WO2022160187A1 - 功率转换设备的供电控制方法和功率转换设备 - Google Patents

功率转换设备的供电控制方法和功率转换设备 Download PDF

Info

Publication number
WO2022160187A1
WO2022160187A1 PCT/CN2021/074179 CN2021074179W WO2022160187A1 WO 2022160187 A1 WO2022160187 A1 WO 2022160187A1 CN 2021074179 W CN2021074179 W CN 2021074179W WO 2022160187 A1 WO2022160187 A1 WO 2022160187A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion device
power conversion
power supply
battery
Prior art date
Application number
PCT/CN2021/074179
Other languages
English (en)
French (fr)
Inventor
李占良
颜昱
熊淑云
孙卫平
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020217040050A priority Critical patent/KR102644605B1/ko
Priority to JP2021572482A priority patent/JP7326491B2/ja
Priority to CN202180060171.1A priority patent/CN116250158A/zh
Priority to PCT/CN2021/074179 priority patent/WO2022160187A1/zh
Priority to EP21810517.9A priority patent/EP4064536B1/en
Priority to US17/540,436 priority patent/US20220239135A1/en
Publication of WO2022160187A1 publication Critical patent/WO2022160187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the embodiments of the present application relate to the field of charging, and more particularly, to a power supply control method for a power conversion device and a power conversion device.
  • the present application introduces a power conversion device for power conversion between the charging pile and the power battery, but there is currently no clear solution on how to supply power to the power conversion device.
  • Embodiments of the present application provide a power supply control method for a power conversion device and a power conversion device, which can effectively solve the power supply problem of the power conversion device.
  • a power supply control method of a power conversion device is provided, the power conversion device is used to perform power conversion between a charging pile and a power battery, and the method includes: the power conversion device utilizes the power of the charging pile.
  • the auxiliary power supply performs power-on self-test; if the self-test of the power conversion device is successful, the power supply priority order of the charging power supply and the power battery is determined according to the state parameters of the power battery; the power conversion device will The charging power source of the charging pile and the power battery with a higher power supply priority are used as the current working power source of the power conversion device.
  • the charging power source of the charging pile and the power battery with a higher power supply priority as the working power source of the power conversion device, it is possible to provide a stable working power source for the power conversion device without adding an additional power supply device. , so as to effectively solve the power supply problem of power conversion equipment.
  • the power conversion device determines the power supply priority order of the charging power source and the power battery according to the state parameter of the power battery, including: the power conversion device according to the power The power of the battery determines the power supply priority order of the charging power source and the power battery.
  • the state parameters of the power battery may include, for example, power, voltage, temperature, etc. According to the power of the power battery, the power supply priority order of the charging power supply and the power battery is determined, which is intuitive and simple to implement.
  • the power conversion device determines the power supply priority order of the charging power supply and the power battery according to the power of the power battery, including: if the power of the power battery is higher than the power of the power battery a threshold, the power conversion device determines that the power supply priority of the power battery is higher than that of the charging power supply; or if the power of the power battery is lower than or equal to the first threshold, the power conversion The device determines that the power supply priority of the power battery is lower than the power supply priority of the charging power supply.
  • the first threshold may be obtained empirically, for example, may be obtained by training a large number of samples.
  • the priority order of power supply of the power battery and the charging power supply is determined, which is beneficial to provide a stable working power supply for the power conversion device, thereby improving the power supply reliability of the power conversion device as a whole.
  • the power battery is higher than the first threshold, it can be considered that the power battery is sufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is higher than that of the charging power supply.
  • the power of the power battery is lower than or equal to the first threshold, it can be considered that the power battery is insufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is lower than that of the charging power supply.
  • the method further includes: when it is determined that the power conversion device is in a normal working mode, the power conversion device obtains the auxiliary power supply, and the normal working mode is the charging pile , a working mode of interconnection between the power conversion device and the power battery.
  • the power conversion device when it is determined that the power conversion device is in the normal working mode, the power conversion device obtains the auxiliary power supply, including: after receiving the connection success information sent by the charging pile when the power conversion device obtains the auxiliary power supply.
  • the method before the power conversion device uses the charging power source of the charging pile and the power battery with a higher power supply priority as the current working power source of the power conversion device, the method It also includes: the power conversion device converts the charging power source and/or the power battery into a working power source of the power conversion device.
  • the method further includes: in an offline debugging mode of the power conversion device, the power conversion device uses a standard grid or an external DC power supply as the current working power supply of the power conversion device.
  • Using a standard power grid or an external DC power supply as the working power supply of the power conversion device is beneficial to reduce the complexity of the power supply strategy.
  • the method further includes: the power conversion device converts the standard grid into the power Convert the working power of the device.
  • the power conversion device is configured to convert the DC current output by the charging power source into a pulse current and charge the power battery.
  • a power conversion device is provided, the power conversion device is used for power conversion between a charging pile and a power battery, and the power conversion device includes: a self-checking module for utilizing the power of the charging pile The auxiliary power supply performs power-on self-test; a determination module is used to determine the power supply priority order of the charging power supply and the power battery according to the state parameters of the power battery if the power conversion device is successful in the self-test; the power supply module , which is used to use the charging power source of the charging pile and the power battery with a higher power supply priority as the current working power source of the power conversion device.
  • the determining module is specifically configured to: determine the power supply priority order of the charging power source and the power battery according to the power of the power battery.
  • the determining module is specifically configured to: if the power of the power battery is higher than a first threshold, determine that the power supply priority of the power battery is higher than the power supply priority of the charging power supply; Or if the power of the power battery is lower than or equal to the first threshold, it is determined that the power supply priority of the power battery is lower than the power supply priority of the charging power source.
  • the power conversion device further includes: an obtaining module, configured to obtain the auxiliary power supply when it is determined that the power conversion device is in a normal working mode, where the normal working mode is the The working mode of the interconnection between the charging pile, the power conversion device and the power battery.
  • the acquiring module is specifically configured to acquire the auxiliary power supply when receiving the connection success information sent by the charging pile.
  • the power conversion device further includes: a direct current to direct current DC-DC module, which is used for the power conversion device to prioritize the power supply between the charging power source of the charging pile and the power battery.
  • the charging power source and/or the power battery are converted into the working power source of the power conversion device before the higher one is used as the current working power source of the power conversion device.
  • the power supply module is further configured to: in the offline debugging mode of the power conversion device, use a standard power grid or an external DC power supply as the current working power supply of the power conversion device.
  • the power conversion device further includes: an alternating current to direct current AC-DC module, configured to convert the The standard power grid is converted into the operating power source of the power conversion device.
  • the power conversion device is configured to convert the DC current output by the charging power source into a pulse current and charge the power battery.
  • a power conversion device including a memory and a processor, where the memory is used for storing instructions, and the processor is used for reading the instructions and executing the above-mentioned first and first aspects based on the instructions method in any possible implementation of .
  • a readable storage medium for storing a computer program, and the computer program is used to execute the method in the first aspect and any possible implementation manner of the first aspect.
  • the auxiliary power supply of the charging pile is used to perform self-test first, and after the self-test is successful, according to the state of the power battery parameter, switch the working power of the power conversion equipment from the auxiliary power supply of the charging pile to the charging power supply of the charging pile and the power supply with higher priority in the power battery, which can provide power conversion equipment without additional power supply devices.
  • a stable working power supply can effectively solve the power supply problem of power conversion equipment.
  • FIG. 1 is a schematic block diagram of a power conversion device.
  • FIG. 2 is a schematic block diagram of a power supply control method for a power conversion device provided by an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a power conversion device provided by an embodiment of the present application.
