WO2022158831A1 - Copper clad laminate film, electronic element including same, and method for manufacturing copper clad laminate film - Google Patents
Copper clad laminate film, electronic element including same, and method for manufacturing copper clad laminate film Download PDFInfo
- Publication number
- WO2022158831A1 WO2022158831A1 PCT/KR2022/000932 KR2022000932W WO2022158831A1 WO 2022158831 A1 WO2022158831 A1 WO 2022158831A1 KR 2022000932 W KR2022000932 W KR 2022000932W WO 2022158831 A1 WO2022158831 A1 WO 2022158831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- layer
- substrate
- laminated film
- clad laminated
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 268
- 239000010949 copper Substances 0.000 title claims abstract description 263
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 257
- 239000005001 laminate film Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 117
- 238000004458 analytical method Methods 0.000 claims abstract description 25
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 16
- 230000003746 surface roughness Effects 0.000 claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 229920001721 polyimide Polymers 0.000 claims description 70
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 66
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 40
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 25
- 239000004642 Polyimide Substances 0.000 claims description 24
- 238000007747 plating Methods 0.000 claims description 24
- -1 silane compound Chemical class 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 20
- 229910000077 silane Inorganic materials 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 13
- 238000004846 x-ray emission Methods 0.000 claims description 13
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 12
- 229920002554 vinyl polymer Polymers 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000009832 plasma treatment Methods 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 235000012054 meals Nutrition 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 5
- 125000006738 (C6-C20) heteroaryl group Chemical group 0.000 claims description 5
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 125000005865 C2-C10alkynyl group Chemical group 0.000 claims description 4
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 225
- 239000010408 film Substances 0.000 description 102
- 230000000052 comparative effect Effects 0.000 description 39
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 11
- 238000009713 electroplating Methods 0.000 description 11
- 238000005240 physical vapour deposition Methods 0.000 description 10
- 238000010306 acid treatment Methods 0.000 description 9
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229920000106 Liquid crystal polymer Polymers 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 7
- 229910000990 Ni alloy Inorganic materials 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 229920005575 poly(amic acid) Polymers 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920000015 polydiacetylene Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000005462 imide group Chemical group 0.000 description 3
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000006735 (C1-C20) heteroalkyl group Chemical group 0.000 description 1
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 1
- 125000006737 (C6-C20) arylalkyl group Chemical group 0.000 description 1
- 125000006742 (C6-C20) heteroarylalkyl group Chemical group 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- KRVQJVWAVNVYLG-UHFFFAOYSA-N diiodomethane hydrate Chemical compound O.ICI KRVQJVWAVNVYLG-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- IMXBVCNOQRMBAQ-UHFFFAOYSA-N trimethoxy(oct-7-enyl)silane Chemical compound CO[Si](CCCCCCC=C)(OC)OC.CO[Si](CCCCCCC=C)(OC)OC IMXBVCNOQRMBAQ-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
Definitions
- It relates to a copper-clad laminated film, an electronic device including the same, and a method for manufacturing the copper-clad laminated film.
- a printed circuit board has a structure in which both upper and lower surfaces of an insulating base film are bonded with copper foil to form a circuit.
- a land (a place that can be soldered) may be formed on both upper and lower surfaces. For this reason, it is possible to increase the density of the parts at the same size when the parts are mounted.
- a printed circuit board is manufactured by coating a polymer film substrate in a molten state on a copper foil, a method of electrolytic plating after sputtering on one side of the substrate film, and thermocompression bonding of a copper foil and a thermosetting substrate film It can be manufactured using a laminating method.
- the above three methods of manufacturing the printed circuit board cannot sufficiently solve the problem of pattern peeling or deformation in the printed circuit process.
- a copper-clad laminate film having sufficient adhesion between the base layer and the copper-containing layer to prevent pattern peeling or deformation in the printed circuit process, and at the same time having low transmission loss due to low dielectric constant, low dielectric loss, and low surface roughness at high frequencies, including the same
- an electronic device and a method for manufacturing the copper clad laminate film.
- One aspect is to provide a copper clad laminate film having low transmission loss due to low dielectric constant, low dielectric loss, and low surface roughness at high frequencies, and at the same time, high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. will be.
- Another aspect is to provide an electronic device including the copper clad laminate.
- Another aspect is to provide a method of manufacturing the copper clad laminate.
- a substrate structure having a primer layer disposed on at least one surface of the substrate
- XRD X-ray diffraction
- the surface roughness (R z ) of the surface of the copper-containing layer may be 0.1 ⁇ m or less.
- the peel strength of the copper-containing layer with respect to the base structure at 25 °C may be 0.80 kgf / cm or more.
- the peel strength of the copper-containing layer with respect to the base structure measured after two hours of heat treatment at 150° C., left for 30 minutes at room temperature, and additional heat treatment at 240° C. for 10 minutes may be 0.45 kgf/cm or more.
- the copper-containing layer may include a copper seed layer or copper, and at least one copper alloy seed layer selected from nickel, zinc, beryllium, and chromium.
- the copper-containing layer includes a copper alloy seed layer of copper and nickel,
- the deep portion of the copper alloy seed layer may have a greater content of nickel than the surface portion.
- Equation 1 Equation 1 below may be satisfied in the region of binding energy of 933.58 eV to 953.98 eV:
- I Cu + Ni is the peak strength of the copper alloy seed layer in the region of binding energy 933.58 eV to 953.98 eV,
- I Cu is the peak intensity of the copper seed layer in the region of binding energy 933.58 eV to 953.98 eV.
- the copper seed layer or the copper alloy seed layer may be a sputter layer.
- a metal plating layer may be further included on one surface of the copper seed layer or the copper alloy seed layer.
- the thickness of the copper-containing layer may be 15 ⁇ m or less.
- the thickness of the copper-containing layer may be 12.5 ⁇ m or less.
- the substrate is a polyimide-based substrate
- the polyimide-based substrate may have a dielectric constant (D k ) of 3.4 or less and a dielectric loss (D f ) of 0.007 or less at a frequency of 20 GHz.
- the polyimide-based substrate may have a dielectric constant (D k ) of 3.3 or less and a dielectric loss (D f ) of 0.005 or less at a frequency of 28 GHz.
- the polyimide-based substrate may have a transmission loss of 0.8 dB/cm or less at a frequency of 28 GHz.
- the thickness of the substrate may be 5 ⁇ m to 100 ⁇ m.
- the primer layer may include a silane coupling agent represented by the following Chemical Formula 1:
- R is a substituted or unsubstituted C2-C20 alkenyl group, —N(R 1 )(R 2 ), or a combination thereof, wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, a substituted or unsubstituted C2-C10 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C3- a C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, or a substituted or unsubstituted C6-C20 heteroaryl group,
- n is an integer from 1 to 5
- m 0 to 10.
- the primer layer may include an amino-based silane compound, a vinyl-based silane compound, or a mixture thereof.
- the weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 9:1.
- the Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 10 cps to 120 cps.
- the water contact angle of the surface of the primer layer may be 45° to 70°.
- the thickness of the primer layer may be 500 nm or less.
- the thickness of the primer layer may be 300 nm or less.
- the thickness of the primer layer may be 20 nm or less.
- the fatigue life by MIT measurement according to JIS C 6471 of the film may be 270 times or more.
- An electronic device including the above-described copper clad laminate is provided.
- forming a primer layer by applying a composition for forming a primer layer on at least one surface of the substrate;
- the method may further include performing plasma treatment after forming the primer layer.
- a copper clad laminated film includes a substrate structure in which a primer layer is disposed on at least one surface of a substrate; and a copper-containing layer disposed on the substrate structure; a peak in the [200] orientation with respect to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer
- the intensity ratio (I [200] /I [311] ) is greater than or equal to 2.0.
- the copper clad laminate film has a low transmission loss due to a low dielectric constant, a low dielectric loss, and a low surface roughness at a high frequency, while at the same time having a high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. It can have. Due to this, it is possible to prevent pattern peeling or deformation in the printed circuit process.
- FIG. 1 is a schematic cross-sectional view of a copper-clad laminated film according to an embodiment.
- FIG. 2 is a schematic cross-sectional view of a double-sided copper clad laminated film according to another embodiment.
- FIG. 3 is an XRD result showing a [111] orientation, a [200] orientation, a [220] orientation, a [311] orientation, and a [222] orientation for a copper-containing layer of a copper clad laminate film according to an embodiment; to be.
- 4a is a TEM/EDAX result showing the structure of the copper clad laminated film according to Example 3; 4b and 4c are TEM/EDAX results showing the content distribution of nickel elements from the polyimide film substrate of the copper clad laminate film according to Example 3 to the copper alloy seed layer, respectively.
- the term “and/or” is meant to include any and all combinations of one or more of the related listed items.
- the term “or” means “and/or”.
- the expression “at least one” or “one or more” in front of elements in the present specification does not mean that it can modify the entire list of elements and can modify individual elements of the description.
- one component when it is stated that one component is disposed “on” or “over” another component, one component may be disposed directly on the other component, or the components interposed between the components are may exist. On the other hand, when it is stated that an element is disposed "directly on” or “directly on” another element, intervening elements may not exist.
- ⁇ -based polymer (resin) or " ⁇ -based copolymer (resin)” means " ⁇ polymer (resin)", “ ⁇ copolymer (resin)", or/and “ ⁇ polymer (resin) or copolymer” It is a concept in a broad sense including all of “derivatives of coalescing (resin)”.
- polyimide means a polymer containing a repeating structural unit including an imide group.
- Polyimide-based refers to both a polyimide and a polymer containing a repeating structural unit containing an amide group in addition to an imide group. concept that includes Examples of the polymer containing a repeating structural unit containing both an imide group and an amide group include polyamideimide and the like.
- a method of electroplating after sputtering on one surface of the base layer may be used.
- the method may result in low adhesion between the substrate layer and the deposited copper layer. If the adhesion between the base layer and the copper layer is low, the circuit pattern formed during the manufacture of the printed circuit board may be dropped or deformed.
- a method of manufacturing a printed circuit board by disposing a bonding layer such as nickel or nickel-chromium alloy between the base layer and the copper layer is used.
- the manufacturing process including the bonding layer such as nickel or nickel-chromium alloy has problems of stability and environmental pollution due to the increase in the number of processes and the use of harmful substances. Also, in circuits using high-frequency signals, signal loss may occur due to bonding layers such as nickel or nickel-chromium alloys.
- the inventors of the present invention intend to propose a copper clad laminate film having a novel structure, an electronic device including the same, and a method for manufacturing the copper clad laminate film.
- a copper clad laminated film includes a substrate structure in which a primer layer is disposed on at least one surface of a substrate; and a copper-containing layer disposed on the substrate structure; a peak in the [200] orientation with respect to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer
- the intensity ratio (I [200] /I [311] ) may be greater than or equal to 2.0.
- the copper clad laminate film has a low transmission loss due to a low dielectric constant, a low dielectric loss, and a low surface roughness at a high frequency, while at the same time having a high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. It can have. Due to this, it is possible to prevent pattern peeling or deformation in the printed circuit process.
- 1 and 2 are schematic cross-sectional views of a copper clad laminated film according to an embodiment, respectively.
- primer layers 21 and 22 are disposed on one or both sides of the substrate 11 as a substrate structure, and the primer layer ( Copper layers 31 and 32 as copper-containing layers 40 and 50 and metal plating layers 41 and 42 are sequentially disposed on the 21 and 22 .
- the substrate structure may have a primer layer disposed on at least one surface of the substrate.
- the substrate according to one embodiment may be a film or a sheet.
- the substrate may be a film.
- a film having excellent heat resistance can be used to withstand high temperatures when manufacturing a printed circuit board.
- the substrate may include polyimide, a modified polyimide having a low dielectric constant, polyphenylsulfide, polyamide, polyetherimide, polyethylene naphthalate, or a film containing fluorine.
- the substrate may be a polyimide-based substrate.
- a polyimide film or a modified polyimide film having a low dielectric constant may be used as the polyimide-based substrate.
- the polyimide film used for the substrate may be manufactured by extruding polyamic acid, which is a polyimide precursor, to make a film, and heat-treating and drying the film for imidization of the polyamic acid. Moisture and residual gas may be removed through a drying process commonly used in the art. For example, the drying may be performed through a roll to roll type heat treatment under normal pressure or may be performed using an infrared (IR) heater under a vacuum atmosphere.
- IR infrared
- the moisture absorption rate is a ratio indicating the amount of moisture absorbed by the material. In general, it is known that when the moisture absorption rate is high, the permittivity and the dielectric loss increase.
- the moisture absorption of the substrate may be less than 5% by weight.
- the moisture absorption of the substrate may be 4 wt% or less, 3 wt% or less, or 2 wt% or less.
- the substrate may be a polyimide-based substrate, and the polyimide-based substrate may have a dielectric constant (D k ) of 3.4 or less and a dielectric loss (D f ) of 0.007 or less at a frequency of 20 GHz.
- the polyimide-based substrate may have a dielectric constant (D k ) of 3.3 or less and a dielectric loss (D f ) of 0.005 or less at a frequency of 28 GHz.
- the polyimide-based substrate may have a transmission loss of 0.8 dB/cm or less at a frequency of 28 GHz.
- the glass transition temperature (Tg) of the substrate may be 200 °C or more.
- the substrate may have sufficient heat resistance, so that physical-chemical changes may not occur within a high temperature range and for a long time.
- the glass transition temperature (Tg) of the substrate is 200° C. or less, the substrate may be melted in the printed circuit board manufacturing process or the dimensional change of the substrate may occur after the high temperature process, causing the circuit board to warp.
