WO2022158869A1 - 트랜스포머 - Google Patents

트랜스포머 Download PDF

Info

Publication number
WO2022158869A1
WO2022158869A1 PCT/KR2022/001022 KR2022001022W WO2022158869A1 WO 2022158869 A1 WO2022158869 A1 WO 2022158869A1 KR 2022001022 W KR2022001022 W KR 2022001022W WO 2022158869 A1 WO2022158869 A1 WO 2022158869A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
bobbin
disposed
core
terminal
Prior art date
Application number
PCT/KR2022/001022
Other languages
English (en)
French (fr)
Inventor
유선영
배석
손인성
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210009617A external-priority patent/KR20220106558A/ko
Priority claimed from KR1020210014157A external-priority patent/KR20220111029A/ko
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN202280011184.4A priority Critical patent/CN116762146A/zh
Priority to JP2023543457A priority patent/JP2024504329A/ja
Priority to EP22742845.5A priority patent/EP4283640A1/en
Priority to US18/262,573 priority patent/US20240087800A1/en
Publication of WO2022158869A1 publication Critical patent/WO2022158869A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F2027/297Terminals; Tapping arrangements for signal inductances with pin-like terminal to be inserted in hole of printed path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10439Position of a single component
    • H05K2201/10462Flat component oriented parallel to the PCB surface