  • FIG. 4 is another schematic block diagram of a power conversion device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a power supply control system provided by an embodiment of the present application.
  • FIG. 6 is another schematic block diagram of a power conversion device provided by an embodiment of the present application.
  • a power battery is a battery that provides a power source for an electrical device.
  • the power battery can be a power battery.
  • the power battery can be a lithium-ion battery, a lithium-metal battery, a lead-acid battery, a nickel-separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, or a sodium-ion battery.
  • the power battery in the embodiment of the present application may be a battery cell/battery cell, or a battery module or a battery pack, which is not specifically limited in the embodiment of the present application.
  • the electrical device may be a vehicle, a ship, or a spacecraft, etc., which is not limited in this embodiment of the present application.
  • the battery management system (BMS) of the power battery is a safe control system for protecting the power battery, and implements functions such as charge and discharge management, high voltage control, battery protection, battery data collection, and battery status evaluation.
  • the charging pile also known as the charger, is a device for charging the power battery.
  • the charging pile can output charging power according to the charging requirements of the BMS to charge the power battery.
  • the charging pile can output voltage and current according to the demanded voltage and demanded current sent by the BMS.
  • the range of voltage and current that the charging pile can output cannot match the power battery.
  • the minimum voltage or current that the charging pile can output may also cause lithium precipitation during the charging process, making it impossible to charge the power battery normally.
  • power conversion may also be required between the charging pile and the power battery, such as: voltage change, current change, power state change, current, voltage, power timing change, etc.
  • the embodiment of the present application introduces a power conversion device between the charging pile and the power battery, and the power conversion device can perform power conversion between the charging pile and the power battery.
  • the power conversion device converts the power type output by the charging pile to the power type required by the power battery.
  • the power conversion device can convert the DC power output by the charging pile into pulse power, or change the voltage value, change the current value, or change the timing of the voltage and current, etc.
  • FIG. 1 is a schematic diagram of an application architecture of a power conversion device according to an embodiment of the present application.
  • the power conversion device 110 is disposed between the charging pile 120 and the BMS of the power battery, that is, the power conversion device 110 is connected to the charging pile 120 and the BMS 130 respectively, and the charging pile 120 is not directly connected to the BMS 130 .
  • the charging pile 120 when charging the power battery, the charging pile 120 is directly connected to the BMS 130, and then starts the charging process to charge the power battery. As mentioned above, in some cases, the charging pile 120 may not be able to directly charge the power battery normally. Therefore, in the embodiment of the present application, a power conversion device 110 is added to perform power conversion between the charging pile 120 and the power battery.
  • the power conversion device 110 may include a control unit 111 and a power unit 112 .
  • the control unit 111 is responsible for detecting the state of the charging pile 120 and the BMS 130 during the charging process; the control unit 111 is connected to the charging pile 120 and the BMS 130 through the communication line 140 respectively, so as to exchange information with the charging pile 120 and the BMS 130 respectively.
  • the control unit 111 is also connected to the power unit 112 through the communication line 140 to exchange information with the power unit 112 and control the power unit 112 to perform power conversion.
  • the communication line 140 may be a Controller Area Network (CAN) communication line.
  • CAN Controller Area Network
  • the power unit 112 is responsible for converting the power type output by the charging pile 120 to the power type required by the power battery according to the instruction of the control unit 111.
  • the power unit 112 and the control unit 111 are connected through a communication line 140 for information exchange.
  • a communication protocol may be configured between the control unit 111 and the power unit 112 , for example, to define the syntax, semantics, and timing of communication, so as to ensure normal interaction between the control unit 111 and the power unit 112 .
  • a control strategy can be configured on the control unit 111 .
  • the control unit 111 determines the state of the current charging process by analyzing the charging messages of the charging pile 120 and the BMS 130, so as to control the power unit 112 to perform corresponding operations. For example, when the precharge condition is satisfied, the power unit 112 is controlled to perform a precharge operation.
  • the control unit 111 communicates with the power unit 112 to obtain the status of the power unit 112 to perform corresponding operations. For example, when the power unit 112 reports a fault, the control unit 111 sends a command to stop precharging in time.
  • the power unit 112 is respectively connected to the charging pile 120 and the BMS 130 through the high voltage line 150, so as to convert the charging power output by the charging pile 120 through the high voltage line 150 and output it to the BMS to charge the power battery.
  • large-capacity capacitors eg, the first capacitor 161 and the second capacitor 162 , are present in the power conversion device 110 .
  • the battery pack managed by the BMS 130 may be referred to as a power battery.
  • the power conversion device may be integrated into the charging pile or the interior of the power vehicle, or may be an independent device. If the power conversion device is integrated into a charging pile or a power vehicle, the power conversion device can be powered by a charging pile or a power battery. If the power conversion device is an independent device, the power conversion device can obtain electricity in a traditional way, that is, through the standard power grid (ie, the municipal power provided by the government) or an external DC power supply, or the power conversion device can also be connected to the charging pile. When it is connected to the power battery separately, the auxiliary power supply, charging power supply or power battery of the charging pile is used to obtain power.
  • the external DC power supply in the embodiments of the present application should include but not limited to portable power banks and other devices.
  • one power source can be selected from the multiple power sources as the working power source of the power conversion device.
  • the power supply priority of the multi-channel power supply may be set in advance, and in the case that the power conversion device obtains the multi-channel power supply, the power supply priority may be selected from the multi-channel power supply based on the preset power supply priority. Select one power supply as the working power supply of the power conversion device.
  • the standard power grid is AC power
  • the charging power supply and power battery are high-voltage power
  • the working power supply of the power conversion equipment is low-voltage DC. Operating power for power conversion equipment.
  • the embodiments of the present application are mainly based on how to supply power to the power conversion device when the power conversion device is connected to the charging pile and the power battery respectively.
  • the method 200 includes some or all of the following contents:
  • the power conversion device uses the auxiliary power supply of the charging pile to perform a power-on self-check
  • the power conversion device uses the charging power source of the charging pile and the power battery with a higher power supply priority as the current working power source of the power conversion device.
  • the auxiliary power supply of the charging pile will be output first.
  • the power conversion equipment needs to self-test and communicate with the charging pile and the BMS that manages the power battery. Therefore, at this time, the auxiliary power supply of the charging pile can be used to perform power-on self-test. After the self-test is successful and the high-voltage system is powered on After that, the power conversion device can be powered by the charging power source of the charging pile or the power battery. Further, according to the preset power supply priority, the charging power supply and the power battery with a higher priority can be used as the working power supply of the power conversion device.
  • the charging pile can recognize the successful connection information, and the auxiliary power of the charging pile starts to output.
  • the power conversion equipment can Access to auxiliary power.
  • the charging pile can also send the connection success information to the power conversion device.
  • the power conversion device can obtain the auxiliary power supply after receiving the connection success information sent by the charging pile.
  • the power conversion equipment uses the auxiliary power supply to perform self-test, and the power conversion equipment communicates with the charging pile and the BMS respectively, after the power conversion equipment self-checks successfully and interacts with the charging pile and BMS information, the charging pile and the BMS can be closed respectively.
  • the high-voltage side switch that is, the charging power output of the charging pile and the power battery output.
  • the power conversion device can also determine the working power source of the power conversion device according to the preset power supply priority.
  • the working power of the power conversion device when the priority of the power battery is higher than that of the rechargeable battery, the working power of the power conversion device is switched from the auxiliary power supply to the power battery; when the priority of the rechargeable battery is higher than that of the power battery, the working power of the power conversion device is switched from the auxiliary power supply to the power battery. The power is switched to the charging power source.
  • the power supply priority order of the charging power source and the power battery may be determined first.
  • the power supply priority order of the charging power supply and the power battery can be determined by some state parameters of the charging power supply and the power battery.
  • the power supply priority order of the charging power source and the power battery can be determined by the power of the power battery.