- the thickness of the substrate may be generally 5 ⁇ m to 100 ⁇ m.
- the thickness of the substrate may be from 10 ⁇ m to 75 ⁇ m, from 12.5 ⁇ m to 70 ⁇ m, from 12.5 ⁇ m to 60 ⁇ m, from 12.5 ⁇ m to 50 ⁇ m, or from 12.5 ⁇ m to 40 ⁇ m. It is possible to suppress a wrinkle phenomenon caused by an external force within the thickness range of the substrate, maintain appropriate heat resistance, and facilitate handling.
- the substrate may be subjected to plasma treatment on the surface.
- the plasma treatment may use RF plasma or an ion beam.
- the plasma treatment may be performed on one or both surfaces of the substrate.
- chemical activity of the surface of the substrate may be enhanced, and surface roughness may be improved to further improve adhesion between the substrate and the copper-containing layer.
- a primer layer according to an embodiment includes a silane coupling agent.
- the primer layer may include a silane coupling agent represented by the following Chemical Formula 1:
- R is a substituted or unsubstituted C2-C20 alkenyl group, —N(R 1 )(R 2 ), or a combination thereof, wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, a substituted or unsubstituted C2-C10 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C3- It may be a C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, or a substituted or unsubstituted C6-C20 heteroaryl group,
- n may be an integer from 1 to 5
- m may be 0 to 10.
- the primer layer may include an amino-based silane compound, a vinyl-based silane compound, or a mixture thereof.
- the content of the amino-based silane compound may be the same as or higher than the content of the vinyl-based silane compound.
- the primer layer includes the silane coupling agent represented by Formula 1, and when the amino-based silane compound is contained in the same or higher content as the vinyl-based silane compound, room temperature adhesion and heat resistance between the substrate structure of the copper clad laminate and the copper-containing layer Adhesion is improved and pattern peeling or deformation prevention is possible in the printed circuit process, so it can be applied to printed circuit boards.
- the weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 9:1.
- the weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 8:1, 1:1 to 7:1, 1:1 to 6:1, or 1:1 to 5:1 or 1:1 to 4:1.
- the weight ratio of the vinyl-based silane compound to the amino-based silane compound is within the above range, the room temperature adhesion and heat-resistant adhesion between the base structure of the copper clad laminate and the copper-containing layer are further improved, thereby facilitating pattern peeling or deformation prevention in the printed circuit process.
- the Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 10 cps to 120 cps.
- the Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 12 cps to 120 cps, 14 cps to 120 cps, 16 cps to 120 cps, or 18 cps It can be from 20 cps to 120 cps, from 22 cps to 120 cps, from 24 cps to 120 cps, from 26 cps to 120 cps, or from 28 cps to 120 cps.
- the Si content by XRF (X-ray fluorescence spectrometry) analysis on the surface of the primer layer is more than 120 cps, room temperature adhesion and heat resistance adhesion between the base structure of the copper clad laminate and the copper-containing layer is low. For this reason, when a circuit pattern is formed on a copper clad laminate film and the circuit pattern is peeled from the copper clad laminate film after hydrochloric acid treatment at room temperature, some circuit patterns may be peeled off or all of the circuit patterns may be peeled off.
- the water contact angle of the surface of the primer layer may be 45° to 70°. If the water contact angle of the surface of the primer layer is within the above range, room temperature adhesion and heat resistance adhesion between the base structure and the copper-containing layer are excellent, and the peeling phenomenon does not occur when the circuit pattern is peeled from the copper clad laminate after hydrochloric acid treatment at room temperature.
- the silane coupling agent may be included in an amount of 0.01 to less than 10% by weight based on the total weight of the primer layer.
- the primer layer may be formed by applying and drying a composition for forming a primer layer on a substrate using a solution application method.
- the solvent used in the composition for forming the primer layer is not limited, but, for example, the solvent may be at least one selected from water, acetone, methanol, ethanol, and isopropanol. These solvents may be used alone or in combination.
- the thickness of the primer layer may be 500 nm or less.
- the thickness of the primer layer may be 450 nm or less, 400 nm or less, 350 nm or less, 300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less, 100 nm or less, or It may be 80 nm or less, 60 nm or less, 40 nm or less, or 20 nm or less.
- the thickness of the primer layer may be 18 nm or less, 16 nm or less, or 15 nm or less. Even when the thickness of the primer layer is a thin film as described above, room temperature adhesion and heat resistance adhesion between the base structure and the copper-containing layer may be improved.
- the copper-containing layer according to an exemplary embodiment has a face-centered cubic structure.
- the copper-containing layer of such a face-centered cubic structure has crystal orientation planes or orientation planes in various directions.
- the direction and/or position of the crystal orientation plane or orientation plane may be expressed by Miller Indices.
- [111] azimuth, [200] azimuth, [220] azimuth, [311] azimuth, and [222] azimuth are the crystal orientation planes or azimuth planes in the [111] direction, [200], respectively.
- the crystal planes of these various directions can be specified by X-ray diffraction (XRD) analysis.
- FIG. 3 is an XRD result showing a [111] orientation, a [200] orientation, a [220] orientation, a [311] orientation, and a [222] orientation for a copper-containing layer of a copper clad laminate film according to an embodiment; to be.
- the [111] orientation of the copper-containing layer of the copper clad laminated film shows a peak at Bragg 2 ⁇ 43.4 ⁇ 0.5°, and the [200] orientation shows a peak at Bragg 2 ⁇ 50.5 ⁇ 0.5°.
- the [220] azimuth shows a peak at Bragg 2 ⁇ 74.2 ⁇ 0.5°
- the [311] azimuth shows a peak at Bragg 2 ⁇ 90.0 ⁇ 0.5°
- the [222] azimuth shows a peak at Bragg 2 ⁇ 95.2 ⁇ 0.5° indicates a peak.
- the copper-containing layer according to an embodiment is a ratio of the peak intensity of the [200] orientation to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis (I [200] /I [ 311] ) may be 2.0 or greater. If the ratio (I [200] / I [311] ) of the peak intensity of the copper-containing layer by XRD analysis is in the above range, the density is small and stable in order to resolve the internal stress of tensile stress and elastic energy generated between copper particles. Because it can be in a state of being, it can have a high fatigue life.
- XRD X-ray diffraction
- the surface roughness (R z ) of the surface of the copper-containing layer may be 0.1 ⁇ m or less.
- the peel strength of the copper-containing layer with respect to the base structure at 25 °C may be 0.80 kgf / cm or more.
- the peel strength of the copper-containing layer with respect to the base structure measured after two hours of heat treatment at 150° C., left for 30 minutes at room temperature, and additional heat treatment at 240° C. for 10 minutes may be 0.45 kgf/cm or more.
- the copper-containing layer may include a copper seed layer or copper, and at least one copper alloy seed layer selected from nickel, zinc, beryllium, and chromium.
- the copper-containing layer may include a copper alloy seed layer of copper and nickel.
- the copper and nickel weight (%) ratio of the copper alloy seed layer may be 60:40 to 95:5 or 60:40 to 90:10.
- the copper alloy seed layer may be one or more alloy seed layers selected from zinc, beryllium, and chromium in addition to copper and nickel.
- the weight (%) ratio of one or more metals selected from zinc, beryllium, and chromium other than copper and nickel may be 60:35:5 to 90:5:5 or 60:35:5 to 80:15:5 can
- the deep portion of the copper alloy seed layer may have a greater content of nickel than the surface portion.
- the deep portion means an area from the substrate toward the copper-containing seed layer from about 0 to 60 mm
- the surface portion means an area greater than 60 mm from the substrate toward the copper-containing seed layer.
- Such a copper-containing seed layer can prevent moisture and air passing through the substrate from being oxidized in the copper-containing seed layer. For this reason, when chemical polishing (soft etching) is performed on the surface of the copper clad laminate including the same with an acid such as hydrochloric acid, formic acid, or sulfuric acid, peeling between the substrate structure and the copper-containing layer including the copper-containing seed layer can be prevented. have.
- the content of the nickel element in the copper-containing seed layer can be confirmed by TEM/EDAX of FIGS. 4A to 4C, which will be described later.
- Equation 1 Equation 1 below may be satisfied in the region of binding energy of 933.58 eV to 953.98 eV:
- I Cu + Ni is the peak strength of the copper alloy seed layer in the region of binding energy 933.58 eV to 953.98 eV,
- I Cu is the peak intensity of the copper seed layer in the region of binding energy 933.58 eV to 953.98 eV.
- a region of 933.58 eV to 953.98 eV of binding energy means a peak region of copper oxide (Cu x O y , 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 5).
- the copper clad laminate film having the peak intensity ratio of Equation 1 in the copper oxide peak region has excellent chemical resistance.
- the XPS analysis result can be confirmed in FIG. 5 to be described later.
- the copper seed layer or the copper alloy seed layer may be a sputter layer.
- the copper seed layer or the copper alloy seed layer may be deposited on one or both surfaces of the primer layer by sputtering in a vacuum tank under a reduced pressure of 10 -4 to 10 -2 torr.
- the deposition method any deposition method available in the art may be used, but for example, physical vapor deposition (PVD), chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), or vacuum deposition may be used. have.
- the copper-containing layer may further include a metal plating layer on one surface of the copper seed layer or the copper alloy seed layer.
- the metal plating layer is formed using an electrolytic plating method.
- the metal an appropriate metal may be selected by a person skilled in the art according to the metal texture to be implemented.
- the metal may be gold, silver, cobalt, aluminum, iron, nickel, chromium, or copper.
- the metal may be copper.
- the electroplating may be performed by a method commonly used in the art.
- the electrolytic plating is performed by, for example, performing electroplating using copper sulfate and sulfuric acid as basic materials to form a metal plating layer on the copper seed layer or the copper alloy seed layer.
- the electrolytic plating may be performed using a plating solution containing copper at a concentration of 15 g/L to 40 g/L, for example, 15 g/L to 38 g/L, for example, 17 g/L to 36 g/L.
- the temperature of the plating solution may be maintained at 22°C to 37°C, for example, 25°C to 35°C, for example, 27°C to 34°C. It is easy to form a plating layer within the temperature range of the plating solution and can have excellent productivity.
- the pH of the plating solution may be greater than 7.
- one or more pH adjusting agents may be included in the plating solution to adjust the pH of the plating solution to an alkaline pH.
- the pH adjusting agent may include an organic acid, an inorganic acid, an organic base, an inorganic base, or a mixture thereof.
- the inorganic acid may include phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, or a combination thereof.
- the inorganic base may include ammonium hydroxide, sodium hydroxide, potassium hydroxide, or a combination thereof.
- additives for example, a brightener, a leveler, a correcting agent, a emollient, and the like, may be added to the plating solution for productivity and surface uniformity.
- the electroplating may be performed under a current density of 0.1A/m2 to 20A/m2, for example, 0.1A/m2 to 17A/m2, for example, 0.3A/m2 to 15A/m2. Within the range of the current density, it is possible to easily form a metal plating layer and have excellent productivity.
- the thickness of the copper-containing layer may be 15 ⁇ m or less.
- the thickness of the copper-containing layer may be 12.5 ⁇ m or less.
- the copper seed layer or the copper alloy seed layer may have a thickness of 50 nm to 150 nm.
- the thickness of the copper seed layer or copper alloy seed layer may be 50 nm to 140 nm, may be 50 nm to 130 nm, or may be 50 nm to 120 nm. If the copper alloy layer has the thickness range, conductivity can be secured during film formation, and a copper clad laminate film having a low surface roughness (R z ) can be provided.
- the thickness of the metal plating layer may be 0.1 ⁇ m to 12 ⁇ m.
- the thickness of the metal plating layer may be 0.2 ⁇ m to 12 ⁇ m or 0.7 ⁇ m to 12 ⁇ m.
- the fatigue life by MIT measurement according to JIS C 6471 of the copper clad laminated film according to an embodiment may be 270 or more.
- the fatigue life measured by MIT according to JIS C 6471 of the copper clad laminate film may be 280 times or more.
- An electronic device may include the above-described copper clad laminate.
- the electronic device may include an electronic circuit device or an electronic component.
- the electronic circuit device may include a semiconductor, a printed circuit board, or a wiring board.
- the electronic device may include a display device such as LCD or OLED.
- a method of manufacturing a copper clad laminated film includes the steps of preparing a substrate; forming a primer layer by applying a composition for forming a primer layer on at least one surface of the substrate; and forming a copper-containing layer on the primer layer by sputtering to prepare the above-described copper clad laminate.
- the manufacturing method of the copper clad laminate film can prevent pattern peeling or deformation in the printed circuit process.
- the method of manufacturing the copper clad laminate can reduce signal loss in a high-frequency circuit.
- the method may further include performing plasma treatment after forming the primer layer.
- “Substitution” in “substituted” of an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, aryl group, or heteroaryl group used in Formula 1 is a halogen atom or a C1-C10 alkyl group substituted with a halogen atom.
- C1-C10 alkyl group used in Formula 1 include methyl, ethyl, propyl, isobutyl, sec-butyl, ter-butyl, neo-butyl, iso-amyl, and hexyl, among the alkyl groups
- One or more hydrogen atoms may be substituted with a substituent as defined in "substitution" above.
- C2-C10 alkenyl group used in Formula 1 include vinylene and allylene, and at least one hydrogen atom of the alkenyl group may be substituted with a substituent as defined in the above-mentioned "substitution" .
- C2-C20 alkynyl group used in Formula 1 may include acetylene, and at least one hydrogen atom of the alkynyl group may be substituted with a substituent as defined in “Substitution” above.