Definitions

  • the present invention relates to a transformer.
  • Transformers may be included in electronic devices for various purposes.
  • a transformer may be used to perform an energy transfer function of transferring energy from one circuit to another.
  • the transformer may be used to perform a function of step-up or step-down to change the magnitude of the voltage.
  • a transformer having a characteristic that no DC path is directly formed can be used for the purpose of blocking DC and passing AC, or for insulating separation between two circuits. .
  • FIG. 1 is an exploded perspective view showing an example of a general configuration of a transformer.
  • a typical slim transformer 10 has a core portion including an upper core 11 and a lower core 12, and a secondary coil 13 and a primary coil between them 11 and 12 ( 14).
  • the secondary side coil 13 is composed of a plurality of conductive metal plates
  • the primary side coil 14 usually has a shape in which a conductive wire is wound.
  • a bobbin (not shown) may be disposed between the upper core 11 and the lower core 12 .
  • the primary side coil and the secondary side coil overlap in a vertical direction.
  • a conductive wire is applied instead of a conductive metal plate to the secondary side coil, the primary side coil and the secondary side coil overlap each other in the horizontal direction. can be placed.
  • the inner conductive wire closest to the midfoot has the shortest length and the outermost The length of the conductive line is the longest, so that inductance deviation occurs.
  • Such an inductance deviation causes a current shunt, which in turn causes severe heat generation.
  • An object of the present invention is to provide a transformer capable of reducing heat generation while being slim and capable of preventing heat generation due to inductance deviation due to a difference in length of a coil composed of a conductive wire.
  • Another technical problem to be achieved by the present invention is to provide a slim-type transformer capable of further slimming and securing leaky inductance.
  • a transformer includes a core part including an upper core and a lower core, a coil part partially disposed in the core part, and a bobbin part disposed between the core part and the coil part, wherein the coil part includes a first a first bobbin including a coil and a second coil having at least a portion disposed on a side surface of the first coil, wherein the bobbin unit includes a first bobbin having a first accommodating unit accommodating the first coil and a second coil accommodating the second coil a second bobbin having an accommodating part formed thereon, wherein the first bobbin includes a first extension extending from the first accommodating part in a direction of the second bobbin, and the second accommodating part is disposed on the first extended part .
  • the first bobbin includes a first top part, a first bottom part disposed below the first top part, and a first middle part disposed between the first top part and the bottom part, and defining a first through hole as an inner surface. and the first extension part may be disposed on the first bottom part.
  • the second bobbin includes a second top portion having a second through hole disposed in a central portion, a second bottom portion disposed below the second top portion, and a second middle portion disposed between the second top portion and the second bottom portion. and at least a portion of the first bobbin may be accommodated in a recess defined by a lower surface of the second top portion and an inner surface of the second middle portion.
  • the first extension portion may face a lower surface of the second bottom portion.
  • the second top portion includes a first guide and a second guide that face each other along a long axis direction of the second bobbin with the second through hole interposed therebetween, wherein each of the first guide and the second guide includes the
  • the second tower may protrude upward from the upper surface and extend along a minor axis direction of the second bobbin.
  • the upper core may be disposed between the first guide and the second guide.
  • the second top portion may further include a third through-hole facing the second through-hole in the long axis direction with the second guide interposed therebetween.
  • the first top part may further include a coil lead-out part disposed on an upper surface, and the coil lead-out part may be exposed through the third through hole.
  • the second top part further includes a blind hole formed from a bottom surface toward the inside of the second guide, and the first top part is disposed between the coil lead-out part and the first through-hole and protrudes upward from the top surface. It may further include a protruding pin inserted into the blind hole.
  • the shortest distance between the first coils from the lower surface of the lower core and the shortest distance between the second coils from the lower surface of the lower core may be different.
  • the shortest distance between the first coils from the lower surface of the lower core may be smaller than the shortest distance between the second coils from the lower surface of the lower core.
  • the second bobbin may include a second extension extending from the second accommodating part in the direction of the first bobbin, and the first accommodating part may be disposed under the second extension.
  • a portion of the second accommodating part may be disposed between the first coil and the second coil.
  • the core portion includes a first outer foot portion, a second outer foot portion, and a midfoot portion disposed between the first outer foot portion and the second outer foot portion, wherein the shortest distance between the first coil and the second coil is the first It may be 0.1 times to 0.3 times the shortest distance between an adjacent one of the first and second outer feet in the outermost part of the coil.
  • the core portion may include a first space formed to receive a portion of the bobbin portion between the first outer foot portion and the midfoot portion and a second space formed to receive the other portion of the bobbin portion between the second outer foot portion and the midfoot portion. may include more.
  • the ratio of the second distance, which is the shortest distance may be 1 to 1.3.
  • the shortest distance between the first coils from the lower surface of the lower core may be 0.3 to 0.7 times the shortest distance between the second coils from the lower surface of the lower core.
  • a flat panel display device includes a power supply unit in which a transformer is disposed, wherein the transformer includes a core part including an upper core and a lower core, a coil part partially disposed in the core part, and the core part; and a bobbin part disposed between the coil parts, wherein the coil part includes a first coil and a second coil at least partially disposed on a side surface of the first coil, and the bobbin part accommodates the first coil a first bobbin having a first accommodating part and a second bobbin having a second accommodating part accommodating the second coil, wherein the first bobbin is a first extension extending from the first accommodating part in a direction of the second bobbin and a portion, wherein the second receiving portion is disposed on the first extension portion.
  • a transformer includes a core part including an upper core and a lower core, a first coil part and a second coil part at least partially disposed between the upper core and the lower core, and the second in a first direction.
  • a terminal bobbin coupled to one side of the coil unit, wherein the first coil unit includes a first bobbin having a first through hole through which a first coil and a midfoot of the core unit pass and accommodating the first coil;
  • the second coil unit includes a second bobbin having a second through hole for accommodating a second coil and at least a portion of the first coil unit and accommodating the second coil, wherein the terminal bobbin is arranged in the first direction.
  • the one side of the second coil part is inserted and an opening, and both ends of the first coil are drawn out from the first bobbin and respectively connected to different first terminal terminals among the plurality of first terminal terminals of the terminal bobbin.
  • the first bobbin may include a first upper plate; and a lower plate spaced apart from the first upper plate in a third direction intersecting the first and second directions, and a first sidewall portion disposed between the upper plate and the lower plate, wherein the first upper plate comprises:
  • the plate may include a withdrawal groove that allows the both ends to be drawn out onto the first upper plate.
  • the terminal bobbin may include a recess on the other side in the first direction, and the recess may overlap with the lead-out groove in the third direction.
  • the terminal bobbin includes a plurality of first wire guides extending from the recess toward each of the plurality of first terminal terminals, and both ends of the first coil drawn out through the lead-out groove may include the plurality of first wire guides. It may extend to a corresponding first terminal terminal along different first wire guides among the first wire guides.
  • the second bobbin may include a second upper plate; a second upper plate spaced apart from the second upper plate in the first direction and a third direction intersecting the second direction; and a second sidewall portion disposed between the second upper plate and the second lower plate; can do.
  • the second coil includes a plurality of conductive wires disposed around the second through hole, one side of the plurality of conductive wires extends to be disposed on the second part, and the other end of the plurality of conductive wires has both ends of the first part a region in which at least a portion of a first conductive line and a second conductive line of the plurality of conductive lines overlaps on the second portion, and the second bobbin is a region where the overlap occurs in the second portion and at least a portion of the recess may be overlapped in the third direction.
  • the recess may be formed in the second lower plate.
  • the second bobbin may further include a plurality of second terminal terminals disposed on the second lower plate in the first part.
  • the first conductive line and the second conductive line may have a symmetrical shape along the first direction with respect to the second through hole.
  • the plurality of conductive lines may further include a third conductive line that forms a turn on the outside of the first conductive line on a plane and a fourth conductive line that forms a turn on the outside of the second conductive line on a plane.
  • the third conductive line may form a turn in parallel with the first conductive line, and the fourth conductive line may form a turn in parallel with the second conductive line.
  • the second upper plate may include a first partition wall part protruding upward in the third direction from the first sub-side edge in the first direction and extending in the second direction.
  • the second bobbin may further include a second wire guide extending in the first direction between the second sidewall portion and the plurality of second terminal terminals.
  • the second bobbin may further include a second partition wall portion protruding downward from the second lower plate in the third direction between the second through hole and the recess and extending in the second direction. have.
  • the second bobbin may include a first support part protruding in the first direction from the second partition wall part toward the second through hole and a second support part facing the first support part with the second through hole interposed therebetween. It further includes, wherein the first support part and the second support part may support the first coil part.
  • a circuit board includes a substrate and a transformer disposed on the substrate, wherein the transformer includes a core portion including an upper core and a lower core, and at least a portion disposed between the upper core and the lower core and a terminal bobbin coupled to one side of the first coil unit and the second coil unit and the second coil unit in a first direction, wherein the first coil unit includes: a first coil; and a first bobbin having a first through hole through which the midfoot of the core part passes and accommodating the first coil, wherein the second coil part includes a second coil and a first bobbin accommodating at least a portion of the first coil part.
  • the terminal bobbin includes a plurality of first bobbins spaced apart from each other in a second direction intersecting the first direction on one side in the first direction. terminal terminal; and an opening formed on the other side opposite to the one side in the first direction into which the one side of the second coil part is inserted, and both ends of the first coil are drawn out from the first bobbin and the terminal bobbin may be respectively connected to different first terminal terminals among the plurality of first terminal terminals.
  • the transformer according to the embodiment may minimize a difference in length of the conductive wires by allowing a plurality of conductive wires constituting the coil to cross each other in one region.
  • the inductance deviation between the conductive lines constituting the same turn in parallel through the short circuit of the terminal pin is improved, so that heat generation is reduced.
  • the bobbin since the bobbin has an opening in an area where the conductive lines cross each other, slimming is possible.
  • leakage inductance is secured by controlling the separation distance between the first coil unit and the second coil unit.
  • FIG. 1 is an exploded perspective view showing an example of a general slim-type transformer configuration.
  • FIG. 2A is a plan view of a transformer according to an embodiment.
  • FIG. 2B is a bottom view of a transformer according to an embodiment.
  • FIG. 2C is a cross-sectional view illustrating a transformer according to an embodiment taken along line A-A' of FIG. 2A.
  • FIG. 3A is a perspective view of a first bobbin according to an exemplary embodiment
  • 3B is a plan view of a first bobbin according to an exemplary embodiment.
  • FIG. 4A is a plan view of a second bobbin according to an exemplary embodiment.
  • FIG. 4B is a perspective view of a second bobbin according to an embodiment.
  • 4C is a rear perspective view of a second bobbin according to an embodiment.
  • 5A is a plan view of a terminal bobbin according to an embodiment
  • 5B is a perspective view of a terminal bobbin according to an embodiment
  • FIG. 6 shows an example of an arrangement form of an adhesive part of a transformer according to an embodiment.
  • FIG. 7A illustrates an example of a coil arrangement form of a second coil unit according to an embodiment.
  • FIG. 7B is a pin map of a second coil unit according to an embodiment
  • FIG. 7C is a circuit diagram of a transformer according to an embodiment.
  • 7D is a view for explaining a form in which an overlap occurs between conductive lines in a second part of a second coil part according to an exemplary embodiment
  • FIG. 7E is an example of a rear view of the second coil unit according to an embodiment
  • FIG. 7F is a side view of the second coil unit according to the embodiment of FIG.
  • 7G is a plan view illustrating an example of a configuration of a second bobbin according to another embodiment.
  • FIG. 8A is a perspective view of a transformer according to another embodiment
  • 8B is a plan view of a transformer according to another embodiment.
  • FIG. 9 is an exploded perspective view of a transformer according to another embodiment.
  • FIG. 10 is a perspective view of a first bobbin according to another embodiment.
  • FIG. 11 is an exploded perspective view of a bobbin part according to another embodiment.
  • FIG. 12 is a cross-sectional view taken along line B-B' of FIG. 8B of a transformer according to another embodiment.
  • 13A is a cross-sectional view taken along line A-A' of FIG. 8B of a transformer according to another embodiment.
  • 13B is an enlarged view of part 'C' of FIG. 13A.
  • FIG. 14 shows an example of a circuit configuration of a power supply unit of an electronic product.
  • Terms including an ordinal number such as second, first, etc. may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • each layer (film), region, pattern or structures is referred to as “on” or “under” the substrate, each layer (film), region, pad or patterns.
  • the description that it is formed on includes all those formed directly or through another layer.
  • the criteria for the upper/above or lower/lower layers of each layer will be described with reference to the drawings.
  • the thickness or size of each layer (film), region, pattern, or structure in the drawings may be changed for clarity and convenience of description, it does not fully reflect the actual size.
  • FIG. 2A is a plan view of a transformer according to an embodiment
  • FIG. 2B is a rear view of the transformer according to an embodiment
  • FIG. 2C is a cross-section of the transformer according to an embodiment taken along line A-A' in FIG. 2A It is a cross-sectional view showing
  • the transformer 100 includes core parts 111 and 112 , a first coil part 120 , a second coil part 130 , a terminal bobbin 140 , and It may include a core fixing part 150 .
  • core parts 111 and 112 a first coil part 120 , a second coil part 130 , a terminal bobbin 140 , and It may include a core fixing part 150 .
  • the core parts 111 and 112 have a characteristic of a magnetic circuit and may serve as a path for magnetic flux.
  • the core parts 111 and 112 may include an upper core 111 coupled from an upper side and a lower core 112 coupled from a lower side.
  • the two cores 111 and 112 may be vertically symmetrical to each other or may have an asymmetrical shape. However, in the following description, it is assumed that the shape is vertically symmetrical for convenience of description.
  • Each of the upper core 111 and the lower core 112 may include a flat body portion and a plurality of leg portions protruding from the body portion in the thickness direction (ie, three-axis direction) and extending along a predetermined direction.
  • the plurality of leg portions extend along one axis (here, axis 1) on a plane and are spaced apart from each other along the direction of the other axis (here, axis 2), and one middle foot (CL) disposed between the two outer legs ) may be included.
  • each of the outer and midfoot of the upper core 111 faces the corresponding outer or midfoot of the lower core 112 .
  • a gap of a predetermined distance eg, 10 to 200 ⁇ m, but not necessarily limited thereto
  • the size of the gap is a space generated through the separation between the upper core 111 and the lower core 112, and the gap may be filled with air (ie, air gap) or may be filled with an adhesive component. .
  • the core parts 111 and 112 may include a magnetic material, for example, iron or ferrite, but is not limited thereto.
  • the first coil unit 120 includes a first bobbin B1 having a first through hole CH1 or a first hollow in the center, and a plurality of first through holes CH1 in the accommodating space of the first bobbin as the center.
  • a first coil C1 wound to form a turn may be included.
  • the second coil unit 130 includes a second bobbin B2 having a second through hole (CH2 in FIG. 4A, or a second hollow) in the center, and a second through hole in the accommodating space of the second bobbin B2. It may include a second coil (C2) arranged to form a turn based on (CH2).
  • CH2 second through hole
  • C2 second coil
  • at least a portion of the first coil unit 120 may be disposed in the second through hole CH2. Accordingly, at least a portion of the first coil unit 120 and the second coil unit 130 may overlap in the first axial direction and the second axial direction.
  • the first coil C1 and the second coil C2 may be multiple windings in which a rigid metal, for example, a copper conductive wire is wound several times in a spiral or a plane spiral, but is not limited thereto.
  • the first coil C1 may be an enamel wire (USTC wire) wrapped with a fiber yarn, a Litz wire, a triple insulated wire (TIW), or the like.
  • the first coil unit 120 may correspond to a primary side coil of the transformer 100
  • the second coil unit 130 may correspond to a secondary side coil of the transformer 100 , but must be
  • the present invention is not limited thereto.
  • the diameter of the second coil C2 may be 0.7 to 0.9 times the height of the second bobbin B2 in the three-axis direction, but is not necessarily limited thereto.
  • the first coil unit 120 will be described later in detail with reference to FIGS. 3A and 3B , and the second coil unit 130 will be described with reference to FIGS. 4A to 4C .
  • the terminal bobbin 140 is coupled to one side in the uniaxial direction in a state in which the first coil unit 120 and the second coil unit 130 are coupled, and the first coil C1 is electrically connected to an external circuit (not shown). It provides a terminal terminal for connection to A specific shape of the terminal bobbin 140 will be described later in more detail with reference to FIGS. 5A and 5B .
  • the core fixing part 150 is for a more stable coupling of the upper core 111 and the lower core 112, and the outer surface of the core part 110 is wound one or more times in the biaxial and triaxial directions with a polymer resin tape. may be, but is not necessarily limited thereto.
  • FIG. 3A is a perspective view of a first bobbin according to an embodiment
  • FIG. 3B is a plan view of the first bobbin according to an embodiment.
  • the first bobbin B1 includes a first upper plate TP1, a first lower plate BP1, and a first upper plate TP1 and a first lower plate ( It may include a first sidewall part SW1 disposed between BP1).
  • the first side wall part SW1 defines a first hollow CH1, and an accommodation space in which the first coil C1 is accommodated together with the bottom surface of the first upper plate TP1 and the upper surface of the first lower plate BP1. can form.
  • a first take-out groove DH1 and a second take-out groove DH2 may be disposed at an edge of one side of the first upper plate TP1 to which the terminal bobbin 140 is coupled along the uniaxial direction.
  • One end of both ends of the conductive wire constituting the first coil C1 is drawn out through the first lead-out groove DH1, and the other end of the first coil C1 is drawn out through the second lead-out groove DH2. may be withdrawn upwards.
  • Both ends of the first coil C1 drawn out through each of the first take-out groove DH1 and the second take-out groove DH2 may extend onto the terminal bobbin 140 , respectively.
  • the first take-out groove DH1 and the second take-out groove DH2 may overlap with each other in the three-axis direction with the second recess RC2 of the terminal bobbin 140 to be described later.
  • FIG. 4A is a plan view of a second bobbin according to an embodiment
  • FIG. 4B is a perspective view of the second bobbin according to an embodiment
  • FIG. 4C is a rear perspective view of the second bobbin according to an embodiment.
  • the second bobbin B2 includes a second upper plate TP2, a second lower plate BP2, and a second upper plate TP2 and a second lower plate.
  • a second sidewall part SW2 disposed between the BP2 may be included.
  • the second side wall part SW2 defines a second hollow CH2, and an accommodation space in which the second coil C2 is accommodated together with the bottom surface of the second upper plate TP2 and the upper surface of the second lower plate BP2. can form.
  • a first protrusion PT1 and a second protrusion PT2 protruding upward in the three-axis direction are disposed on one side of the second upper plate TP2 to which the terminal bobbin 140 is coupled along the uniaxial direction, 1
  • a first partition wall part PA1 that is bent upwardly and extends along the three-axis direction may be disposed on the other edge opposite to the one side in the axial direction.
  • a third protrusion PT3, a fourth protrusion PT4, a second partition wall PA2, and a first support portion protruding downward along the triaxial direction SP1) and a first recess RC1 may be disposed.
  • a plurality of second terminal terminals TM2 and second support parts SP2 may be disposed on the other side opposite to one side of the second lower plate BP in the uniaxial direction.
  • the plurality of second terminal terminals TM2 may be spaced apart from each other in the biaxial direction and disposed side by side.
  • the first recess RC1 may have a planar shape recessed from one end of the second lower plate BP toward the other.
  • the width in the biaxial direction of the first recess RC1 may become narrower from one end toward the other.
  • the first recess RC1 may have a semi-circular or semi-elliptical planar shape, but is not limited thereto.
  • a portion of the second coil C2 may be exposed through the first recess RC1 , which will be described later in more detail with reference to FIGS. 7D to 7F .
  • the second partition wall part PA2 may extend in two axial directions, and the first support part SP1 has the other side from the second partition wall part PA2 in the uniaxial direction, that is, the center of the second hollow CH2. can protrude in the direction.
  • the second support part SP2 may protrude to one side along the uniaxial direction, and the first coil part 120 together with the first support part SP1 is disposed in the second hollow CH2 from the upper side to the lower side along the three axis direction. It is possible to support the first coil unit 120 when inserted into the.
  • the second wire guide WG2 may be disposed between the first partition wall portion PA1 and the plurality of terminal terminals TM2 on a planar view.
  • the second wire guide WG2 may include a central portion WG2_C and side portions WG2_S1 and WG2_S2 .
  • the central portion WG2_C may protrude from the second sidewall part SW2 toward the second terminal terminal TM2 , and the width in the biaxial direction may become narrower toward the second terminal terminal TM2 .
  • the side parts WG2_S1 and WG2_S2 may be arranged in a plate-like shape to connect the lower end of the first partition wall part PA1 and the central part WG2_C.
  • each of the side parts WG2_S1 and WG2_S2 may have an arc-shaped planar shape connecting the lower end of the first partition wall part PA1 and the central part WG2_C, and the second wire guide WG2 has a 'T' shape. It may have a planar shape.
  • the second wire guide WG2 may provide a guide for the innermost conductive wire among the plurality of conductive wires constituting the second coil C2 .
  • the plurality of conductive wires (not shown) constituting the second coil C2 is a portion where the second upper plate TP2 and the second lower plate BP2 do not overlap each other along the three-axis direction, that is, a flat surface. It is exposed upwardly between the first partition wall part PA1 and the second terminal terminal TM2. Accordingly, the side parts WG2_S1 and WG2_S2 of the second wire guide WG2 are formed between the second coil C2 and the first coil C2 and the second coil and the core part 110 together with the first partition wall part PA1. It can contribute to securing the insulation distance.
  • the protrusions PT1, PT2, PT3, and PT4 are fitted into respective grooves H1, H2, H3, and H4 of the terminal bobbin 140 to be described later to couple and fix the second bobbin B2 and the terminal bobbin 140 to each other.
  • FIG. 5A is a plan view of a terminal bobbin according to an embodiment
  • FIG. 5B is a perspective view of a terminal bobbin according to an embodiment.
  • the terminal bobbin 140 is disposed between the third upper plate TP3, the third lower plate BP3, and the third upper plate TP3 and the third lower plate BP3. and a third sidewall part SW3 that is
  • a first hole H1 , a second hole H2 , and a first wire guide WG1 are disposed in the third upper plate TP3 , and the third hole H3 and the fourth hole H3 are disposed in the third lower plate BP3 .
  • a hole H4 may be disposed.
  • An opening OP is formed on one side of the terminal bobbin 140 on which the third sidewall part SW3 is not disposed in the uniaxial direction so that the second coil part 130 can be inserted, and one side and one side along the uniaxial direction
  • a plurality of first terminal terminals TM1 are disposed on the opposite side.
  • a second recess RC2 may be formed in each of the third upper plate TP3 and the third lower plate BP3 at the upper and lower sides in the three-axis direction with respect to the opening OP to be depressed to the other side in the uniaxial direction. have.
  • the second recess formed in the third upper plate TP3 and the second recess formed in the third lower plate BP3 may have different planar shapes, but are not limited thereto.
  • the planar shape of the second recess RC2 does not cover the first coil unit 120 when the terminal bobbin 140 is coupled in a state in which the first coil unit 120 and the second coil unit 130 are coupled. It is desirable to have a shape that does not overlap (ie, does not overlap along the triaxial direction) or has a minimally obscuring shape. This is to prevent heat generated from the first coil C1 disposed in the first coil unit 120 from being trapped by the terminal bobbin 140 .
  • Each of the plurality of first wire guides WG2 may extend from the second recess RC2 toward different first terminal terminals TM1 .
  • the number of the first terminal terminals TM1 and the number of the first wire guides WG1 may correspond to each other, but are not limited thereto.
  • One end of the first coil C1 drawn out through any one of the lead-out grooves DH1 and DH2 of the first bobbin B1 has an upper end through the second recess RC2 formed in the third upper plate TP3. can be exposed as One end of the exposed first coil C1 may extend toward the first terminal terminal TM1 along the first wire guide WG1 and may be electrically connected to the first terminal terminal TM1 .
  • Each of the plurality of first terminal terminals TM1 may be configured as a terminal pin TP extending in a uniaxial direction and then bent in a triaxial direction.
  • the portion extending in the uniaxial direction from the terminal pin TP may be electrically connected and fixed to one end of the first coil C1 through soldering, etc., and the portion extending in the three-axis direction is the terminal bobbin 140 .
  • a portion exposed downward of the terminal bobbin 140 may be electrically connected to and fixed to the circuit board.
  • a configuration using the terminal pin TP may be applied to the second terminal terminal TM2 similarly to the first terminal terminal TM1 .
  • the transformer 100 according to the embodiment may include a plurality of adhesive parts in addition to the above-described core fixing part 150 to maintain higher reliability. This will be described with reference to FIG. 6 .
  • FIG. 6 shows an example of an arrangement form of an adhesive part of a transformer according to an embodiment.
  • first to third adhesive parts AD1 , AD2 and AD3 are disposed so that the core part 110 and the first coil part 120 may be more strongly coupled.
  • a fourth adhesive portion AD4 may be disposed between the second recess RC2 of the terminal bobbin 140 and the first upper plate TP1 .
  • the fifth adhesive part AD5 and the sixth adhesive part AD6 may be disposed along a line in which the first coil part 120 and the second coil part 130 contact each other in the uniaxial direction.
  • the fifth adhesive part AD5 and the sixth adhesive part AD6 are the lower surface of the body part of the upper core 111 or the lower core 112 together with the line in which the first coil part 120 and the second coil part 130 are in contact with each other. Of course, it can be in contact with the upper surface of the body part of the
  • Each adhesive part may be a resin-based adhesive, but is not necessarily limited thereto.
  • an adhesive portion may be formed at a portion where the first to fourth protrusions PT1 , PT2 , PT3 , and PT4 and the first to fourth grooves H1 , H2 , H3 and H4 are coupled.
  • FIG. 7A illustrates an example of a coil arrangement form of a second coil unit according to an embodiment.
  • the second coil C2 is illustrated as being disposed on the second bobbin B2 for convenience of explanation, but the actual second coil C2 is the second upper plate TP2 of the second bobbin B2. ) and the second lower plate BP2.