  • the power supply priority order of the charging power source and the power battery can be determined according to the temperature of the power battery.
  • the power supply priority order of the charging power source and the power battery may be determined according to the state of charge (State of Charge, SOC) or voltage of the power battery.
  • SOC state of Charge
  • the power supply priority order of the charging power supply and the power battery is determined according to the power of the power battery.
  • the power supply priority order of the two can be determined according to the preset first threshold. For example, when the power of the power battery is higher than the first threshold, it can be considered that the power battery is sufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is higher than that of the charging power supply. When the power of the power battery is lower than or equal to the first threshold, it can be considered that the power battery is insufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is lower than that of the charging power supply.
  • the power supply priority order of the charging power supply and the power battery can also be determined according to the temperature of the power battery.
  • the power supply priority order of the two can be determined according to the preset second threshold. For example, when the temperature of the power battery is higher than the second threshold, it can be considered that the power battery is sufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is higher than that of the charging power supply. When the temperature of the power battery is lower than or equal to the second threshold, it can be considered that the power battery is insufficient to provide stable power for the power conversion device, that is, it is determined that the power supply priority of the power battery is lower than that of the charging power supply.
  • various thresholds in the embodiments of the present application can be obtained through experience. That is to say, it was obtained after a lot of experiments.
  • the first threshold or the second threshold can be considered as a critical value capable of providing stable power for the power conversion device.
  • the power supply priority of the power battery may be higher than the power supply priority of the charging power source by default, that is, the power conversion device directly uses the power battery as its working power source.
  • the power supply priority order of the above-mentioned various power sources can also be preset in advance and stored in the power conversion device.
  • the power supply priority order of the standard power grid 1 , the external DC power supply 2 , the auxiliary power supply 3 , the charging power supply 4 and the power battery 5 may be preset in advance as follows: 5>4>2>1>3.
  • the priority order may be: 5>2>4>1>3.
  • the power supply priority of the auxiliary power sources may be set to the lowest.
  • the power conversion device when it obtains multiple power sources, it can first convert the multiple power sources into working power sources of the power conversion device, and then select one of the power sources to supply power to the power conversion device. Alternatively, one of the multiple power sources can be selected first, and converted into the working power source of the power conversion device before supplying power.
  • the power conversion equipment When the power conversion equipment is in the offline debugging mode, in other words, the power conversion equipment is in the development and maintenance period, that is, the power conversion equipment is not connected to the charging pile or power battery, and the power conversion equipment can be powered by the standard grid or an external DC power supply .
  • the standard power grid When the standard power grid needs to be used to supply power to the power conversion equipment, the standard power grid can be converted into direct current first.
  • a standard power grid may be directly used to supply power to the power conversion device, thereby reducing the complexity of the system power supply strategy.
  • the working power of the power conversion device when the power conversion device can obtain multiple power sources, can also be switched between the multiple power sources. Specifically, the working power supply of the power conversion device can be switched from a power supply with a lower power supply priority to a power supply with a higher power supply priority.
  • the power supply control method of the power conversion device of the embodiment of the present application is described in detail above, and the power supply control apparatus of the embodiment of the present application will be described in detail below with reference to FIG. 3 and FIG. 4 .
  • the technical features described in the method embodiments are applicable to the following device embodiments.
  • FIG. 3 shows a schematic block diagram of a power conversion device 300 according to an embodiment of the present application.
  • the power conversion device 300 includes:
  • the self-checking module 310 is configured to use the auxiliary power supply of the charging pile to perform power-on self-checking;
  • a determination module 320 configured to determine the power supply priority order of the charging power source and the power battery according to the state parameter of the power battery if the power conversion device is successfully self-checked;
  • the power supply module 330 is configured to use the charging power source of the charging pile and the power battery with a higher power supply priority as the current working power source of the power conversion device.
  • the power output by the power supply module 330 can meet the needs of different vehicle models, and a boost or step-down circuit can also be integrated in the power conversion device to cooperate with the charging pile and the power battery.
  • the power supply control device for the power conversion device in the embodiment of the present application may be integrated into the power conversion device, that is, the power supply control device is the power conversion device, or may be independent of the power conversion device and provide working power for the power conversion device independently.
  • the determining module 320 is specifically configured to: determine the power supply priority order of the charging power source and the power battery according to the power of the power battery.
  • the determining module 320 is specifically configured to: if the power of the power battery is higher than the first threshold, determine that the power supply priority of the power battery is higher than the power supply priority of the charging power supply; or If the power of the power battery is lower than or equal to the first threshold, it is determined that the power supply priority of the power battery is lower than the power supply priority of the charging power source.
  • the power conversion device 300 further includes: an obtaining module 340, configured to obtain the auxiliary power supply when it is determined that the power conversion device is in a normal working mode, and the normal working mode is the charging pile , the working mode of interconnection between the power conversion device and the power battery.
  • an obtaining module 340 configured to obtain the auxiliary power supply when it is determined that the power conversion device is in a normal working mode, and the normal working mode is the charging pile , the working mode of interconnection between the power conversion device and the power battery.
  • the obtaining module 340 is specifically configured to obtain the auxiliary power supply when receiving the connection success information sent by the charging pile.
  • the power conversion device 300 further includes: a direct current to direct current DC-DC module 350, which is used to compare the power supply priority between the charging power source of the charging pile and the power battery in the power conversion device.
  • the charging power source and/or the power battery are converted into the working power source of the power conversion device before the high power is used as the current working power source of the power conversion device.
  • the power conversion device 300 may include one DC-DC module 350, that is, the charging power source and the power battery may share one DC-DC module 350; the power conversion device 300 may also include two DC-DC modules 250, that is to say, one DC-DC module 350 is used for the charging power supply and the power battery respectively.
  • the power supply module 330 is further configured to: in the offline debugging mode of the power conversion device, use a standard power grid or an external DC power supply as the current working power supply of the power conversion device.
  • the power conversion device 300 further includes:
  • the alternating current to direct current AC-DC module 360 is used to convert the standard power grid into the working power source of the power conversion device before the power conversion device uses the standard power grid as the working power source of the power conversion device.
  • the power conversion device 300 is configured to convert the DC current output by the charging power source into a pulse current and charge the power battery.
  • FIG. 5 shows a schematic block diagram of a power supply control system.
  • the power supply control system includes a charging pile 510 , a BMS 520 , a power unit 50 , a control unit 540 , a power supply module 550 , and a DC-DC module 560 and the AC-DC module 570, wherein the power unit 530 and the control unit 540 constitute a power conversion device.
  • the power supply module 550, the DC-DC module 560 and the AC-DC module 570 can also be integrated into the power conversion device. It can be seen from FIG.
  • the power supply module 550 may correspond to the power supply module 330 , the determination module 320 and the acquisition module 340 in the above-mentioned power conversion device 300 , and the self-check module 310 in the power conversion device 300 may be implemented by the control unit 540 and the power unit 530 . .
  • FIG. 6 shows a schematic block diagram of a power conversion device 600 according to another embodiment of the present application.
  • the power conversion device 600 includes a memory 610 and a processor 620, wherein the memory 610 is used to store instructions, and the processor 620 is used to read the instructions and execute the aforementioned various embodiments of the present application based on the instructions Methods.
  • the embodiments of the present application further provide a readable storage medium for storing a computer program, where the computer program is used to execute the methods of the foregoing various embodiments of the present application.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例提供了一种功率转换设备的供电控制方法和功率转换设备,所述功率转换设备用于在充电桩和动力电池之间进行功率转换,所述方法包括:所述功率转换设备利用所述充电桩的辅助电源进行上电自检;若所述功率转换设备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。本申请实施例的方法和设备,能够在不额外增加供电装置的情况下,能够为功率转换设备提供稳定的工作电源,从而有效解决功率转换设备的供电问题。