- C3-C20 cycloalkyl group used in Formula 1 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like, and at least one hydrogen atom of the cycloalkyl group is as defined in the above-mentioned "substitution". It can be substituted with the same substituent.
- C3-C20 cycloalkenyl group used in Formula 1 include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like, and at least one hydrogen atom among the cycloalkenyl groups is It may be substituted with a substituent as defined in "substituting".
- the C6-C20 aryl group used in Formula 1 is used alone or in combination to mean an aromatic system including one or more rings, and examples thereof include phenyl and naphthyl.
- one or more hydrogen atoms in the aryl group may be substituted with a substituent as defined in the above-mentioned "substitution".
- the C6-C20 heteroaryl group used in Formula 1 means an organic compound containing one or more heteroatoms selected from N, O, P or S, and the remaining ring atoms are carbon, for example, pyridyl, etc. can
- one or more hydrogen atoms in the heteroaryl group may be substituted with a substituent as defined in the above-mentioned "substitution".
- Example 1 Copper clad laminated film
- a polyimide film (manufactured by PI Advanced Materials, dielectric constant (D k ): 3.3, dielectric loss (D f ): 0.005 @28 GHz) was prepared as a substrate as a base material.
- N-2-(aminoethyl)-8-aminooctyl-trimethoxysilane N-2-(aminoethyl)-8-aminooctyl-trimethoxysilane) and 7-octenyltrimethoxysilane ( 7-octenyltrimethoxysilane) was mixed and stirred in 10 g of distilled water at a weight ratio of 1:0.5 to obtain a mixed aqueous solution.
- a composition for forming a primer layer was prepared by dissolving 50 g of ethanol and 50 g of isopropyl alcohol in the mixed aqueous solution and stirring for 1 hour.
- the composition for forming the primer layer was applied to the upper surface of the polyimide film using a bar coater and dried at 150° C. for about 2 minutes to form a primer layer with a thickness of about 300 nm.
- RF plasma treatment was performed on the primer layer.
- RF plasma treatment was performed with about 1000 W of power by introducing argon gas and oxygen gas in a volume ratio of 4:1.
- a copper seed layer to a thickness of 1200 ⁇ was formed on the upper surface of the primer layer using copper having a purity of 99.995% by physical vapor deposition (PVD).
- PVD physical vapor deposition
- a copper clad laminate was prepared by forming a copper plating layer with a thickness of about 12 ⁇ m on the copper seed layer by an electrolytic copper plating method.
- the electrolytic copper plating solution used was a solution of Cu 2+ concentration of 28 g/L and sulfuric acid 180 g/L, and was further calibrated with 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid 0.01 g/L as a brightener. (manufactured by Atotech) was used. Electrolytic plating was performed at 30°C, and was manufactured by applying a current at a current density of 1 A/m2.
- Example 2 Copper clad laminated film
- Example 3 Copper clad laminated film
- a copper alloy seed layer of 1200 ⁇ thick copper and nickel was formed on the upper surface of the primer layer using a copper and nickel alloy having a weight (%) ratio of copper and nickel of 90:10 by physical vapor deposition (PVD). Except that, a copper clad laminated film was prepared in the same manner as in Example 1.
- Example 4 Copper clad laminated film
- a polyimide film with a thickness of about 50 ⁇ m (dielectric constant (D k ): 3.4, dielectric loss (D f ): 0.007 @ 20 GHz) was prepared as a substrate, and 1 g of aminopropyltriethoxysilane was used as a silane coupling agent.
- a copper clad laminate was prepared in the same manner as in Example 1, except that a primer layer having a thickness of about 5 nm was formed.
- Example 5 Copper clad laminated film
- a copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 15 nm was formed using 5 g of aminopropyltriethoxysilane as a silane coupling agent.
- a copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 10 nm was formed using 3 g of aminopropyltriethoxysilane as a silane coupling agent.
- Example 4 The same method as in Example 4, except that a primer layer having a thickness of about 5 nm was formed using 0.2 g of vinyltriethoxysilane and 0.8 g of aminopropyltriethoxysilane as a silane coupling agent. to prepare a copper-clad laminated film.
- Example 8 Copper clad laminated film
- a silane coupling agent 0.2 g of vinyltriethoxysilane and 0.8 g of aminopropyltriethoxysilane were used to form a primer layer with a thickness of about 5 nm, and a physical vapor deposition method ( PVD) in the same manner as in Example 4, except that a copper and nickel alloy seed layer having a thickness of 1200 ⁇ was formed using a copper and nickel alloy having a weight (%) ratio of 90:10 to copper and nickel.
- PVD physical vapor deposition method
- Example 4 The same method as in Example 4, except that a primer layer having a thickness of about 15 nm was formed using 2.5 g of vinyltriethoxysilane and 2.5 g of aminopropyltriethoxysilane as a silane coupling agent. to prepare a copper-clad laminated film.
- a low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 ⁇ m was prepared as a substrate, and 0.6 g of vinyltriethoxysilane and aminopropyltriethoxysilane as a silane coupling agent.
- a copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 10 nm was formed using 2.4 g of (aminopropyltriethoxysilane).
- Example 11 Copper clad laminated film
- a low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) of about 50 ⁇ m thick was prepared as a base material, and copper and nickel were coated with 90:10 on the upper surface of the primer layer by physical vapor deposition (PVD).
- PVD physical vapor deposition
- a copper clad laminate was prepared in the same manner as in Example 4, except that a copper alloy seed layer of copper and nickel having a thickness of 1200 ⁇ was formed using a copper and nickel alloy having a weight (%) ratio.
- liquid crystal polymer (LCP) film manufactured by Kaneka, dielectric constant (D k ): 3.1, dielectric loss (D f ): 0.0022 @28 GHz) having a thickness of about 25 ⁇ m was prepared.
- DMAC dimethylacetamide
- the composition for forming the adhesive layer was applied to the upper surface of the liquid crystal polymer (LCP) film using a bar coater, and a 12 ⁇ m thick copper foil was passed between two rotating nip rollers to prepare a laminated copper clad laminate.
- LCP liquid crystal polymer
- a modified PI (m-PI) film manufactured by Kaneka, dielectric constant (D k ): 3.1, dielectric loss (D f ): 0.006 @28GHz) having a thickness of about 25 ⁇ m was prepared.
- DMAC dimethylacetamide
- a solution of 3',4,4'-benzophenonetetracarboxylic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride; BTDA)-pyromellitic dianhydride (PMDA) was added and the mixture was stirred for about 1 hour.
- a composition for forming an adhesive layer of a polyamic acid solution was prepared by stirring.
- composition for forming an adhesive layer was applied to the upper surface of the modified-polyimide film by using a bar coater, and a 12 ⁇ m thick copper foil was passed between two rotating nip rollers to prepare a laminated copper clad laminate.
- Example 4 Except for preparing a polyimide film (dielectric constant (D k ): 3.4, dielectric loss (D f ): 0.007 @ 20 GHz) of about 50 ⁇ m thickness without applying the composition for forming a primer layer on the upper surface, Example 4 and A copper-clad laminated film was prepared in the same manner.
- a copper clad laminate was laminated in the same manner as in Example 4, except that a low-k polyimide film (D k : 3.2, D f : 0.004 @20GHz) having a thickness of about 50 ⁇ m was prepared on the upper surface of which the composition for forming a primer layer was not applied. A film was prepared.
- a low-k polyimide film (D k : 3.2, D f : 0.004 @20GHz) having a thickness of about 50 ⁇ m was prepared on the upper surface of which the composition for forming a primer layer was not applied.
- a film was prepared.
- a low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 ⁇ m was prepared as a substrate, and 10.5 g of vinyltriethoxysilane (Shin-Etsu, KBE-1003) as a silane coupling agent and A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of 65 nm was formed using 4.5 g of aminopropyltriethoxysilane (Dow Chemical, OFS-6011).
- a low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 ⁇ m was prepared as a substrate, and 9.0 g of vinyltriethoxysilane (Shin-Etsu, KBE-1003) as a silane coupling agent and A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of 43 nm was formed using 1.0 g of aminopropyltriethoxysilane (Dow Chemical, OFS-6011).
- a low-k polyimide film (D k : 3.2, D f : 0.004 @20 GHz) was prepared, and a 45 nm-thick primer layer was formed using 6.0 g of aminopropyltriethoxysilane as a silane coupling agent. Except that, a copper clad laminated film was prepared in the same manner as in Example 10.
- a low-k polyimide film (D k : 3.2, D f : 0.004 @20GHz) was prepared, and 6.0 g of vinyltriethoxysilane as a silane coupling agent was used to form a 30 nm-thick primer layer except that Then, a copper clad laminated film was prepared in the same manner as in Example 10.
- the thickness of the primer layer of each copper clad laminate was measured using a FIB (Focused Ion Beam)-TEM equipment. Some of the results are shown in Tables 3 and 4.
- the surface roughness (R z ) of the copper-clad laminated films of Example 1 and Comparative Examples 1 and 2 was measured with an atomic force microscope (AFM).
- the surface roughness (R z ) was obtained by dividing the entire measurement section into 5 equal parts, obtaining the maximum value for each equal segment, and dividing the sum of the obtained values by 5. The results are shown in Table 1.
- Example 1 and Comparative Examples 1 and 2 were subjected to fatigue life by MIT in accordance with JIS C 6471.
- each copper clad laminate was cut into 15 mm x 170 mm size, and the pattern (width: 1000 ⁇ m) was etched, stored for 24 hours, and a sample stored for 1 hour at 80 °C in an oven was prepared.
- MIT was measured by applying (+) and (-) electrodes to both ends of the sample. The results are shown in Table 1.
- TEM/EDAX used for the analysis was Titan G2 ChemiSTEM Cs Probe, FEI Company's equipment was used.
- XPS used for analysis was K-Alpha, ThermoFisher's equipment.
- ⁇ The area where the circuit pattern is attached on the copper clad laminate film is 11% to 89% (or partial peeling of the circuit pattern)
- ⁇ The area where the circuit pattern is attached on the copper clad laminate film is 10% or less (or the entire circuit pattern is peeled off)
- the polyimide film substrate of the copper-clad laminated film of Example 1 had a dielectric loss (Df) at a frequency of 28 GHz compared with the modified-polyimide (m-PI) film substrate of the copper-clad laminated film of Comparative Example 2 ) was low, and the transmission loss was low compared to the base material of the copper clad laminated films of Comparative Examples 1 and 2.
- Df dielectric loss
- m-PI modified-polyimide
- the copper clad laminate film comprising the polyimide film substrate of Example 1 and the primer layer containing a silane coupling agent was compared with the copper clad laminate film in which the modified-polyimide (m-PI) film substrate of Comparative Example 2 and the polyamic acid-containing adhesive layer were laminated Therefore, I [200] /I [311] by XRD analysis was low.
- the polyimide film substrate of Example 1 and the silane coupling agent-containing copper clad laminate film were laminated with the liquid crystal polymer (LCP) film substrate or modified-polyimide (m-PI) film substrate of Comparative Examples 1 and 2, and an adhesive layer containing polyamic acid. Compared with the copper clad laminate film, the surface roughness was low and the fatigue life was high.
- the copper-clad laminated film of Example 1 had higher adhesion or peel strength of the copper-containing layer to the base structure compared with the copper-clad laminated film of Comparative Example 1.
- the copper-clad laminated film of Example 1 has low dielectric loss, low transmission loss, and low I [200] /I [311] by XRD analysis at a high frequency of 28 GHz while At the same time It can be confirmed that the copper-containing layer has a high fatigue life and high adhesion to the substrate structure.
- the copper clad laminated film of Example 3 has a region from the polyimide film substrate to the copper-containing layer, specifically, the copper alloy seed layer to about 0 to 60 mm, that is, the deep portion, the polyimide film substrate. It can be seen that the content of the nickel element is greater than the area of more than 60 mm toward the copper alloy seed layer, that is, the surface portion.
- the ratio of the peak intensity (I Cu+Ni ) (I Cu+Ni /I Cu ) was 0.87 in the layer binding energy 933.58 eV to 953.98 eV region.
- the water contact angle of the primer layer surface of the copper clad laminated films of Examples 4 to 6 and 8 was 48° to 69°, and the diiodomethane contact angle was 33° to 56°.
- the peel strength ('room temperature adhesion') of the copper-containing layer to the base structure of the copper-clad laminated films of Examples 4 to 6 and 8 was 0.80 kgf/cm or more, and the peel strength at 140 °C to 160 °C ('heat-resistant adhesive strength') ) was 0.45 kgf/cm or more, and there was no peeling of the circuit pattern after hydrochloric acid treatment at room temperature.
- a (low dielectric constant) polyimide film, and an amino-based silane coupling agent or an amino-based silane coupling agent and a vinyl-based silane coupling agent as a primer layer were included in a thickness of 15 nm or less, , it can be confirmed that the copper clad laminate film including the copper (alloy) seed layer can be used in the printed circuit board manufacturing process.
- the copper clad laminated films of Comparative Examples 3 to 4 not including the primer layer exhibited low room temperature adhesion and low heat resistance adhesion of the copper-containing layer to the base structure.
- the circuit patterns formed on the copper clad laminated films of Comparative Examples 3 and 4 had some peeling phenomenon after hydrochloric acid treatment.
- the copper-clad laminated film of Comparative Example 4 using the low dielectric constant polyimide film substrate showed lower room temperature adhesion. It is considered that the low dielectric constant polyimide film substrate reduces the adhesive strength due to the small amount of reactive functional groups on the surface of the copper clad laminate film.