  • the second bobbin B2 has a central portion CP, a central portion CP or a first portion 1P positioned on one side in the uniaxial direction in the second through hole CH2, and a central portion CP ) or a second part 2P positioned on the other side opposite to the first part 1P in the uniaxial direction in the second through hole CH2.
  • a second through hole CH2 may be disposed in the central portion CP, and a plurality of terminal pins T1 , T2 , T3 constituting the second terminal terminal TM2 in the first portion 1P along the biaxial direction. , T4, T5, T6, T7, T8) may be arranged side by side.
  • the second coil C2 may include a plurality of conductive lines L1 , L2 , L3 , and L4 .
  • Both ends of the plurality of conductive lines (L1, L2, L3, L4) are respectively electrically connected to different one of the plurality of terminal pins (T1, T2, T3, T4, T5, T6, T7, T8), One turn may be formed based on the second through hole CH2.
  • both ends of the first conductive line L1 are connected to the second terminal pin T2 and the fifth terminal pin T5, and both ends of the third conductive line L3 are connected to the first terminal pin ( T1) and the sixth terminal pin T6 are respectively connected.
  • both ends of the second conductive line L2 are connected to the fourth terminal pin T4 and the seventh terminal pin T7, respectively, and both ends of the fourth conductive line L4 are connected to the third terminal pin T3 ) and the eighth terminal pin T8, respectively.
  • the plurality of conductive lines L1 , L2 , L3 , and L4 may be disposed in parallel with each other in the biaxial direction in the central portion CP and may extend along the uniaxial direction.
  • the plurality of conductive lines L1 , L2 , L3 , and L4 do not overlap each other along the triaxial direction in the central portion CP, but in the region adjacent to the second portion 2P, some in the triaxial direction Overlapping may occur. That is, one side of each of the plurality of conductive lines L1, L2, L3, and L4 may extend to be disposed on the second portion 2P, and the other end may extend such that both ends thereof are disposed on the first portion 1P. have.
  • the second coil unit 130 Due to the configuration of the second coil unit 130 described above, there is a portion in which overlapping between the conductive wires constituting the second coil C2 occurs in the second part 2P, etc., but in terms of individual conductive wires, only one turn is achieved.
  • the two coils C2 can be seen to be wound in one layer.
  • This terminal pin connection state and the intersection in the second part 2P are for inductance matching between parts forming the same turn from a circuit point of view.
  • FIG. 7B is a pin map of a second coil unit according to an embodiment
  • FIG. 7C is a circuit diagram of a transformer according to an embodiment.
  • the first conductive line L1 and the third conductive line L3 are connected in parallel to form a first turn part NS2 for the first signal of the second coil part of the transformer
  • the second conductive line L2 and the fourth conductive line L4 constitute the second turn unit NS3 for the second signal of the second coil unit.
  • the first terminal pin T1 and the second terminal pin T2 correspond to the input terminal for the first signal
  • the fifth terminal pin T5 and the sixth terminal pin T6 correspond to the input terminal for the first signal. It corresponds to the ground.
  • the seventh terminal pin T7 and the eighth terminal pin T8 correspond to the input terminal for the second signal
  • the fourth terminal pin T4 and the fifth terminal pin T5 correspond to the second signal input terminal. corresponds to the ground.
  • the ground of each signal may be electrically connected to each other to form a so-called center tap (CT) structure.
  • CT center tap
  • the first conductive line L1 and the third conductive line L3 constituting the first turn part NS2 in parallel are the second turn part in parallel.
  • the second conductive line L2 and the fourth conductive line L4 constituting the NS3 and the second through hole CH2 are in the form of a mirror image (symmetrical) on a plane along the uniaxial direction. Therefore, since the first turn part NS2 and the second turn part NS3 have substantially the same conductive line configuration, the inductance deviation due to the difference in the length of the conductive lines is minimized, and thus heat generation due to current concentration can be reduced. .
  • FIG. 7D is a view for explaining a form in which an overlap occurs between conductive lines in a second part of a second coil part according to an exemplary embodiment;
  • the conductive lines L1 , L2 , L3 , and L4 are expressed as solid lines irrespective of overlap.
  • a plurality of overlapping regions are provided according to an overlapping combination pair between a plurality of conductive lines.
  • the second area A2 overlaps on this plane
  • the first conductive line and the second conductive line on the plane An overlapping fourth area A4 is generated.
  • FIG. 7E is a rear view of the second coil unit according to an embodiment
  • FIG. 7F is a side view of the second coil unit shown in FIG. 7E as viewed in the direction of the arrow at the top of FIG. 7E.
  • a first recess RC1 having a semi-circular planar shape is formed in each of the second lower plates BP2 of the second coil unit 130 . Due to having the first recess RC1, the height h2 of the accommodation space (that is, the height of the second sidewall SW2) as shown in FIG. 7F is less than twice the diameter D of the conductive wire. However, a space can be secured for the conductive lines to intersect without deformation of the bobbin. Accordingly, an increase in the thickness of the second bobbin B2 can be prevented.
  • the maximum length h1 of the first recess RC1 in the uniaxial direction is preferably greater than twice the diameter of each conductive line (2*D) as shown in FIG. 7D .
  • the position of the first recess RC1 preferably includes at least a part of each of the four regions A1 , A2 , A3 , and A4 in which the overlapping between the conductive lines of FIG. 7D occurs.
  • the planar area of the first recess RC1 is preferably 50% to 90% of the sum of the areas of the four regions A1 , A2 , A3 , and A4 where the conductive lines overlap each other, but is not necessarily limited thereto. .
  • planar shape of the first recess RC1 is shown as a semicircle in FIG. 11A , this is exemplary and at least a part of each of the four regions A1 , A2 , A3 , and A4 where the conductive lines overlap each other may be included. If possible, it is not limited to the shape of a circle, a track type, a polygon, etc.
  • 7G is a plan view illustrating an example of a configuration of a second bobbin according to another embodiment.
  • the configuration of the second bobbin B2 according to another embodiment shown in FIG. 7G is the same as that of the second bobbin B2 described above with reference to FIG. 4A except for the short circuit parts SP1, SPC, and SP2, A duplicate description will be omitted.
  • the first terminal pin T1 and the second terminal pin T2 corresponding to the input terminal of the first signal may be shorted through the first short circuit unit SP1 .
  • the seventh terminal pin T7 and the eighth terminal pin T8 corresponding to the input terminal of the second signal may be short-circuited through the second short circuit unit SP2 .
  • the third to sixth terminal pins T3 , T4 , T5 , and T6 corresponding to the ground of the center tap configuration may be shorted through the center short circuit unit SPC.
  • each of the short circuits SP1 , SP2 , and SPC may be implemented through soldering, but this is exemplary and not necessarily limited thereto, and is not limited in any way if a short circuit between the terminal pins is possible.
  • each shorting part SP1 , SP2 , and SPC may be implemented through a conductor clip, a conductor pin, or a combination thereof and soldering.
  • the center short circuiting part SPC is integrally configured to short-circuit all of the third to sixth terminal pins T3, T4, T5, and T6, but according to another aspect, the center shorting part SPC is A first center short circuit (not shown) for shorting the third terminal pin T3 and the fourth terminal pin T4, and a second center short circuit for shorting the fifth terminal pin T5 and the sixth terminal pin T6 It may be composed of a sub (not shown). In this case, the first center shorting part (not shown) and the second center shorting part (not shown) may not be electrically connected in the transformer.
  • the transformer 100 may constitute a circuit board (not shown) constituting the power supply unit (PSU), etc. together with other magnetic elements (eg, inductors).
  • PSU power supply unit
  • FIG. 8A is a perspective view of a transformer according to another embodiment
  • FIG. 8B is a plan view of a transformer according to another embodiment
  • FIG. 9 is an exploded perspective view of a transformer according to another embodiment
  • FIG. 10 is a perspective view of a first bobbin according to another embodiment
  • FIG. 11 is an exploded perspective view of a bobbin part according to another embodiment.
  • a transformer 101 may include a core part 110 , bobbin parts B1 and B2 , and terminal terminals TM1 and TM2 .
  • a transformer 101 may include a core part 110 , bobbin parts B1 and B2 , and terminal terminals TM1 and TM2 .
  • each component will be described in detail.
  • the core parts 111 and 112 have a characteristic of a magnetic circuit and may serve as a path for magnetic flux.
  • the core parts 111 and 112 may include an upper core 111 coupled from an upper side and a lower core 112 coupled from a lower side.
  • the two cores 111 and 112 may be vertically symmetrical to each other or may have an asymmetrical shape. However, in the following description, it is assumed that the shape is vertically symmetrical for convenience of description.
  • Each of the upper core 111 and the lower core 112 includes a flat body portion and a plurality of leg portions OL1-1 protruding from the body portion in the thickness direction (ie, the Z-axis direction) and extending along a predetermined direction.
  • the plurality of leg portions OL1-1, OL1-2, and CL1 of the upper core 111 extend along one axis (here, the Y-axis) direction on a plane, and along the other axis (here, the X-axis) direction. It may include two exofoot OL1-1 and OL1-2 spaced apart from each other, and one middle foot CL1 disposed between the two exofoot OL1-1 and OL1-2.
  • each of the outer legs OL1-1 and OL1-2 and the middle foot CL1 of the upper core 111 corresponds to each other of the lower core 112 . It faces the exofoot (OL2-1, OL2-2) or midfoot (CL2).
  • the opposing pair of one exofoot OL1-1 and OL2-1 has a first exofoot
  • the pair of the other exofoot OL1-2 and OL2-2 has a second exofoot
  • the pair of midfoot CL1 and CL2 has a midfoot, respectively.
  • a gap of a predetermined distance may be formed between at least some of the exofoot pair or midfoot pair facing each other.
  • the inductance of the core part 110 may be controlled by adjusting the gap sizes of one middle foot pair and the two outer foot pairs, respectively, and heat generation may be controlled according to the number of gaps.
  • the core part 110 may include a magnetic material, for example, iron or ferrite, but is not limited thereto.
  • the core part 110 surrounds a portion of the outer side of the bobbin parts 120 and 130, a portion of the first coil part (not shown) and the second coil part (not shown) accommodated in the bobbin parts 120 and 130 is It can be seen that it is disposed in the core part 110 .
  • the bobbin units 120 and 130 may include a first bobbin B1 and a second bobbin B2.
  • the first bobbin B1 and the second bobbin B2 have a first through hole TH1 and a second through hole TH2, respectively, and the midfoot portions CL1 and CL2 of the core part 110 pass through the first. They may be arranged to pass through the hole TH1 and the second through hole TH2 .
  • At least a portion of the first bobbin B1 may be accommodated in the second bobbin B2 , and may include a first top part 121 , a first middle part 123 , and a first bottom part 122 .
  • Each of the first top part 121 and the first bottom part 122 may have a rectangular planar shape with rounded corners, but is not limited thereto.
  • the first bottom portion 122 may have a planar shape extending outwardly along the separation direction (ie, the X-axis direction) of the leg portions compared to the first top portion 121 .
  • the first middle part 123 is disposed between the first top part 121 and the first bottom part 122 in the vertical direction, and insulates between the conductive wire (not shown) constituting the first coil part and the midfoot part.
  • An inner surface of the first middle part 123 may define a first through hole TH1.
  • a space defined by a portion of the lower surface of the first top part 121 , the outer surface of the first middle part 122 and the upper surface of the first bottom part may function as an accommodation space for accommodating the conductive wires constituting the first coil part. .
  • the second bobbin B2 may include a second top part 131 , a second middle part 133 , a second bottom part 132 , and substrate support parts CBS1 and CBS2 .
  • the second middle part 133 is disposed between the second top part 131 and the second bottom part 132 in the vertical direction, and constitutes a conductive wire (not shown) constituting the second coil part and the first coil part. may be insulated between conductive wires (not shown).
  • a space defined by a portion of the lower surface of the second top portion 131 , an outer surface of the second middle portion 132 , and a portion of the upper surface of the second bottom portion may function as an accommodation space for accommodating conductive wires constituting the second coil portion. have.
  • the substrate support parts CBS1 and CBS2 spaced apart from each other in the long axis direction of the second bottom part 132 perform a function of supporting the transformer 101 when mounted on a circuit board (not shown) of a device such as a PSU. can do.
  • a plurality of protrusions 136 that protrude downward and are spaced apart from each other in the y-axis direction and arranged side by side may be formed around the second substrate support part CBS2 located on the second terminal terminal TM2 side of the substrate support parts.
  • the protrusion 136 supports the transformer 101 on the substrate together with the second substrate support part CBS2 and is drawn out between the second top part 131 and the second bottom part 132 , and the second coil part
  • the end portions of the conductive lines constituting the conductive wires may serve as a wire guide to extend to the second terminal terminal TM2.
  • a second through hole TH may be disposed in a central portion of the second top portion 131 , and terminal terminals TM1 and TM2 may be disposed at both ends in the longitudinal direction.
  • the terminal terminals TM1 and TM2 have a function of fixing the transformer 101 to a substrate (not shown) of the power supply unit PSU, and a first coil unit and a second coil unit (not shown) of the transformer 101 and power An electrical connection path function of a substrate (not shown) of the supply unit PSU may be performed.
  • the first terminal terminal TM1 may include a plurality of pins spaced apart from each other, and at least some of the plurality of pins may be electrically connected to one of both ends of the conductive wire constituting the first coil unit.
  • some and the other part of the plurality of pins constituting the first terminal terminal TM1 may face each other along the x-axis, and each of the part and the other part may be arranged side by side along the y-axis.
  • the second terminal terminal TM2 may include a plurality of pins parallel to each other along the x-axis but spaced apart from each other, and at least some of the plurality of pins may be electrically connected to any one of both ends of the conductive wire constituting the second coil unit. have.
  • the upper surface of the second top portion 131 faces each other along the long axis direction (ie, the Y-axis direction) of the second bobbin B2 with the second through-hole TH2 interposed therebetween, and the short-axis direction (ie, the X-axis direction) ) respectively extending along the first guide 134 and the second guide 135 are disposed.
  • the first guide 134 may be disposed on the side of the second terminal terminal TM2
  • the second guide may be disposed on the side of the first terminal terminal TM1 .
  • the upper core 111 is positioned between the first guide 134 and the second guide 135 to fix the position of the upper core 111 and between the upper core 111 and the terminal terminals TM1 and TM2. It can also serve to increase the insulation distance.
  • a reinforcing pattern part 136 may be disposed between the second terminal terminal TM2 and the first guide 134 on the upper surface of the second top part 131 .
  • the reinforcing pattern part 136 may be disposed in a shape in which a pattern having an 'F'-shaped planar shape faces each other along the X-axis direction, but is not limited thereto.
  • the rigidity of the second tower part 131 is improved by the reinforcement pattern part 136 and deformation can be prevented, and it is extended in the X-axis direction by the height difference between the reinforcement pattern part 136 and the second tower part 131 .
  • the plurality of grooves H1 and H2 are formed, the insulating distance between the upper core 111 and the second terminal TM2 may also be increased.
  • At least a portion of the first bobbin B1 has a recess RC defined by the lower surface of the second top 131 and the inner surface of the second middle portion 133 of the second bobbin B2 . ) can be accepted.
  • the upper surface of the first top part 121 faces the lower surface of the second top part 131 , and the first bottom part 122 .
  • a portion (ie, a portion extending outwardly) that does not overlap the first top portion 121 in the vertical direction among the upper surfaces of the upper surface faces the lower surface of the second bottom portion 132 .
  • the coil lead-out part 124 of the first top part 121 may pass through the third through-hole TH3 of the second top part 131 in the coupled state to be exposed upwardly.
  • the coil lead-out part 124 facilitates drawing out and fixing of both ends of the conductive wire constituting the first coil part to the upper surface of the second top part 131 , thereby enabling direct connection to the first terminal terminal TM1 .
  • a protrusion pin 125 protruding upward and extending in the X-axis direction is disposed between the first through-hole TH1 and the coil lead-out part 124 on the upper surface of the first top part 131 of the first bobbin B1. do.
  • the protrusion pin 125 is to be inserted into the blind hole BH formed inside the second guide 135 from the bottom surface of the second top part 131 when the first bobbin B1 and the second bobbin B2 are coupled. can Through this, the first bobbin B1 and the second bobbin B2 may maintain a stronger and more stable coupling state, and a cross-section of the coupled state is shown in FIG. 6A .
  • adhesion may be considered for more robust bonding between the bobbin parts B1 and B2 and the core part 110 .
  • a first adhesive group ( AD1, AD2, AD3, AD4) may be arranged in the form of side bonding.
  • the first adhesive groups AD1 , AD2 , AD3 , and AD4 may or may not contact the bobbin parts B1 and B2 , but at least the upper core 111 and the lower core 112 , respectively. It is preferable that they are all in contact with each other so as to be fixed between the upper core 111 and the lower core 112 .
  • the second adhesive groups AD5 and AD6 may be disposed between the bottom surface between the midfoot and the outer foot of the upper core 111 and the top surface of the second bobbin B2 . Due to the above-described bonding parts AD1 , AD2 , AD3 , AD4 , AD5 , and AD6 , vibration due to a gap between the bobbin parts B1 and B2 and the core part 110 may be prevented.
  • the first adhesive group AD1 , AD2 , AD3 , AD4 and the second adhesive group AD5 , AD6 may have the same adhesive or different adhesives.
  • the second adhesive group (AD5, AD6) is preferably a resin-based adhesive (Adhesive Resin) is applied, but is not necessarily limited thereto.
  • FIG. 12 is a cross-sectional view taken along line B-B' of FIG. 8B of a transformer according to an embodiment.
  • the bobbin parts B1 and B2 are disposed between the core part 110 and the coil parts 120 and 130 .
  • the coil parts 120 and 130 and the bobbin parts B1 and B2 are disposed. is partially disposed over the first space SB1 and the second space SB2 in the core part 110 .
  • the first space SB1 and the second space SB2 are spaced apart from each other in a direction in which the leg parts are spaced apart from each other (ie, the X-axis direction) with the midfoot parts CL1 and CL2 interposed therebetween, and the square cross-sectional shape is Y It may have a form extending along the axial direction.
  • first space SB1 is located between the midfoot portions CL1 and CL2 and the one side outer foot portions OL1-1 and OL2-1 of the core part 110
  • second space SB2 includes the midfoot portion ( It may be located between CL1 and CL2 and the other outer foot parts OL1-2 and OL2-2.
  • the first bobbin B1 includes a first accommodating part RP1 accommodating the first coil part 140 , and a first extension part EP1 extending from the first accommodating part RP1 to the second bobbin 130 direction. ) can have That is, the first accommodating part RP1 may correspond to a portion of the first top part 121 , the first middle part 123 , and the first bottom part 122 except for the first extension part EP1 .
  • the second bobbin 130 includes a second accommodating part RP2 accommodating the second coil part 130 , and a second extension part EP2 extending from the second accommodating part RP2 in the direction of the first bobbin B1 .
  • the second accommodating part RP2 may include a portion excluding the second extension part EP2 from the second top part 131 , the second middle part 133 , and the second bottom part 132 .
  • the second accommodating part RP2 is disposed on the first extended part EP1
  • the first accommodating part RP1 is disposed under the second extended part EP2 .
  • the shortest distance h1 from the lower surface of the lower core 112 to the first coil unit 120 is different from the shortest distance h2 from the lower surface of the lower core 112 to the second coil unit 130 .
  • the shortest distance h1 from the lower surface of the lower core 112 to the first coil unit 120 is smaller than the shortest distance h2 from the lower surface of the lower core 112 to the second coil unit 130 .
  • the shortest distance h1 between the first coil units 120 from the lower surface of the lower core 112 is 0.3 times the shortest distance h2 between the second coil units 130 from the lower surface of the lower core 112 . to 0.7 times.
  • the first coil part 120 and the second coil part 130 only partially overlap in the direction from one side of the outer foot to the other, and the other part does not overlap. won't In the vertical direction, the first coil unit 120 and the second coil unit 130 may not overlap each other.
  • At least a portion of the second coil unit 130 is disposed on a side surface of the first coil unit 120 , and the second receiving unit RP2 is disposed between the first coil unit 120 and the second coil unit 130 in the horizontal direction. ), that is, the second middle part 133 is disposed.
  • Each of the first coil unit 120 and the second coil unit 130 may be a multi-winding in which a rigid conductor metal, for example, a copper conductive wire is wound several times, but is not limited thereto.
  • the thickness of the conductive wire constituting the second coil unit 130 may be 50% to 150% of the thickness of the conductive line constituting the first coil unit 120 , but is not limited thereto.
  • insulating portions 161 and 162 may be respectively disposed between the bobbin portions B1 and B2 and both outer feet.
  • the insulating parts 161 and 162 extend outward from the upper surface of the second receiving part RP2 and then are bent to extend again to surround the outside of the second receiving part RP2 and the first extended part EP1, and again 1 It may be bent to the lower surface of the extension part EP1 and extended.
  • both the second coil unit 130 and the first coil unit 120 may be insulated from the outer foot of the core unit 110 .
  • the insulating parts 161 and 162 may include components such as ketone and polyimide having excellent insulating properties, but are not limited thereto.
  • the insulation distance of the first coil unit 120 with respect to the core unit 110 may be greatly increased.
  • the first insulation distance PATH1 toward the upper side of the first coil part 120 directly reaches the lower surface of the upper bobbin without the second extension part EP2 , but due to the presence of the second extension part EP2 . It extends at least by the length of the second extension portion in the x-axis direction.
  • the second insulation distance PATH2 to the lower side of the first coil unit 120 is extended by the length of the first extension portion EP1 in the x-axis direction and the length of the insulation portions 161 and 162 in the same direction. be able to get
  • the first receiving part RP1 and the second accommodating part RP2 may be offset in the horizontal direction to secure additional leakage inductance.
  • FIGS. 13A and 13B a cross-section of a portion not covered by the core part 110 will be described with reference to FIGS. 13A and 13B .
  • FIG. 13A is a cross-sectional view taken along line A-A' of FIG. 8B of a transformer according to another embodiment, and FIG. 13B is an enlarged view of part 'C' of FIG. 13A.
  • the first extension part EP1 from the first bobbin B1 may not be disposed in a portion where the bobbin parts B1 and B2 are not covered by the core part 110 . .
  • the first coil part 120 and the second coil part 120 and the second part of the bobbin parts B1 and B2 are not covered by the core part 110 , that is, outside the first space SB1 and the second space SB2 .
  • the shortest distance ⁇ between the coil units 130 is the shortest distance between the first coil unit 120 and the second coil unit 130 in a portion where the bobbin units B1 and B2 are surrounded by the core unit 110 . It may be the same as ( ⁇ ) or different.
  • the shortest distance ratio ( ⁇ / ⁇ ) may be between 1 and 1.3.
  • the shortest distance ratio ( ⁇ / ⁇ ) is less than 1, the overall size of the transformer 101 is increased, and the leakage inductance change is not large.
  • the shortest distance ratio ( ⁇ / ⁇ ) exceeds 1.3, the energy conversion efficiency of the transformer 101 decreases.
  • this range corresponds to when the incision A-A' and the incision B-B' of FIG. 8B intersect at the center of the midfoot on a plane, and the shortest distance ratio ( ⁇ / ⁇ ) is the first middle part 123 and the second middle part. It may be different depending on the radius of curvature in the winding direction of the part 133 .
  • transformer 101 according to the embodiment will be described with reference to FIG. 14 along with a circuit configuration in which the transformer 101 may be mounted.
  • FIG. 14 shows an example of a circuit configuration of a power supply unit of an electronic product.
  • a circuit configuration of a power supply unit (ie, PSU) of an electronic product including a square wave generator 210 , a resonator 220 , and a rectifier 230 , for example, a flat panel TV is illustrated.
  • the flat panel TV generally supports other operation modes such as a low power mode in addition to the normal mode, and since high efficiency is required for each operation mode, the resonance unit 220 is implemented in the form of an LLC resonance converter.
  • the LLC resonant converter includes a first inductor (Lr, 221), a second inductor (Lm, 222) and a capacitor (Cr, 223).
  • the inductance (Lm) of the second inductor 222 is the inductance that operates the circuit. can see.
  • the resonance frequency varies according to the operating frequency of the PSU, and factors determining the operating frequency include the inductance Lr of the first inductor 221 and the capacitance Cr of the capacitor 223 . If the inductance Lr of the first inductor 221 and the capacitance Cr of the capacitor 223 are not matched to an appropriate value, the efficiency of the entire circuit may decrease or a situation in which a normal operation is impossible occurs.
  • the inductance (L) value of the leakage inductance integrated transformer such as the transformer 101 according to the embodiment corresponds to Lm in the resonator 220, and the leakage inductance (Lk) value corresponds to Lr.
  • the Lk/Lm ratio required for the PSU of a general flat-panel TV is 10 to 20%, but the Lk value of the conventional transformer is too low to satisfy it.
  • the leakage inductance of the transformer can be obtained as in Equation 1 below.
  • Equation 1 Lk represents a leakage inductance, k represents a coupling coefficient, and Lm represents an inductance of a transformer, respectively.
  • the coupling coefficient (k) may be obtained by experimentation, for example, may be obtained as in Equation 2 below.
  • Equation 2 X is a winding spacing ratio, and the first coil part compared to the shortest distance between the outermost part of the first coil part defining a space in which the second coil part can be wound (hereinafter, referred to as “winding space” for convenience) and the adjacent outer foot part and the separation distance of the second coil unit.
  • the shortest distance between the first coil unit 120 and the second coil unit 130 (ie, ⁇ in FIG. 5 ) is the first It corresponds to a distance between the outermost of the coil unit 120 and the innermost of the second coil unit 130 .
  • the maximum value of the distance that can be achieved with the first coil unit 120 within the winding space in which the second coil unit 130 can exist is the first coil unit. It becomes the shortest distance (ie, d1 in FIG. 12 ) from the outermost part of 120 to the adjacent outer foot part.
  • the leakage inductance of the transformer varies according to the coupling coefficient, and the coupling coefficient is particularly affected by the shortest distance between the first coil unit 120 and the second coil unit 130 inside the core unit 110 .
  • the shortest distance ⁇ between the first coil unit 120 and the second coil unit 130 is determined depending on where the innermost part of the second coil unit 130 is located in the winding space, and the shortest distance If only the increase of ( ⁇ ) is considered, the number of turns of the second coil unit 130 is limited when the winding space is fixed, and since the size of the core unit 110 must be increased in order to increase the winding space, it is also approached from the viewpoint of expanding the winding space. difficult.
  • the leakage inductance may be secured by controlling the ratio, that is, the winding gap ratio.
  • the shortest distance ⁇ between the first coil unit 120 and the second coil unit 130 is preferably 0.1 to 0.3 times d1. If the ratio is less than 0.1 times, the LLC matching of the circuit (eg, PSU) board on which the transformer is mounted is misaligned and the operating frequency rises, which may cause a problem that the board cannot be controlled. This is because efficiency is reduced and can cause oscillations on the board.
  • PSU circuit
  • the leakage inductance is affected by the coupling coefficient k, and the coupling coefficient is affected by the distance and overlapping area between the first coil unit and the second coil unit.
  • the transformer 101 according to the embodiment lowers the coupling coefficient by controlling the separation distance between the first coil unit and the second coil unit to increase leakage inductance, and accommodates the accommodation space of the first coil unit and the second coil unit. By shifting the space in the horizontal direction, leakage inductance was additionally secured.
  • the transformer according to the embodiment is suitable for configuring the power supply unit of a flat panel TV because it is possible to secure a slim and high Lk value due to the above-described bobbin unit coupling structure.
  • the second receiving part RP2 is the first extension part (EP1), and the first accommodating part RP1 is disposed under the second extended part EP2 so that at least a part of the first accommodating part RP1 and the second accommodating part RP2 does not overlap in the horizontal direction .
  • the space in which the first coil unit 120 is accommodated and the space in which the second coil unit 130 is accommodated may be parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