Description

功率转换设备的供电控制方法和功率转换设备 技术领域
本申请实施例涉及充电领域,并且更具体地,涉及一种功率转换设备的供电控制方法和功率转换设备。
背景技术
随着时代的发展,电动汽车由于其高环保性、低嗓音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利于社会的发展和进步。
在零摄氏度以下的低温环境下,由于动力汽车中电池的电化学特性,直流充电会对电池造成析锂的风险,所以传统的锂电池组的充电能力被大大限制,甚至不能充电,充电时间过长,严重影响客户冬季用车体验。
因此,本申请引入了功率转换设备,用于在充电桩和动力电池之间进行功率转换,但是如何对该功率转换设备进行供电,目前没有明确的解决方案。
发明内容
本申请实施例提供一种功率转换设备的供电控制方法和功率转换设备,能够有效解决功率转换设备的供电问题。
一方面,提供了一种功率转换设备的供电控制方法,所述功率转换设备用于在充电桩和动力电池之间进行功率转换,所述方法包括:所述功率转换设备利用所述充电桩的辅助电源进行上电自检;若所述功率转换设 备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。
本申请实施例通过将充电桩的充电电源与动力电池中供电优先级较高的作为功率转换设备的工作电源,能够在不额外增加供电装置的情况下,能够为功率转换设备提供稳定的工作电源,从而有效解决功率转换设备的供电问题。
在一种可能的实现方式中,所述功率转换设备根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序,包括:所述功率转换设备根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序。
动力电池的状态参数可包括例如电量、电压、温度等,根据动力电池的电量,确定充电电源与动力电池的供电优先级顺序,直观简单易实现。
在一种可能的实现方式中,所述功率转换设备根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序,包括:若所述动力电池的电量高于第一阈值,所述功率转换设备确定所述动力电池的供电优先级高于所述充电电源的供电优先级;或若所述动力电池的电量低于或等于所述第一阈值,所述功率转换设备确定所述动力电池的供电优先级低于所述充电电源的供电优先级。
该第一阈值可以是根据经验获得,例如可以通过大量样本训练获得。
根据动力电池的电量与第一阈值的大小关系,来判断动力电池与充电电源的供电优先级顺序,有利于为功率转换设备提供稳定的工作电 源,从而整体提升功率转换设备的供电可靠性。例如,当动力电池的电量高于第一阈值时,可以认为动力电池足够为功率转换设备提供稳定的电源,即确定动力电池的供电优先级高于充电电源的供电优先级。当动力电池的电量低于或等于第一阈值时,可以认为动力电池不足以为功率转换设备提供稳定的电源,即确定动力电池的供电优先级低于充电电源的供电优先级。
在一种可能的实现方式中,所述方法还包括:在确定所述功率转换设备处于正常工作模式下时,所述功率转换设备获取所述辅助电源,所述正常工作模式是所述充电桩、所述功率转换设备以及所述动力电池之间三者互连的工作模式。
在一种可能的实现方式中,所述在确定所述功率转换设备处于正常工作模式下时,所述功率转换设备获取所述辅助电源,包括:在接收到所述充电桩发送的连接成功信息时,所述功率转换设备获取所述辅助电源。
在一种可能的实现方式中,在所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源之前,所述方法还包括:所述功率转换设备将所述充电电源和/或所述动力电池转换成所述功率转换设备的工作电源。
在一种可能的实现方式中,所述方法还包括:在所述功率转换设备的离线调试模式下,所述功率转换设备将标准电网或外接直流电源作为所述功率转换设备的当前工作电源。
使用标准电网或者外接直流电源作为功率转换设备的工作电源,有利于降低供电策略的复杂性。
在一种可能的实现方式中,在所述功率转换设备将标准电网作为所述功率转换设备的工作电源之前,所述方法还包括:所述功率转换设备 将所述标准电网转换为所述功率转换设备的工作电源。
在一种可能的实现方式中,所述功率转换设备用于将所述充电电源输出的直流电流转换为脉冲电流并向所述动力电池进行充电。
另一方面,提供了一种功率转换设备,所述功率转换设备用于在充电桩和动力电池之间进行功率转换,所述功率转换设备包括:自检模块,用于利用所述充电桩的辅助电源进行上电自检;确定模块,用于若所述功率转换设备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;供电模块,用于将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。
在一种可能的实现方式中,所述确定模块具体用于:根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序。
在一种可能的实现方式中,所述确定模块具体用于:若所述动力电池的电量高于第一阈值,确定所述动力电池的供电优先级高于所述充电电源的供电优先级;或若所述动力电池的电量低于或等于所述第一阈值,确定所述动力电池的供电优先级低于所述充电电源的供电优先级。
在一种可能的实现方式中,所述功率转换设备还包括:获取模块,用于在确定所述功率转换设备处于正常工作模式下时,获取所述辅助电源,所述正常工作模式是所述充电桩、所述功率转换设备以及所述动力电池之间三者互连的工作模式。
在一种可能的实现方式中,所述获取模块具体用于:在接收到所述充电桩发送的连接成功信息时,获取所述辅助电源。
在一种可能的实现方式中,所述功率转换设备还包括:直流转直流DC-DC模块,用于在所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源之 前,将所述充电电源和/或所述动力电池转换成所述功率转换设备的工作电源。
在一种可能的实现方式中,所述供电模块还用于:在所述功率转换设备的离线调试模式下,将标准电网或外接直流电源作为所述功率转换设备的当前工作电源。
在一种可能的实现方式中,所述功率转换设备还包括:交流转直流AC-DC模块,用于在所述功率转换设备将标准电网作为所述功率转换设备的工作电源之前,将所述标准电网转换为所述功率转换设备的工作电源。
在一种可能的实现方式中,所述功率转换设备用于将所述充电电源输出的直流电流转换为脉冲电流并向所述动力电池进行充电。
第三方面,提供了一种功率转换设备,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行上述第一方面和第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行上述第一方面和第一方面的任意可能的实现方式中的方法。
因此,基于本申请实施例的技术方案,通过在充电桩的充电电源与动力电池未输出的情况下,先利用充电桩的辅助电源进行自检,并且在自检成功后,根据动力电池的状态参数,将功率转换设备的工作电源从充电桩的辅助电源切换到充电桩的充电电源与动力电池中供电优先级较高的电源,能够在不额外增加供电装置的情况下,为功率转换设备提供稳定的工作电源,从而有效解决功率转换设备的供电问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是一种功率转换设备的示意性框图。
图2是本申请实施例提供的功率转换设备的供电控制方法的示意性框图。
图3是本申请实施例提供的功率转换设备的示意性框图。
图4是本申请实施例提供的功率转换设备的另一示意性框图。