- the Si content on the surface of the primer layer of the copper clad laminated films of Examples 7 and 9 to 11 was 28 cps to 105 cps.
- the peel strength ('room temperature adhesion') of the copper-containing layer to the base structure of the copper clad laminated films of Examples 7 and 9 to 11 was 0.80 kgf/cm or more, and the peel strength at 140 °C to 160 °C ('heat-resistant adhesive strength') ) was 0.50 kgf/cm or more.
- Room temperature adhesion and heat resistance of the copper-containing layer to the base structure of the copper clad laminated films of Examples 7 and 9 to 11 were higher than those of the copper clad laminated films of Comparative Examples 5 to 8.
- the (low dielectric constant) polyimide film as a base material of Examples 7 and 9-11, and an amino-based silane coupling agent and a vinyl-based silane coupling agent as a primer layer were included in a thickness of 15 nm or less, and a copper (alloy) seed It can be confirmed that the copper-clad laminate film including the layer can be used in the printed circuit board manufacturing process.
- the copper-clad laminated films of Comparative Examples 5 to 6 using the low dielectric constant polyimide film substrate showed lower room temperature adhesion. It is considered that the low dielectric constant polyimide film substrate reduces adhesive strength due to the small number of reactive functional groups on the surface of the copper clad laminate film. Since the copper clad laminate film of Comparative Example 5 formed a gel by self-reaction including a thick primer layer, room temperature adhesion and heat resistance adhesion of the copper-containing layer to the substrate structure were low.
- the copper-clad laminated films prepared in Comparative Examples 7 to 8 formed a copper-containing layer and an electrolytic plating layer under the same conditions as in Example 11.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Disclosed are a copper clad laminate film, an electronic element including same, and a method for manufacturing the copper clad laminate film. The copper clad laminate film includes a substrate structure in which a primer layer is disposed on at least one surface of a substrate; and a copper-containing layer disposed on the substrate structure, wherein the ratio (I[200]/I[311]) of the peak intensity of the [200] orientation plane to the peak intensity of the [311] orientation plane according to X-ray diffraction (XRD) analysis of the copper-containing layer may be at least 2.0. The copper clad-laminate film has low transmission loss at high frequency due to a low dielectric constant, a low dielectric loss, and a low surface roughness, and also has a high fatigue lifespan, and high room temperature adhesion and heat resistant adhesion between the substrate structure and the copper-containing layer. Accordingly, it is possible to prevent pattern peeling or deformation during a printed circuit process.
Description
동박적층필름, 이를 포함하는 전자소자, 및 상기 동박적층필름의 제조방법에 관한 것이다.It relates to a copper-clad laminated film, an electronic device including the same, and a method for manufacturing the copper-clad laminated film.
최근 5G 이동통신기기의 개발로 인해 GHz 대역의 신호 전송속도가 일반화되고 있으며, 반도체 집적회로의 발전에 따라 전자제품은 소형화, 경량화, 박막화, 고밀도화, 및 고굴곡화를 갖는 추세가 가속화되고 있다. 이러한 신호의 고주파화 경향에 따라 인쇄 회로 또는 안테나 소자 등과 같은 전자소자는 향상된 유전특성을 가지면서 고집적도가 구현되는 소재에 대한 요구가 있다.Recently, due to the development of 5G mobile communication devices, the signal transmission speed of the GHz band has become common, and with the development of semiconductor integrated circuits, the trend of electronic products becoming smaller, lighter, thinner, denser, and highly curved is accelerating. According to the tendency of high frequency signals, electronic devices such as printed circuits or antenna devices have improved dielectric properties and there is a demand for materials with high integration.
예를 들어, 인쇄회로기판(printed circuit board; PCB)은 절연 기재필름의 상하면이 모두 동박으로 접착되어 회로를 형성한 구조이다. 상기 구조는 랜드(land, 납땜할 수 있는 곳)가 상·하면 모두에 형성될 수 있다. 이 때문에, 부품이 장착되는 경우 동일한 크기에서 부품의 밀도를 높일 수 있다. 통상적으로, 인쇄회로기판은 동박 위에 용융상태의 고분자필름 기재를 코팅하여 제조하는 캐스팅(casting)법, 기재필름의 일 면에 스퍼터링한 후 전해도금하는 방법, 및 동박과 열경화성 기재필름을 열압착하는 라미네이팅법을 이용하여 제조될 수 있다. 그러나 상기 세 가지의 인쇄회로기판의 제조방법으로는 인쇄회로공정에서 패턴 박리 또는 변형의 문제를 충분히 해결할 수 없다. For example, a printed circuit board (PCB) has a structure in which both upper and lower surfaces of an insulating base film are bonded with copper foil to form a circuit. In the above structure, a land (a place that can be soldered) may be formed on both upper and lower surfaces. For this reason, it is possible to increase the density of the parts at the same size when the parts are mounted. In general, a printed circuit board is manufactured by coating a polymer film substrate in a molten state on a copper foil, a method of electrolytic plating after sputtering on one side of the substrate film, and thermocompression bonding of a copper foil and a thermosetting substrate film It can be manufactured using a laminating method. However, the above three methods of manufacturing the printed circuit board cannot sufficiently solve the problem of pattern peeling or deformation in the printed circuit process.
따라서 기재층과 구리함유층 간에 충분한 접착력을 가져 인쇄회로공정에서 패턴 박리 또는 변형 방지가 가능하면서 동시에 고주파수에서 낮은 유전율, 낮은 유전손실, 및 낮은 표면조도로 인해 낮은 전송 손실을 갖는 동박적층필름, 이를 포함하는 전자소자, 및 상기 동박적층필름의 제조방법에 대한 요구가 있다.Therefore, a copper-clad laminate film having sufficient adhesion between the base layer and the copper-containing layer to prevent pattern peeling or deformation in the printed circuit process, and at the same time having low transmission loss due to low dielectric constant, low dielectric loss, and low surface roughness at high frequencies, including the same There is a demand for an electronic device, and a method for manufacturing the copper clad laminate film.
일 측면은 고주파수에서 낮은 유전율, 낮은 유전손실, 및 낮은 표면조도로 인해 낮은 전송 손실을 가지면서 동시에 높은 피로수명과, 기재 구조체와 구리함유층 간에 높은 상온접착력 및 내열접착력을 갖는 동박적층필름을 제공하는 것이다.One aspect is to provide a copper clad laminate film having low transmission loss due to low dielectric constant, low dielectric loss, and low surface roughness at high frequencies, and at the same time, high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. will be.
다른 일 측면은 상기 동박적층필름을 포함하는 전자소자를 제공하는 것이다.Another aspect is to provide an electronic device including the copper clad laminate.
또다른 일 측면은 상기 동박적층필름의 제조방법을 제공하는 것이다.Another aspect is to provide a method of manufacturing the copper clad laminate.
일 측면에 따라,According to one aspect,
기재의 적어도 일 면에 프라이머층이 배치된 기재 구조체; 및a substrate structure having a primer layer disposed on at least one surface of the substrate; and
상기 기재 구조체 상에 배치된 구리함유층;을 포함하고,Including; a copper-containing layer disposed on the base structure;
상기 구리함유층의 X선 회절(X-ray diffraction; XRD) 분석에 의한 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비(I[200]/I[311])가 2.0 이상인, 동박적층필름이 제공된다.The ratio of the peak intensity of the [200] orientation to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer (I [200] /I [311] ) 2.0 or more, a copper clad laminated film is provided.
상기 구리함유층 표면의 표면조도(Rz)는 0.1 ㎛ 이하일 수 있다.The surface roughness (R z ) of the surface of the copper-containing layer may be 0.1 μm or less.
25 ℃에서 상기 기재 구조체에 대한 구리함유층의 박리강도는 0.80 kgf/cm 이상일 수 있다.The peel strength of the copper-containing layer with respect to the base structure at 25 ℃ may be 0.80 kgf / cm or more.
150 ℃에서 2시간 열처리 후 상온에서 30 분간 2회 방치하고, 240 ℃에서 10 분간 추가 열처리 후에 측정한 상기 기재 구조체에 대한 구리함유층의 박리강도는 0.45 kgf/cm 이상일 수 있다.The peel strength of the copper-containing layer with respect to the base structure measured after two hours of heat treatment at 150° C., left for 30 minutes at room temperature, and additional heat treatment at 240° C. for 10 minutes may be 0.45 kgf/cm or more.
상기 구리함유층은 구리 시드층 또는 구리와, 니켈, 아연, 베릴륨, 및 크롬 중에서 선택된 1종 이상의 구리합금 시드층을 포함할 수 있다.The copper-containing layer may include a copper seed layer or copper, and at least one copper alloy seed layer selected from nickel, zinc, beryllium, and chromium.
상기 구리함유층은 구리와 니켈의 구리합금 시드층을 포함하고,The copper-containing layer includes a copper alloy seed layer of copper and nickel,
상기 구리합금 시드층의 심부가 표면부보다 니켈원소의 함량이 많은 것일 수 있다.The deep portion of the copper alloy seed layer may have a greater content of nickel than the surface portion.
상기 구리 시드층 또는 구리합금 시드층의 표면에 대한 XPS 분석시 결합에너지 933.58 eV 내지 953.98 eV 영역에서 하기 식 1의 피크강도비를 만족할 수 있다:In the XPS analysis of the surface of the copper seed layer or the copper alloy seed layer, the peak intensity ratio of Equation 1 below may be satisfied in the region of binding energy of 933.58 eV to 953.98 eV:
[식 1][Equation 1]
ICu+Ni/ICu ≤ 0.9I Cu+Ni /I Cu ≤ 0.9
식 중, during the meal,
ICu+Ni는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리합금 시드층의 피크강도이며,I Cu + Ni is the peak strength of the copper alloy seed layer in the region of binding energy 933.58 eV to 953.98 eV,
ICu는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리 시드층의 피크강도이다.I Cu is the peak intensity of the copper seed layer in the region of binding energy 933.58 eV to 953.98 eV.
상기 구리 시드층 또는 구리합금 시드층은 스퍼터층일 수 있다.The copper seed layer or the copper alloy seed layer may be a sputter layer.
상기 구리 시드층 또는 구리합금 시드층의 일 면에 금속도금층을 더 포함할 수 있다.A metal plating layer may be further included on one surface of the copper seed layer or the copper alloy seed layer.
상기 구리함유층의 두께는 15 ㎛ 이하일 수 있다.The thickness of the copper-containing layer may be 15 μm or less.
상기 구리함유층의 두께는 12.5 ㎛ 이하일 수 있다.The thickness of the copper-containing layer may be 12.5 μm or less.
상기 기재는 폴리이미드계 기재이고, The substrate is a polyimide-based substrate,
상기 폴리이미드계 기재는 주파수 20 GHz에서 3.4 이하의 유전율(Dk) 및 0.007 이하의 유전손실(Df)을 가질 수 있다.The polyimide-based substrate may have a dielectric constant (D k ) of 3.4 or less and a dielectric loss (D f ) of 0.007 or less at a frequency of 20 GHz.
상기 폴리이미드계 기재는 주파수 28 GHz에서 3.3 이하의 유전율(Dk) 및 0.005 이하의 유전손실(Df)을 가질 수 있다.The polyimide-based substrate may have a dielectric constant (D k ) of 3.3 or less and a dielectric loss (D f ) of 0.005 or less at a frequency of 28 GHz.
상기 폴리이미드계 기재는 주파수 28 GHz에서 0.8 dB/cm 이하의 전송손실을 가질 수 있다.The polyimide-based substrate may have a transmission loss of 0.8 dB/cm or less at a frequency of 28 GHz.
상기 기재의 두께는 5 ㎛ 내지 100 ㎛일 수 있다.The thickness of the substrate may be 5 μm to 100 μm.
상기 프라이머층은 하기 화학식 1로 표시되는 실란 커플링제를 포함할 수 있다:The primer layer may include a silane coupling agent represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
RCmH2mSi(OCnH2n)3
RC m H 2m Si(OC n H 2n ) 3
식 중,during the meal,
R은 치환 또는 비치환된 C2-C20의 알케닐기, -N(R1)(R2), 또는 이들 조합이고, 여기서 R1, R2는 서로 독립적으로 수소원자, 할로겐원자, 치환 또는 비치환된 C1-C10의 알킬기, 치환 또는 비치환된 C2-C10의 알케닐기, 치환 또는 비치환된 C2-C10의 알키닐기, 치환 또는 비치환된 C3-C20의 시클로알킬기, 치환 또는 비치환된 C3-C20의 시클로알케닐기, 치환 또는 비치환된 C6-C20의 아릴기, 또는 치환 또는 비치환된 C6-C20의 헤테로아릴기이며,R is a substituted or unsubstituted C2-C20 alkenyl group, —N(R 1 )(R 2 ), or a combination thereof, wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, a substituted or unsubstituted C2-C10 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C3- a C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, or a substituted or unsubstituted C6-C20 heteroaryl group,
n은 1 내지 5의 정수이며,n is an integer from 1 to 5,
m은 0 내지 10이다. m is 0 to 10.
상기 프라이머층은 아미노계 실란 화합물, 비닐계 실란 화합물, 또는 이들 혼합물을 포함할 수 있다.The primer layer may include an amino-based silane compound, a vinyl-based silane compound, or a mixture thereof.
상기 아미노계 실란 화합물 대 비닐계 실란 화합물의 중량비는 1:1 내지 9:1일 수 있다.The weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 9:1.
