) in the bitmap may correspond to one RB or RBG, or other units, which are not specifically limited here.
  • the length of the bitmap bitmap may be the number of RBs corresponding to the second network device.
  • the bit with the bit value of 1 in the Bitmap may be the RB corresponding to the TRS, and the symbol with the bit value of 0 is not the RB corresponding to the TRS. As shown in FIG.
  • the fourth and eighth RBs may be RBs corresponding to TRS.
  • the REs mapped to the 4th and 8th RBs by the TRS may be determined according to the position of the OFDM symbol to which the TRS is mapped and the cell ID of the second network device.
  • the RB corresponding to the TRS may be indicated by a resource indication value (resource indication value, RIV).
  • RIV resource indication value
  • the starting RB corresponding to the TRS and the length of the consecutively allocated RB can be deduced according to the RIV.
  • the time domain resource information corresponding to the TRS includes at least one of a slot, a symbol, a period or an offset corresponding to the TRS.
  • the OFDM symbol corresponding to the TRS in the slot may be indicated in the form of a bitmap.
  • each bit (bit) in the bitmap may correspond to one OFDM symbol
  • the length of the bitmap may be the length of the OFDM symbol included in one slot (for example, the length of the bitmap may be 14).
  • a bit with a bit value of 1 in the bitmap may be an OFDM symbol corresponding to TRS, and a symbol with a bit value of 0 is not an OFDM symbol corresponding to TRS.
  • the fourth and eighth OFDM symbols may be OFDM symbols corresponding to TRS.
  • the TRS can be periodic or aperiodic.
  • the period of the TRS may be 10ms, 20ms, 40ms or 80ms, etc.
  • each TRS resource can be a 1-port TRS resource with a frequency domain density of 3, that is, in a PRB, on the symbol where the TRS is located, the TRS can occupy 3 REs.
  • Two TRSs can be separated by 4 OFDM symbols in the time domain, that is, the TRS interval in one time slot can be 4 OFDM symbols.
  • the frequency domain resource information corresponding to the TRS includes information of neighbor cells, and the neighbor cell information includes at least one of subcarrier spacing or cell bandwidth; optionally, the frequency domain resource information corresponding to the TRS also includes The RB corresponding to the TRS may be included; the time domain resource information corresponding to the TRS includes at least one of a time slot, a symbol, a period or an offset corresponding to the TRS.
  • the first information element further includes information used to indicate the physical cell ID of the second network device.
  • the physical cell ID can be used to determine the RE mapping of the TRS.
  • the first information element may be InterferenceCoordinationConfiguration (interference coordination configuration), and the format of InterferenceCoordinationConfiguration may be as follows:
  • the resourceBlocks field is used to indicate the frequency domain resource information corresponding to the TRS.
  • the symbolsInResourceBlock and periodicityAndPattern fields are used to indicate the time domain resource information corresponding to the TRS.
  • the first network device receives the first message from the second network device.
  • the second network device may send the first message to the first network device through the X2/Xn interface, The first network device may receive the first message from the second network device through the X2/Xn interface.
  • the first network device before the first network device receives the first message from the second network device, the first network device sends the second message to the second network device, and the second network device receives the message from the first network device.
  • the second message is used to request time-frequency resource information of the TRS of the second network device.
  • the second network device may update the time-frequency resource information of the TRS. After the time-frequency resource information of the TRS of the second network device is updated, the second network device may send a third message to the first network device, where the third message includes the updated time-frequency resource information of the TRS of the second network device. The first network device may receive the third message from the second network device.
  • the third message may further carry the updated effective time of the time-frequency resource information of the TRS of the second network device.
  • the updated time-frequency resource information of the TRS takes effect at the effective time, and the effective time may be global positioning system (global positioning system, GPS) time.
  • the first network device receives a third message from the second network device within the first period, and the time-frequency resource information of the TRS updated by the second network device indicated by the third message is The next cycle of the cycle takes effect.
  • the related information of the first period may be negotiated in advance by the first network device and the second network device.
  • the first network device determines a rate matching pattern or a zero-power channel state information reference signal pattern according to the time-frequency resource information of the TRS of the second network device.
  • the first network device may use the time-frequency resource information of the TRS of the first network device and the time-frequency resource information of the TRS of the second network device Determine the rate matching pattern or the zero-power channel state information reference signal pattern (ZP-CSI-RS pattern), that is, determine the time-frequency resources for which downlink resource mapping is not performed.
  • the time-frequency resource information of the TRS of the first network device and the time-frequency resource information of the TRS of the second network device may be different.
  • the first network device may determine the rate matching pattern or the zero-power channel state according to the time-frequency resource information of the TRS of the second network device The information reference signal pattern, that is, to determine the time-frequency resources for which no resource mapping is performed.
  • the first network device may indicate the rate matching pattern or the zero power channel state information reference signal pattern to the terminal device, so that the terminal device performs rate matching according to the rate matching pattern or the zero power channel state information reference signal pattern.
  • the ZP-CSI-RS pattern indicates some zero-power time-frequency resources, and no data is sent on these time-frequency resources, so the terminal equipment does not need to receive data on these time-frequency resources.
  • the rate matching pattern or the zero-power channel state information reference signal pattern may be indicated to the terminal device through static signaling.
  • the static signaling may be RRC signaling or indication signaling in system information, or the like.
  • the static indication mode does not require frequent indication and can save signaling.
  • the first network device may send RRC signaling to the terminal device, where the RRC signaling is used to indicate a first pattern, and the first pattern includes at least one of a rate matching pattern or a zero-power channel state information reference signal pattern.
  • the first pattern It is related to the time-frequency resource information of the TRS of the first network device and/or the second network device.
  • the RRC signaling may indicate a rate matching pattern, and the terminal device may perform rate matching according to the rate matching pattern, that is, not to receive data on the corresponding time-frequency resource.
  • the rate matching pattern or the zero-power channel state information reference signal pattern may be indicated to the terminal device through static signaling combined with a dynamic indication manner.
  • the dynamic indication mode is more flexible and can better improve the data transmission performance of the terminal device.
  • the first network device sends RRC signaling and DCI signaling to the terminal device, where the RRC signaling is used to indicate at least one first pattern, and the first pattern includes a rate matching pattern or a zero-power channel state information reference signal pattern. At least one of the at least one first pattern is related to the time-frequency resource information of the TRS of the first network device and/or the second network device, and the DCI signaling is used to indicate a first pattern in the at least one first pattern.
  • each BWP or each cell can be configured with 4 sets of rate matching patterns (rateMatchPattern) through the information element PDSCH-Config in the RRC reconfiguration message, and the 4 sets of rateMatchPatterns can be divided into two rate matching patterns.
  • rateMatchPatternGroup the time-frequency resource indicated by the specific group of rateMatchPatternGroup that does not map data can be indicated through the DCI.
  • PDSCH-Config may be as follows:
  • the two sets of rate matching pattern groups may include rateMatchPatternGroup1 and rateMatchPatternGroup2.