본 일 실시예에 따른 트랜스포머는, 코어부 및 상기 코어부 내에 적어도 일부가 수용되는 제1 코일부와 제2 코일부를 포함하고, 제2 코일부는 복수의 도전선이 특정 영역에서 서로 교차하도록 하여 도전선 간의 인덕턴스 편차를 감소시킬 수 있으며, 제1 코일부의 제1 코일은 터미널 보빈을 통해 터미널 단자를 제공받을 수 있다.

Description

트랜스포머
본 발명은 트랜스포머에 관한 것이다.
전자기기의 전원공급장치에는 트랜스포머나 라인 필터와 같은 다양한 코일 부품이 탑재된다.
트랜스포머(Transformer, 변압기)는 다양한 목적으로 전자기기에 포함될 수 있다. 예를 들어, 트랜스포머는 하나의 회로에서 다른 회로로 에너지를 전달하는 에너지 전달기능을 수행하기 위해 사용될 수 있다. 또한, 트랜스포머는 전압의 크기를 바꾸는 승압 혹은 강압의 기능을 수행하기 위해서 사용될 수도 있다. 또한, 1차, 2차측 권선 간에 유도성 결합(커플링)만 되므로 어떠한 DC 경로도 직접 형성되지 않는 특징을 가지는 트랜스포머는 직류 차단 및 교류 통과를 위한 목적이나 두 회로간 절연 분리를 위해 사용될 수도 있다.
도 1은 일반적인 트랜스포머 구성의 일례를 나타내는 분해사시도이다.
도 1을 참조하면, 일반적인 슬림형 트랜스포머(10)는 상부 코어(11)와 하부 코어(12)를 포함하는 코어부와, 그(11, 12) 사이에 2차측 코일(13)과 1차측 코일 (14)을 포함한다. 2차측 코일(13)은 복수매의 도전성 금속 플레이트로 구성되고, 1차측 코일(14)은 도전선을 권선한 형태를 갖는 것이 보통이다. 구성에 따라서는 상부 코어(11)와 하부 코어(12) 사이에 보빈(미도시)이 배치되기도 한다.
도 1에 도시된 트랜스포머에서는 1차측 코일과 2차측 코일이 수직 방향으로 중첩되는데, 2차측 코일에 도전성 금속 플레이트 대신 도전선을 적용할 경우, 1차측 코일과 2차측 코일은 수평 방향으로 서로 중첩되도록 배치될 수 있다.
그런데, 2 차측 코일에 도전선을 적용할 경우 슬림화를 위해 평면상에서 나란히 배치되어야 하기 때문에 코어부의 중족을 중심으로 턴을 형성함에 있어 중족에 가장 가까운 내측 도전선은 길이가 가장 짧게 되고, 가장 먼 외측 도전선은 길이가 가장 길게 되어 인덕턴스 편차가 발생하게 된다. 이러한 인덕턴스 편차는 전류의 쏠림을 야기하고, 전류의 쏠림은 다시 심한 발열의 원인이 되는 문제점이 있다.
본 발명이 이루고자 하는 기술적 과제는 슬림하면서도 발열을 감소시킬 수 있으며, 도전선으로 구성된 코일의 길이 차이로 인한 인덕턴스 편차에 따른 발열을 방지할 수 있는 트랜스포머를 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 더욱 슬림화가 가능하면서 리키지 인덕턴스의 확보가 가능한 슬림형 트랜스포머를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 실시예에 따른 트랜스포머는 상부 코어 및 하부 코어를 포함하는 코어부상기 코어부 내에 일부가 배치된 코일부 및 상기 코어부와 상기 코일부 사이에 배치된 보빈부를 포함하고, 상기 코일부는, 제1 코일 및 상기 제1 코일의 측면에 적어도 일부가 배치된 제2 코일을 포함하고, 상기 보빈부는, 상기 제1 코일을 수용하는 제1 수용부가 형성된 제1 보빈 및 상기 제2 코일을 수용하는 제2 수용부가 형성된 제2 보빈을 포함하고, 상기 제1 보빈은 상기 제1 수용부로부터 상기 제2 보빈 방향으로 연장된 제1 연장부를 포함하고, 상기 제2 수용부는 상기 제1 연장부 상에 배치된다.
상기 제1 보빈은, 제1 탑부, 상기 제1 탑부 아래 배치되는 제1 바텀부 및 상기 제1 탑부와 상기 바텀부 사이에 배치되며, 내측면으로 제1 관통홀을 정의하는 제1 미들부를 포함하고, 상기 제1 연장부는 상기 제1 바텀부에 배치될 수 있다.
상기 제2 보빈은, 중앙부에 제2 관통홀이 배치된 제2 탑부, 상기 제2 탑부 아래 배치되는 제2 바텀부 및 상기 제2 탑부와 상기 제2 바텀부 사이에 배치되는 제2 미들부를 포함하고, 상기 제1 보빈은, 상기 제2 탑부의 하면과 상기 제2 미들부의 내측면으로 정의되는 리세스에 적어도 일부가 수용될 수 있다.
상기 제1 연장부는, 상기 제2 바텀부의 하면과 대향할 수 있다.
상기 제2 탑부는, 상기 제2 관통홀을 사이에 두고 상기 제2 보빈의 장축 방향을 따라 대향하는 제1 가이드 및 제2 가이드를 포함하고, 상기 제1 가이드 및 상기 제2 가이드 각각은, 상기 제2 탑부의 상면에서 상측으로 돌출되며 상기 제2 보빈의 단축 방향을 따라 연장될 수 있다.
상기 상부 코어는, 상기 제1 가이드 및 상기 제2 가이드 사이에 배치될 수 있다.
상기 제2 탑부는, 상기 제2 가이드를 사이에 두고 상기 장축 방향으로 상기 제2 관통홀과 대향하는 제3 관통홀을 더 포함할 수 있다.
상기 제1 탑부는 상면에 배치된 코일 인출부를 더 포함하고, 상기 코일 인출부는 상기 제3 관통홀을 관통하여 노출될 수 있다.
상기 제2 탑부는, 저면에서 상기 제2 가이드 내부를 향해 형성된 블라인드 홀을 더 포함하고, 상기 제1 탑부는, 상기 코일 인출부와 상기 제1 관통홀 사이에 배치되며 상기 상면에서 상측으로 돌출되어 상기 블라인드홀에 삽입되는 돌출핀을 더 포함할 수 있다.
상기 하부 코어의 하면으로부터 상기 제1 코일 간 최단 거리와 상기 하부 코어의 하면으로부터 상기 제2 코일 간 최단 거리는 상이할 수 있다.
상기 하부 코어의 하면으로부터 상기 제1 코일 간 최단 거리는 상기 하부 코어의 하면으로부터 상기 제2 코일 간 최단 거리보다 작을 수 있다.
상기 제2 보빈은 상기 제2 수용부로부터 상기 제1 보빈 방향으로 연장된 제2 연장부를 포함하고, 상기 제1 수용부는 상기 제2 연장부 아래에 배치될 수 있다.
상기 제1 코일 및 상기 제2 코일 사이에 상기 제2 수용부의 일부가 배치될 수 있다.
상기 코어부는, 제1 외족부, 제2 외족부 및 상기 제1 외족부와 상기 제2 외족부 사이에 배치되는 중족부를 포함하고, 상기 제1 코일과 상기 제2 코일 간 최단 거리는, 상기 제1 코일의 최외곽에서 상기 제1 외족부 및 상기 제2 외족부 중 인접한 한 외족부 간 최단 거리의 0.1배 내지 0.3 배일 수 있다.
상기 코어부는, 상기 제1 외족부와 상기 중족부 사이에 상기 보빈부의 일부를 수용하도록 형성된 제1 공간 및 상기 제2 외족부와 상기 중족부 사이에 상기 보빈부의 타부를 수용하도록 형성된 제2 공간을 더 포함할 수 있다.
상기 제1 공간 및 상기 제2 공간 외부에서 상기 제1 코일과 상기 제2 코일 간 최단 거리인 제1 거리 대비, 상기 제1 공간 또는 상기 제2 공간 내에서 상기 제1 코일과 상기 제2 코일 간 최단 거리인 제2 거리의 비율은 1 내지 1.3일 수 있다.
상기 하부 코어의 하면으로부터 상기 제1 코일 간 최단 거리는 상기 하부 코어의 하면으로부터 상기 제2 코일 간 최단 거리의 0.3내지 0.7배일 수 있다.
다른 실시예에 따른 평판 디스플레이 장치는 트랜스포머가 배치된 파워 공급 유닛을 포함하되, 상기 트랜스포머는, 상부 코어 및 하부 코어를 포함하는 코어부, 상기 코어부 내에 일부가 배치된 코일부 및 상기 코어부와 상기 코일부 사이에 배치된 보빈부를 포함하고, 상기 코일부는, 제1 코일 및 상기 제1 코일의 측면에 적어도 일부가 배치된 제2 코일을 포함하고, 상기 보빈부는, 상기 제1 코일을 수용하는 제1 수용부가 형성된 제1 보빈 및 상기 제2 코일을 수용하는 제2 수용부가 형성된 제2 보빈을 포함하고, 상기 제1 보빈은 상기 제1 수용부로부터 상기 제2 보빈 방향으로 연장된 제1 연장부를 포함하고, 상기 제2 수용부는 상기 제1 연장부 상에 배치된다.
또 다른 실시예에 따른 트랜스포머는 상부 코어 및 하부 코어를 포함하는 코어부, 상기 상부 코어와 상기 하부 코어 사이에 적어도 일부가 배치되는 제1 코일부와 제2 코일부 및 제1 방향으로 상기 제2 코일부의 일측에 결합된 터미널 보빈을 포함하고, 상기 제1 코일부는, 제1 코일 및 상기 코어부의 중족이 관통하는 제1 관통홀을 가지며 상기 제1 코일을 수용하는 제1 보빈을 포함하고, 상기 제2 코일부는, 제2 코일 및 상기 제1 코일부의 적어도 일부를 수용하는 제2 관통홀을 가지며 상기 제2 코일을 수용하는 제2 보빈을 포함하고, 상기 터미널 보빈은, 상기 제1 방향으로 일측에 상기 제1 방향과 교차하는 제2 방향을 따라 서로 이격된 복수의 제1 터미널 단자 및 상기 제1 방향으로 상기 일측과 대향하는 타측에 형성되어 상기 제2 코일부의 상기 일측이 삽입된 개구를 포함하고, 상기 제1 코일의 양 단부는, 상기 제1 보빈에서 인출되어 상기 터미널 보빈의 상기 복수의 제1 터미널 단자 중 서로 다른 제1 터미널 단자에 각각 연결된다.
상기 제1 보빈은, 제1 상부 플레이트; 상기 제1 상부 플레이트와 상기 제1 방향 및 상기 제2 방향과 교차하는 제3 방향을 따라 이격된 하부 플레이트 및 상기 상부 플레이트와 상기 하부 플레이트 사이에 배치된 제1 측벽부를 포함하고, 상기 제1 상부 플레이트는, 상기 제1 상부 플레이트 상으로 상기 양 단부의 인출을 허용하는 인출홈을 포함할 수 있다.
상기 터미널 보빈은, 상기 제1 방향으로 상기 타측에 리세스를 포함하고, 상기 리세스는, 상기 인출홈과 상기 제3 방향을 따라 서로 중첩될 수 있다.
상기 터미널 보빈은, 상기 리세스로부터 상기 복수의 제1 터미널 단자 각각을 향해 연장되는 복수의 제1 와이어 가이드를 포함하고, 상기 인출홈을 통해 인출된 상기 제1 코일의 양 단부는, 상기 복수의 제1 와이어 가이드 중 서로 다른 제1 와이어 가이드를 따라 해당하는 제1 터미널 단자로 연장될 수 있다.
상기 제2 보빈은, 제2 상부 플레이트; 상기 제2 상부 플레이트와 상기 제1 방향 및 상기 제2 방향과 교차하는 제3 방향을 따라 이격된 제2 하부 플레이트 및 상기 제2 상부 플레이트와 상기 제2 하부 플레이트 사이에 배치된 제2 측벽부를 포함할 수 있다.
상기 제2 관통홀로부터 상기 제2 보빈의 제1 방향으로 일측에 배치된 제1 부, 상기 제2 관통홀로부터 상기 제1부와 대향하는 타측에 배치된 제2부를 포함하고, 상기 제2 코일은 상기 제2 관통홀의 주변에 배치된 복수의 도전선을 포함하고, 상기 복수의 도전선의 일측은 상기 제2 부 상에 배치되도록 연장되고, 상기 복수의 도전선의 타측은 양 말단이 상기 제1 부 상에 배치되도록 연장되고, 상기 복수의 도전선 중 제1 도전선과 제2 도전선은 적어도 일부가 상기 제2 부 상에서 중첩되며, 상기 제2 보빈은, 상기 제2 부에서 상기 중첩이 발생하는 영역과 적어도 일부가 상기 제3 방향을 따라 중첩되는 리세스를 가질 수 있다.
상기 리세스는, 상기 제2 하부 플레이트에 형성될 수 있다.
상기 제2 보빈은, 상기 제1 부에서 상기 제2 하부 플레이트에 배치되는 복수의 제2 터미널 단자를 더 포함할 수 있다.
상기 제1 도전선과 상기 제2 도전선은 상기 제2 관통홀을 중심으로 상기 제1 방향을 따라 대칭 형상을 가질 수 있다.
상기 복수의 도전선은, 평면상에서 상기 제1 도전선의 외측으로 턴을 형성하는 제3 도전선 및 평면상에서 상기 제2 도전선의 외측으로 턴을 형성하는 제4 도전선을 더 포함할 수 있다.
상기 제3 도전선은 상기 제1 도전선과 병렬로 턴을 형성하고, 상기 제4 도전선은 상기 제2 도전선과 병렬로 턴을 형성할 수 있다.
상기 제2 상부 플레이트는, 상기 제1 방향으로 상기 제1 부측 가장자리에 상기 제3 방향을 따라 상부로 돌출되고, 상기 제2 방향을 따라 연장되는 제1 격벽부를 포함할 수 있다.
상기 제2 보빈은, 상기 제2 측벽부와 상기 복수의 제2 제2 터미널 단자 사이에서 상기 제1 방향을 따라 연장되는 제2 와이어 가이드를 더 포함할 수 있다.
상기 제2 보빈은, 상기 제2 관통홀과 상기 리세스 사이에서 상기 제2 하부 플레이트로부터 상기 제3 방향을 따라 하부로 돌출되고, 상기 제2 방향을 따라 연장되는 제2 격벽부를 더 포함할 수 있다.
상기 제2 보빈은, 상기 제2 격벽부로부터 상기 제2 관통홀을 향해 상기 제1 방향을 따라 돌출된 제1 지지부 및 상기 제2 관통홀을 사이에 두고 상기 제1 지지부와 대향하는 제2 지지부를 더 포함하고, 상기 제1 지지부 및 상기 제2 지지부는 상기 제1 코일부를 지지할 수 있다.
또 다른 실시예에 따른 회로 기판은, 기판 및 상기 기판에 배치되는 트랜스포머를 포함하되, 상기 트랜스포머는, 상부 코어 및 하부 코어를 포함하는 코어부, 상기 상부 코어와 상기 하부 코어 사이에 적어도 일부가 배치되는 제1 코일부와 제2 코일부 및 제1 방향으로 상기 제2 코일부의 일측에 결합된 터미널 보빈을 포함하고, 상기 제1 코일부는, 제1 코일; 및 상기 코어부의 중족이 관통하는 제1 관통홀을 가지며 상기 제1 코일을 수용하는 제1 보빈을 포함하고, 상기 제2 코일부는, 제2 코일 및 상기 제1 코일부의 적어도 일부를 수용하는 제2 관통홀을 가지며 상기 제2 코일을 수용하는 제2 보빈을 포함하고, 상기 터미널 보빈은, 상기 제1 방향으로 일측에 상기 제1 방향과 교차하는 제2 방향을 따라 서로 이격된 복수의 제1 터미널 단자; 및 상기 제1 방향으로 상기 일측과 대향하는 타측에 형성되어 상기 제2 코일부의 상기 일측이 삽입된 개구를 포함하고, 상기 제1 코일의 양 단부는, 상기 제1 보빈에서 인출되어 상기 터미널 보빈의 상기 복수의 제1 터미널 단자 중 서로 다른 제1 터미널 단자에 각각 연결될 수 있다.
실시 예에 의한 트랜스포머는 코일을 구성하는 복수의 도전선이 일 영역에서 서로 교차하도록 하여 도전선의 길이 차이를 최소화할 수 있다.
또한, 터미널 핀의 단락을 통해 병렬로 동일 턴을 구성하는 도전선 간의 인덕턴스 편차가 개선되어 발열이 저감된다.
아울러, 도전선 간 교차가 발생하는 영역에서 보빈이 오프닝을 가지므로 인해 슬림화가 가능하다.
다른 실시 예에 의한 트랜스포머는 제1 코일부와 제2 코일부의 이격 거리를 제어함으로써 리키지 인덕턴스가 확보된다.
또한, 제1 보빈과 제2 보빈의 결합 구조로 인해 1차 코일과 코어 간의 절연거리가 확보되어 리키지 인덕턴스를 확보할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 일반적인 슬림형 트랜스포머 구성의 일례를 나타내는 분해사시도이다.
도 2a는 일 실시예에 따른 트랜스포머의 평면도이다.
도 2b는 일 실시예에 따른 트랜스포머의 저면도이다.
도 2c는 일 실시예에 따른 트랜스포머를 도 2a의 A-A'선을 따라 절개한 단면을 나타내는 단면도이다.
도 3a는 일 실시예에 따른 제1 보빈의 사시도이다.
도 3b는 일 실시예에 따른 제1 보빈의 평면도이다.
도 4a는 일 실시예에 따른 제2 보빈의 평면도이다.
도 4b는 일 실시예에 따른 제2 보빈의 사시도이다.
도 4c는 일 실시예에 따른 제2 보빈의 배면 사시도이다.
도 5a는 일 실시예에 따른 터미널 보빈의 평면도이다.
도 5b는 일 실시예에 따른 터미널 보빈의 사시도이다.
도 6은 일 실시예에 따른 트랜스포머의 접착부 배치 형태의 일례를 나타낸다.
도 7a는 일 실시예에 따른 제2 코일부의 코일 배치 형태의 일례를 나타낸다.
도 7b는 일 실시예에 따른 제2 코일부의 핀맵을 나타내고, 도 7c는 일 실시예에 따른 트랜스포머의 회로도이다.
도 7d는 일 실시예에 따른 제2 코일부의 제2 부에서 도전선 간에 중첩이 발생하는 형태를 설명하기 위한 도면이다.
도 7e는 일 실시예에 따른 제2 코일부 배면도의 일례를, 도 7f는 도 일 실시예에 따른 제2 코일부의 측면도를 각각 나타낸다.
도 7g는 다른 실시예에 따른 제2 보빈 구성의 일례를 나타내는 평면도이다.
도 8a는 또 다른 실시예에 따른 트랜스포머의 사시도이다.
도 8b는 또 다른 실시예에 따른 트랜스포머의 평면도이다.
도 9는 또 다른 실시예에 따른 트랜스포머의 분해 사시도이다.
도 10은 또 다른 실시예에 따른 제1 보빈의 사시도이다.
도 11은 또 다른 실시예에 따른 보빈부의 분해 사시도이다.
도 12는 또 다른 실시예에 따른 트랜스포머를 도 8b의 B-B' 선을 따라 절개한 단면도이다.
도 13a는 또 다른 실시예에 따른 트랜스포머를 도 8b의 A-A' 선을 따라 절개한 단면도이다.
도 13b는 도 13a의 'C' 부분을 확대한 도면이다.