상기 프라이머층 표면에 대한 XRF(X-ray fluorescence spectrometry) 분석에 의한 Si 함량은 10 cps 내지 120 cps일 수 있다.The Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 10 cps to 120 cps.
상기 프라이머층 표면의 수접촉각은 45° 내지 70°일 수 있다.The water contact angle of the surface of the primer layer may be 45° to 70°.
상기 프라이머층의 두께는 500 nm 이하일 수 있다. The thickness of the primer layer may be 500 nm or less.
상기 프라이머층의 두께는 300 nm 이하일 수 있다.The thickness of the primer layer may be 300 nm or less.
상기 프라이머층의 두께는 20 nm 이하일 수 있다.The thickness of the primer layer may be 20 nm or less.
상기 필름의 JIS C 6471에 따른 MIT 측정에 의한 피로수명시 270 회 이상일 수 있다.The fatigue life by MIT measurement according to JIS C 6471 of the film may be 270 times or more.
다른 일 측면에 따라,According to another aspect,
전술한 동박적층필름을 포함하는 전자소자가 제공된다.An electronic device including the above-described copper clad laminate is provided.
또 다른 일 측면에 따라,According to another aspect,
기재를 준비하는 단계;preparing a substrate;
상기 기재의 적어도 일 면에 프라이머층 형성용 조성물을 도포하여 프라이머층을 형성하는 단계; 및forming a primer layer by applying a composition for forming a primer layer on at least one surface of the substrate; and
상기 프라이머층 상에 스퍼터링으로 구리함유층을 형성하여 전술한 동박적층필름을 제조하는 단계;를 포함하는, 동박적층필름의 제조방법이 제공된다.Forming a copper-containing layer on the primer layer by sputtering to prepare the above-described copper-clad laminated film; comprising, a copper-clad laminated film manufacturing method is provided.
상기 프라이머층을 형성하는 단계 이후 플라즈마 처리를 수행하는 단계를 더 포함할 수 있다.The method may further include performing plasma treatment after forming the primer layer.
일 측면에 따른 동박적층필름은 기재의 적어도 일 면에 프라이머층이 배치된 기재 구조체; 및 상기 기재 구조체 상에 배치된 구리함유층;을 포함하고, 상기 구리함유층의 X선 회절(X-ray diffraction; XRD) 분석에 의한 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비(I[200]/I[311])는 2.0 이상이다. 상기 동박적층필름은 고주파수에서 낮은 유전율, 낮은 유전손실, 및 낮은 표면조도로 인해 낮은 전송 손실을 가지면서 동시에 높은 피로수명과, 기재 구조체와 구리함유층 간에 높은 상온접착력 및 내열접착력을 가질 수 있다. 이로 인해, 인쇄회로공정에서 패턴 박리 또는 변형 방지가 가능하다.A copper clad laminated film according to one aspect includes a substrate structure in which a primer layer is disposed on at least one surface of a substrate; and a copper-containing layer disposed on the substrate structure; a peak in the [200] orientation with respect to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer The intensity ratio (I [200] /I [311] ) is greater than or equal to 2.0. The copper clad laminate film has a low transmission loss due to a low dielectric constant, a low dielectric loss, and a low surface roughness at a high frequency, while at the same time having a high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. It can have. Due to this, it is possible to prevent pattern peeling or deformation in the printed circuit process.
도 1은 일 구현예에 따른 동박적층필름의 단면 모식도이다.1 is a schematic cross-sectional view of a copper-clad laminated film according to an embodiment.
도 2는 다른 일 구현예에 따른 양면 동박적층필름의 단면 모식도이다.2 is a schematic cross-sectional view of a double-sided copper clad laminated film according to another embodiment.
도 3은 일 구현예에 따른 동박적층필름의 구리함유층에 대한 [111] 방위면, [200] 방위면, [220] 방위면, [311] 방위면, 및 [222] 방위면을 나타낸 XRD 결과이다.3 is an XRD result showing a [111] orientation, a [200] orientation, a [220] orientation, a [311] orientation, and a [222] orientation for a copper-containing layer of a copper clad laminate film according to an embodiment; to be.
도 4a는 실시예 3에 따른 동박적층필름의 구조를 나타낸 TEM/EDAX 결과이며; 도 4b 및 도 4c는 각각 실시예 3에 따른 동박적층필름의 폴리이미드 필름 기재로부터 구리합금 시드층까지 니켈원소의 함량분포를 나타낸 TEM/EDAX 결과이다.4a is a TEM/EDAX result showing the structure of the copper clad laminated film according to Example 3; 4b and 4c are TEM/EDAX results showing the content distribution of nickel elements from the polyimide film substrate of the copper clad laminate film according to Example 3 to the copper alloy seed layer, respectively.
도 5는 실시예 2~3에 따른 동박적층필름에 대하여 그 표면에 회로패턴을 형성하고 열처리를 수행한 후 상기 동박적층필름에서 구리함유 시드층과 구리 도금층을 박리한 뒤에 상기 구리함유 시드층 표면에 대한 XPS 분석결과이다.5 shows the copper-clad laminated films according to Examples 2 to 3, after a circuit pattern is formed on the surface and heat treatment is performed, and after the copper-containing seed layer and the copper plating layer are peeled off from the copper-clad laminated film, the surface of the copper-containing seed layer XPS analysis results for
이하, 본 발명의 실시예와 도면을 참조하여 동박적층필름, 이를 포함하는 전자소자, 및 상기 동박적층필름의 제조방법에 관해 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, a copper-clad laminated film, an electronic device including the same, and a method of manufacturing the copper-clad laminated film will be described in detail with reference to embodiments and drawings of the present invention. It will be apparent to those of ordinary skill in the art that these examples are only presented as examples to explain the present invention in more detail, and that the scope of the present invention is not limited by these examples. .
달리 정의하지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 상충되는 경우, 정의를 포함하는 본 명세서가 우선할 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
본 명세서에서 설명되는 것과 유사하거나 동등한 방법 및 재료가 본 발명의 실시 또는 시험에 사용될 수 있지만, 적합한 방법 및 재료가 본 명세서에 기재된다. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.
본 명세서에서 "포함"이라는 용어는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the present specification, the term "included" means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 명세서에서 "이들 조합"이라는 용어는 기재된 구성요소들 하나 이상과의 혼합 또는 조합을 의미한다. As used herein, the term “combination of these” means a mixture or combination with one or more of the described components.
본 명세서에서 "및/또는"이라는 용어는 관련 기재된 하나 이상의 항목들의 임의의 조합 및 모든 조합을 포함하는 것을 의미한다. 본 명세서에서 "또는"이라는 용어는 "및/또는"을 의미한다. 본 명세서에서 구성요소들의 앞에 "적어도 1종", 또는 "하나 이상"이라는 표현은 전체 구성요소들의 목록을 수식할 수 있고 상기 기재의 개별 구성요소들을 수식할 수 있는 것을 의미하지 않는다.As used herein, the term “and/or” is meant to include any and all combinations of one or more of the related listed items. As used herein, the term “or” means “and/or”. The expression "at least one" or "one or more" in front of elements in the present specification does not mean that it can modify the entire list of elements and can modify individual elements of the description.
본 명세서에서 일 구성요소가 다른 구성요소의 "상에" 또는 “위에” 배치되어 있다고 언급되는 경우, 일 구성요소는 다른 구성요소 위에 직접 배치될 수 있거나 상기 구성요소들 사이에 개재된 구성요소들이 존재할 수 있을 수 있다. 반면에, 일 구성요소가 다른 구성요소 "상에 직접" 또는 “위에 직접” 배치되어 있다고 언급되는 경우, 개재된 구성요소들이 존재하지 않을 수 있다. In the present specification, when it is stated that one component is disposed “on” or “over” another component, one component may be disposed directly on the other component, or the components interposed between the components are may exist. On the other hand, when it is stated that an element is disposed "directly on" or "directly on" another element, intervening elements may not exist.
본 명세서에서 "~ 계 중합체 (수지)"또는 "~ 계 공중합체 (수지)"는 "~ 중합체 (수지)", "~ 공중합체 (수지)", 또는/및 "~ 중합체 (수지) 또는 공중합체 (수지)의 유도체"를 모두 포함하는 광의의 개념이다.As used herein, "~-based polymer (resin)" or "~-based copolymer (resin)" means "~ polymer (resin)", "~ copolymer (resin)", or/and "~ polymer (resin) or copolymer" It is a concept in a broad sense including all of "derivatives of coalescing (resin)".
본 명세서에서 "폴리이미드"는 이미드기를 포함하는 반복 구조단위를 함유하는 중합체를 의미한다."폴리이미드계"는 폴리이미드와, 이미드기 이외에 아미드기를 포함하는 반복 구조단위를 함유하는 중합체를 모두 포함하는 개념이다. 이미드기 및 아미드기 양쪽 모두를 포함하는 반복 구조단위를 함유하는 중합체의 예로는 폴리아미드이미드 등을 들 수 있다.As used herein, "polyimide" means a polymer containing a repeating structural unit including an imide group. "Polyimide-based" refers to both a polyimide and a polymer containing a repeating structural unit containing an amide group in addition to an imide group. concept that includes Examples of the polymer containing a repeating structural unit containing both an imide group and an amide group include polyamideimide and the like.
전자소자 중 인쇄회로기판(printed circuit board; PCB)을 제조하는 일 방법으로는 기재층의 일 면에 스퍼터링한 후 전해도금하는 방법을 이용할 수 있다. 상기 방법은 기재층과 증착된 구리층 간에 낮은 접착력을 갖게 할 수 있다. 이렇게 기재층과 구리층 간에 접착력이 낮다면, 인쇄회로기판 제조시 형성된 회로패턴이 탈락되거나 변형될 수 있다. 이 문제를 해결하기 위해 기재층과 구리층 사이에 니켈 또는 니켈크롬 합금 등의 접합층을 배치하여 인쇄회로기판을 제조하는 방법을 이용하고 있다. 그러나 이러한 니켈 또는 니켈크롬 합금 등의 접합층을 포함시키는 제조공정은 공정수의 증가와 유해물질의 사용으로 인해 안정성 및 환경오염의 문제가 발생한다. 또한 고주파 신호를 사용하는 회로에서 니켈 또는 니켈크롬 합금 등의 접합층에 의한 신호손실이 발생할 수 있다. As one method of manufacturing a printed circuit board (PCB) among electronic devices, a method of electroplating after sputtering on one surface of the base layer may be used. The method may result in low adhesion between the substrate layer and the deposited copper layer. If the adhesion between the base layer and the copper layer is low, the circuit pattern formed during the manufacture of the printed circuit board may be dropped or deformed. In order to solve this problem, a method of manufacturing a printed circuit board by disposing a bonding layer such as nickel or nickel-chromium alloy between the base layer and the copper layer is used. However, the manufacturing process including the bonding layer such as nickel or nickel-chromium alloy has problems of stability and environmental pollution due to the increase in the number of processes and the use of harmful substances. Also, in circuits using high-frequency signals, signal loss may occur due to bonding layers such as nickel or nickel-chromium alloys.
이러한 점에 착안하여 본 발명의 발명자들은 신규한 구조의 동박적층필름, 이를 포함하는 전자소자, 및 상기 동박적층필름의 제조방법을 제안하고자 한다. In view of this, the inventors of the present invention intend to propose a copper clad laminate film having a novel structure, an electronic device including the same, and a method for manufacturing the copper clad laminate film.
일 구현예에 따른 동박적층필름은 기재의 적어도 일 면에 프라이머층이 배치된 기재 구조체; 및 상기 기재 구조체 상에 배치된 구리함유층;을 포함하고, 상기 구리함유층의 X선 회절(X-ray diffraction; XRD) 분석에 의한 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비(I[200]/I[311])가 2.0 이상일 수 있다. 상기 동박적층필름은 고주파수에서 낮은 유전율, 낮은 유전손실, 및 낮은 표면조도로 인해 낮은 전송 손실을 가지면서 동시에 높은 피로수명과, 기재 구조체와 구리함유층 간에 높은 상온접착력 및 내열접착력을 가질 수 있다. 이로 인해, 인쇄회로공정에서 패턴 박리 또는 변형 방지가 가능하다. A copper clad laminated film according to an embodiment includes a substrate structure in which a primer layer is disposed on at least one surface of a substrate; and a copper-containing layer disposed on the substrate structure; a peak in the [200] orientation with respect to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer The intensity ratio (I [200] /I [311] ) may be greater than or equal to 2.0. The copper clad laminate film has a low transmission loss due to a low dielectric constant, a low dielectric loss, and a low surface roughness at a high frequency, while at the same time having a high fatigue life, and high room temperature adhesion and heat resistance between the substrate structure and the copper-containing layer. It can have. Due to this, it is possible to prevent pattern peeling or deformation in the printed circuit process.
도 1 및 도 2는 각각 일 구현예에 따른 동박적층필름의 단면 모식도이다.1 and 2 are schematic cross-sectional views of a copper clad laminated film according to an embodiment, respectively.
도 1 및 도 2를 참조하면, 일 구현예에 따른 동박적층필름(100, 200)은 기재 구조체로서 기재 (11)의 일면 또는 양면에 프라이머층(21, 22)이 배치되어 있고, 프라이머층(21, 22) 위에 구리함유층(40, 50)으로서 구리층(31, 32), 및 금속도금층(41, 42)이 순서대로 배치되어 있다. 1 and 2, in the copper clad laminated films 100 and 200 according to an embodiment, primer layers 21 and 22 are disposed on one or both sides of the substrate 11 as a substrate structure, and the primer layer ( Copper layers 31 and 32 as copper-containing layers 40 and 50 and metal plating layers 41 and 42 are sequentially disposed on the 21 and 22 .