  • At least one rate matching pattern group may be configured in RRC signaling, for example, rate matching pattern group 1 and rate matching pattern group 2 may be configured in PDSCH-Config in RRC signaling.
  • the currently effective rate matching pattern group (eg, rate matching pattern group 1) is further indicated in the DCI, so that the terminal device can determine the time-frequency resource of unmapped data among the downlink data transmission resources scheduled by the first network device.
  • the first network device can determine the rate matching pattern or the zero-power channel state according to the time-frequency resource information of the TRS of the second network device Information reference signal pattern. In this way, when the downlink data is sent, the first network device may not perform data mapping on the corresponding position of the rate matching pattern or the zero-power channel state information reference signal pattern, thereby reducing the interference of neighboring stations during data transmission and helping to improve downlink. Network performance, such as downlink rate, throughput, etc.
  • the TRS configuration of adjacent base stations is usually different from that of the local base station (for example, the period of TRS between adjacent base stations is different, or the adjacent base stations are different.
  • the TRS is configured as a full frequency band, it will cause periodic signal interference on the full frequency band. Based on the method provided by the embodiments of the present application, the interference of adjacent base stations during data transmission can be reduced, which helps to improve downlink network performance, such as downlink rate, throughput rate, and the like.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of the first network device, the second network device, and the interaction between the first network device and the second network device.
  • the first network device and the second network device may include hardware structures and/or software modules, in the form of hardware structures, software modules, or hardware structures plus software modules. realize the above functions. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 10 shows a possible schematic structural diagram of the apparatus 10 involved in the above embodiment
  • the apparatus may be a first network device
  • the first network device includes : the transceiver unit 1001 and the processing unit 1002 .
  • the transceiver unit 1001 is configured to receive a first message from a second network device, where the first message is used to indicate time-frequency resource information of a tracking reference signal TRS of the second network device; processing Unit 1002, configured to determine a rate matching pattern or a zero-power channel state information reference signal pattern according to the time-frequency resource information of the TRS of the second network device.
  • the transceiver unit 1001 is configured to support the first network device to perform the process 603 in FIG. 6 .
  • the processing unit 1002 is configured to support the first network device to perform the process 604 in FIG. 6 .
  • FIG. 11 shows a possible schematic structural diagram of the apparatus 11 involved in the above embodiment
  • the apparatus may be a second network device
  • the second network device includes : the processing unit 1101 and the transceiver unit 1102 .
  • the processing unit 1101 is configured to determine the time-frequency resource information of the tracking reference signal TRS of the second network device
  • the transceiver unit 1102 is configured to send a first message to the first network device, the first A message is used to indicate the time-frequency resource information of the TRS.
  • the processing unit 1101 is configured to support the second network device to perform the process 601 in FIG. 6 .
  • the transceiver unit 1102 is configured to support the second network device to perform the process 602 in FIG. 6 .
  • the first network device or the second network device in each of the foregoing apparatus embodiments and the first network device or the second network device in the method embodiments may completely correspond, and corresponding steps are performed by corresponding modules or units, for example,
  • the communication module (transceiver) may perform the steps of sending and/or receiving in the method embodiment, and other steps except the sending and receiving may be performed by the processing unit (processor).
  • the processing unit processing unit