도 14는 전자 제품의 전원부 회로 구성의 일례를 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조들이 기판, 각층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. 또한, 도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 실시예에 따른 트랜스포머를 상세히 설명하기로 한다.
도 2a는 일 실시예에 따른 트랜스포머의 평면도이고, 도 2b는 일 실시예에 따른 트랜스포머의 배면도이며, 도 2c는 일 실시예에 따른 트랜스포머를 도 2a의 A-A'선을 따라 절개한 단면을 나타내는 단면도이다.
도 2a 내지 도 2c를 함께 참조하면, 일 실시예에 따른 트랜스포머(100)는 코어부(111, 112), 제1 코일부(120), 제2 코일부(130), 터미널 보빈(140) 및 코어 고정부(150)를 포함할 수 있다. 이하, 각 구성 요소를 상세히 설명한다.
코어부(111, 112)는 자기회로의 성격을 가져 자속의 통로 역할을 할 수 있다. 코어부(111, 112)는 상측에서 결합되는 상부 코어(111)와 하측에서 결합되는 하부 코어(112)를 포함할 수 있다. 두 코어(111, 112)는 서로 상하로 대칭되는 형상일 수도 있고, 비대칭 형상일 수도 있다. 다만, 이하의 기재에서는 설명의 편의를 위하여 상하로 대칭되는 형상인 것으로 가정한다.
상부 코어(111)와 하부 코어(112) 각각은 평판 형태의 바디부 및 바디부로부터 두께방향(즉, 3축 방향)으로 돌출되며 소정의 방향을 따라 연장된 복수의 레그부를 포함할 수 있다. 복수의 레그부는 평면 상에서 일 축(여기서는 1축) 방향을 따라 연장되며 타 축(여기서는 2축) 방향을 따라 서로 이격되어 배치된 두 개의 외족과, 두 개의 외족 사이에 배치된 한 개의 중족(CL)을 포함할 수 있다.
상부 코어(111)와 하부 코어(112)가 상하로 결합될 때, 상부 코어(111)의 외족과 중족 각각은, 하부 코어(112)의 서로 대응되는 외족이나 중족과 대향하게 된다. 이때, 서로 대향하는 외족쌍이나 중족쌍 중 적어도 일부의 사이에는 소정 거리(예컨대, 10 내지 200um이나 반드시 이에 한정되는 것은 아니다)의 갭(gap)이 형성될 수 있다. 갭(gap)의 크기는 상부 코어(111)와 하부 코어(112) 간의 이격을 통해 발생하는 공간으로, 갭(gap)은 공기로 채워질 수도 있고(즉, air gap), 접착제 성분으로 채워질 수도 있다.
또한, 코어부(111, 112)는 자성물질, 예를 들어, 철 또는 페라이트를 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
제1 코일부(120)는 중앙에 제1 관통홀(CH1 또는 제1 중공)을 갖는 제1 보빈(B1)과, 제1 보빈의 수용공간 내에 제1 관통홀(CH1)을 중심으로 복수의 턴을 이루도록 권선된 제1 코일(C1)을 포함할 수 있다.
제2 코일부(130)는 중앙에 제2 관통홀(도 4a의 CH2, 또는 제2 중공)을 갖는 제2 보빈(B2)과, 제2 보빈(B2)의 수용공간 내에 제2 관통홀(CH2)을 중심으로 턴을 형성하도록 배치된 제2 코일(C2)을 포함할 수 있다. 여기서, 제1 코일부(120)는 제2 관통홀(CH2)에 적어도 일부가 배치될 수 있다. 따라서, 제1 코일부(120)와 제2 코일부(130)는 적어도 일부가 제1 축 방향 및 제2 축 방향을 따라 중첩될 수 있다. 제1 코일(C1)과 제2 코일(C2)은 강성 금속, 예를 들어 구리 도전선이 나선형 또는 평면 나선형으로 수회 감겨진 다중 권선(winding)일 수 있으나, 반드시 이에 한정되는 것은 아니다. 예컨대, 제1 코일(C1)은 섬유원사로 감싼 에나멜 와이어(USTC wire), 리츠(Litz) 와이어, 3중 절연 와이어(TIW: Triple Insulated Wire) 등이 적용될 수 있다.
실시예에 따라, 제1 코일부(120)는 트랜스포머(100)의 1차측 코일에 해당할 수 있고, 제2 코일부(130)는 트랜스포머(100)의 2차측 코일에 해당할 수 있으나, 반드시 이에 한정되는 것은 아니다.
또한, 제2 코일(C2)의 직경은, 제2 보빈(B2)의 3축 방향으로의 높이의 0.7 내지 0.9배일 수 있으나, 반드시 이에 한정되는 것은 아니다.
제1 코일부(120)는 도 3a 및 도 3b를 참조하고, 제2 코일부(130)는 도 4a 내지 도 4c를 참조하여 보다 상세히 후술하기로 한다.
터미널 보빈(140)은 제1 코일부(120)와 제2 코일부(130)가 결합된 상태에서 1축 방향으로 일측에 결합되며, 제1 코일(C1)이 외부 회로(미도시)와 전기적으로 연결되기 위한 터미널 단자를 제공한다. 터미널 보빈(140)의 구체적인 형태는 도 5a 및 도 5b를 참조하여 보다 상세히 후술하기로 한다.
코어 고정부(150)는 상부 코어(111)와 하부 코어(112)의 보다 안정적인 결합을 위한 것으로, 고분자 수지 테이프로 코어부(110) 외표면을 2축 및 3축 방향을 따라 1회 이상 감은 것일 수 있으나, 반드시 이에 한정되는 것은 아니다.
도 3a는 일 실시예에 따른 제1 보빈의 사시도이고, 도 3b는 일 실시예에 따른 제1 보빈의 평면도이다.
도 3a 및 도 3b를 참조하면, 일 실시예에 따른 제1 보빈(B1)은 제1 상부 플레이트(TP1), 제1 하부 플레이트(BP1) 및 제1 상부 플레이트(TP1)와 제1 하부 플레이트(BP1) 사이에 배치되는 제1 측벽부(SW1)를 포함할 수 있다. 제1 측벽부(SW1)는 제1 중공(CH1)을 정의하며, 제1 상부 플레이트(TP1)의 저면과 제1 하부 플레이트(BP1)의 상면과 함께 제1 코일(C1)이 수용되는 수용공간을 형성할 수 있다.
제1 상부 플레이트(TP1)에서 1축 방향을 따라 터미널 보빈(140)이 결합되는 일측의 가장자리에는 제1 인출홈(DH1)과 제2 인출홈(DH2)이 배치될 수 있다. 제1 인출홈(DH1)을 통해 제1 코일(C1)을 구성하는 도전선의 양 단부 중 어느 한 단부가 상부로 인출되고, 제2 인출홈(DH2)을 통해 제1 코일(C1)의 나머지 단부가 상부로 인출될 수 있다. 제1 인출홈(DH1)과 제2 인출홈(DH2) 각각을 통해 인출된 제1 코일(C1)의 양 단부는 각각 터미널 보빈(140) 상으로 연장될 수 있다. 또한, 제1 인출홈(DH1)과 제2 인출홈(DH2)은 후술될 터미널 보빈(140)의 제2 리세스(RC2)와 3축 방향으로 서로 중첩될 수 있다.
도 4a는 일 실시예에 따른 제2 보빈의 평면도이고, 도 4b는 일 실시예에 따른 제2 보빈의 사시도이며, 도 4c는 일 실시예에 따른 제2 보빈의 배면 사시도이다.
도 4a 내지도 도 4c를 참조하면, 일 실시예에 따른 제2 보빈(B2)은 제2 상부 플레이트(TP2), 제2 하부 플레이트(BP2) 및 제2 상부 플레이트(TP2)와 제2 하부 플레이트(BP2) 사이에 배치되는 제2 측벽부(SW2)를 포함할 수 있다. 제2 측벽부(SW2)는 제2 중공(CH2)을 정의하며, 제2 상부 플레이트(TP2)의 저면과 제2 하부 플레이트(BP2)의 상면과 함께 제2 코일(C2)이 수용되는 수용공간을 형성할 수 있다.
제2 상부 플레이트(TP2)에서 1축 방향을 따라 터미널 보빈(140)이 결합되는 일측에는 3축 방향을 따라 상측으로 돌출된 제1 돌출부(PT1)와 제2 돌출부(PT2)가 배치되고, 1축 방향을 따라 일측과 대향하는 타측 가장자리에는 3축 방향을 따라 상측으로 절곡되어 연장되는 제1 격벽부(PA1)가 배치될 수 있다.
제2 하부 플레이트(BP)에서 1축 방향을 따라 일측에는 3축 방향을 따라 하측으로 돌출된 제3 돌출부(PT3), 제4 돌출부(PT4), 제2 격벽부(PA2), 제1 지지부(SP1) 및 제1 리세스(RC1)가 배치될 수 있다. 또한, 제2 하부 플레이트(BP)에서 1축 방향을 따라 일측과 대향하는 타측에는 복수의 제2 터미널 단자(TM2)와 제2 지지부(SP2)가 배치될 수 있다. 복수의 제2 터미널 단자(TM2)는 2축 방향을 따라 서로 이격되며, 나란히 배치될 수 있다.
제1 리세스(RC1)는 제2 하부 플레이트(BP)의 일측단에서 타측을 향해 함몰된 평면 형상을 가질 수 있다. 제1 리세스(RC1)의 2축 방향 폭은 일측단에서 타측을 향해갈수록 좁아질 수 있다. 예를 들어, 제1 리세스(RC1)는 반원 또는 반타원형 평면 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 제1 리세스(RC1)를 통해 제2 코일(C2)의 일부가 노출될 수 있으며, 여기에 대해서는 도 7d 내지 도 7f를 참조하여 보다 상세히 후술하기로 한다.
제2 격벽부(PA2)는 2축 방향을 따라 연장될 수 있으며, 제1 지지부(SP1)는 제2 격벽부(PA2)로부터 1축 방향을 따라 타측, 즉, 제2 중공(CH2)의 중심 방향으로 돌출될 수 있다. 제2 지지부(SP2)는 1축 방향을 따라 일측으로 돌출될 수 있으며, 제1 지지부(SP1)와 함께 제1 코일부(120)가 제2 중공(CH2)에 3축 방향을 따라 상측으로부터 하측으로 삽입될 때 제1 코일부(120)를 지지할 수 있다.
한편, 평면 상에서 제1 격벽부(PA1)와 복수의 터미널 단자(TM2) 사이에는 제2 와이어 가이드(WG2)가 배치될 수 있다. 제2 와이어 가이드(WG2)는 중심부(WG2_C)와 측부(WG2_S1, WG2_S2)를 포함할 수 있다. 중심부(WG2_C)는 제2 측벽부(SW2)로부터 제2 터미널 단자(TM2)를 향해 돌출될 수 있으며, 2축 방향의 폭은 제2 터미널 단자(TM2)를 향해갈수록 좁아질 수 있다. 측부(WG2_S1, WG2_S2)는 판상형으로 제1 격벽부(PA1)의 하단과 중심부(WG2_C)를 연결하는 형태로 배치될 수 있다. 예를 들어, 측부(WG2_S1, WG2_S2) 각각은 제1 격벽부(PA1)의 하단과 중심부(WG2_C)를 연결하는 원호형 평면 형상을 가질 수 있고, 제2 와이어 가이드(WG2)는 'T'자형 평면 형상을 가질 수 있다.
제2 와이어 가이드(WG2)는 제2 코일(C2)을 구성하는 복수의 도전선 중 가장 내측에 배치되는 도전선에 대하여 가이드 역할을 제공할 수 있다. 또한, 제2 코일(C2)을 구성하는 복수의 도전선(미도시)은 제2 상부 플레이트(TP2)와 제2 하부 플레이트(BP2)가 3축 방향을 따라 서로 중첩되지 않는 부분, 즉, 평면 상에서 제1 격벽부(PA1)와 제2 터미널 단자(TM2) 사이에서 상측으로 노출된다. 따라서, 제2 와이어 가이드(WG2)의 측부(WG2_S1, WG2_S2)는 제1 격벽부(PA1)와 함께 제2 코일(C2)과 제1 코일(C2) 및 제2 코일과 코어부(110) 간의 절연거리 확보에 기여할 수 있다.
돌출부(PT1, PT2, PT3, PT4)는 후술할 터미널 보빈(140)의 각 홈(H1, H2, H3, H4)에 끼워져 제2 보빈(B2)과 터미널 보빈(140)을 서로 결합 및 고정시킬 수 있다.
도 5a는 일 실시예에 따른 터미널 보빈의 평면도이고, 도 5b는 일 실시예에 따른 터미널 보빈의 사시도이다.
도 5a 및 도 5b를 함께 참조하면, 터미널 보빈(140)은 제3 상부 플레이트(TP3), 제3 하부 플레이트(BP3) 및 제3 상부 플레이트(TP3)와 제3 하부 플레이트(BP3) 사이에 배치되는 제3 측벽부(SW3)를 포함할 수 있다.
제3 상부 플레이트(TP3)에는 제1 홀(H1)과 제2 홀(H2) 및 제1 와이어 가이드(WG1)가 배치되고, 제3 하부 플레이트(BP3)에는 제3 홀(H3)과 제4 홀(H4)이 배치될 수 있다.
터미널 보빈(140)에서 1축 방향으로 제3 측벽부(SW3)가 배치되지 않은 일측에는 제2 코일부(130)가 삽입될 수 있도록 개구(OP)가 형성되고, 1축 방향을 따라 일측과 대향하는 타측에는 복수의 제1 터미널 단자(TM1)가 배치된다. 개구(OP)를 기준으로 3축 방향으로 상하에는 제2 리세스(RC2)가 제3 상부 플레이트(TP3)와 제3 하부 플레이트(BP3) 각각에 1축 방향을 따라 타측으로 함몰되도록 형성될 수 있다. 이때, 제3 상부 플레이트(TP3)에 형성되는 제2 리세스와 제3 하부 플레이트(BP3)에 형성되는 제2 리세스는 서로 다른 평면 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 제2 리세스(RC2)의 평면 형상은 제1 코일부(120)와 제2 코일부(130)가 결합된 상태에서 터미널 보빈(140)이 결합될 때, 제1 코일부(120)를 가리지 않거나(즉, 3축 방향을 따라 중첩되지 않거나), 최소한으로 가리는 형상이 되는 것이 바람직하다. 이는 제1 코일부(120)에 배치되는 제1 코일(C1)에서 발생하는 열이 터미널 보빈(140)에 의해 갖히는 것을 방지하기 위함이다.
복수의 제1 와이어 가이드(WG2) 각각은 제2 리세스(RC2)로부터 서로 다른 제1 터미널 단자(TM1)를 향해 연장될 수 있다. 제1 터미널 단자(TM1)의 개수와 제1 와이어 가이드(WG1)의 개수는 서로 대응될 수 있으나, 반드시 이에 한정되는 것은 아니다. 제1 보빈(B1)의 인출홈들(DH1, DH2) 중 어느 하나를 통해 인출된 제1 코일(C1)의 일단은 제3 상부 플레이트(TP3)에 형성된 제2 리세스(RC2)를 통해 상측으로 노출될 수 있다. 노출된 제1 코일(C1)의 일단은 제1 와이어 가이드(WG1)를 따라 제1 터미널 단자(TM1) 측으로 연장된 후, 제1 터미널 단자(TM1)와 전기적으로 연결될 수 있다.
복수의 제1 터미널 단자(TM1) 각각은 1축 방향으로 연장된 후 3축 방향으로 절곡된 형태의 터미널 핀(TP)으로 구성될 수 있다. 터미널 핀(TP)에서 1축 방향으로 연장되는 부분은 제1 코일(C1)의 한 단부와 솔더링 등을 통해 전기적으로 연결 및 고정될 수 있으며, 3축 방향으로 연장되는 부분은 터미널 보빈(140)을 3축 방향을 따라 하방으로 관통하여 터미널 보빈(140)의 하측으로 노출될 수 있다. 터미널 보빈(140)의 하측으로 노출된 부분은 회로 기판과 전기적으로 연결 및 고정될 수 있다. 이러한 터미널 핀(TP)을 이용하는 구성은 제1 터미널 단자(TM1)와 유사하게, 제2 터미널 단자(TM2)에도 적용될 수 있다.
실시예에 따른 트랜스포머(100)는 전술한 코어 고정부(150) 외에 보다 높은 신뢰성 유지를 위해 복수의 접착부를 포함할 수 있다. 이를 도 6을 참조하여 설명한다.
도 6은 일 실시예에 따른 트랜스포머의 접착부 배치 형태의 일례를 나타낸다.
도 6을 참조하면, 제1 코일부(120)의 제1 보빈(B1)의 제1 상부 플레이트(TP1)와 코어부(110)에서 개구를 갖는 면 사이에 제1 내지 제3 접착부(AD1, AD2, AD3)가 배치되어 코어부(110)와 제1 코일부(120)가 보다 강하게 결합될 수 있다.
또한, 터미널 보빈(140)의 제2 리세스(RC2)와 제1 상부 플레이트(TP1) 사이에 제4 접착부(AD4)가 배치될 수 있다.
아울러, 1축 방향으로 따라 제1 코일부(120)와 제2 코일부(130)가 접하는 라인을 따라 제5 접착부(AD5) 및 제6 접착부(AD6)가 배치될 수 있다. 제5 접착부(AD5) 및 제6 접착부(AD6)는 제1 코일부(120)와 제2 코일부(130)가 접하는 라인과 함께, 상부 코어(111)의 바디부 저면이나 하부 코어(112)의 바디부 상면에도 접할 수 있음은 물론이다.
각 접착부는 수지계열 접착제일 수 있으나, 반드시 이에 한정되는 것은 아니다. 또한, 도시되지는 않았으나 제1 내지 제4 돌출부(PT1, PT2, PT3, PT4)와 제1 내지 제4홈(H1, H2, H3, H4)이 결합되는 부분에도 접착부가 형성될 수 있다.
이하에서는 도 7a 내지 도 7g를 참조하여 실시예에 따른 제2 코일(C2)의 배치를 보다 상세히 설명한다.
도 7a는 일 실시예에 따른 제2 코일부의 코일 배치 형태의 일례를 나타낸다.
도 7a에서는 설명의 편의를 위해 제2 코일(C2)을 제2 보빈(B2) 위에 배치된 형태로 도시하나, 실제 제2 코일(C2)은 제2 보빈(B2)의 제2 상부 플레이트(TP2)와 제2 하부 플레이트(BP2) 사이에 배치됨을 유념해야 한다.
도 7a를 참조하면, 제2 보빈(B2)은 중앙부(CP), 중앙부(CP) 또는 제2 관통홀(CH2)에서 1축 방향으로 일측에 위치하는 제1부(1P), 및 중앙부(CP) 또는 제2 관통홀(CH2)에서 1축 방향으로 제1 부(1P)와 대향하는 타측에 위치하는 제2 부(2P)를 포함할 수 있다.
중앙부(CP)에는 제2 관통홀(CH2)이 배치될 수 있으며, 제1부(1P)에는 2축 방향을 따라 제2 터미널 단자(TM2)를 구성하는 복수의 터미널 핀(T1, T2, T3, T4, T5, T6, T7, T8)이 나란히 배치될 수 있다.