图5是本申请实施例提供的供电控制系统的示意性框图。
图6是本申请实施例提供的功率转换设备的再一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
动力电池为给用电装置提供动力来源的电池。可选地,动力电池可以为动力蓄电池。从电池的种类而言,该动力电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中的动力电池可以是电芯/电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。可选地,所述用电装置可以为车辆、船舶或航天器等,本申请实施例对此并不限定。动力电池的电池管理系统(Battery Management System,BMS)为保护动力电池使用安全的控制系统,实施充放电管理,高压控制,保护电池,采集电池数据,评估电池状态等功能。
充电桩,也称为充电机,为给动力电池充电的装置。充电桩可以按照BMS的充电需求输出充电功率,以给动力电池充电。例如,充电桩可以按照BMS发送的需求电压和需求电流输出电压和电流。
然而,在一些特殊场景下,充电桩可输出的电压和电流的范围无法与动力电池匹配。例如,在低温场景下,充电桩可输出的最小电压或电流也可能会导致充电过程中发生析锂,而无法给动力电池正常充电。另外,在某些情况下,充电桩与动力电池之间也可能需要进行功率形式的转换,例如:电压变化,电流变化,功率状态变化,电流、电压、功率时序变化等。
针对上述情况,本申请实施例在充电桩和动力电池之间引入了功率转换设备,该功率转换设备可以在充电桩和动力电池之间进行功率转换。当存在充电桩与动力电池之间有需要进行功率转换时,功率转换设备将充电桩输出的功率类型转换为动力电池需要的功率类型。例如,该功率转换设备可以把充电桩输出的直流功率转换为脉冲功率,或者,变化电压值,变化电流值,或变化电压和电流的时序等。
图1是本申请实施例的功率转换设备的应用架构的示意图。如图1所示,功率转换设备110设置于充电桩120和动力电池的BMS之间,即功率转换设备110分别与充电桩120和BMS 130相连,充电桩120不直接与BMS 130相连。
在不设置功率转换设备110的情况下,在给动力电池充电时,充电桩120直接与BMS 130相连,然后开始充电流程,以对动力电池进行充电。如上所述,在一些情况下,充电桩120可能无法直接给动力电池正常充电。因此,在本申请实施例中,增加功率转换设备110,在充电桩120和动力电池之间进行功率转换。
可选地,功率转换设备110可以包括控制单元111和功率单元112。控制单元111负责检测充电桩120的和BMS 130在充电过程中的状态;控制单元111分别通过通信线140连接充电桩120和BMS 130,以分别与充电桩120和BMS 130进行信息交互。另外,控制单元111还通过通信线140与功率单元112连接,以与功率单元112进行信息交互,并控制功率单元112进行功率转换。例如,通信线140可以为控制器局域网络(Controller Area Network,CAN)通信线。
功率单元112负责根据控制单元111的指令,将充电桩120输出 的功率类型转换为动力电池需要的功率类型。功率单元112与控制单元111通过通信线140连接,进行信息交互。控制单元111与功率单元112之间可以配置通信协议,例如,定义通信的语法、语义和时序等,以保证控制单元111与功率单元112之间正常交互。
控制单元111上可以配置控制策略。例如,控制单元111通过解析充电桩120和BMS 130的充电报文,确定当前充电流程的状态,以控制功率单元112进行相应的操作。例如,在满足预充条件的时候,控制功率单元112进行预充操作。同时控制单元111与功率单元112进行通信,获取功率单元112的状态,以执行对应的操作。例如,功率单元112上报故障时,控制单元111及时发送停止预充的命令。
功率单元112通过高压线150分别与充电桩120和BMS 130连接,以将充电桩120通过高压线150输出的充电功率进行转换后输出至BMS以给动力电池充电。
可选地,功率转换设备110中存在大容量的电容器,例如,第一电容器161和第二电容器162。
可选地,在本申请实施例中,BMS 130所管理的电池组可以称为动力电池。
可选地,该功率转换设备可以集成到充电桩或者动力汽车的内部,也可以是独立设备。若该功率转换设备集成到充电桩或动力汽车的内部,该功率转换设备可以由充电桩或者动力电池进行供电。若该功率转换设备为独立设备,该功率转换设备可以通过传统方式取电,即通过标准电网(即政府提供的市电)或外置直流电源,或者,该功率转换设备也可以在与充电桩和动力电池分别相连的情况下,通过充电桩的辅助电源、充电电源或动力电池取电。本申请实施例中的外置直流电源应包括但不限于便携式充电宝等设备。
也就是说,在本申请实施例中,在功率转换设备可以获取到多路电源时,可以从多路电源中选择一路电源作为功率转换设备的工作电源。
在一种可能的实施例中,可以提前设置该多路电源的供电优先级,在功率转换设备获取到多路电源的情况下,可以基于该预设的供电优 先级,从该多路电源中选择一路电源作为功率转换设备的工作电源。
需要说明的是,标准电网为交流电,充电电源和动力电池为高压电,而功率转换设备的工作电源则是低压直流,因此,在对功率转换设备供电之前,需要将选择的一路电源转换为功率转换设备的工作电源。
本申请实施例主要基于在功率转换设备与充电桩和动力电池分别相连的情况下,如何为功率转换设备进行供电。具体地,如图2所示,该方法200包括以下部分或全部内容:
S210,所述功率转换设备利用所述充电桩的辅助电源进行上电自检;
S220,若所述功率转换设备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;
S230,所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。
具体地,在功率转换设备处于正常工作模式下,即功率转换设备、充电桩以及动力电池这三者互连的工作模式下,充电桩的辅助电源会先输出,此时由于高压系统都没有上电,但功率转换设备需要自检并且与充电桩和管理动力电池的BMS之间进行通信,因此,这时候可以利用充电桩的辅助电源进行上电自检,在自检成功且高压系统上电之后,则可以利用充电桩的充电电源或者动力电池为功率转换设备进行供电。进一步地,可以根据预设的供电优先级,将充电电源和动力电池中优先级较高的作为功率转换设备的工作电源。
通常情况下,当充电桩、功率转换设备以及动力电池这三者枪头和枪座互连后,充电桩可以识别到连接成功信息,充电桩的辅助电源开始输出,对应地,功率转换设备可以获取到辅助电源。可选地,当充电桩识别到连接成功信息之后,也可以向功率转换设备发送连接成功信息,对应地,功率转换设备在接收到充电桩发送的连接成功信息之后,就可以获取到辅助电源。
当功率转换设备利用辅助电源进行自检,同时功率转换设备分别与充电桩和BMS之间进行通讯,在功率转换设备自检成功且与充电桩和 BMS信息交互之后,充电桩和BMS可以分别闭合高压侧开关,即充电桩的充电电源输出,动力电池输出。当功率转换设备既获取到充电电源,又获取到动力电池时,功率转换设备还可以根据预设的供电优先级,确定功率转换设备的工作电源。换言之,当动力电池的优先级高于充电电池,则将功率转换设备的工作电源从辅助电源切换到动力电池;当充电电池的优先级高于动力电池,则将功率转换设备的工作电源从辅助电源切换到充电电源。
可选地,在本申请实施例中,在确定功率转换设备的工作电源之前,可以先确定充电电源与动力电池的供电优先级顺序。