  • the sending unit and the receiving unit can form a transceiver unit, the transmitter and the receiver can form a transceiver, and jointly realize the sending and receiving function; the processor can be one or more.
  • the functions of the first network device or the second network device may be implemented by a chip, and the processing unit may be implemented by hardware or software.
  • the processing unit may be a logic circuit. , integrated circuits, etc.; when implemented by software, the processing unit can be a general-purpose processor, and is implemented by reading the software code stored in the storage unit, which can be integrated in the processor or located in the processing unit. Outside the device, it exists independently.
  • the first network device or the second network device in the above-mentioned various apparatus embodiments completely corresponds to the first network device and the second network device in the method embodiment, and corresponding steps are performed by corresponding modules or units, such as a sending module (transmitter). ) method executes the sending step in the method embodiment, the receiving module (receiver) executes the receiving step in the method embodiment, and other steps except sending and receiving may be executed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to jointly realize the sending and receiving function; the processor can be one or more.
  • each functional module in each embodiment of the present application may be integrated in the In a processor, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media (eg, solid state drives (SSDs) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,涉及通信领域,能够降低数传时邻站的干扰,有助于提升下行性能。其方法为:第一网络设备接收来自第二网络设备的第一消息,第一消息用于指示第二网络设备的TRS的时频资源信息;第一网络设备根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。本申请实施例应用于SA场景或DC场景。

Description

一种通信方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
由于网络设备(例如,基站)和终端设备的物理晶振的频率有细微偏差,不可能做到完全一致,这使得终端接收到的射频载波信号会有相位上的偏差,在接收子载波的解调符号星座图上,表现为相位上的旋转,即接收的调制符号偏离了一定的相位角度,这是由于频偏在时间上的积累造成的。为了实现精确的时频跟踪,新无线(new radio,NR)系统中定义了跟踪参考信号(tracking reference signal,TRS)。
目前,协议中定义了多种不同的TRS配置,TRS配置包括其周期、时频域位置等。当相邻基站的TRS配置不同时,比如相邻的两个基站的TRS在不同的时隙(slot)配置,或者当前基站未配置TRS,而邻居基站配置了TRS,会导致邻居基站发送TRS的时频资源对本基站的小区持续造成干扰,影响本基站的小区的下行性能。
发明内容
本申请实施例提供一种通信方法和装置,能够降低数传时邻站的干扰,有助于提升下行性能。
第一方面,本申请实施例提供一种通信方法,包括:第一网络设备接收来自第二网络设备的第一消息,第一消息用于指示第二网络设备的跟踪参考信号TRS的时频资源信息;第一网络设备根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。
基于本申请实施例提供的方法,第一网络设备获取第二网络设备的TRS的时频资源信息后,可以根据该第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。这样,在下行数据发送时,第一网络设备可以不在速率匹配图样或零功率信道状态信息参考信号图样相应的位置上进行数据映射,从而降低了数传时邻站的干扰,有助于提升下行网络性能,例如下行速率、吞吐率等。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;可选的,TRS对应的频域资源信息包括带宽部分(bandwidth part,BWP)信息,BWP信息包括BWP的频域起始位置、频域资源块(resource block,RB)个数或子载波间隔中的至少一个;可选的,TRS对应的频域资源信息包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。也就是说,TRS对应的频域资源信息(也可以称为TRS带宽信息)可以包括以下情形:第一种情形:可以将TRS配置为全频带(全带宽)。即在第二网络设备中,TRS配置的带宽等于BWP带宽,这样可以更好进行频域跟踪。第二种情形:可以将TRS配置为非全频带,TRS对应的频域资源信息为BWP带宽中的部分带宽,这样可以节省资源。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括邻居小区的信息,邻居小区的信息包括子载波间隔或小区带宽中的至少一个;可选的,TRS对应的频域资源信息还可以包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。即可以在小区带宽上配置TRS,以便更好地在小区带宽上进行频域跟踪。
在一种可能的实现方式中,第一信元还包括用于指示第二网络设备的物理小区标识(identity,ID)的信息。物理小区ID可以用于确定TRS的资源要素(resource element,RE)映射。
在一种可能的实现方式中,第一消息为节点间无线资源控制消息,即Inter-node RRC message。
在一种可能的实现方式中,第一网络设备接收来自第二网络设备的第一消息包括:当第一网络设备与第二网络设备建立连接时,第一网络设备接收来自第二网络设备的第一消息。这样,当第一网络设备与第二网络设备建立连接时,第一网络设备可以获取第二网络设备的TRS的时频资源信息,然后可以根据该第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。这样,在下行数据发送时,第一网络设备可以不在速率匹配图样或零功率信道状态信息参考信号图样相应的位置上进行数据映射,从而降低了数传时邻站的干扰,有助于提升下行网络性能,例如下行速率、吞吐率等。
在一种可能的实现方式中,方法还包括:第一网络设备向第二网络设备发送第二消息,第二消息用于请求第二网络设备的TRS的时频资源信息。这样,第一网络设备可以更加灵活地获取第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,方法还包括:第一网络设备接收来自第二网络设备的第三消息,第三消息包括第二网络设备更新后的TRS的时频资源信息。即当第二网络设备更新TRS的时频资源信息后,可以通过第三消息向第一网络设备通知更新后的TRS的时频资源信息。
在一种可能的实现方式中,第三消息还携带更新后的第二网络设备的TRS的时频资源信息的生效时间,更新后的TRS的时频资源信息在该生效时间生效。
在一种可能的实现方式中,第一网络设备接收来自第二网络设备的第三消息包括:第一网络设备在第一周期内接收来自第二网络设备的第三消息,第二网络设备更新后的TRS的时频资源信息在第一周期的下一个周期生效。其中,第一周期的相关信息可以是第一网络设备和第二网络设备提前协商的。
在一种可能的实现方式中,方法还包括:第一网络设备向终端设备发送无线资源控制(radio resource control,RRC)信令,RRC信令用于指示第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关。这样,终端设备根据速率匹配图样或零功率信道状态信息参考信号图样进行速率匹配。其中,速率匹配图样或零功率信道状态信息参考信号图样可以指示一些不映射数据的时频资源,终端设备无需在这些时频资源上接收数据。
在一种可能的实现方式中,方法还包括:第一网络设备向终端设备发送RRC信令和下行控制信息(downlink control information,DCI)信令,RRC信令用于指示至少一个第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,至少一个第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关,DCI信令用于指示一个第一图样。这样,终端设备根据速率匹配图样或零功率信道状态信息参考信号图样进行速率匹配。其中,速率匹配图样或零功率信道状态信息参考信号图样可以指示一些不映射数据的时频资源,终端设备无需在这些时频资源上接收数据。
第二方面,本申请实施例提供一种通信方法,包括:第二网络设备确定第二网络设备的跟踪参考信号TRS的时频资源信息;第二网络设备向第一网络设备发送第一消息,第一消息用于指示第二网络设备的TRS的时频资源信息。