제2 코일(C2)은 복수의 도전선(L1, L2, L3, L4)을 포함할 수 있다.
복수의 도전선(L1, L2, L3, L4)의 양 말단은 복수의 터미널 핀(T1, T2, T3, T4, T5, T6, T7, T8) 중 서로 다른 어느 하나에 각각 전기적으로 연결되며, 제2 관통홀(CH2)을 중심으로 각각 한 턴을 형성할 수 있다.
예를 들어, 제1 도전선(L1)의 양 말단은 제2 터미널 핀(T2)과 제5 터미널 핀(T5)에 연결되고, 제3 도전선(L3)의 양 말단은 제1 터미널 핀(T1)과 제6 터미널 핀(T6)에 각각 연결된다. 또한, 제2 도전선(L2)의 양 말단은 제4 터미널 핀(T4)과 제7 터미널 핀(T7)에 각각 연결되고, 제4 도전선(L4)의 양 말단은 제3 터미널 핀(T3)과 제8 터미널 핀(T8) 각각에 연결될 수 있다.
한편, 제1 도전선(L1)과 제3 도전선(L3)은, 제2 도전선(L2) 및 제4 도전선(L4)과 제2 부(2P)에서 적어도 일부가 3축 방향을 따라 중첩되도록 교차할 수 있다. 또한, 복수의 도전선(L1, L2, L3, L4)은 중앙부(CP)에서는 2축 방향을 따라 서로 나란하게 배치되며, 1축방향을 따라 연장될 수 있다. 도 7a에서는 복수의 도전선(L1, L2, L3, L4)은 중앙부(CP)에서 서로 3축 방향을 따라 중첩되지 않는 것으로 도시되었으나, 제2 부(2P)와 인접한 영역에서는 3축 방향으로 일부 중첩이 발생할 수도 있다. 즉, 복수의 도전선(L1, L2, L3, L4) 각각의 일측은 제2 부(2P) 상에 배치되도록 연장되고, 타측은 양 말단이 제1 부(1P) 상에 배치되도록 연장될 수 있다.
상술한 제2 코일부(130) 구성에 의해, 제2 부(2P) 등에서 제2 코일(C2)을 구성하는 도전선간 중첩이 발생하는 부분이 있게 되나, 개별 도전선의 관점에서는 1턴만 이루기 때문에 제2 코일(C2)은 1층으로 권선되는 것으로 볼 수 있다.
이러한 터미널 핀 연결 상태와 제2 부(2P)에서의 교차는 회로 관점에서 동일 턴을 이루는 부분간의 인덕턴스 매칭을 위함이다.
이를 도 7b 및 도 7c를 참조하여 설명한다.
도 7b는 일 실시예에 따른 제2 코일부의 핀맵을 나타내고, 도 7c는 일 실시예에 따른 트랜스포머의 회로도이다.
도 7b 및 도 7c를 참조하면, 제1 도전선(L1)과 제3 도전선(L3)은 병렬로 연결되어 트랜스포머의 제2 코일부의 제1 시그널에 대한 제1 턴부(NS2)를 구성하고, 제2 도전선(L2)과 제4 도전선(L4)은 제2 코일부의 제2 시그널에 대한 제2 턴부(NS3)를 구성한다. 이러한 경우, 제1 터미널 핀(T1)과 제2 터미널 핀(T2)은 제1 시그널에 대한 입력단에 해당하고, 제5 터미널 핀(T5)과 제6 터미널 핀(T6)은 제1 시그널에 대한 그라운드(Ground)에 해당한다. 또한, 제7 터미털 핀(T7)과 제8 터미널 핀(T8)은 제2 시그널에 대한 입력단에 해당하고, 제4 터미널 핀(T4)과 제5 터미널 핀(T5)은 제2 시그널에 대한 그라운에 해당한다. 여기서, 각 시그널의 그라운드는 서로 전기적으로 연결되어 이른 바 센터탭(Center Tap)(CT) 구조를 이룰 수 있다.
다시 도 7a로 돌아와서, 전술한 도전선과 터미널 핀들간의 연결로 인해, 병렬로 제1 턴부(NS2)를 구성하는 제1 도전선(L1) 및 제3 도전선(L3)은, 병렬로 제2 턴부(NS3)를 구성하는 제2 도전선(L2) 및 제4 도전선(L4)과 제2 관통홀(CH2)을 기준으로 1축 방향을 따라 평면 상에서 미러 이미지(대칭) 형태가 된다. 따라서, 제1 턴부(NS2)와 제2 턴부(NS3)는 실질적으로 동일한 도전선 구성을 가지므로, 도전선의 길이 차이로 인한 인덕턴스 편차가 최소화되며, 이를 통해 전류 쏠림에 따른 발열이 감소될 수 있다.
한편, 제2 보빈(B2)의 제2 부(2P)에서 도전선간의 교차가 발생함에 따라, 도전선 간의 3축 방향으로 중첩이 발생하여 제2 보빈(B2)의 제2 측벽부(SW2) 높이가 도전선 두께의 2배 이상 확보되어야 제2 부(2P)에서 제2 보빈(B2)의 변형이 방지될 수 있다. 그러나, 이러한 제2 측벽부(SW2)의 높이 확보로 인해 제2 보빈(B2)이 전체적으로 두꺼워지고, 이는 트랜스포머 전체의 두께를 증가시킬 수 있다. 이를 도 7d을 참조하여 설명한다.
도 7d은 일 실시예에 따른 제2 코일부의 제2 부에서 도전선 간에 중첩이 발생하는 형태를 설명하기 위한 도면이다. 도 7d에서는 이해를 돕기 위하여 도전선(L1, L2, L3, L4)을 중첩과 무관하게 실선으로 표현하였다.
도 7d를 참조하면, 제2 코일부의 제2 부(2P)에서, 복수의 도전선 간의 중첩 조합 쌍에 따라 복수의 중첩 영역을 갖는다. 예를 들어, 제2 부(2P)에서는 제3 도전선(L3)과 제4 도전선이 평면 상에서 중첩되는 제1 영역(A1), 제1 도전선(L1)과 제4 도전선(L4)이 평면 상에서 중첩되는 제2 영역(A2), 제2 도전선(L2)과 제3 도전선(L3)이 평면 상에서 중첩되는 제3 영역(A3) 및 제1 도전선과 제2 도전선이 평면 상에서 중첩되는 제4 영역(A4)이 발생한다.
이러한 영역들(A1, A2, A3, A4)에서는 3축 방향으로 나머지 영역 대비 더 큰 수용 공간이 요구된다.
따라서, 제2 보빈(B2)에 제1 리세스(RC1)가 형성됨으로 인해 제2 보빈(B2)의 두께 증가가 방지될 수 있다.
도 7e는 일 실시예에 따른 제2 코일부 배면도를, 도 7f는 도 7e에 도시된 제2 코일부를 도 7e 상단의 화살표 방향으로 바라본 측면도를 각각 나타낸다.
도 7e와 도 7f를 함께 참조하면, 제2 코일부(130)의 제2 하부 플레이트(BP2) 각각에 반원형 평면 형상을 갖는 제1 리세스(RC1)가 형성된다. 제1 리세스(RC1)를 가짐으로 인해, 도 7f에 도시된 바와 같이 수용 공간의 높이(h2)(즉, 제2 측벽부(SW2) 높이)가 도전선의 직경(D)의 2배보다 작더라도 보빈의 변형 없이 도전선들이 교차할 공간이 확보될 수 있다. 따라서, 제2 보빈(B2)의 두께 증가가 방지될 수 있다.
한편, 1축 방향으로 제1 리세스(RC1)의 최대 길이(h1)는 도 7d에 도시된 바와 같이 각 도전선의 직경의 2배(2*D)보다는 큰 것이 바람직하다. 또한, 제1 리세스(RC1)의 위치는 도 7d의 도전선 간 중첩이 발생하는 네 영역(A1, A2, A3, A4) 각각을 적어도 일부라도 포함하는 것이 바람직하다. 아울러, 제1 리세스(RC1)의 평면적은 도전선 간 중첩이 발생하는 네 영역(A1, A2, A3, A4)의 면적합 대비 50% 내지 90%인 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.
또한, 제1 리세스(RC1)의 평면 형상은 도 11a에서는 반원형으로 도시되었으나, 이는 예시적인 것으로 도전선 간 중첩이 발생하는 네 영역(A1, A2, A3, A4) 각각을 적어도 일부라도 포함시킬 수 있다면 원형, 트랙형, 다각형 등 그 형상에 제한되지 아니한다.
도 7g는 다른 실시예에 따른 제2 보빈 구성의 일례를 나타내는 평면도이다.
도 7g에 도시된 다른 실시예에 따른 제2 보빈(B2)의 구성은 단락부(SP1, SPC, SP2)를 제외하면 도 4a를 참조하여 전술한 제2 보빈(B2)의 구성과 동일하므로, 중복되는 설명은 생략하기로 한다.
도 7g를 참조하면, 제1 시그널의 입력단에 해당하는 제1 터미널 핀(T1)과 제2 터미널 핀(T2)은 제1 단락부(SP1)를 통해 단락될 수 있다. 또한, 제2 시그널의 입력단에 해당하는 제7 터미널 핀(T7)과 제8 터미널 핀(T8)은 제2 단락부(SP2)를 통해 단락될 수 있다. 아울러, 센터탭 구성의 그라운드에 해당하는 제3 내지 제6 터미널 핀(T3, T4, T5, T6)은 센터 단락부(SPC)를 통해 단락될 수 있다.
여기서, 각 단락부(SP1, SP2, SPC)는 솔더링을 통해 구현될 수 있으나, 이는 예시적인 것으로 반드시 이에 한정되는 것은 아니고, 터미널 핀 간의 단락이 가능하다면 어떠한 방식에도 한정되지 아니한다. 예를 들어, 각 단락부(SP1, SP2, SPC)는 도체 클립, 도체 핀 또는 이들과 솔더링의 조합을 통해 구현될 수도 있다.
도 7g에서는 센터 단락부(SPC)가 일체형으로 구성되어 제3 내지 제6 터미널 핀(T3, T4, T5, T6) 모두를 단락시키는 것으로 도시되었으나, 다른 양상에 의하면 센터 단락부(SPC)는 제3 터미널 핀(T3)과 제4 터미널 핀(T4)을 단락시키는 제1 센터 단락부(미도시)와, 제5 터미널 핀(T5)과 제6 터미널 핀(T6)을 단락시키는 제2 센터 단락부(미도시)로 구성될 수도 있다. 이러한 경우, 제1 센터 단락부(미도시)와 제2 센터 단락부(미도시)는 트랜스포머 내에서 전기적으로 연결되지 않을 수 있다.
한편, 전술된 바와 같이, 실시예에 따른 트랜스포머(100)는 다른 자성 소자(예컨대, 인덕터)와 함께 파워 공급 장치(PSU) 등을 구성하는 회로 기판(미도시)을 구성할 수 있다.
도 8a는 또 다른 실시예에 따른 트랜스포머의 사시도를, 도 8b는 또 다른 실시예에 따른 트랜스포머의 평면도를 나타낸다. 또한, 도 9는 또 다른 실시예에 따른 트랜스포머의 분해 사시도이고, 도 10은 또 다른 실시예에 따른 제1 보빈의 사시도이다. 아울러, 도 11은 또 다른 실시예에 따른 보빈부의 분해 사시도이다.
도 8a 내지 도 11를 함께 참조하면, 또 다른 실시예에 따른 트랜스포머(101)는 코어부(110), 보빈부(B1, B2) 및 터미널단자(TM1, TM2)를 포함할 수 있다. 이하, 각 구성 요소를 상세히 설명한다.
코어부(111, 112)는 자기회로의 성격을 가져 자속의 통로 역할을 할 수 있다. 코어부(111, 112)는 상측에서 결합되는 상부 코어(111)와 하측에서 결합되는 하부 코어(112)를 포함할 수 있다. 두 코어(111, 112)는 서로 상하로 대칭되는 형상일 수도 있고, 비대칭 형상일 수도 있다. 다만, 이하의 기재에서는 설명의 편의를 위하여 상하로 대칭되는 형상인 것으로 가정한다.
상부 코어(111)와 하부 코어(112) 각각은 평판 형태의 바디부 및 바디부로부터 두께방향(즉, Z축 방향)으로 돌출되며 소정의 방향을 따라 연장된 복수의 레그부(OL1-1, OL1-2, OL2-1, OL2-2, CL1, CL2)를 포함할 수 있다. 예를 들어, 상부 코어(111)의 복수의 레그부(OL1-1, OL1-2, CL1)는 평면 상에서 일 축(여기서는 Y축) 방향을 따라 연장되며 타 축(여기서는 X축) 방향을 따라 서로 이격되어 배치된 두 개의 외족(OL1-1, OL1-2)과, 두 개의 외족(OL1-1, OL1-2) 사이에 배치된 한 개의 중족(CL1)을 포함할 수 있다.
상부 코어(111)와 하부 코어(112)가 상하로 결합될 때, 상부 코어(111)의 외족(OL1-1, OL1-2)과 중족(CL1) 각각은, 하부 코어(112)의 서로 대응되는 외족(OL2-1, OL2-2)이나 중족(CL2)과 대향하게 된다. 서로 대향하는 일측 외족 쌍(OL1-1, OL2-1)은 제1 외족부, 타측 외족 쌍(OL1-2, OL2-2)은 제2 외족부, 중족쌍(CL1, CL2)은 중족부가 각각 칭할 수 있다.
서로 대향하는 외족쌍이나 중족쌍 중 적어도 일부의 사이에는 소정 거리(예컨대, 10 내지 200um이나 반드시 이에 한정되는 것은 아니다)의 갭(gap)이 형성될 수 있다. 한 중족쌍과 두 외족쌍 각각의 갭 크기를 조절함에 따라 코어부(110)의 인덕턴스가 제어될 수 있으며, 갭의 개수에 따라 발열이 제어될 수 있다.
또한, 코어부(110)는 자성물질, 예를 들어, 철 또는 페라이트를 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
코어부(110)는 보빈부(120, 130)의 외측 일부를 감싸게 되므로, 보빈부(120, 130)에 수용되는 제1 코일부(미도시)과 제2 코일부(미도시)의 일부가 코어부(110) 내에 배치되는 것으로 볼 수 있다.
보빈부(120, 130)는 제1 보빈(B1)과 제2 보빈(B2)을 포함할 수 있다.
제1 보빈(B1)과 제2 보빈(B2)은 각각 제1 관통홀(TH1)과 제2 관통홀(TH2)을 가지며, 코어부(110)의 중족부(CL1, CL2)가 제1 관통홀(TH1)과 제2 관통홀(TH2)을 관통하도록 정렬될 수 있다.
제1 보빈(B1)은 제2 보빈(B2) 내에 적어도 일부가 수용될 수 있으며, 제1 탑부(121), 제1 미들부(123) 및 제1 바텀부(122)를 포함할 수 있다.
제1 탑부(121)와 제1 바텀부(122)는 각각 모서리가 둥근 사각형 평면형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 또한, 제1 바텀부(122)는 제1 탑부(121) 대비 레그부의 이격 방향(즉, X축 방향)을 따라 외측으로 연장된 평면 형상을 가질 수 있다.
제1 미들부(123)는 수직 방향으로 제1 탑부(121)와 제1 바텀부(122) 사이에 배치되며, 제1 코일부를 구성하는 도전선(미도시)과 중족부 사이를 절연시킬 수 있다. 제1 미들부(123)의 내측면은 제1 관통홀(TH1)을 정의할 수 있다. 또한, 제1 탑부(121)의 하면, 제1 미들부(122)의 외측면 및 제1 바텀부의 상면 일부로 정의되는 공간은 제1 코일부 구성하는 도전선을 수용하는 수용 공간으로 기능할 수 있다.
제2 보빈(B2)은 제2 탑부(131), 제2 미들부(133), 제2 바텀부(132) 및 기판 지지부(CBS1, CBS2)를 포함할 수 있다.
제2 미들부(133)는 수직 방향으로 제2 탑부(131)와 제2 바텀부(132) 사이에 배치되며, 제2 코일부를 구성하는 도전선(미도시)과 제1 코일부를 구성하는 도전선(미도시) 사이를 절연시킬 수 있다. 또한, 제2 탑부(131)의 하면 일부, 제2 미들부(132)의 외측면 및 제2 바텀부의 상면 일부로 정의되는 공간은 제2 코일부 구성하는 도전선을 수용하는 수용 공간으로 기능할 수 있다.
또한, 제2 바텀부(132)의 장축 방향으로 서로 이격된 기판 지지부(CBS1, CBS2)는 PSU와 같은 장치의 회로 기판(미도시) 상에 실장될 때 트랜스포머(101)를 지지하는 기능을 수행할 수 있다. 기판 지지부 중 제2 터미널단자(TM2) 측에 위치한 제2 기판 지지부(CBS2) 주변에는 하방으로 돌출되며, y축 방향으로 서로 이격되어 나란히 배치된 복수의 돌출부(136)가 형성될 수 있다. 돌출부(136)는 제2 기판 지지부(CBS2)와 함께 기판 상에서 트랜스포머(101)를 지지함과 함께, 제2 탑부(131)와 제2 바텀부(132) 사이에서 인출되며, 제2 코일부를 구성하는 도전선들의 단부가 제2 터미널단자(TM2)로 연장되도록 함에 있어 와이어 가이드 역할을 수행할 수도 있다.
제2 탑부(131)의 중앙부에는 제2 관통홀(TH)이 배치되고, 장축 방향 양단에는 터미널단자(TM1, TM2)가 배치될 수 있다. 터미널단자(TM1, TM2)는 트랜스포머(101)를 파워 공급 유닛(PSU)의 기판(미도시)에 고정시키는 기능 및 트랜스포머(101)의 제1 코일부 및 제2 코일부(미도시)과 파워 공급 유닛(PSU)의 기판(미도시)의 전기적 연결 통로 기능을 수행할 수 있다.
보다 상세히, 제1 터미널단자(TM1)는 서로 이격된 복수의 핀을 포함할 수 있으며, 복수의 핀 중 적어도 일부에는 제1 코일부를 구성하는 도전선의 양단 중 어느 하나가 전기적으로 연결될 수 있다. 예를 들어, 제1 터미널단자(TM1)를 구성하는 복수의 핀 중 일부와 타부는 x축을 따라 서로 대향할 수 있으며, 일부와 타부 각각은 y축을 따라 나란히 배치될 수 있다.
제2 터미널단자(TM2)는 x축을 따라 나란하되 서로 이격된 복수의 핀을 포함할 수 있으며, 복수의 핀 중 적어도 일부에는 제2 코일부를 구성하는 도전선의 양단 중 어느 하나가 전기적으로 연결될 수 있다.
제2 탑부(131)의 상면에는 제2 관통홀(TH2)을 사이에 두고 제2 보빈(B2)의 장축 방향(즉, Y축 방향)을 따라 서로 대향하며, 단축 방향(즉, X축 방향)을 따라 각각 연장되는 제1 가이드(134)와 제2 가이드(135)가 배치된다. 여기서 제1 가이드(134)는 제2 터미널단자(TM2) 측에 배치되고, 제2 가이드는 제1 터미널단자(TM1) 측에 배치될 수 있다. 제1 가이드(134)와 제2 가이드(135) 사이에는 상부 코어(111)가 위치하여, 상부 코어(111)의 위치를 고정시킴과 함께 상부 코어(111)와 터미널단자(TM1, TM2) 간의 절연 거리를 증대시키는 역할도 수행할 수 있다.