이하, 상기 동박적층필름을 구성하는 각각의 기재 구조체, 구리함유층, 동박적층필름, 및 전자 소자 등에 관해서는 상세히 설명한다. Hereinafter, each base structure constituting the copper-clad laminated film, a copper-containing layer, a copper-clad laminated film, and an electronic device will be described in detail.
<기재 구조체><Base structure>
일 구현예에 따른 기재 구조체는 기재의 적어도 일 면에 프라이머층이 배치될 수 있다.according to one embodiment The substrate structure may have a primer layer disposed on at least one surface of the substrate.
일 구현예에 따른 기재는 필름 또는 시트일 수 있다. 예를 들어, 기재는 필름일 수 있다. 상기 기재는 인쇄회로기판 제조시 높은 온도를 견딜 수 있도록 내열성이 우수한 필름을 사용할 수 있다 The substrate according to one embodiment may be a film or a sheet. For example, the substrate may be a film. As the substrate, a film having excellent heat resistance can be used to withstand high temperatures when manufacturing a printed circuit board.
예를 들어, 상기 기재는 폴리이미드, 저유전율을 갖는 폴리이미드(modified polyimide), 폴리페닐설파이드, 폴리아미드, 폴리에테르이미드, 폴리에틸렌 나프탈레이트, 또는 불소가 함유된 필름을 포함할 수 있다. 예를 들어, 상기 기재는 폴리이미드계 기재일 수 있다.For example, the substrate may include polyimide, a modified polyimide having a low dielectric constant, polyphenylsulfide, polyamide, polyetherimide, polyethylene naphthalate, or a film containing fluorine. For example, the substrate may be a polyimide-based substrate.
상기 폴리이미드계 기재는 폴리이미드 필름 또는 저유전율을 갖는 폴리이미드(modified polyimide) 필름을 사용할 수 있다. 기재에 사용하는 폴리이미드 필름은 폴리이미드 전구체인 폴리아믹산을 압출하여 필름을 만들고, 상기 폴리아믹산의 이미드화를 위하여 상기 필름을 열처리 및 건조하여 제조될 수 있다. 당해 기술분야에서 통상적으로 사용되는 건조과정을 통해 수분 및 잔류가스를 제거할 수 있다. 예를 들어, 상기 건조는 상압 하에서 롤투롤(roll to roll) 타입의 열처리를 통해 수행되거나 또는 진공분위기 하에서 적외선(IR) 히터를 이용하여 수행될 수 있다.As the polyimide-based substrate, a polyimide film or a modified polyimide film having a low dielectric constant may be used. The polyimide film used for the substrate may be manufactured by extruding polyamic acid, which is a polyimide precursor, to make a film, and heat-treating and drying the film for imidization of the polyamic acid. Moisture and residual gas may be removed through a drying process commonly used in the art. For example, the drying may be performed through a roll to roll type heat treatment under normal pressure or may be performed using an infrared (IR) heater under a vacuum atmosphere.
흡습율은 재료가 흡습하고 있는 수분량을 나타내는 비율이다. 일반적으로 흡습율이 높을 때 유전율과 유전손실이 증가하는 것으로 알려져 있다. The moisture absorption rate is a ratio indicating the amount of moisture absorbed by the material. In general, it is known that when the moisture absorption rate is high, the permittivity and the dielectric loss increase.
기재 외에 수증기 상태로 존재하는 물은 기재의 유전율과 유전손실에 실질적으로 영향을 미치지 않는다. 그러나 수증기 등이 기재에 흡습된 상태에서는 물이 액체상태로 존재하는데, 이러한 경우에 기재의 유전율과 유전손실은 비약적으로 증가할 수 있다. 따라서 기재의 흡습율을 낮게 하는 것은, 절연필름으로서 기재에 매우 중요한 요소로 볼 수 있다. 상기 기재의 흡습율은 5 중량% 미만일 수 있다. 예를 들어, 상기 기재의 흡습율은 4 중량% 이하이거나 3 중량% 이하이거나 2 중량% 이하일 수 있다. 상기 기재의 흡습율이 5 중량% 이상이면 고주파 회로에서의 신호손실이 증가할 수 있다.Water, which exists in a vapor state other than the substrate, does not substantially affect the dielectric constant and dielectric loss of the substrate. However, when water vapor or the like is absorbed by the substrate, water exists in a liquid state, and in this case, the dielectric constant and dielectric loss of the substrate may dramatically increase. Therefore, lowering the moisture absorption of the substrate can be seen as a very important factor for the substrate as an insulating film. The moisture absorption of the substrate may be less than 5% by weight. For example, the moisture absorption of the substrate may be 4 wt% or less, 3 wt% or less, or 2 wt% or less. When the moisture absorption of the substrate is 5% by weight or more, signal loss in the high-frequency circuit may increase.
상기 기재는 폴리이미드계 기재일 수 있고, 상기 폴리이미드계 기재는 주파수 20 GHz에서 3.4 이하의 유전율(Dk) 및 0.007 이하의 유전손실(Df)을 가질 수 있다. 예를 들어, 상기 폴리이미드계 기재는 주파수 28 GHz에서 3.3 이하의 유전율(Dk) 및 0.005 이하의 유전손실(Df)을 가질 수 있다. 예를 들어, 상기 폴리이미드계 기재는 주파수 28 GHz에서 0.8 dB/cm 이하의 전송손실을 가질 수 있다.The substrate may be a polyimide-based substrate, and the polyimide-based substrate may have a dielectric constant (D k ) of 3.4 or less and a dielectric loss (D f ) of 0.007 or less at a frequency of 20 GHz. For example, the polyimide-based substrate may have a dielectric constant (D k ) of 3.3 or less and a dielectric loss (D f ) of 0.005 or less at a frequency of 28 GHz. For example, the polyimide-based substrate may have a transmission loss of 0.8 dB/cm or less at a frequency of 28 GHz.
상기 기재의 유리전이온도(Tg)는 200 ℃이상일 수 있다. 상기 기재는 충분한 내열성을 가질 수 있어, 높은 온도범위 내에서 및 오랜시간 동안 물리-화학적인 변화가 발생하지 않을 수 있다. 상기 기재의 유리전이온도(Tg)가 200 ℃이하인 경우에는 인쇄회로기판 제조공정에서 기재가 녹거나 고온공정 후 기재의 치수 변화가 발생되어 회로기판이 휘는 현상이 발생할 수 있다. The glass transition temperature (Tg) of the substrate may be 200 ℃ or more. The substrate may have sufficient heat resistance, so that physical-chemical changes may not occur within a high temperature range and for a long time. When the glass transition temperature (Tg) of the substrate is 200° C. or less, the substrate may be melted in the printed circuit board manufacturing process or the dimensional change of the substrate may occur after the high temperature process, causing the circuit board to warp.
상기 기재의 두께는 일반적으로 5 ㎛ 내지 100 ㎛일 수 있다. 예를 들어, 상기 기재의 두께는 10 ㎛ 내지 75 ㎛일 수 있거나 12.5 ㎛ 내지 70 ㎛일 수 있거나 12.5 ㎛ 내지 60 ㎛일 수 있거나 12.5 ㎛ 내지 50 ㎛일 수 있거나 12.5 ㎛ 내지 40 ㎛일 수 있다. 상기 기재의 두께 범위 내에서 외력에 의한 주름 현상을 억제하고 적절한 내열성을 유지하고 취급을 용이하게 할 수 있다.The thickness of the substrate may be generally 5 μm to 100 μm. For example, the thickness of the substrate may be from 10 μm to 75 μm, from 12.5 μm to 70 μm, from 12.5 μm to 60 μm, from 12.5 μm to 50 μm, or from 12.5 μm to 40 μm. It is possible to suppress a wrinkle phenomenon caused by an external force within the thickness range of the substrate, maintain appropriate heat resistance, and facilitate handling.
상기 기재는 표면에 플라즈마 처리를 수행할 수 있다. 상기 플라즈마 처리는 RF 플라즈마 또는 이온 빔을 사용할 수 있다. 상기 플라즈마 처리는 상기 기재의 일면 또는 양면에 수행될 수 있다. 상기 플라즈마 처리로 기재 표면의 화학적 활성을 강화시킬 수 있을 뿐만 아니라 표면조도를 개선시켜 상기 기재와 구리함유층 간에 접착력을 더욱 향상시킬 수 있다.The substrate may be subjected to plasma treatment on the surface. The plasma treatment may use RF plasma or an ion beam. The plasma treatment may be performed on one or both surfaces of the substrate. By the plasma treatment, chemical activity of the surface of the substrate may be enhanced, and surface roughness may be improved to further improve adhesion between the substrate and the copper-containing layer.
일 구현예에 따른 프라이머층은 실란 커플링제를 포함한다.A primer layer according to an embodiment includes a silane coupling agent.
예를 들어, 상기 프라이머층은 하기 화학식 1로 표시되는 실란 커플링제를 포함할 수 있다:For example, the primer layer may include a silane coupling agent represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
RCmH2mSi(OCnH2n)3
RC m H 2m Si(OC n H 2n ) 3
식 중,during the meal,
R은 치환 또는 비치환된 C2-C20의 알케닐기, -N(R1)(R2), 또는 이들 조합이고, 여기서 R1, R2는 서로 독립적으로 수소원자, 할로겐원자, 치환 또는 비치환된 C1-C10의 알킬기, 치환 또는 비치환된 C2-C10의 알케닐기, 치환 또는 비치환된 C2-C10의 알키닐기, 치환 또는 비치환된 C3-C20의 시클로알킬기, 치환 또는 비치환된 C3-C20의 시클로알케닐기, 치환 또는 비치환된 C6-C20의 아릴기, 또는 치환 또는 비치환된 C6-C20의 헤테로아릴기일 수 있으며,R is a substituted or unsubstituted C2-C20 alkenyl group, —N(R 1 )(R 2 ), or a combination thereof, wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, a substituted or unsubstituted C2-C10 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C3- It may be a C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, or a substituted or unsubstituted C6-C20 heteroaryl group,
n은 1 내지 5의 정수일 수 있으며,n may be an integer from 1 to 5,
m은 0 내지 10일 수 있다. m may be 0 to 10.
상기 프라이머층은 아미노계 실란 화합물, 비닐계 실란 화합물, 또는 이들 혼합물을 포함할 수 있다. 상기 아미노계 실란 화합물의 함량은 비닐계 실란 화합물의 함량과 동일하거나 높은 것일 수 있다.The primer layer may include an amino-based silane compound, a vinyl-based silane compound, or a mixture thereof. The content of the amino-based silane compound may be the same as or higher than the content of the vinyl-based silane compound.
상기 프라이머층은 상기 화학식 1로 표시되는 실란 커플링제를 포함하고, 아미노계 실란 화합물이 비닐계 실란 화합물과 동일하거나 높은 함량으로 포함되는 경우, 동박적층필름의 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 향상되고 인쇄회로공정에서 패턴 박리 또는 변형 방지가 가능하여 인쇄회로기판에 적용할 수 있다. The primer layer includes the silane coupling agent represented by Formula 1, and when the amino-based silane compound is contained in the same or higher content as the vinyl-based silane compound, room temperature adhesion and heat resistance between the substrate structure of the copper clad laminate and the copper-containing layer Adhesion is improved and pattern peeling or deformation prevention is possible in the printed circuit process, so it can be applied to printed circuit boards.
상기 아미노계 실란 화합물 대 비닐계 실란 화합물의 중량비는 1:1 내지 9:1일 수 있다. 예를 들어, 상기 아미노계 실란 화합물 대 비닐계 실란 화합물의 중량비는 1:1 내지 8:1일 수 있거나 1:1 내지 7:1일 수 있거나 1:1 내지 6:1일 수 있거나 1:1 내지 5:1일 수 있거나 1:1 내지 4:1일 수 있다. The weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 9:1. For example, the weight ratio of the amino-based silane compound to the vinyl-based silane compound may be 1:1 to 8:1, 1:1 to 7:1, 1:1 to 6:1, or 1:1 to 5:1 or 1:1 to 4:1.
상기 비닐계 실란 화합물 대 아미노계 실란 화합물의 중량비가 상기 범위 내라면, 동박적층필름의 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 보다 향상되어 인쇄회로공정에서 패턴 박리 또는 변형 방지를 용이하게 할 수 있다. When the weight ratio of the vinyl-based silane compound to the amino-based silane compound is within the above range, the room temperature adhesion and heat-resistant adhesion between the base structure of the copper clad laminate and the copper-containing layer are further improved, thereby facilitating pattern peeling or deformation prevention in the printed circuit process. can
상기 프라이머층 표면에 대한 XRF (X-ray fluorescence spectrometry) 분석에 의한 Si 함량은 10 cps 내지 120 cps일 수 있다. 예를 들어, 상기 프라이머층 표면에 대한 XRF(X-ray fluorescence spectrometry) 분석에 의한 Si 함량은 12 cps 내지 120 cps일 수 있거나 14 cps 내지 120 cps일 수 있거나 16 cps 내지 120 cps일 수 있거나 18 cps 내지 120 cps일 수 있거나 20 cps 내지 120 cps일 수 있거나 22 cps 내지 120 cps일 수 있거나 24 cps 내지 120 cps일 수 있거나 26 cps 내지 120 cps일 수 있거나 28 cps 내지 120 cps일 수 있다. 상기 프라이머층 표면에 대한 XRF (X-ray fluorescence spectrometry) 분석에 의한 Si 함량이 120 cps 초과라면, 동박적층필름의 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 낮다. 이로 인해, 동박적층필름 상에 회로패턴을 형성하고 상온에서 염산처리 후 상기 동박적층필름으로부터 회로패턴을 박리할 때 일부 회로패턴이 박리되거나 모두 박리되어 떨어지는 현상을 나타낼 수 있다. The Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 10 cps to 120 cps. For example, the Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer may be 12 cps to 120 cps, 14 cps to 120 cps, 16 cps to 120 cps, or 18 cps It can be from 20 cps to 120 cps, from 22 cps to 120 cps, from 24 cps to 120 cps, from 26 cps to 120 cps, or from 28 cps to 120 cps. If the Si content by XRF (X-ray fluorescence spectrometry) analysis on the surface of the primer layer is more than 120 cps, room temperature adhesion and heat resistance adhesion between the base structure of the copper clad laminate and the copper-containing layer is low. For this reason, when a circuit pattern is formed on a copper clad laminate film and the circuit pattern is peeled from the copper clad laminate film after hydrochloric acid treatment at room temperature, some circuit patterns may be peeled off or all of the circuit patterns may be peeled off.