基于本申请实施例提供的方法,第二网络设备可以向第一网络设备发送TRS的时频资源信息,以便第一网络设备可以根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。这样,在下行数据发送时,第一网络设备可以不在速率匹配图样或零功率信道状态信息参考信号图样相应的位置上进行数据映射,从而降低了数传时邻站的干扰,有助于提升下行网络性能,例如下行速率、吞吐率等。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括BWP信息,BWP信息包括BWP的频域起始位置、频域资源块RB个数或子载波间隔中的至少一个;或者,TRS对应的频域资源信息包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括邻居小区的信息,邻居小区的信息包括子载波间隔或小区带宽中的至少一个;可选的,TRS对应的频域资源信息还可以包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一信元还包括用于指示第二网络设备的物理小区ID的信息。
在一种可能的实现方式中,第一消息为节点间无线资源控制消息。
在一种可能的实现方式中,方法还包括:当第一网络设备与第二网络设备建立连接时,第二网络设备向第一网络设备发送第一消息。
在一种可能的实现方式中,方法还包括:第二网络设备接收来自第一网络设备的第二消息,第二消息用于请求第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,方法还包括:第二网络设备的TRS的时频资源信息更新后,第二网络设备向第一网络设备发送第三消息,第三消息包括更新后的第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,第三消息还携带更新后的第一网络设备的TRS的时频资源信息的生效时间。
在一种可能的实现方式中,第二网络设备向第一网络设备发送第三消息包括:第二网络设备在第一周期内向第二网络设备发送第三消息,第二网络设备更新后的TRS的时频资源信息在第一周期的下一个周期生效。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为第一网络设备,包括:收发单元,用于接收来自第二网络设备的第一消息,第一消息用于指示第二网络设备的跟踪参考信号TRS的时频资源信息;处理单元,用于根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;可选的,TRS对应的频域资源信息包括BWP信息,BWP信息包括BWP的频域起始位置、频域资源块RB个数或子载波间隔中的至少一个;可选的,TRS对应的频域资源信息包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括邻居小区的信息,邻居小区的信息包括子载波间隔或小区带宽中的至少一个;可选的,TRS对应的频域资源信息还可以包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一信元还包括用于指示第二网络设备的物理小区ID的信息。
在一种可能的实现方式中,第一消息为节点间无线资源控制消息。
在一种可能的实现方式中,收发单元用于:当第一网络设备与第二网络设备建立连接时,接收来自第二网络设备的第一消息。
在一种可能的实现方式中,收发单元还用于:向第二网络设备发送第二消息,第二消息用于请求第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,收发单元还用于:接收来自第二网络设备的第三消息,第三消息包括第二网络设备更新后的TRS的时频资源信息。
在一种可能的实现方式中,第三消息还携带更新后的第二网络设备的TRS的时频资源信息的生效时间。
在一种可能的实现方式中,收发单元用于:在第一周期内接收来自第二网络设备的第三消息,第二网络设备更新后的TRS的时频资源信息在第一周期的下一个周期生效。
在一种可能的实现方式中,收发单元还用于:向终端设备发送RRC信令,RRC信令用于指示第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关。
在一种可能的实现方式中,收发单元还用于:向终端设备发送RRC信令和DCI信令,RRC信令用于指示至少一个第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,至少一个第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关,DCI信令用于指示一个第一图样。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为第二网络设备,包括:处理单元,用于确定第二网络设备的跟踪参考信号TRS的时频资源信息;收发单元,用于向第一网络设备发送第一消息,第一消息用于指示TRS的时频资源信息。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括BWP信息,BWP信息包括BWP的频域起始位置、频域资源块RB个数或子载波间隔中的至少一个;或者,TRS对应的频域资源信息包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一消息包括第一信元,第一信元用于指示TRS的时频资源信息;其中,TRS对应的频域资源信息包括邻居小区的信息,邻居小区的信息包括子载波间隔或小区带宽中的至少一个;可选的,TRS对应的频域资源信息还可以包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
在一种可能的实现方式中,第一信元还包括用于指示第二网络设备的物理小区ID的信息。
在一种可能的实现方式中,第一消息为节点间无线资源控制消息。
在一种可能的实现方式中,收发单元用于:当第一网络设备与第二网络设备建立连接时,向第一网络设备发送第一消息。
在一种可能的实现方式中,收发单元还用于:接收来自第一网络设备的第二消息,第二消息用于请求第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,收发单元还用于:第二网络设备的TRS的时频资源信息更新后,向第一网络设备发送第三消息,第三消息包括更新后的第二网络设备的TRS的时频资源信息。
在一种可能的实现方式中,第三消息还携带更新后的第一网络设备的TRS的时频资源信息的生效时间。
在一种可能的实现方式中,收发单元用于:在第一周期内向第二网络设备发送第三消息,第二网络设备更新后的TRS的时频资源信息在第一周期的下一个周期生效。
第五方面,本申请实施例还提供了一种通信装置,该通信装置可以是第一网络设备或芯片。该通信装置包括处理器,用于实现上述第一方面提供的任意一种通信方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面提供的任意一种通信方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,第二网络设备)进行通信。
第六方面,本申请实施例还提供了一种通信装置,该通信装置可以是第二网络设备或芯片。该通信装置包括处理器,用于实现上述第二方面提供的任意一种通信方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面提供的 任意一种通信方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,第一网络设备)进行通信。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一方面提供的任意一种通信方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一方面提供的任意一种通信方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第二方面中任一方面提供的任意一种通信方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种通信系统,该系统包括第三方面中的通信装置和第四方面中的通信装置。
附图说明
图1为本申请实施例提供的一种MR-DC的场景示意图;
图2为本申请实施例提供的一种系统架构示意图;
图3为本申请实施例提供的又一种系统架构示意图;
图4为本申请实施例提供的一种终端设备的结构示意图;
图5为本申请实施例提供的一种第一网络设备或第二网络设备的结构示意图;
图6为本申请实施例提供的一种信号交互示意图;
图7为本申请实施例提供的一种TRS对应的频域资源的示意图;
图8为本申请实施例提供的一种TRS对应的时域资源的示意图;
图9为本申请实施例提供的一种TRS对应的时频资源的示意图;
图10为本申请实施例提供的又一种第一网络设备的结构示意图;
图11为本申请实施例提供的又一种第二网络设备的结构示意图。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
NR系统中的TRS配置:由于信道状态信息参考信号(channel state information reference signals,CSI-RS)具有灵活的结构,且可通过灵活的配置增加时频密度,因此NR系统中采用一种将特殊配置的CSI-RS作为TRS的设计方案,即将trs-Info标记为True的CSI-RS配置为TRS。示例性的,协议中关于CSI-RS的配置部分如下:
Figure PCTCN2021074259-appb-000001
Figure PCTCN2021074259-appb-000002
其中,trs-Info表示CSI-RS资源集中所有NZP-CSI-RS资源的天线端口相同(即Indicates that the antenna port for all NZP-CSI-RS resources in the CSI-RS resource set is same)。具体可以参考TS 38.214[19],条款5.2.2.3.1,本申请不做赘述。
速率匹配:在无线通信系统中,基站对数据传输进行调度,并将调度结果通知终端设备。对于终端设备而言,在接收基站所发送的下行数据时,如无特殊说明,默认所有RE/RB资源均映射下行数据共享信道(physical data shared channel,PDSCH)。但是实际上,有些RE/RB不进行数据映射(即不能被PDSCH使用),如用于下行数据解调的参考信号对应的时频位置,或者某些基站不会发送数据的时频位置。对于用于下行数据解调的参考信号,基站会通知终端该参考信号相应的配置,终端在接收数据时即不会在该位置上解调PDSCH;对于那些未用于PDSCH的RB/RE,基站也会通过相应的信令通知终端,使得终端在接收下行数据时,在这些位置上不会进行下行数据接收。由于存在这种未用于PDSCH的RB/RE,信道编码时会对信道编码码率进行一定的调整,以匹配实际可用的传输资源,该过程称为速率匹配。