可选地,可以通过充电电源和动力电池的一些状态参数,来确定充电电源与动力电池的供电优先级顺序。例如,可以通过动力电池的电量,来确定充电电源与动力电池的供电优先级顺序。再例如,可以根据动力电池的温度,来确定充电电源与动力电池的供电优先级顺序。再例如,可以根据动力电池的荷电状态(State of Charge,SOC)或者电压,来确定充电电源与动力电池的供电优先级顺序。本申请实施例对用来确定充电电源与动力电池的供电优先级顺序的状态参数不作限定。
根据动力电池的电量确定充电电源与动力电池的供电优先级顺序,具体地,可以根据预设的第一阈值来确定二者的供电优先级顺序。例如,当动力电池的电量高于第一阈值时,可以认为动力电池足够为功率转换设备提供稳定的电源,即确定动力电池的供电优先级高于充电电源的供电优先级。当动力电池的电量低于或等于第一阈值时,可以认为动力电池不足以为功率转换设备提供稳定的电源,即确定动力电池的供电优先级低于充电电源的供电优先级。
可选地,还可以根据动力电池的温度来确定充电电源与动力电池的供电优先级顺序。具体地,可以根据预设的第二阈值来确定二者的供电优先级顺序。例如,当动力电池的温度高于第二阈值时,可以认为动力电池足够为功率转换设备提供稳定的电源,即确定动力电池的供电优先级高于充电电源的供电优先级。当动力电池的温度低于或等于第二阈值时,可以认为动力电池不足以为功率转换设备提供稳定的电源,即确定动力电池 的供电优先级低于充电电源的供电优先级。
需要说明的是,本申请实施例中的各种阈值,如第一阈值、第二阈值等,均可以通过经验获的。也就是说,是经过大量实验获得的。该第一阈值或第二阈值可以认为是能够为功率转换设备提供稳定电源的临界值。
可替代地,也可以默认动力电池的供电优先级高于充电电源的供电优先级,即功率转换设备直接将动力电池作为其工作电源。
也可以提前预设上述各路电源的供电优先级顺序,并将其存储在功率转换设备内部。例如,可以提前预设标准电网1、外置直流电源2、辅助电源3、充电电源4以及动力电池5的供电优先级顺序为:5>4>2>1>3。再例如,该优先级顺序可以是:5>2>4>1>3。
为了避免不同充电桩的辅助电源的输出功率差异对功率转换设备的供电造成影响,所以在本申请实施例中,可以将辅助电源的供电优先级设置为最低。
可选地,在本申请实施例中,当功率转换设备获取到多路电源时,可以先将多路电源转换为功率转换设备的工作电源,然后再从中选择一路为功率转换设备供电。或者也可以先从多路电源中选择一路,并转换为功率转换设备的工作电源再为其供电。
当功率转换设备处于离线调试模式下,换句话说,功率转换设备处于开发和维护期间,即功率转换设备没有与充电桩或者动力电池相连,可以通过标准电网或者外置直流电源为功率转换设备供电。当需要利用标准电网为功率转换设备供电时,可以先将标准电网转换为直流电。
可选地,在本申请实施例中,可以直接使用标准电网为功率转换设备供电,从而降低系统供电策略的复杂性。
可选地,在本申请实施例中,当功率转换设备可以获取到多路电源时,功率转换设备的工作电源也可以在该多路电源之间进行切换。具体地,可以将功率转换设备的工作电源从供电优先级较低的电源切换到供电优先级较高的电源。
上文详细描述了本申请实施例的功率转换设备的供电控制方法, 下面将结合图3和图4详细描述本申请实施例的供电控制装置。方法实施例所描述的技术特征适用于以下装置实施例。
图3示出了本申请实施例的功率转换设备300的示意性框图。如图3所示,该功率转换设备300包括:
自检模块310,用于利用该充电桩的辅助电源进行上电自检;
确定模块320,用于若该功率转换设备自检成功,根据该动力电池的状态参数,确定该充电电源和该动力电池的供电优先级顺序;
供电模块330,用于将该充电桩的充电电源和该动力电池中供电优先级较高的作为该功率转换设备的当前工作电源。
需要说明的是,由供电模块330输出的电源可以满足不同车型的需求,也可以在功率转换设备内部集成升压或降压电路,以实现和充电桩以及动力电池的配合。
本申请实施例的为功率转换设备的供电控制装置可以是集成到功率转换设备内部,即该供电控制装置为功率转换设备,也可以是独立于功率转换设备,单独为功率转换设备提供工作电源。
可选地,在本申请实施例中,该确定模块320具体用于:根据该动力电池的电量,确定该充电电源和该动力电池的供电优先级顺序。
可选地,在本申请实施例中,该确定模块320具体用于:若该动力电池的电量高于第一阈值,确定该动力电池的供电优先级高于该充电电源的供电优先级;或若该动力电池的电量低于或等于该第一阈值,确定该动力电池的供电优先级低于该充电电源的供电优先级。
可选地,如图4所示,该功率转换设备300还包括:获取模块340,用于在确定该功率转换设备处于正常工作模式下时,获取该辅助电源,该正常工作模式是该充电桩、该功率转换设备以及该动力电池之间三者互连的工作模式。
可选地,在本申请实施例中,该获取模块340具体用于:在接收到该充电桩发送的连接成功信息时,获取该辅助电源。
可选地,如图4所示,该功率转换设备300还包括:直流转直流DC-DC模块350,用于在该功率转换设备将该充电桩的充电电源和该动力 电池中供电优先级较高的作为该功率转换设备的当前工作电源之前,将该充电电源和/或该动力电池转换成该功率转换设备的工作电源。
可选地,该功率转换设备300可以包括一个DC-DC模块350,也就是说,充电电源和动力电池可以共用一个DC-DC模块350;该功率转换设备300也可以包括两个DC-DC模块250,也就是说,充电电源和动力电池分别使用一个DC-DC模块350。
可选地,在本申请实施例中,该供电模块330还用于:在该功率转换设备的离线调试模式下,将标准电网或外接直流电源作为该功率转换设备的当前工作电源。
可选地,如图4所示,该功率转换设备300还包括:
交流转直流AC-DC模块360,用于在该功率转换设备将标准电网作为该功率转换设备的工作电源之前,将该标准电网转换为该功率转换设备的工作电源。
可选地,在本申请实施例中,该功率转换设备300用于将该充电电源输出的直流电流转换为脉冲电流并向该动力电池进行充电。
图5示出了一种供电控制系统的示意性框图,如图5所示,该供电控制系统包括充电桩510、BMS 520,功率单元50、控制单元540、供电模块550、DC-DC模块560以及AC-DC模块570,其中,功率单元530和控制单元540构成功率转换设备,可选地,供电模块550、DC-DC模块560以及AC-DC模块570也可以集成到功率转换设备中。从图5中可以看出,标准电网通过AC-DC模块570转换之后由供电模块350输出,而辅助电源A+/A-与外接直流电源则直接由供电模块550输出,充电电源DC+/DC-与BMS则需要通过DC-DC转换之后由供电模块550输出。
可选地,供电模块550可以对应上述功率转换设备300中的供电模块330、确定模块320以及获取模块340,而功率转换设备300中的自检模块310则可以通过控制单元540和功率单元530实现。
图6示出了本申请另一个实施例的功率转换设备600的示意性框图。如图6所示,功率转换设备600包括存储器610和处理器620,其中,存储器610用于存储指令,处理器620用于读取所述指令并基于所述 指令执行前述本申请各种实施例的方法。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种功率转换设备的供电控制方法,其特征在于,所述功率转换设备用于在充电桩和动力电池之间进行功率转换,所述方法包括:
    所述功率转换设备利用所述充电桩的辅助电源进行上电自检;
    若所述功率转换设备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;
    所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。