또한, 제2 탑부(131)의 상면에서 제2 터미널단자(TM2)와 제1 가이드(134) 사이에는 보강 패턴부(136)가 배치될 수 있다. 예를 들어, 보강 패턴부(136)는 'F'자형 평면 형상을 갖는 패턴이 X축 방향을 따라 서로 대향하는 형상으로 배치될 수 있으나, 반드시 이에 한정되는 것은 아니다. 보강 패턴부(136)에 의해 제2 탑부(131)의 강성이 향상되어 변형이 방지될 수 있으며, 보강 패턴부(136)와 제2 탑부(131) 사이의 고저차에 의해 X축 방향으로 연장되는 복수의 홈(H1, H2)이 형성되면서 상부 코어(111)와 제2 터미널단자(TM2) 간의 절연 거리를 증대시키는 역할도 수행할 수 있다.
트랜스포머(101)를 구성할 때, 제1 보빈(B1)의 적어도 일부는 제2 보빈(B2)의 제2 탑부(131) 하면과 제2 미들부(133) 내측면으로 정의되는 리세스(RC)에 수용될 수 있다.
또한, 제1 보빈(B1)과 제2 보빈(B2)이 결합된 상태에서, 제1 탑부(121)의 상면은 제2 탑부(131)의 하면과 대향하게 되고, 제1 바텀부(122)의 상면 중 수직방향으로 제1 탑부(121)와 중첩되지 않는 부분(즉, 외측으로 연장된 부분)은 제2 바텀부(132)의 하면과 대향하게 된다.
또한, 제1 탑부(121)의 코일 인출부(124)는 결합 상태에서 제2 탑부(131)의 제3 관통홀(TH3)을 관통하여 상부로 노출될 수 있다. 코일 인출부(124)는 제1 코일부를 구성하는 도전선의 양단이 제2 탑부(131) 상면으로의 인출 및 고정을 용이하게 하여, 바로 제1 터미널단자(TM1)로 연결을 가능하게 한다.
아울러, 제1 보빈(B1)의 제1 탑부(131) 상면에서 제1 관통홀(TH1)과 코일 인출부(124) 사이에는 상측으로 돌출되어 X축 방향으로 연장되는 돌출핀(125)이 배치된다. 돌출핀(125)은 제1 보빈(B1)과 제2 보빈(B2)이 결합될 때, 제2 탑부(131)의 저면에서 제2 가이드(135) 내측으로 형성된 블라인드홀(BH)에 삽입될 수 있다. 이를 통해, 제1 보빈(B1)과 제2 보빈(B2)은 더 강하고 안정적인 결합 상태를 유지할 수 있으며, 결합된 상태의 단면은 도 6a에 도시되어 있다.
한편, 보빈부(B1, B2)와 코어부(110) 사이에도 보다 견고한 결합을 위해 접착이 고려될 수 있다. 예컨대, 도 1b에 도시된 바와 같이, 코어부(110)의 외족과 코어부(110) 내부 수용공으로부터 Y축 방향으로 연장되어 노출된 보빈부(B1, B2) 사이 각각에는 제1 접착그룹(AD1, AD2, AD3, AD4)이 사이드 본딩 형태로 배치될 수 있다. 예를 들어, 제1 접착그룹(AD1, AD2, AD3, AD4)은 보빈부(B1, B2)와 접촉할 수도 있고, 접촉하지 않을 수도 있으나, 적어도 상부 코어(111)와 하부 코어(112) 각각에는 모두 접촉하여 상부 코어(111)와 하부 코어(112) 간의 고정이 가능하도록 배치되는 것이 바람직하다.
또한, 상부 코어(111)의 중족과 외족 사이 저면과, 제2 보빈(B2)의 상면 사이에도 제2 접착그룹(AD5, AD6)이 배치될 수 있다. 상술한 접착부들(AD1, AD2, AD3, AD4, AD5, AD6)로 인해, 보빈부(B1, B2)와 코어부(110) 간에 공극으로 인한 진동이 방지될 수 있다. 여기서, 제1 접착그룹(AD1, AD2, AD3, AD4)와 제2 접착그룹(AD5, AD6)는 동일한 성분의 접착제가 적용될 수도 있고, 상이한 성분의 접착제가 적용될 수도 있다. 다만, 제2 접착그룹(AD5, AD6)는 수지 계열 접착제(Adhesive Resin)가 적용되는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.
상술한 보빈부(B1, B2)의 결합 구조로 인한 제1 코일부와 제2 코일부 각각의 수용 상태를 도 5를 참조하여 설명한다.
도 12는 일 실시예에 따른 트랜스포머를 도 8b의 B-B' 선을 따라 절개한 단면도이다.
도 12를 참조하면, 코어부(110)와 코일부(120, 130) 사이에 보빈부(B1, B2)가 배치된다.보다 상세히, 코일부(120, 130)와 보빈부(B1, B2)는 코어부(110) 내의 제1 공간(SB1)과 제2 공간(SB2)에 걸쳐 일부가 배치된다. 제1 공간(SB1)과 제2 공간(SB2)은 각각 중족부(CL1, CL2)를 사이에 두고 레그부가 서로 이격되는 방향(즉, X축 방향)을 따라 이격되고, 사격형 단면 형상이 Y축 방향을 따라 연장되는 형태를 가질 수 있다. 또한, 제1 공간(SB1)은 코어부(110)의 중족부(CL1, CL2)와 일측 외족부(OL1-1, OL2-1) 사이에 위치하며, 제2 공간(SB2)은 중족부(CL1, CL2)와 타측 외족부(OL1-2, OL2-2) 사이에 위치할 수 있다.
제1 보빈(B1)은 제1 코일부(140)을 수용하는 제1 수용부(RP1)와, 제1 수용부(RP1)에서 제2 보빈(130) 방향으로 연장된 제1 연장부(EP1)를 가질 수 있다. 즉, 제1 수용부(RP1)는 제1 탑부(121), 제1 미들부(123) 및 제1 바텀부(122)에서 제1 연장부(EP1)를 제외한 부분에 해당할 수 있다.
제2 보빈(130)은 제2 코일부(130)을 수용하는 제2 수용부(RP2)와, 제2 수용부(RP2)에서 제1 보빈(B1) 방향으로 연장된 제2 연장부(EP2)를 가질 수 있다. 즉, 제2 수용부(RP2)는 제2 탑부(131)에서 제2 연장부(EP2)를 제외한 부분, 제2 미들부(133) 및 제2 바텀부(132)를 포함할 수 있다.
또한, 제2 수용부(RP2)는 제1 연장부(EP1) 상에 배치되며, 제1 수용부(RP1)는 제2 연장부(EP2) 아래에 배치된다. 이로 인해, 하부 코어(112)의 하면으로부터 제1 코일부(120)까지의 최단 거리(h1)는 하부 코어(112)의 하면으로부터 제2 코일부(130)까지의 최단 거리(h2)와 상이하게 된다. 즉, 하부 코어(112)의 하면으로부터 제1 코일부(120)까지의 최단 거리(h1)는 하부 코어(112)의 하면으로부터 제2 코일부(130)까지의 최단 거리(h2)보다 작게 된다. 예를 들어, 하부 코어(112)의 하면으로부터 제1 코일부(120) 간 최단 거리(h1)는 하부 코어(112)의 하면으로부터 제2 코일부(130) 간 최단 거리(h2)의 0.3배 내지 0.7배일 수 있다.
아울러, 상술한 보빈부(B1, B2)의 결합 구조로 인해, 제1 코일부(120)과 제2 코일부(130)은 일측 외족부에서 타측 외족부 방향으로 일부만 중첩되고 나머지 일부는 중첩되지 않게 된다. 수직 방향으로, 제1 코일부(120)과 제2 코일부(130)은 서로 중첩되지 않을 수 있다.
제1 코일부(120)의 측면에는 제2 코일부(130)의 적어도 일부가 배치되며, 수평 방향으로 제1 코일부(120)과 제2 코일부(130) 사이에는 제2 수용부(RP2)의 일부, 즉, 제2 미들부(133)가 배치된다.
제1 코일부(120)과 제2 코일부(130) 각각은 강성 도체 금속, 예를 들어 구리 도전선이 수회 감겨진 다중 권선(winding)일 수 있으나, 반드시 이에 한정되는 것은 아니다. 또한, 제2 코일부(130)을 구성하는 도전선의 두께는 제1 코일부(120)을 구성하는 도전선의 두께 대비 50% 내지 150%일 수 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 보빈부(B1, B2)와 양측 외족 사이에는 절연부(161, 162)가 각각 배치될 수 있다. 절연부(161, 162)는 제2 수용부(RP2) 상면에서 외측으로 연장된 후 절곡되어 다시 제2 수용부(RP2)와 제1 연장부(EP1)의 외측을 감싸도록 연장되고, 다시 제1 연장부(EP1)의 하면으로 절곡되어 연장될 수 있다. 이를 통해, 제2 코일부(130)과 제1 코일부(120) 모두가 코어부(110)의 외족부로부터 절연될 수 있다. 절연부(161, 162)는 절연성이 우수한 케톤, 폴리이미드 등의 성분을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상술한 구조를 가짐으로 인해, 제1 코일부(120)의 코어부(110)에 대한 절연 거리가 크게 증가될 수 있다. 예컨대, 제1 코일부(120) 상측으로의 제1 절연 거리(PATH1)는 제2 연장부(EP2)가 없었다면 상부 보빈의 하면에 바로 도달하게 되나, 제2 연장부(EP2)가 있음으로 인해 적어도 제2 연장부의 x축 방향 길이만큼 연장된다. 또한, 제1 코일부(120) 하측으로의 제2 절연 거리(PATH2)는 제1 연장부(EP1)의 x축 방향 길이 및 동일 방향으로 절연부(161, 162)의 길이만큼 연장되는 효과를 얻을 수 있게 된다.
또한, 단순히 제1 코일부와 제2 코일부 간의 제1 코일부(120)과 제2 코일부(130)간 최단 거리(β)에 의해 획보되는 리키지 인덕턴스와 함께, 제1 수용부(RP1)와 제2 수용부(RP2)가 수평 방향으로 어긋남에 의해 추가적인 리키지 인덕턴스가 확보될 수 있다.
이하에서는 도 13a 및 도 13b를 참조하여, 코어부(110)에 의해 감싸지지 않는 부분의 단면을 살펴본다.
도 13a는 다른 실시예에 따른 트랜스포머를 도 8b의 A-A' 선을 따라 절개한 단면도이고, 도 13b는 도 13a의 'C' 부분을 확대한 도면이다.
도 13a 및 도 13b를 함께 참조하면, 보빈부(B1, B2)가 코어부(110)에 의해 감싸지지 않는 부분에는 제1 보빈(B1)에서 제1 연장부(EP1)가 배치되지 않을 수 있다. 또한, 보빈부(B1, B2)가 코어부(110)에 의해 감싸지지 않는 부분, 즉, 제1 공간(SB1)과 제2 공간(SB2)의 외부에서 제1 코일부(120)와 제2 코일부(130) 간의 최단 거리(α)는, 보빈부(B1, B2)가 코어부(110)에 의해 감싸지는 부분에서 제1 코일부(120)와 제2 코일부(130) 간의 최단 거리(β)와 같을 수도 있고, 상이할 수 있다.
바람직하게, 최단 거리 비율 (β/α)은 1 내지 1.3일 수 있다. 최단 거리 비율 (β/α)이 1 미만일 경우, 전체적인 트랜스포머(101)의 사이즈 증대를 야기하며, 리키지 인덕턴스 변화 크지 않다. 반대로, 최단 거리 비율 (β/α)이 1.3을 초과할 경우, 트랜스포머(101)의 에너지 변환 효율이 떨어지게 된다. 다만, 이러한 범위는 도 8b의 A-A' 절개선과 B-B' 절개선이 평면 상에서 중족부 중앙에서 교차할 때 해당하는 것으로, 최단 거리 비율 (β/α)은 제1 미들부(123)와 제2 미들부(133)의 권선 방향으로의 곡률 반경에 따라 상이할 수 있다.
이하에서는 도 14을 참조하여 실시예에 따른 트랜스포머(101)를 트랜스포머(101)가 실장될 수 있는 회로 구성과 함께 설명한다.
도 14는 전자 제품의 전원부 회로 구성의 일례를 나타낸다.
도 14를 참조하면, 구형파 발생부(210), 공진부(220) 및 정류부(230)를 포함하는 전자 제품, 예컨대, 평판형 TV의 전원부(즉, PSU) 회로 구성이 도시된다. 평판형 TV는 일반적으로 노멀 모드 외에 저전력 모드 등 다른 동작 모드들을 지원하며, 동작 모드마다 고효율이 요구되므로 LLC 공진 컨버터 형태로 공진부(220)가 구현된다. LLC 공진 컨버터는 제1 인덕터(Lr, 221), 제2 인덕터(Lm, 222)와 캐패시터(Cr, 223)를 포함하는데, 제2 인덕터(222)의 인덕턴스(Lm)가 회로를 동작시키는 인덕턴스로 볼 수 있다. PSU의 동작 주파수에 따라 공진 주파수는 달라지게 되며, 동작 주파수를 결정하는 요인으로는 제1 인덕터(221)의 인덕턴스(Lr)와 캐패시터(223)의 캐패시턴스(Cr)를 들 수 있다. 제1 인덕터(221)의 인덕턴스(Lr)와 캐패시터(223)의 캐패시턴스(Cr)가 적절한 값으로 매칭되지 않을 경우 전체 회로의 효율이 떨어지거나, 정상동작이 불가한 상황이 발생한다.
실시예에 따른 트랜스포머(101)와 같은 리키지 인덕턴스 일체형 트랜스포머의 인덕턴스(L) 값은 공진부(220)에서 Lm에 해당하며, 리키지 인덕턴스(Lk) 값은 Lr에 해당한다.
일반적인 평판형 TV의 PSU에서 요구되는 Lk/Lm 비율은 10 내지 20% 수준이나, 종래의 트랜스포머는 Lk 값이 너무 낮아 이를 만족시키기 어려웠다.
보다 상세히, 트랜스포머의 리키지 인덕턴스는 아래 수학식 1과 같이 구할 수 있다.
Figure PCTKR2022001022-appb-M000001
수학식 1에서 Lk는 리키지 인덕턴스를, k는 결합 계수를, Lm은 트랜스포머의 인덕턴스를 각각 나타낸다. 여기서, 결합 계수(k)는 실험에 의해 구해질 수 있는데, 일례로 아래 수학식 2와 같이 구해질 수 있다.
Figure PCTKR2022001022-appb-M000002
수학식 2에서 X는 권선 이격비로, 제2 코일부가 권선 가능한 공간(이하, 편의상 "권선 공간"이라 칭함)을 정의하는 제1 코일부 최외곽과 인접한 외족부 사이의 최단 거리 대비 제1 코일부와 제2 코일부의 이격 거리를 의미한다.
보다 상세히, 제1 보빈(B1)과 제2 보빈(B2)이 모두 존재할 때, 제1 코일부(120)과 제2 코일부(130)의 최단 거리(즉, 도 5의 β)는 제1 코일부(120)의 최외곽과 제2 코일부(130)의 최내곽 사이의 거리에 해당한다. 또한, 제1 보빈(B1)만 존재한다고 가정했을 때, 제2 코일부(130)이 존재할 수 있는 권선 공간 내에서 제1 코일부(120)과 이룰 수 있는 거리의 최대 값은 제1 코일부(120)의 최외곽에서 인접한 외족부까지의 최단 거리(즉, 도 12의 d1)가 된다.
트랜스포머의 리키지 인덕턴스는 결합 계수에 따라 변화하며, 결합 계수는 특히 코어부(110) 내부에서 제1 코일부(120)과 제2 코일부(130) 간의 최단 거리에 영향을 받는다.
그런데, 제1 코일부(120)과 제2 코일부(130) 간의 최단 거리(β)는 제2 코일부(130)의 최내곽이 권선 공간 내에서의 어디에 위치하는지에 따라 결정되며, 최단 거리(β)의 증대만을 고려한다면 권선 공간이 고정될 때 제2 코일부(130)의 턴수가 제한되며, 권선 공간이 커지려면 코어부(110)의 크기가 커져야 하므로 권선 공간의 확장 관점에서 접근하기도 어렵다.
따라서, 본 실시예에서는 제1 코일부(120)의 최외곽에서 인접한 외족부까지의 최단 거리(d2) 대비 제1 코일부(120)과 제2 코일부(130) 간의 최단 거리(β)의 비율, 즉, 권선 이격비(gap ratio)를 제어하여 리키지 인덕턴스를 확보할 수 있다.
예를 들어, 제1 코일부(120)과 제2 코일부(130)간 최단 거리(β)는, d1 의 0.1배 내지 0.3배인 것이 바람직하다. 이는 비율이 0.1배 미만이면 트랜스포머가 실장되는 회로(예컨대, PSU) 보드의 LLC 매칭이 어긋나 동작 주파수가 상승하여 보드 제어가 불가한 문제를 야기할 수 있으며, 0.3배를 초과하면 트랜스포머(101)의 효율이 저하되고 보드 상에서 발진을 야기할 수 있기 때문이다. 다만 이는 일반적인 PSU를 가정한 예시적인 것으로 실장 회로에 따라 반드시 이에 한정되는 것은 아니다.
결국, 수학식 1과 수학식 2를 참조하면 리키지 인덕턴스는 결합 계수(k)의 영향을 받으며, 결합 계수는 제1 코일부와 제2 코일부간의 거리와 중첩 면적에 영향을 받게 된다. 실시예에 따른 트랜스포머(101)는 리키지 인덕턴스의 증대를 위해 제1 코일부와 제2 코일부의 이격 거리를 제어하여 결합 계수를 낮추며, 제1 코일부의 수용 공간과 제2 코일부의 수용 공간을 수평 방향으로 어긋나게 함으로써 리키지 인덕턴스를 추가로 확보하였다.
따라서, 실시예에 따른 트랜스포머는 전술한 보빈부 결합 구조로 인해 슬림하면서도 높은 Lk 값을 확보할 수 있기 때문에 평판형 TV의 전원부를 구성함에 있어 적합하다.
지금까지 설명한 일 실시예에 따른 트랜스포머(101)는 보빈부(B1, B2)의 결합 구조로 인해 적어도 코어부(110)에 의해 감싸지는 부분에서는 제2 수용부(RP2)가 제1 연장부(EP1) 위에 배치되고, 제1 수용부(RP1)가 제2 연장부(EP2) 아래에 배치되어 제1 수용부(RP1)와 제2 수용부(RP2)가 수평 방향으로 적어도 일부가 중첩되지 않았다. 그러나, 다른 실시예에 의하면, 제1 코일부(120)이 수용되는 공간과 제2 코일부(130)이 수용되는 공간이 평행할 수도 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
발명의 실시를 위한 형태는 전술한 "발명의 실시를 위한 최선의 형태"에서 충분히 설명되었다.