상기 프라이머층 표면의 수접촉각은 45°내지 70°일 수 있다. 상기 프라이머층 표면의 수접촉각이 상기 범위 내라면, 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 우수하며 상온에서 염산처리 후 동박적층필름으로부터 회로패턴을 박리할 때 박리현상이 발생하지 않는다.The water contact angle of the surface of the primer layer may be 45° to 70°. If the water contact angle of the surface of the primer layer is within the above range, room temperature adhesion and heat resistance adhesion between the base structure and the copper-containing layer are excellent, and the peeling phenomenon does not occur when the circuit pattern is peeled from the copper clad laminate after hydrochloric acid treatment at room temperature.
상기 실란 커플링제는 상기 프라이머층 전체 중량을 기준으로 하여 0.01 내지 10 중량% 미만의 함량으로 포함될 수 있다. 예를 들어, 상기 프라이머층은 용액도포법을 이용하여 기재 상에 프라이머층 형성용 조성물을 도포 및 건조하여 형성될 수 있다. The silane coupling agent may be included in an amount of 0.01 to less than 10% by weight based on the total weight of the primer layer. For example, the primer layer may be formed by applying and drying a composition for forming a primer layer on a substrate using a solution application method.
상기 프라이머층 형성용 조성물에 사용된 용매는 한정되지 않으나, 예를 들어 상기 용매는 물, 아세톤, 메탄올, 에탄올, 및 이소프로판올로부터 선택되는 1종 이상일 수 있다. 상기 용매는 단독 또는 혼합하여 사용할 수 있다.The solvent used in the composition for forming the primer layer is not limited, but, for example, the solvent may be at least one selected from water, acetone, methanol, ethanol, and isopropanol. These solvents may be used alone or in combination.
상기 프라이머층의 두께는 500 nm 이하일 수 있다. 예를 들어, 상기 프라이머층의 두께는 450 nm 이하일 수 있거나 400 nm 이하일 수 있거나 350 nm 이하일 수 있거나 300 nm 이하일 수 있거나 250 nm 이하일 수 있거나 200 nm 이하일 수 있거나 150 nm 이하일 수 있거나 100 nm 이하일 수 있거나 80 nm 이하일 수 있거나 60 nm 이하일 수 있거나 40 nm 이하일 수 있거나 20 nm 이하일 수 있다. 예를 들어, 상기 프라이머층의 두께는 18 nm 이하일 수 있거나 16 nm 이하일 수 있거나 15 nm 이하일 수 있다. 상기 프라이머층의 두께가 상기와 같이 박막 두께인 경우에도 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 향상될 수 있다.The thickness of the primer layer may be 500 nm or less. For example, the thickness of the primer layer may be 450 nm or less, 400 nm or less, 350 nm or less, 300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less, 100 nm or less, or It may be 80 nm or less, 60 nm or less, 40 nm or less, or 20 nm or less. For example, the thickness of the primer layer may be 18 nm or less, 16 nm or less, or 15 nm or less. Even when the thickness of the primer layer is a thin film as described above, room temperature adhesion and heat resistance adhesion between the base structure and the copper-containing layer may be improved.
<구리함유층><Copper-containing layer>
일 구현예에 따른 구리함유층은 면심입방구조의 결정을 갖는다. 이러한 면심입방구조의 구리함유층은 다양한 방향의 결정 배향면 또는 방위면을 갖고 있다. 결정 배향면 또는 방위면의 방향 및/또는 위치는 밀러 지수(Miller Indices)로 나타낼 수 있다. 예를 들어, [111] 방위면, [200] 방위면, [220] 방위면, [311] 방위면, 및 [222] 방위면은 각각 [111] 방향의 결정 배향면 또는 방위면, [200] 방향의 결정 배향면 또는 방위면, [220] 방향의 결정 배향면 또는 방위면, [311] 방향의 결정 배향면 또는 방위면, 및 [222] 방향의 결정 배향면 또는 방위면의 밀러 지수(Miller indices)를 나타낸다. 이러한 다양한 방향의 결정면은 X선 회절(X-ray diffraction; XRD) 분석에 의해 특정할 수 있다. The copper-containing layer according to an exemplary embodiment has a face-centered cubic structure. The copper-containing layer of such a face-centered cubic structure has crystal orientation planes or orientation planes in various directions. The direction and/or position of the crystal orientation plane or orientation plane may be expressed by Miller Indices. For example, [111] azimuth, [200] azimuth, [220] azimuth, [311] azimuth, and [222] azimuth are the crystal orientation planes or azimuth planes in the [111] direction, [200], respectively. ] direction, the crystal orientation plane or orientation plane in the [220] direction, the crystal orientation plane or orientation plane in the [311] direction, and the Miller index of the crystal orientation plane or orientation plane in the [222] direction ( Miller indices). The crystal planes of these various directions can be specified by X-ray diffraction (XRD) analysis.
도 3은 일 구현예에 따른 동박적층필름의 구리함유층에 대한 [111] 방위면, [200] 방위면, [220] 방위면, [311] 방위면, 및 [222] 방위면을 나타낸 XRD 결과이다.3 is an XRD result showing a [111] orientation, a [200] orientation, a [220] orientation, a [311] orientation, and a [222] orientation for a copper-containing layer of a copper clad laminate film according to an embodiment; to be.
도 3을 참조하면, 일 구현예에 따른 동박적층필름의 구리함유층에 대한 [111] 방위면은 브래그 2θ 43.4±0.5°에서 피크를 나타내며, [200] 방위면은 브래그 2θ 50.5 ± 0.5°에서 피크를 나타내며, [220] 방위면은 브래그 2θ 74.2 ±0.5°에서 피크를 나타내며, [311] 방위면은 브래그 2θ 90.0±0.5°에서 피크를 나타내며, [222] 방위면은 브래그 2θ 95.2±0.5°에서 피크를 나타낸다.Referring to FIG. 3 , the [111] orientation of the copper-containing layer of the copper clad laminated film according to an embodiment shows a peak at Bragg 2θ 43.4±0.5°, and the [200] orientation shows a peak at Bragg 2θ 50.5±0.5°. , the [220] azimuth shows a peak at Bragg 2θ 74.2 ±0.5°, the [311] azimuth shows a peak at Bragg 2θ 90.0±0.5°, and the [222] azimuth shows a peak at Bragg 2θ 95.2±0.5° indicates a peak.
일 구현예에 따른 구리함유층은 X선 회절(X-ray diffraction; XRD) 분석에 의한 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비(I[200]/I[311])가 2.0 이상일 수 있다. XRD 분석에 의한 상기 구리함유층의 피크세기의 비(I[200]/I[311])가 상기 범위에 있다면, 구리입자들 간에 발생한 인장 응력 및 탄성 에너지의 내부 스트레스를 해소하기 위하여 밀도가 작고 안정한 상태에 놓여 있을 수 있기에 높은 피로수명을 가질 수 있다. The copper-containing layer according to an embodiment is a ratio of the peak intensity of the [200] orientation to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis (I [200] /I [ 311] ) may be 2.0 or greater. If the ratio (I [200] / I [311] ) of the peak intensity of the copper-containing layer by XRD analysis is in the above range, the density is small and stable in order to resolve the internal stress of tensile stress and elastic energy generated between copper particles. Because it can be in a state of being, it can have a high fatigue life.
상기 구리함유층 표면의 표면조도(Rz)는 0.1 ㎛ 이하일 수 있다.The surface roughness (R z ) of the surface of the copper-containing layer may be 0.1 μm or less.
25 ℃에서 상기 기재 구조체에 대한 구리함유층의 박리강도는 0.80 kgf/cm 이상일 수 있다.The peel strength of the copper-containing layer with respect to the base structure at 25 ℃ may be 0.80 kgf / cm or more.
150 ℃에서 2시간 열처리 후 상온에서 30 분간 2회 방치하고, 240 ℃에서 10 분간 추가 열처리 후에 측정한 상기 기재 구조체에 대한 구리함유층의 박리강도는 0.45 kgf/cm 이상일 수 있다.The peel strength of the copper-containing layer with respect to the base structure measured after two hours of heat treatment at 150° C., left for 30 minutes at room temperature, and additional heat treatment at 240° C. for 10 minutes may be 0.45 kgf/cm or more.
일 구현예에 따른 구리함유층은 구리 시드층 또는 구리와, 니켈, 아연, 베릴륨, 및 크롬 중에서 선택된 1종 이상의 구리합금 시드층을 포함할 수 있다.The copper-containing layer according to an embodiment may include a copper seed layer or copper, and at least one copper alloy seed layer selected from nickel, zinc, beryllium, and chromium.
상기 구리함유층이 구리와 니켈의 구리합금 시드층을 포함할 수 있다.The copper-containing layer may include a copper alloy seed layer of copper and nickel.
예를 들어, 상기 구리합금 시드층의 구리와 니켈 중량(%)비는 60:40 내지 95:5일 수 있거나 60:40 내지 90:10일 수 있다. 예를 들어, 상기 구리합금 시드층은 구리, 니켈 외에 아연, 베릴륨, 및 크롬으로부터 선택된 1종 이상의 합금 시드층일 수 있다. 상기 구리, 니켈 외에 아연, 베릴륨, 및 크롬으로부터 선택된 1종 이상의 금속들의 중량(%)비는 60:35:5 내지 90:5:5일 수 있거나 60:35:5 내지 80:15:5일 수 있다.For example, the copper and nickel weight (%) ratio of the copper alloy seed layer may be 60:40 to 95:5 or 60:40 to 90:10. For example, the copper alloy seed layer may be one or more alloy seed layers selected from zinc, beryllium, and chromium in addition to copper and nickel. The weight (%) ratio of one or more metals selected from zinc, beryllium, and chromium other than copper and nickel may be 60:35:5 to 90:5:5 or 60:35:5 to 80:15:5 can
상기 구리합금 시드층의 심부는 표면부보다 니켈원소의 함량이 많은 것일 수 있다. 본 명세서에서, 심부는 기재로부터 구리함유 시드층을 향하여 약 0~60 mm까지의 영역을 의미하며, 표면부는 기재로부터 구리함유 시드층을 향하여 60 mm 초과의 영역을 의미한다. 이러한 구리함유 시드층은 기재를 통과한 수분과 공기가 구리함유 시드층에서 산화됨을 방지할 수 있다. 이로 인해, 이를 포함하는 동박적층필름 표면에 염산, 개미산, 황산과 같은 산으로 화학적 연마(soft etching)를 수행하는 경우에 기재 구조체와 구리함유 시드층을 포함하는 구리함유층과의 박리를 방지할 수 있다. 구리함유 시드층의 니켈 원소의 함량에 대해서는 후술하는 도 4a 내지 도 4c의 TEM/EDAX에서 확인할 수 있다.The deep portion of the copper alloy seed layer may have a greater content of nickel than the surface portion. As used herein, the deep portion means an area from the substrate toward the copper-containing seed layer from about 0 to 60 mm, and the surface portion means an area greater than 60 mm from the substrate toward the copper-containing seed layer. Such a copper-containing seed layer can prevent moisture and air passing through the substrate from being oxidized in the copper-containing seed layer. For this reason, when chemical polishing (soft etching) is performed on the surface of the copper clad laminate including the same with an acid such as hydrochloric acid, formic acid, or sulfuric acid, peeling between the substrate structure and the copper-containing layer including the copper-containing seed layer can be prevented. have. The content of the nickel element in the copper-containing seed layer can be confirmed by TEM/EDAX of FIGS. 4A to 4C, which will be described later.
상기 구리 시드층 또는 구리합금 시드층의 표면에 대한 XPS 분석시 결합에너지 933.58 eV 내지 953.98 eV 영역에서 하기 식 1의 피크강도비를 만족할 수 있다:In the XPS analysis of the surface of the copper seed layer or the copper alloy seed layer, the peak intensity ratio of Equation 1 below may be satisfied in the region of binding energy of 933.58 eV to 953.98 eV:
[식 1][Equation 1]
ICu+Ni/ICu ≤ 0.9I Cu+Ni /I Cu ≤ 0.9
식 중, during the meal,
ICu+Ni는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리합금 시드층의 피크강도이며,I Cu + Ni is the peak strength of the copper alloy seed layer in the region of binding energy 933.58 eV to 953.98 eV,
ICu는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리 시드층의 피크강도이다.I Cu is the peak intensity of the copper seed layer in the region of binding energy 933.58 eV to 953.98 eV.