  2. 根据权利要求1所述的供电控制方法,其特征在于,所述功率转换设备根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序,包括:
    所述功率转换设备根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序。
  3. 根据权利要求2所述的供电控制方法,其特征在于,所述功率转换设备根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序,包括:
    若所述动力电池的电量高于第一阈值,所述功率转换设备确定所述动力电池的供电优先级高于所述充电电源的供电优先级;或
    若所述动力电池的电量低于或等于所述第一阈值,所述功率转换设备确定所述动力电池的供电优先级低于所述充电电源的供电优先级。
  4. 根据权利要求1至3中任一项所述的供电控制方法,其特征在于,所述方法还包括:
    在确定所述功率转换设备处于正常工作模式下时,所述功率转换设备获取所述辅助电源,所述正常工作模式是所述充电桩、所述功率转换设备 以及所述动力电池之间三者互连的工作模式。
  5. 根据权利要求4所述的供电控制方法,其特征在于,所述在确定所述功率转换设备处于正常工作模式下时,所述功率转换设备获取所述辅助电源,包括:
    在接收到所述充电桩发送的连接成功信息时,所述功率转换设备获取所述辅助电源。
  6. 根据权利要求1至5中任一项所述的供电控制方法,其特征在于,在所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源之前,所述方法还包括:
    所述功率转换设备将所述充电电源和/或所述动力电池转换成所述功率转换设备的工作电源。
  7. 根据权利要求1至6中任一项所述的供电控制方法,其特征在于,所述方法还包括:
    在所述功率转换设备的离线调试模式下,所述功率转换设备将标准电网或外接直流电源作为所述功率转换设备的当前工作电源。
  8. 根据权利要求7所述的供电控制方法,其特征在于,在所述功率转换设备将标准电网作为所述功率转换设备的工作电源之前,所述方法还包括:
    所述功率转换设备将所述标准电网转换为所述功率转换设备的工作电源。
  9. 根据权利要求1至8中任一项所述的供电控制方法,其特征在于,所述功率转换设备用于将所述充电电源输出的直流电流转换为脉冲电流并向所述动力电池进行充电。
  10. 一种功率转换设备,其特征在于,所述功率转换设备用于在充电桩和动力电池之间进行功率转换,所述功率转换设备包括:
    自检模块,用于利用所述充电桩的辅助电源进行上电自检;
    确定模块,用于若所述功率转换设备自检成功,根据所述动力电池的状态参数,确定所述充电电源和所述动力电池的供电优先级顺序;
    供电模块,用于将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源。
  11. 根据权利要求10所述的功率转换设备,其特征在于,所述确定模块具体用于:
    根据所述动力电池的电量,确定所述充电电源和所述动力电池的供电优先级顺序。
  12. 根据权利要求11所述的功率转换设备,其特征在于,所述确定模块具体用于:
    若所述动力电池的电量高于第一阈值,确定所述动力电池的供电优先级高于所述充电电源的供电优先级;或
    若所述动力电池的电量低于或等于所述第一阈值,确定所述动力电池的供电优先级低于所述充电电源的供电优先级。
  13. 根据权利要求10至12中任一项所述的功率转换设备,其特征在于,所述功率转换设备还包括:
    获取模块,用于在确定所述功率转换设备处于正常工作模式下时,获取所述辅助电源,所述正常工作模式是所述充电桩、所述功率转换设备以及所述动力电池之间三者互连的工作模式。
  14. 根据权利要求13所述的功率转换设备,其特征在于,所述获取模块具体用于:
    在接收到所述充电桩发送的连接成功信息时,获取所述辅助电源。
  15. 根据权利要求10至14中任一项所述的功率转换设备,其特征在于,所述功率转换设备还包括:
    直流转直流DC-DC模块,用于在所述功率转换设备将所述充电桩的充电电源和所述动力电池中供电优先级较高的作为所述功率转换设备的当前工作电源之前,将所述充电电源和/或所述动力电池转换成所述功率转换设备的工作电源。
  16. 根据权利要求10至15中任一项所述的功率转换设备,其特征在于,所述供电模块还用于:
    在所述功率转换设备的离线调试模式下,将标准电网或外接直流电源作为所述功率转换设备的当前工作电源。
  17. 根据权利要求16所述的功率转换设备,其特征在于,所述功率转换设备还包括:
    交流转直流AC-DC模块,用于在所述功率转换设备将标准电网作为所述功率转换设备的工作电源之前,将所述标准电网转换为所述功率转换设备的工作电源。
  18. 根据权利要求10至17中任一项所述的功率转换设备,其特征在于,所述功率转换设备用于将所述充电电源输出的直流电流转换为脉冲电流并向所述动力电池进行充电。
  19. 一种功率转换设备,其特征在于,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行如权利要求1至9中任一项所述的方法。
PCT/CN2021/074179 2021-01-28 2021-01-28 功率转换设备的供电控制方法和功率转换设备 WO2022160187A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217040050A KR102644605B1 (ko) 2021-01-28 2021-01-28 전력 변환 장치의 전원 공급 제어 방법 및 전력 변환 장치
JP2021572482A JP7326491B2 (ja) 2021-01-28 2021-01-28 電力変換装置の給電制御方法及び電力変換装置
CN202180060171.1A CN116250158A (zh) 2021-01-28 2021-01-28 功率转换设备的供电控制方法和功率转换设备
PCT/CN2021/074179 WO2022160187A1 (zh) 2021-01-28 2021-01-28 功率转换设备的供电控制方法和功率转换设备
EP21810517.9A EP4064536B1 (en) 2021-01-28 2021-01-28 Power supply control method for power conversion device, and power conversion device
US17/540,436 US20220239135A1 (en) 2021-01-28 2021-12-02 Power supply control method of power conversion apparatus and power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074179 WO2022160187A1 (zh) 2021-01-28 2021-01-28 功率转换设备的供电控制方法和功率转换设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/540,436 Continuation US20220239135A1 (en) 2021-01-28 2021-12-02 Power supply control method of power conversion apparatus and power conversion apparatus