NR系统中定义了资源块(resource block,RB)级和资源元素(resource element,RE)级的速率匹配。其中,RB级的速率匹配可以通过RRC信令通知UE,例如可以通过信元RateMatchPattern通知UE。UE接收到RateMatchPattern后,确定在相应的时频资源上不会进行数据调度,在做数据接收、解调时可以将这些时频资源忽略。
示例性的,信元RateMatchPattern的格式可以如下所示:
Figure PCTCN2021074259-appb-000003
Figure PCTCN2021074259-appb-000004
由加粗部分可以看出,对于RB级的RateMatchPattern,可以在频域上指示具体的RB,在时域上指示所在符号,slot以及周期,此外还可以指示子载波间隔等信息。
RE级的速率匹配可以通过配置RateMatchPatternLTE-CRS或者ZP-CSI-RS来通知UE,在ZP-CSI-RS所指示的时频资源上,UE不会进行数据接收。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(univeRMal mobile  telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G移动通信系统或新无线(new radio,NR)等,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。
示例性的,本申请实施例的技术方案可以应用于独立组网(standalone,SA)场景或者双连接(dual connectivity,DC)场景。其中,SA场景可以是指由一个基站为终端设备服务。DC场景可以是指可以由多个基站为终端设备服务。
在DC通信中,主节点(master node,MN)(也可以称为主站或主基站)和辅节点(secondary node,SN)(也可以称为辅站或辅基站)同时与终端设备建立无线链路。DC可以包括多制式双连接(multi-RAT dual connectivity,MR-DC),MR-DC是一种可以支持不同接入技术的双连接技术。MR-DC可以包括如下场景:
1、演进的通用陆基无线接入(evolved universal terrestrial radio access,E-UTRA)及新空口(new radio,NR)的双连接(E-UTRA-NR dual connectivity,EN-DC)。
如图1中的(a)所示,核心网网元是演进型分组核心网(evolved packet core,EPC),MN为演进型节点(evolved universal terrestrial radio access network NodeB,eNB),SN为新空口节点(new radio nodeB,gNB)。MN和SN可以通过X2接口相连,MN和SN之间可以有用户面连接;MN与核心网网元可以通过S1接口相连,MN与核心网网元之间可以有用户面连接,且MN与核心网网元之间可以有控制面连接。SN与核心网网元可以通过S1-U接口相连,SN核心网网元之间可以有用户面连接。eNB可以通过至少一个长期演进(long term evolution,LTE)小区为终端设备提供空口资源,此时所述至少一个LTE小区称为主小区组(master cell group,MCG)。相应的,gNB也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为辅小区组(secondary cell group,SCG)。
2、NR及E-UTRA的双连接(NR-E-UTRA dual connectivity,NE-DC)。
如图1中的(b)所示,核心网网元是第五代(5G,5th Generation)核心网(5G core,5GC),MN是gNB,SN是eNB。MN和SN可以相连,例如通过Xn接口相连,MN和SN之间可以有用户面连接;MN与核心网网元可以相连,例如通过NG接口相连,MN与核心网网元之间可以有用户面连接,且MN与核心网网元之间可以有控制面连接。SN与核心网网元可以相连,例如通过NG-U接口相连,SN核心网网元之间可以有用户面连接。gNB可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为MCG。相应的,eNB也可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为SCG。
3、下一代(next generation,NG)无线接入网络(radio access network,RAN)EUTRA及NR的双连接(NG-RAN E-UTRA-NR dual connectivity,NGEN-DC)。
如图1中的(c)所示,核心网网元是5GC,MN是eNB,SN是gNB。MN和SN 可以通过Xn接口相连,MN和SN之间可以有用户面连接;MN与核心网网元可以通过NG接口相连,MN与核心网网元之间可以有用户面连接,且MN与核心网网元之间可以有控制面连接。SN与核心网网元可以通过NG-U接口相连,SN核心网网元之间可以有用户面连接。eNB可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为MCG。相应的,gNB也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为SCG。
4、NR的双连接。
如图1中的(d)所示,核心网为5GC,MN是gNB,SN也是gNB。MN和SN可以通过Xn接口相连,MN和SN之间可以有用户面连接;MN与核心网网元可以通过NG接口相连,MN与核心网网元之间可以有用户面连接,且MN与核心网网元之间可以有控制面连接。SN与核心网网元可以通过NG-U接口相连,SN核心网网元之间可以有用户面连接。MN对应的gNB可以通过至少一个NR小区为终端设备提供空口资源,所述至少一个NR小区称为MCG。相应的,SN对应的gNB也可以通过至少一个NR小区为终端设备提供空口资源,所述至少一个NR小区称为SCG。
图2是一种适用SA场景的通信系统100。该通信系统100包括网络设备110和终端设备120,网络设备110与终端设备120通过无线网络进行通信。应理解,图2中网络设备110下可以包括一个或多个小区。当通信系统100的传输方向为上行传输时,终端设备120为发送端,网络设备110为接收端,当通信系统100的传输方向为下行传输时,网络设备110为发送端,终端设备120为接收端。
图3是又一种适用本申请的通信系统200。该通信系统200处于DC场景中,该通信系统200包括网络设备210、网络设备220和终端设备230,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的RRC通信,网络设备220是在RRC重配置时添加的,用于提供额外的无线资源。配置了CA的终端设备230与网络设备210和网络设备220相连,网络设备210和终端设备230之间的链路可以为称之为第一链路,网络设备220和终端设备230之间的链路可以称之为第二链路。网络设备210可以为MN,网络设备220可以为SN,MN和SN具体可以参考图1中的相关描述,在此不做赘述。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
应理解,本申请实施例中的技术方案可以适用于主小区/主服务小区(primary cell/primary serving cell,Pcell)是高频或者低频,辅小区/辅服务小区(secondary cell/secondary serving cell,Scell)是高频或者低频的情况,例如,当Pcell是低频,Scell是高频。通常低频和高频是相对而言的,也可以以某一特定频率为分界,例如6GHz。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中 的终端设备或者PLMN中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、TRP、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例图2或图3中的终端设备或网络设备,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的终端设备的功能的装置可以通过图4中的装置400来实现。图4所示为本申请实施例提供的装置400的硬件结构示意图。该装置400中包括至少一个处理器401,用于实现本申请实施例提供的终端设备的功能。装置400中还可以包括总线402以及至少一个通信接口404。装置400中还可以包括存储器403。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)。处理器还可以是其它任意具有处理功能的装置,例如专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、软件模块或者其任意组合。
总线402可用于在上述组件之间传送信息。
通信接口404,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口404可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口404可以和处理器401耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过总线402。存储器也可以和处理器集成在一起。
其中,存储器403用于存储程序指令,并可以由处理器401来控制执行,从而实现本申请下述实施例提供的通信方法。处理器401用于调用并执行存储器403中存储的指令,从而实现本申请下述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选地,存储器403可以包括于处理器401中。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置400可以包括多个处理器,例如图4中的处理器401和处理器407。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401耦合,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector) 等。输入设备406和处理器401耦合,可以以多种方式接收用户的输入。例如,输入设备406可以是触摸屏设备或传感设备等。