Claims (10)

  1. 상부 코어 및 하부 코어를 포함하는 코어부;
    상기 상부 코어와 상기 하부 코어 사이에 적어도 일부가 배치되는 제1 코일부와 제2 코일부; 및
    제1 방향으로 상기 제2 코일부의 일측에 결합된 터미널 보빈;을 포함하고,
    상기 제1 코일부는, 제1 코일; 및 상기 코어부의 중족이 관통하는 제1 관통홀을 가지며 상기 제1 코일을 수용하는 제1 보빈;을 포함하고,
    상기 제2 코일부는, 제2 코일; 및 상기 제1 코일부의 적어도 일부를 수용하는 제2 관통홀을 가지며 상기 제2 코일을 수용하는 제2 보빈;을 포함하고,
    상기 터미널 보빈은, 상기 제1 방향으로 일측에 상기 제1 방향과 교차하는 제2 방향을 따라 서로 이격된 복수의 제1 터미널 단자; 및 상기 제1 방향으로 상기 일측과 대향하는 타측에 형성되어 상기 제2 코일부의 상기 일측이 삽입된 개구;를 포함하고,
    상기 제1 코일의 양 단부는,
    상기 제1 보빈에서 인출되어 상기 터미널 보빈의 상기 복수의 제1 터미널 단자 중 서로 다른 제1 터미널 단자에 각각 연결되는, 트랜스포머.
  2. 제1 항에 있어서,
    상기 제1 보빈은,
    제1 상부 플레이트; 상기 제1 상부 플레이트와 상기 제1 방향 및 상기 제2 방향과 교차하는 제3 방향을 따라 이격된 하부 플레이트; 및 상기 상부 플레이트와 상기 하부 플레이트 사이에 배치된 제1 측벽부를 포함하고,
    상기 제1 상부 플레이트는,
    상기 제1 상부 플레이트 상으로 상기 양 단부의 인출을 허용하는 인출홈을 포함하는, 트랜스포머.
  3. 제1 항에 있어서,
    상기 제2 보빈은,
    제2 상부 플레이트; 상기 제2 상부 플레이트와 상기 제1 방향 및 상기 제2 방향과 교차하는 제3 방향을 따라 이격된 제2 하부 플레이트; 및 상기 제2 상부 플레이트와 상기 제2 하부 플레이트 사이에 배치된 제2 측벽부를 포함하는, 트랜스포머.
  4. 제3 항에 있어서,
    상기 제2 관통홀로부터 상기 제2 보빈의 제1 방향으로 일측에 배치된 제1 부;
    상기 제2 관통홀로부터 상기 제1부와 대향하는 타측에 배치된 제2부;를 포함하고,
    상기 제2 코일은 상기 제2 관통홀의 주변에 배치된 복수의 도전선을 포함하고,
    상기 복수의 도전선의 일측은 상기 제2 부 상에 배치되도록 연장되고,
    상기 복수의 도전선의 타측은 양 말단이 상기 제1 부 상에 배치되도록 연장되고,
    상기 복수의 도전선 중 제1 도전선과 제2 도전선은 적어도 일부가 상기 제2 부 상에서 중첩되며,
    상기 제2 보빈은,
    상기 제2 부에서 상기 중첩이 발생하는 영역과 적어도 일부가 상기 제3 방향을 따라 중첩되는 리세스를 갖는, 트랜스포머.
  5. 제4 항에 있어서,
    상기 제2 보빈은,
    상기 제2 관통홀과 상기 리세스 사이에서 상기 제2 하부 플레이트로부터 상기 제3 방향을 따라 하부로 돌출되고, 상기 제2 방향을 따라 연장되는 제2 격벽부를 더 포함하는, 트랜스포머.
  6. 상부 코어 및 하부 코어를 포함하는 코어부;
    상기 코어부 내에 일부가 배치된 코일부; 및
    상기 코어부와 상기 코일부 사이에 배치된 보빈부;를 포함하고,
    상기 코일부는,
    제1 코일 및 상기 제1 코일의 측면에 적어도 일부가 배치된 제2 코일을 포함하고,
    상기 보빈부는,
    상기 제1 코일을 수용하는 제1 수용부가 형성된 제1 보빈; 및
    상기 제2 코일을 수용하는 제2 수용부가 형성된 제2 보빈을 포함하고,
    상기 제1 보빈은 상기 제1 수용부로부터 상기 제2 보빈 방향으로 연장된 제1 연장부를 포함하고,
    상기 제2 수용부는 상기 제1 연장부 상에 배치된, 트랜스포머.
  7. 제6 항에 있어서,
    상기 제1 보빈은,
    제1 탑부;
    상기 제1 탑부 아래 배치되는 제1 바텀부; 및
    상기 제1 탑부와 상기 바텀부 사이에 배치되며, 내측면으로 제1 관통홀을 정의하는 제1 미들부를 포함하고,
    상기 제1 연장부는 상기 제1 바텀부에 배치된, 트랜스포머.
  8. 제6 항에 있어서,
    상기 제2 보빈은,
    중앙부에 제2 관통홀이 배치된 제2 탑부;
    상기 제2 탑부 아래 배치되는 제2 바텀부; 및
    상기 제2 탑부와 상기 제2 바텀부 사이에 배치되는 제2 미들부를 포함하고,
    상기 제1 보빈은,
    상기 제2 탑부의 하면과 상기 제2 미들부의 내측면으로 정의되는 리세스에 적어도 일부가 수용되는, 트랜스포머.
  9. 제6 항에 있어서,
    상기 하부 코어의 하면으로부터 상기 제1 코일 간 최단 거리와 상기 하부 코어의 하면으로부터 상기 제2 코일 간 최단 거리는 상이한, 트랜스포머.
  10. 제6 항에 있어서,
    상기 코어부는,
    제1 외족부, 제2 외족부 및 상기 제1 외족부와 상기 제2 외족부 사이에 배치되는 중족부를 포함하고,
    상기 제1 코일과 상기 제2 코일 간 최단 거리는,
    상기 제1 코일의 최외곽에서 상기 제1 외족부 및 상기 제2 외족부 중 인접한 한 외족부 간 최단 거리의 0.1배 내지 0.3 배인, 트랜스포머.
PCT/KR2022/001022 2021-01-22 2022-01-20 트랜스포머 WO2022158869A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011184.4A CN116762146A (zh) 2021-01-22 2022-01-20 变压器
JP2023543457A JP2024504329A (ja) 2021-01-22 2022-01-20 トランスフォーマー
EP22742845.5A EP4283640A1 (en) 2021-01-22 2022-01-20 Transformer
US18/262,573 US20240087800A1 (en) 2021-01-22 2022-01-20 Transformer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020210009617A KR20220106558A (ko) 2021-01-22 2021-01-22 자성 소자 및 이를 포함하는 회로 기판
KR10-2021-0009617 2021-01-22
KR1020210014157A KR20220111029A (ko) 2021-02-01 2021-02-01 트랜스포머 및 이를 포함하는 평판 디스플레이 장치
KR10-2021-0014157 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022158869A1 true WO2022158869A1 (ko) 2022-07-28

Family

ID=82548909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001022 WO2022158869A1 (ko) 2021-01-22 2022-01-20 트랜스포머

Country Status (4)

Country Link
US (1) US20240087800A1 (ko)
EP (1) EP4283640A1 (ko)
JP (1) JP2024504329A (ko)
WO (1) WO2022158869A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076299A (ko) * 2010-12-29 2012-07-09 삼성전기주식회사 트랜스포머 및 이를 구비하는 평판 디스플레이 장치
KR20140003131A (ko) * 2012-06-29 2014-01-09 삼성전기주식회사 코일 부품과 그 실장 구조, 및 이를 구비하는 전자 기기
KR101686975B1 (ko) * 2015-10-08 2017-01-20 티디케이한국 주식회사 코일 부품
KR102110344B1 (ko) * 2018-12-28 2020-05-14 주식회사 엠에스티테크 트랜스포머 및 그 제조방법
KR20220010446A (ko) * 2020-07-17 2022-01-25 엘지이노텍 주식회사 트랜스포머 및 이를 포함하는 평판 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076299A (ko) * 2010-12-29 2012-07-09 삼성전기주식회사 트랜스포머 및 이를 구비하는 평판 디스플레이 장치
KR20140003131A (ko) * 2012-06-29 2014-01-09 삼성전기주식회사 코일 부품과 그 실장 구조, 및 이를 구비하는 전자 기기
KR101686975B1 (ko) * 2015-10-08 2017-01-20 티디케이한국 주식회사 코일 부품
KR102110344B1 (ko) * 2018-12-28 2020-05-14 주식회사 엠에스티테크 트랜스포머 및 그 제조방법
KR20220010446A (ko) * 2020-07-17 2022-01-25 엘지이노텍 주식회사 트랜스포머 및 이를 포함하는 평판 디스플레이 장치

Also Published As

Publication number Publication date
JP2024504329A (ja) 2024-01-31
US20240087800A1 (en) 2024-03-14
EP4283640A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2014081155A1 (ko) 일체형 변압기
WO2018212616A1 (ko) 카메라 모듈
US8054152B2 (en) Transformer
US8334745B2 (en) Transformer having leakage inductance
WO2018194208A1 (ko) 회전전기기기의 스테이터
WO2018182203A1 (ko) 렌즈 구동 장치 및 카메라 모듈
WO2017034290A1 (ko) 무선 전력 송신 장치
WO2014178574A1 (ko) 메타 물질 구조체
WO1998025279A1 (fr) Groupe convertisseur transformateur
WO2022015073A1 (ko) 트랜스포머 및 이를 포함하는 평판 디스플레이 장치
WO2019245233A1 (ko) 트랜스포머
WO2022158869A1 (ko) 트랜스포머
CN116762146A (zh) 变压器
WO2021154048A1 (ko) 트랜스포머 및 이를 포함하는 평판 디스플레이 장치
WO2020204437A1 (ko) 평판형 변압기
WO2019039684A1 (en) WIRELESS POWER TRANSCEIVER AND DISPLAY APPARATUS HAVING THE SAME
EP3652762A1 (en) Wireless power transceiver and display apparatus with the same
WO2020076010A1 (ko) 트랜스포머, 및 이를 구비하는 전력변환장치 또는 태양광 모듈
WO2018117505A1 (ko) 이중 나선형 트랜스포머
KR20230002126A (ko) 자성 소자 및 이를 포함하는 회로 기판
KR20230002189A (ko) 자성 소자 및 이를 포함하는 회로 기판
WO2018182204A1 (ko) 듀얼 렌즈 구동 장치 및 카메라 모듈
WO2019182388A1 (ko) 무선 충전 패드 및 무선 충전 장치
WO2024112134A1 (ko) 트랜스포머
WO2022197159A9 (ko) 트랜스포머 및 이를 포함하는 회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543457

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280011184.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18262573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742845

Country of ref document: EP

Effective date: 20230822