Publications (1)

Publication Number Publication Date
WO2022160187A1 true WO2022160187A1 (zh) 2022-08-04

Family

ID=82496116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074179 WO2022160187A1 (zh) 2021-01-28 2021-01-28 功率转换设备的供电控制方法和功率转换设备

Country Status (6)

Country Link
US (1) US20220239135A1 (zh)
EP (1) EP4064536B1 (zh)
JP (1) JP7326491B2 (zh)
KR (1) KR102644605B1 (zh)
CN (1) CN116250158A (zh)
WO (1) WO2022160187A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160186A1 (zh) * 2021-01-28 2022-08-04 宁德时代新能源科技股份有限公司 充电的方法和功率转换设备
EP4064411A1 (en) * 2021-01-28 2022-09-28 Contemporary Amperex Technology Co., Limited Charging method, battery management system of power battery, and charging pile
CN115836425A (zh) * 2021-01-28 2023-03-21 宁德时代新能源科技股份有限公司 充电的方法、动力电池的电池管理系统和充电桩
JP7461386B2 (ja) * 2021-06-17 2024-04-03 寧徳時代新能源科技股▲分▼有限公司 充電制御方法及び装置、電池管理システム、読み取り可能な記憶媒体
CN116325286A (zh) * 2021-07-29 2023-06-23 宁德时代新能源科技股份有限公司 充放电装置、电池充电的方法和充放电系统
CN116452198B (zh) * 2023-06-14 2023-09-01 南京能可瑞科技有限公司 一种充电桩离线授权和计费方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780249A (zh) * 2012-08-17 2012-11-14 天津清源电动车辆有限责任公司 利用超级电容实现电动汽车快速充电的方法
CN103117585A (zh) * 2011-11-16 2013-05-22 长沙佳利汽车有限公司 一种电动汽车混合储能充电系统
US20170126028A1 (en) * 2015-10-29 2017-05-04 Postech Academy-Industry Foundation Bidirectional dc-dc converter
CN107264308A (zh) * 2017-05-31 2017-10-20 北京新能源汽车股份有限公司 一种车载供电系统及汽车
CN207368734U (zh) * 2017-08-24 2018-05-15 深圳市沃特玛电池有限公司 一种光伏储能充电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6204902B2 (ja) 2014-11-19 2017-09-27 三菱重工業株式会社 充放電制御装置及びこれを有する電池システム
CN107317365A (zh) * 2016-04-27 2017-11-03 法乐第(北京)网络科技有限公司 充电装置、充电方法以及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117585A (zh) * 2011-11-16 2013-05-22 长沙佳利汽车有限公司 一种电动汽车混合储能充电系统
CN102780249A (zh) * 2012-08-17 2012-11-14 天津清源电动车辆有限责任公司 利用超级电容实现电动汽车快速充电的方法
US20170126028A1 (en) * 2015-10-29 2017-05-04 Postech Academy-Industry Foundation Bidirectional dc-dc converter
CN107264308A (zh) * 2017-05-31 2017-10-20 北京新能源汽车股份有限公司 一种车载供电系统及汽车
CN207368734U (zh) * 2017-08-24 2018-05-15 深圳市沃特玛电池有限公司 一种光伏储能充电系统

Also Published As

Publication number Publication date
CN116250158A (zh) 2023-06-09
JP7326491B2 (ja) 2023-08-15
EP4064536B1 (en) 2024-10-16
US20220239135A1 (en) 2022-07-28
KR20220110666A (ko) 2022-08-09
KR102644605B1 (ko) 2024-03-08
JP2023514881A (ja) 2023-04-12
EP4064536A1 (en) 2022-09-28
EP4064536A4 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2022160187A1 (zh) 功率转换设备的供电控制方法和功率转换设备
CN102231546B (zh) 具有均衡充放电功能的电池管理系统及其控制方法
CN110869784A (zh) 用于估计soc-ocv曲线的方法和设备
CN102315492B (zh) 动力电池组维护装置及其工作方法
KR101523335B1 (ko) 배터리 특성 자동 인식 시스템, 이에 적용되는 배터리 정보 저장 장치 및 이를 이용한 배터리 관리 장치의 최적화 방법
CN112737018A (zh) 电池包主从动态并机方法、用电设备及存储介质
CN112165156A (zh) 充放电装置、电池系统、充放电控制方法及存储介质
KR102644606B1 (ko) 충전 방법 및 전력 변환 장치
US20220239127A1 (en) Method for pre-charging power conversion device and power conversion device
CN109655753A (zh) 一种电池组soc的估算方法
US9798609B2 (en) Battery management unit for preventing performance of erroneous control algorithm from communication error
CN116325286A (zh) 充放电装置、电池充电的方法和充放电系统
KR101633834B1 (ko) 전원 안전 차단 기능을 가진 배터리 관리 시스템 및 그 제어 방법
US12051934B2 (en) Method for charging battery, charging and discharging device
CN115885407A (zh) 充放电装置、电池充电的方法和充放电系统
KR102433850B1 (ko) Bms 인식 시스템 및 방법
CN102856954A (zh) 一种动力电池均衡方法、单元、电池管理系统、电动汽车
CN112769187A (zh) 一种充电控制方法、控制电路及充电柜
CN115152118B (zh) 功率转换设备的预充电的方法和功率转换设备
CN220562585U (zh) 混合动力系统的控制器及混合动力系统
CN114954016A (zh) 用于无人车的智能上电管理系统
CN115441549A (zh) 一种混联电池管理系统及控制方法
CN114938059A (zh) 一种多电池包并机系统的电量管理方法
CN116457977A (zh) 电池充电的方法、电池管理系统和充放电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572482

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021810517

Country of ref document: EP

Effective date: 20211201

NENP Non-entry into the national phase

Ref country code: DE