上述的装置400可以是一个通用设备或者是一个专用设备。在具体实现中,终端设备400可以是车载终端或内置计算机(处理器)的交通设备或有图4中类似结构的设备。本申请实施例不限定装置400的类型。
例如,用于实现本申请实施例提供的第一网络设备或第二网络设备的功能的装置可以通过图5中的装置500来实现。图5所示为本申请实施例提供的装置500的硬件结构示意图。该装置500中包括至少一个处理器501,用于实现本申请实施例提供的终端设备的功能。装置500中还可以包括总线502以及至少一个通信接口504。装置500中还可以包括存储器503。
总线502可用于在上述组件之间传送信息。
通信接口504,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口504可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口504可以和处理器501耦合。
其中,存储器503用于存储程序指令,并可以由处理器501来控制执行,从而实现本申请下述实施例提供的通信方法。例如,处理器501用于调用并执行存储器503中存储的指令,从而实现本申请下述实施例提供的通信方法。
可选地,存储器503可以包括于处理器501中。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置500可以包括多个处理器,例如图5中的处理器501和处理器505。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的装置500可以是一个通用设备或者是一个专用设备。在具体实现中,装置500可以为车载终端或内置计算机(处理器)的交通设备或有图5中类似结构的设备。本申请实施例不限定装置500的类型。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括CPU、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质 访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,EPROM、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个。“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,信令和消息有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请下述实施例中各个网元之间的消息名字或者消息中各参数的名字仅是一个示例,具体实现中也可以是其他名字,本申请实施例对此不作具体限定。
本申请实施例中,“信号”也可以是指“信道”或“信号资源”,有时三者可以相互替换,本申请不做限定。
为了便于理解,以下结合附图对本申请实施例提供的通信方法进行具体介绍。
如图6所示,本申请实施例提供一种通信方法,包括:
601、第二网络设备确定第二网络设备的TRS的时频资源信息。
第二网络设备确定需要发送TRS时,可以根据协议定义和自身实现确定TRS时频资源信息。
602、第二网络设备向第一网络设备发送第一消息,第一消息用于指示TRS的时频资源信息。
第二网络设备可以通过直接或间接的方式向第一网络设备发送第一消息。下面对不同场景下第二网络设备向第一网络设备发送第一信息的过程进行说明:
在SA场景下,第一网络设备可以是NR基站(例如,gNB1),第二网络设备可以是NR基站(例如,gNB2),gNB2可以直接向gNB1发送第一消息。
在ENDC场景下,主节点是LTE基站(例如,eNB),辅节点是NR基站(例如,gNB)。第一网络设备可以是辅节点/NR基站(例如,gNB1),其对应的主节点/LTE基站可以是eNB1,第二网络设备可以是另一个辅节点/NR基站(例如,gNB2),其 对应的主节点/LTE基站可以是eNB2。gNB1与gNB2间交互第一信息时,可以通过主节点/LTE基站(例如,eNB1和eNB2)转发或透传。例如,gNB2可以将第一信息发送至eNB2,eNB2可以通过X2接口将第一信息转发至eNB1,再由eNB1将第一信息转发至gNB1。
在NE-DC场景下,第一网络设备可以是NR基站(例如,gNB1),第二网络设备可以是NR基站(例如,gNB2),gNB2可以直接向gNB1发送第一消息。
在NR的双连接场景下,主节点是NR基站,辅节点是NR基站。若第一网络设备是第一主节点(例如,gNB1),第二网络设备是第二主节点(例如,gNB2),gNB1与gNB2间可以直接交互第一信息。若第一网络设备是第一辅节点(例如,gNB3),第二网络设备是第二辅节点(例如,gNB4)。两个辅节点之间无法直接交互信息,需要通过主节点转发。若gNB3对应的主节点是gNB1,gNB4对应的主节点是gNB2,当gNB3希望向gNB4发送第一信息时,gNB3可以将第一信息发送至gNB1,gNB1可以通过Xn接口将第一信息转发至gNB2,再由gNB2将第一信息转发至gNB4。即两个辅节点之间交互第一信息时需要通过各自对应的主节点进行转发。
示例性的,第一消息可以为节点间无线资源控制消息(Inter-node RRC message)。
其中,第一消息可以包括第一信元(Information Element,IE),第一信元用于指示第二网络设备的TRS的时频资源信息。
其中,TRS对应的频域资源信息(也可以称为TRS带宽信息)可以包括以下情形:
第一种情形:为了支持更好的频域跟踪,可以将TRS配置为全频带(全带宽)。即在第二网络设备中,TRS配置的带宽等于BWP带宽。
第二种情形:为了节省资源,可以将TRS配置为非全频带,即在第二网络设备中,TRS配置的带宽为BWP带宽中的部分带宽。
以上两种情形都需要向终端指示BWP信息,以及TRS对应的RB信息,其中TRS对应的RB可以用比特映射(bitmap)的形式来指示。例如,bitmap中的每个比特(bit)可以对应一个RB或者RBG,或者其它单位,此处不做具体限定。以每个比特对应一个RB为例,bitmap比特映射的长度可以为第二网络设备对应的RB的个数。Bitmap中比特值为1的比特可以是TRS对应的RB,比特值为0的符号不是TRS对应的RB。如图7所示,假设第二网络设备对应的RB的个数为10,第4、8个RB可以是TRS对应的RB。TRS在第4、8个RB所映射的RE可以根据TRS所映射的OFDM符号位置和第二网络设备的小区ID确定。
或者,可以通过资源指示量(resource indication value,RIV)的方式来指示TRS对应的RB。根据RIV可以推导出TRS对应的起始RB以及连续分配的RB的长度。
TRS对应的时域资源信息包括TRS对应的时隙(slot)、符号、周期或偏置中的至少一个。示例性的,可以采用bitmap的形式指示slot内的TRS对应的OFDM符号。例如,bitmap中的每个比特(bit)可以对应一个OFDM符号,比特映射的长度可以为一个slot包括的OFDM符号的长度(例如,比特映射的长度可以为14)。bitmap中比特值为1的比特可以是TRS对应的OFDM符号,比特值为0的符号不是TRS对应的OFDM符号。如图8所示,假设比特映射的长度为14,第4、8个OFDM符号可以是TRS对应的OFDM符号。
可选的,TRS可以是周期性或非周期性的。示例性的,对于周期性的TRS,TRS的周期可以为10ms,20ms,40ms或80ms等。
如图9所示,为一种示例性的周期性TRS配置。当下行slot内包含14个OFDM符号时,TRS可以映射到符号4和符号8上。每个TRS资源可以为一个频域密度为3的1端口TRS资源,即一个PRB中,在TRS所在的符号上,TRS可以占用3个RE。两个TRS在时域上可以间隔4个OFDM符号,即一个时隙中的TRS间隔可以为4个OFDM符号。
在另一种可能的设计中,TRS对应的频域资源信息包括邻居小区的信息,邻居小区的信息包括子载波间隔或小区带宽中的至少一个;可选的,TRS对应的频域资源信息还可以包括TRS对应的RB;TRS对应的时域资源信息包括TRS对应的时隙、符号、周期或偏置中的至少一个。
可选的,第一信元还包括用于指示第二网络设备的物理小区ID的信息。物理小区ID可以用于确定TRS的RE映射。
示例性的,第一信元可以为InterferenceCoordinationConfiguration(干扰协调配置),InterferenceCoordinationConfiguration的格式可以如下所示:
Figure PCTCN2021074259-appb-000005
Figure PCTCN2021074259-appb-000006
其中,resourceBlocks字段用于指示TRS对应的频域资源信息。
symbolsInResourceBlock和periodicityAndPattern字段用于指示TRS对应的时域资源信息。
603、第一网络设备接收来自第二网络设备的第一消息。
在一种可能的设计中,当第一网络设备与第二网络设备建立连接时,例如建立X2/Xn连接时,第二网络设备可以通过X2/Xn接口向第一网络设备发送第一消息,第一网络设备可以通过X2/Xn接口接收来自第二网络设备的第一消息。
在另一种可能的设计中,第一网络设备接收来自第二网络设备的第一消息之前,第一网络设备向第二网络设备发送第二消息,第二网络设备接收来自第一网络设备的第二消息,第二消息用于请求第二网络设备的TRS的时频资源信息。
在一些实施例中,第二网络设备可以更新TRS的时频资源信息。第二网络设备的TRS的时频资源信息更新后,第二网络设备可以向第一网络设备发送第三消息,第三消息包括更新后的第二网络设备的TRS的时频资源信息。第一网络设备可以接收来自第二网络设备的第三消息。
可选的,为了尽可能的避免TRS干扰,第三消息还可以携带更新后的第二网络设备的TRS的时频资源信息的生效时间。更新后的TRS的时频资源信息在该生效时间生效,该生效时间可以是全球定位系统(global positioning system,GPS)时间。
在一种可能的设计中,第一网络设备在第一周期内接收来自第二网络设备的第三 消息,第三消息指示的第二网络设备更新后的TRS的时频资源信息,在第一周期的下一个周期生效。第一周期的相关信息可以是第一网络设备和第二网络设备提前协商好的。
604、第一网络设备根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。
在一些实施例中,若第一网络设备和第二网络设备都配置有TRS,第一网络设备可以根据第一网络设备的TRS的时频资源信息和第二网络设备的TRS的时频资源信息确定速率匹配图样(Rate matching pattern)或零功率信道状态信息参考信号图样(ZP-CSI-RS pattern),即确定不进行下行资源映射的时频资源。其中,第一网络设备的TRS的时频资源信息和第二网络设备的TRS的时频资源信息可以不同。
在又一些实施例中,若第一网络设备未配置TRS,第二网络设备配置有TRS,第一网络设备可以根据第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样,即确定不进行资源映射的时频资源。
进一步的,第一网络设备可以向终端设备指示速率匹配图样或零功率信道状态信息参考信号图样,以便终端设备根据速率匹配图样或零功率信道状态信息参考信号图样进行速率匹配。其中,ZP-CSI-RS pattern指示一些零功率的时频资源,在这些时频资源上不发送数据,因此终端设备无需在这些时频资源上接收数据。
在一种可能的设计中,可以通过静态信令向终端设备指示速率匹配图样或零功率信道状态信息参考信号图样。其中,静态信令可以是RRC信令或系统信息中的指示信令等。静态的指示方式无需频繁指示,可以节省信令。
例如,第一网络设备可以向终端设备发送RRC信令,RRC信令用于指示第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关。例如,RRC信令可以指示一个速率匹配图样,终端设备可以根据该速率匹配图样进行速率匹配,即不在相应的时频资源上接收数据。
在另一种可能的设计中,可以通过静态信令结合动态的指示方式向终端设备指示速率匹配图样或零功率信道状态信息参考信号图样。动态的指示方式更加灵活,能够更好地提高终端设备的数据传输性能。
示例性的,第一网络设备向终端设备发送RRC信令和DCI信令,RRC信令用于指示至少一个第一图样,第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,至少一个第一图样与第一网络设备和/或第二网络设备的TRS的时频资源信息有关,DCI信令用于指示至少一个第一图样中的一个第一图样。
示例性的,可以通过RRC重配置消息中的信元PDSCH-Config为每个BWP或者每个小区配置4套/个速率匹配图样(rateMatchPattern),该4套rateMatchPattern可以被分为两个速率匹配图样组(rateMatchPatternGroup),可以通过DCI指示具体哪组rateMatchPatternGroup所指示的时频资源不映射数据。示例性的,PDSCH-Config可以如下所示:
Figure PCTCN2021074259-appb-000007
Figure PCTCN2021074259-appb-000008
其中,两组速率匹配图样组可以包括rateMatchPatternGroup1和rateMatchPatternGroup2。
或者,可以在RRC信令中配置至少一个速率匹配图样组,例如,可以在RRC信令中的PDSCH-Config中配置速率匹配图样组1和速率匹配图样组2。进一步在DCI中指示当前生效的速率匹配图样组(例如,速率匹配图样组1),从而终端设备可以确定出第一网络设备调度的下行数据传输资源中,未映射数据的时频资源。
基于本申请实施例提供的方法,第一网络设备获取第二网络设备的TRS的时频资源信息后,可以根据该第二网络设备的TRS的时频资源信息确定速率匹配图样或零功 率信道状态信息参考信号图样。这样,在下行数据发送时,第一网络设备可以不在速率匹配图样或零功率信道状态信息参考信号图样相应的位置上进行数据映射,从而降低了数传时邻站的干扰,有助于提升下行网络性能,例如下行速率、吞吐率等。
尤其在跨设备商的场景和宏微场景(宏站和微站)下,通常会出现相邻基站的TRS配置与本站不同(例如,相邻基站间的TRS的周期不同,或者,相邻基站中一个基站未配置TRS,另一个基站配置了TRS)的情况,相邻基站间容易相互干扰。如果TRS配置为全频带,会造成在全频带上周期性的信号干扰。基于本申请实施例提供的方法,可以降低数传时相邻基站的干扰,有助于提升下行网络性能,例如下行速率、吞吐率等。
上述本申请提供的实施例中,分别从第一网络设备、第二网络设备以及第一网络设备和第二网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一网络设备和第二网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的装置10的一种可能的结构示意图,该装置可以为第一网络设备,该第一网络设备包括:收发单元1001和处理单元1002。在本申请实施例中,收发单元1001,用于接收来自第二网络设备的第一消息,所述第一消息用于指示所述第二网络设备的跟踪参考信号TRS的时频资源信息;处理单元1002,用于根据所述第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。
在图6所示的方法实施例中,收发单元1001用于支持第一网络设备执行图6中的过程603。处理单元1002用于支持第一网络设备执行图6中的过程604。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的装置11的一种可能的结构示意图,该装置可以为第二网络设备,该第二网络设备包括:处理单元1101和收发单元1102。在本申请实施例中,处理单元1101,用于确定所述第二网络设备的跟踪参考信号TRS的时频资源信息;收发单元1102,用于向第一网络设备发送第一消息,所述第一消息用于指示所述TRS的时频资源信息。
在图6所示的方法实施例中,处理单元1101用于支持第二网络设备执行图6中的过程601。收发单元1102用于支持第二网络设备执行图6中的过程602。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,上述各个装置实施例中第一网络设备或第二网络设备和方法实施例中的第一网络设备或第二网络设备可以完全对应,由相应的模块或单元执行相应的步骤,例如通信模块(收发器)可以执行方法实施例中发送和/或接收的步骤,除发送接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单元,发射器和接收器可以组成收发器,共 同实现收发功能;处理器可以为一个或多个。
示例性的,上述第一网络设备或者第二网络设备的功能可以通过芯片来实现,处理单元可以通过硬件来实现,也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于该处理器之外,独立存在。
上述各个装置实施例中第一网络设备或第二网络设备和方法实施例中的第一网络设备、第二网络设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    第一网络设备接收来自第二网络设备的第一消息,所述第一消息用于指示所述第二网络设备的跟踪参考信号TRS的时频资源信息;
    所述第一网络设备根据所述第二网络设备的TRS的时频资源信息确定速率匹配图样或零功率信道状态信息参考信号图样。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一消息包括第一信元,所述第一信元用于指示所述TRS的时频资源信息;
    其中,TRS对应的频域资源信息包括带宽部分BWP信息,所述BWP信息包括所述BWP的频域起始位置、频域资源块RB个数或子载波间隔中的至少一个;或者,所述TRS对应的频域资源信息包括所述TRS对应的RB;TRS对应的时域资源信息包括所述TRS对应的时隙、符号、周期或偏置中的至少一个。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第一消息包括第一信元,所述第一信元用于指示所述TRS的时频资源信息;
    其中,TRS对应的频域资源信息包括邻居小区的信息,所述邻居小区的信息包括子载波间隔或小区带宽中的至少一个;TRS对应的时域资源信息包括所述TRS对应的时隙、符号、周期或偏置中的至少一个。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述第一信元还包括用于指示所述第二网络设备的物理小区ID的信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述第一消息为节点间无线资源控制消息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一网络设备接收来自第二网络设备的第一消息包括:
    当所述第一网络设备与所述第二网络设备建立连接时,所述第一网络设备接收来自第二网络设备的第一消息。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送第二消息,所述第二消息用于请求所述第二网络设备的TRS的时频资源信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收来自所述第二网络设备的第三消息,所述第三消息包括所述第二网络设备更新后的TRS的时频资源信息。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第三消息还携带所述更新后的所述第二网络设备的TRS的时频资源信息的生效时间。
  10. 根据权利要求8所述的方法,其特征在于,所述第一网络设备接收来自所述第二网络设备的第三消息包括:
    所述第一网络设备在第一周期内接收来自所述第二网络设备的所述第三消息,所述第二网络设备更新后的TRS的时频资源信息在所述第一周期的下一个周期生效。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向终端设备发送RRC信令,所述RRC信令用于指示第一图样,所述第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,所述第一图样与所述第一网络设备和/或所述第二网络设备的TRS的时频资源信息有关。
  12. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向终端设备发送RRC信令和DCI信令,所述RRC信令用于指示至少一个第一图样,所述第一图样包括速率匹配图样或零功率信道状态信息参考信号图样中的至少一种,所述至少一个第一图样与所述第一网络设备和/或所述第二网络设备的TRS的时频资源信息有关,所述DCI信令用于指示一个所述第一图样。
  13. 一种通信方法,其特征在于,包括:
    第二网络设备确定所述第二网络设备的跟踪参考信号TRS的时频资源信息;
    所述第二网络设备向第一网络设备发送第一消息,所述第一消息用于指示所述TRS的时频资源信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一消息包括第一信元,所述第一信元用于指示所述TRS的时频资源信息;
    其中,TRS对应的频域资源信息包括带宽部分BWP信息,所述BWP信息包括所述BWP的频域起始位置、频域资源块RB个数或子载波间隔中的至少一个;或者,TRS对应的频域资源信息包括所述TRS对应的RB;TRS对应的时域资源信息包括所述TRS对应的时隙、符号、周期或偏置中的至少一个。
  15. 根据权利要求13所述的方法,其特征在于,
    所述第一消息包括第一信元,所述第一信元用于指示所述TRS的时频资源信息;
    其中,TRS对应的频域资源信息包括邻居小区的信息,所述邻居小区的信息包括子载波间隔或小区带宽中的至少一个;TRS对应的时域资源信息包括所述TRS对应的时隙、符号、周期或偏置中的至少一个。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第一信元还包括用于指示所述第二网络设备的物理小区ID的信息。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,
    所述第一消息为节点间无线资源控制消息。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一网络设备与所述第二网络设备建立连接时,所述第二网络设备向所述第一网络设备发送所述第一消息。
  19. 根据权利要求13-17任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的第二消息,所述第二消息用于请求所述第二网络设备的TRS的时频资源信息。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备的TRS的时频资源信息更新后,所述第二网络设备向所述第一网络设备发送第三消息,所述第三消息包括更新后的所述第二网络设备的TRS的时频资源信息。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第三消息还携带所述更新后的所述第一网络设备的TRS的时频资源信息的生效时间。
  22. 根据权利要求20所述的方法,其特征在于,所述第二网络设备向所述第一网络设备发送第三消息包括:
    所述第二网络设备在第一周期内向所述第二网络设备发送所述第三消息,所述第二网络设备更新后的TRS的时频资源信息在所述第一周期的下一个周期生效。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1-12或者权利要求13-22中任一项所述的通信方法的单元。
  24. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述计算机执行指令,以使所述通信装置执行如权利要求1-12或者权利要求13-22中任一项所述的通信方法。
  25. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行权利要求1-12或者权利要求13-22中任一项所述的通信方法。
  26. 一种芯片系统,其特征在于,包括处理器,所述处理器和存储器耦合,所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-12或者权利要求13-22中任一项所述的通信方法。
  27. 一种通信系统,其特征在于,包括第一网络设备和第二网络设备,
    所述第一网络设备用于执行如权利要求1-12中任一项所述的通信方法,所述第二网络设备用于执行如权利要求13-22中任一项所述的通信方法。
PCT/CN2021/074259 2021-01-28 2021-01-28 一种通信方法和装置 WO2022160219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074259 WO2022160219A1 (zh) 2021-01-28 2021-01-28 一种通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074259 WO2022160219A1 (zh) 2021-01-28 2021-01-28 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022160219A1 true WO2022160219A1 (zh) 2022-08-04

Family

ID=82652864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074259 WO2022160219A1 (zh) 2021-01-28 2021-01-28 一种通信方法和装置

Country Status (1)

Country Link
WO (1) WO2022160219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032208A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 一种通信的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391391A (zh) * 2017-08-08 2019-02-26 维沃移动通信有限公司 一种用于传输参考信号的方法及装置
CN109392121A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 资源复用方法及设备
CN111106898A (zh) * 2019-01-11 2020-05-05 维沃移动通信有限公司 一种资源映射、信息接收方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391391A (zh) * 2017-08-08 2019-02-26 维沃移动通信有限公司 一种用于传输参考信号的方法及装置
CN109392121A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 资源复用方法及设备
CN111106898A (zh) * 2019-01-11 2020-05-05 维沃移动通信有限公司 一种资源映射、信息接收方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On TRS muting", 3GPP DRAFT; R1-1913362, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, U.S.A; 20191118 - 20191122, 25 November 2019 (2019-11-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051830643 *
VIVO: "Discussion on Rate Matching", 3GPP DRAFT; R1-1715617_DISCUSSION ON RATE MATCHING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 11 September 2017 (2017-09-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051329095 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032208A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 一种通信的方法和装置

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2019192501A1 (zh) 资源指示值的获取方法及装置
EP3826196A2 (en) 5g nr fr2 beam management enhancements
US20210014846A1 (en) Data Transmission Method and Apparatus and Communications Device
WO2022012549A1 (zh) 定位信号发送方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2016004828A1 (zh) 基站、用户设备及相关方法
US11910349B2 (en) Physical layer signaling by devices for requesting positioning-resources
CN116711430A (zh) 无线通信中的参考信号传输的动态适应
US20240032087A1 (en) Enhanced Physical Uplink Shared Channel Transmission in Wireless Communications
CN114788403A (zh) 通信方法、设备及系统
CN111565417A (zh) 信息上报方法、终端设备及网络设备
WO2022199525A1 (zh) 一种通信方法及装置
WO2021056587A1 (zh) 一种通信方法及装置
EP4184991A1 (en) Communication method and apparatus
WO2022160219A1 (zh) 一种通信方法和装置
WO2024051660A1 (zh) 通信方法和通信装置
CN116261844A (zh) 一种侧行链路通信方法及装置
US11910350B2 (en) Physical layer signaling by base stations for provisioning positioning-resources
WO2018188095A1 (zh) 一种通信方法及装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2021174558A1 (zh) 资源指示方法、终端设备和网络设备
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
WO2024032230A1 (zh) 下行控制信道传输方法、装置及系统
WO2024159782A1 (en) Candidate cell configuration for ltm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921827

Country of ref document: EP

Kind code of ref document: A1