XPS 분석시 결합에너지 933.58 eV 내지 953.98 eV 영역은 산화구리(CuxOy, 0 < x ≤ 5, 0 < y ≤ 5) 피크영역을 의미한다. 이러한 산화구리 피크영역에서 상기 식 1의 피크강도비를 갖는 동박적층필름은 내화학성이 우수하다. XPS 분석결과는 후술하는 도 5에서 확인할 수 있다.In XPS analysis, a region of 933.58 eV to 953.98 eV of binding energy means a peak region of copper oxide (Cu x O y , 0 < x ≤ 5, 0 < y ≤ 5). The copper clad laminate film having the peak intensity ratio of Equation 1 in the copper oxide peak region has excellent chemical resistance. The XPS analysis result can be confirmed in FIG. 5 to be described later.
상기 구리 시드층 또는 구리합금 시드층은 스퍼터층일 수 있다. The copper seed layer or the copper alloy seed layer may be a sputter layer.
상기 프라이머층의 일면 또는 양면에 10-4 내지 10-2 torr의 감압상태의 진공탱크(Tank)에서 스퍼터링으로 상기 구리 시드층 또는 구리합금 시드층을 증착시킬 수 있다. 증착법으로는 당해 기술분야에서 사용가능한 모든 증착법을 사용할 수 있으나, 예를 들어 물리기상증착(PVD), 화학기상증착(CVD), 저압화학기상증착(LPCVD), 또는 진공증착 등의 방법을 이용할 수 있다.The copper seed layer or the copper alloy seed layer may be deposited on one or both surfaces of the primer layer by sputtering in a vacuum tank under a reduced pressure of 10 -4 to 10 -2 torr. As the deposition method, any deposition method available in the art may be used, but for example, physical vapor deposition (PVD), chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), or vacuum deposition may be used. have.
상기 구리함유층은 상기 구리 시드층 또는 구리합금 시드층의 일 면에 금속도금층;을 더 포함할 수 있다. The copper-containing layer may further include a metal plating layer on one surface of the copper seed layer or the copper alloy seed layer.
예를 들어, 상기 금속도금층은 전해도금법을 이용하여 형성된다.For example, the metal plating layer is formed using an electrolytic plating method.
상기 금속은 당업자가 구현하고자 하는 금속질감에 따라 적당한 금속을 선택할 수 있다. 예를 들어, 상기 금속은 금, 은, 코발트, 알루미늄, 철, 니켈, 크롬, 또는 구리일 수 있다. 예를 들어, 상기 금속은 구리일 수 있다.As the metal, an appropriate metal may be selected by a person skilled in the art according to the metal texture to be implemented. For example, the metal may be gold, silver, cobalt, aluminum, iron, nickel, chromium, or copper. For example, the metal may be copper.
상기 전해도금은 당해 기술분야에서 통상적으로 사용되는 방법을 통해 수행할 수 있다. 상기 전해도금은 예를 들어, 황산구리 및 황산을 기본물질로 하여 전해도금을 실시하여 상기 구리 시드층 또는 구리합금 시드층 상에 금속도금층을 형성하는 방법으로 수행된다.The electroplating may be performed by a method commonly used in the art. The electrolytic plating is performed by, for example, performing electroplating using copper sulfate and sulfuric acid as basic materials to form a metal plating layer on the copper seed layer or the copper alloy seed layer.
상기 전해도금은 구리가 15g/L 내지 40g/L, 예를 들어 15g/L 내지 38g/L, 예를 들어 17g/L 내지 36g/L 농도로 포함된 도금액을 사용하여 실시할 수 있다. 상기 전해도금은 도금액의 온도가 22℃ 내지 37℃, 예를 들어 25℃ 내지 35℃, 예를 들어 27℃ 내지 34℃로 유지될 수 있다. 상기 도금액의 온도범위 내에서 도금층 형성이 용이하고 우수한 생산성을 가질 수 있다. The electrolytic plating may be performed using a plating solution containing copper at a concentration of 15 g/L to 40 g/L, for example, 15 g/L to 38 g/L, for example, 17 g/L to 36 g/L. In the electrolytic plating, the temperature of the plating solution may be maintained at 22°C to 37°C, for example, 25°C to 35°C, for example, 27°C to 34°C. It is easy to form a plating layer within the temperature range of the plating solution and can have excellent productivity.
상기 도금액의 pH는 7 초과일 수 있다. 선택적으로, 1종 이상의 pH 조절제는 상기 도금액에 포함되어, 상기 도금액의 pH를 알칼리성 pH로 조절할 수 있다. 상기 pH 조절제는 유기 산, 무기 산, 유기 염기, 무기 염기, 또는 이들 혼합물을 포함할 수 있다. 예를 들어, 상기 무기 산은 인산, 질산, 황산, 염산, 또는 이들 조합을 포함할 수 있다. 예를 들어, 상기 무기 염기는 수산화암모늄, 수산화나트륨, 수산화칼륨, 또는 이들 조합을 포함할 수 있다.The pH of the plating solution may be greater than 7. Optionally, one or more pH adjusting agents may be included in the plating solution to adjust the pH of the plating solution to an alkaline pH. The pH adjusting agent may include an organic acid, an inorganic acid, an organic base, an inorganic base, or a mixture thereof. For example, the inorganic acid may include phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, or a combination thereof. For example, the inorganic base may include ammonium hydroxide, sodium hydroxide, potassium hydroxide, or a combination thereof.
한편, 상기 도금액에는 생산성 및 표면 균일성을 위해서 공지의 첨가제, 예를 들어, 광택제, 레벨러, 보정제, 완화제 등이 첨가될 수 있다.Meanwhile, well-known additives, for example, a brightener, a leveler, a correcting agent, a emollient, and the like, may be added to the plating solution for productivity and surface uniformity.
상기 전해도금은 전류밀도가 0.1A/m²내지 20A/m², 예를 들어 0.1A/m²내지 17A/m², 예를 들어 0.3A/m²내지 15A/m²의 조건에서 수행될 수 있다. 상기 전류밀도의 범위 내에서 금속도금층 형성이 용이하고 우수한 생산성을 가질 수 있다.The electroplating may be performed under a current density of 0.1A/m² to 20A/m², for example, 0.1A/m² to 17A/m², for example, 0.3A/m² to 15A/m². Within the range of the current density, it is possible to easily form a metal plating layer and have excellent productivity.
상기 구리함유층의 두께는 15 ㎛ 이하일 수 있다. 예를 들어, 상기 구리함유층의 두께는 12.5 ㎛ 이하일 수 있다.The thickness of the copper-containing layer may be 15 μm or less. For example, the thickness of the copper-containing layer may be 12.5 μm or less.
상기 구리 시드층 또는 구리합금 시드층의 두께는 50 nm 내지 150 nm일 수 있다. 예를 들어, 상기 구리 시드층 또는 구리합금 시드층의 두께는 50 nm 내지 140 nm일 수 있거나 50 nm 내지 130 nm일 수 있거나 50 nm 내지 120 nm일 수 있다. 상기 구리합금층이 상기 두께 범위를 갖는다면 성막시 도전성을 확보할 수 있으며 낮은 표면조도(Rz)를 갖는 동박적층필름을 제공할 수 있다.The copper seed layer or the copper alloy seed layer may have a thickness of 50 nm to 150 nm. For example, the thickness of the copper seed layer or copper alloy seed layer may be 50 nm to 140 nm, may be 50 nm to 130 nm, or may be 50 nm to 120 nm. If the copper alloy layer has the thickness range, conductivity can be secured during film formation, and a copper clad laminate film having a low surface roughness (R z ) can be provided.
상기 금속도금층의 두께는 0.1 ㎛ 내지 12 ㎛일 수 있다. 예를 들어, 상기 금속도금층의 두께는 0.2 ㎛ 내지 12 ㎛일 수 있거나 0.7 ㎛ 내지 12 ㎛일 수 있다. 상기 금속도금층의 두께가 상기 범위 내에서 금속도금층 형성이 용이하면서 생산성이 우수하고, 기재 구조체와 구리함유층 간에 상온접착력 및 내열접착력이 향상될 수 있다. The thickness of the metal plating layer may be 0.1 μm to 12 μm. For example, the thickness of the metal plating layer may be 0.2 μm to 12 μm or 0.7 μm to 12 μm. When the thickness of the metal plating layer is within the above range, it is easy to form the metal plating layer and excellent in productivity, and room temperature adhesion and heat resistance adhesion between the base structure and the copper-containing layer may be improved.
<동박적층필름 및 전자소자><Copper-clad laminated film and electronic device>
일 구현예에 따른 동박적층필름의 JIS C 6471에 따른 MIT 측정에 의한 피로수명시 270 회 이상일 수 있다. 예를 들어, 상기 동박적층필름의 JIS C 6471에 따른 MIT 측정에 의한 피로수명은 280 회 이상일 수 있다.The fatigue life by MIT measurement according to JIS C 6471 of the copper clad laminated film according to an embodiment may be 270 or more. For example, the fatigue life measured by MIT according to JIS C 6471 of the copper clad laminate film may be 280 times or more.
다른 일 구현예에 따른 전자소자는 상술한 동박적층필름을 포함할 수 있다. 예를 들어, 상기 전자소자는 전자회로소자 또는 전자부품 등을 포함할 수 있다. 예를 들어, 상기 전자회로소자는 반도체, 인쇄 회로 기판, 또는 배선 기판 등을 포함할 수 있다. 예를 들어 상기 전자소자는 LCD, OLED와 같은 디스플레이 소자를 포함할 수 있다.An electronic device according to another embodiment may include the above-described copper clad laminate. For example, the electronic device may include an electronic circuit device or an electronic component. For example, the electronic circuit device may include a semiconductor, a printed circuit board, or a wiring board. For example, the electronic device may include a display device such as LCD or OLED.
<동박적층필름의 제조방법><Manufacturing method of copper clad laminated film>
또다른 일 구현예에 따른 동박적층필름의 제조방법은 기재를 준비하는 단계; 상기 기재의 적어도 일 면에 프라이머층 형성용 조성물을 도포하여 프라이머층을 형성하는 단계; 및 상기 프라이머층 상에 스퍼터링으로 구리함유층을 형성하여 상술한 동박적층필름을 제조하는 단계;를 포함할 수 있다.A method of manufacturing a copper clad laminated film according to another embodiment includes the steps of preparing a substrate; forming a primer layer by applying a composition for forming a primer layer on at least one surface of the substrate; and forming a copper-containing layer on the primer layer by sputtering to prepare the above-described copper clad laminate.
상기 동박적층필름의 제조방법은 인쇄회로공정에서 패턴 박리 또는 변형을 방지할 수 있다. 상기 동박적층필름의 제조방법은 고주파 회로에서의 신호손실을 감소시킬 수 있다.The manufacturing method of the copper clad laminate film can prevent pattern peeling or deformation in the printed circuit process. The method of manufacturing the copper clad laminate can reduce signal loss in a high-frequency circuit.
상기 프라이머층을 형성하는 단계 이후 플라즈마 처리를 수행하는 단계를 더 포함할 수 있다. The method may further include performing plasma treatment after forming the primer layer.
상기 화학식 1에서 사용되는 치환(기)의 정의에 대하여 살펴보면 다음과 같다. The definition of the substituent (group) used in Formula 1 is as follows.
상기 화학식 1에서 사용되는 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 시클로알케닐기, 아릴기, 헤테로아릴기가 갖는 "치환된"에서의 "치환"은 할로겐 원자, 할로겐 원자로 치환된 C1-C10의 알킬기(예: CCF3, CHCF2, CH2F, CCl3 등), 히드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 히드라진, 히드라존, 카르복실기나 그의 염, 술폰산기나 그의 염, 인산이나 그의 염, 또는 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, 또는 C6-C20의 헤테로아릴알킬기로 치환된 것을 의미한다.“Substitution” in “substituted” of an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl group, aryl group, or heteroaryl group used in Formula 1 is a halogen atom or a C1-C10 alkyl group substituted with a halogen atom. (Example: CCF 3 , CHCF 2 , CH 2 F, CCl 3 etc.), hydroxy group, nitro group, cyano group, amino group, amidino group, hydrazine, hydrazone, carboxyl group or its salt, sulfonic acid group or its salt, phosphoric acid or its salt Salt or C1-C10 alkyl group, C2-C10 alkenyl group, C2-C10 alkynyl group, C1-C20 heteroalkyl group, C6-C20 aryl group, C6-C20 arylalkyl group, C6-C20 heteroaryl group group, or means substituted with a C6-C20 heteroarylalkyl group.
상기 화학식 1에서 사용되는 C1-C10의 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, ter-부틸, neo-부틸, iso-아밀, 헥실 등을 들 수 있고, 상기 알킬기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.Specific examples of the C1-C10 alkyl group used in Formula 1 include methyl, ethyl, propyl, isobutyl, sec-butyl, ter-butyl, neo-butyl, iso-amyl, and hexyl, among the alkyl groups One or more hydrogen atoms may be substituted with a substituent as defined in "substitution" above.
상기 화학식 1에서 사용되는 C2-C10의 알케닐기의 구체적인 예로는 비닐렌, 알릴렌 등을 들 수 있고, 상기 알케닐기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.Specific examples of the C2-C10 alkenyl group used in Formula 1 include vinylene and allylene, and at least one hydrogen atom of the alkenyl group may be substituted with a substituent as defined in the above-mentioned "substitution" .
상기 화학식 1에서 사용되는 C2-C20의 알키닐기의 구체적인 예로는 아세틸렌 등을 들 수 있고, 상기 알키닐기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.Specific examples of the C2-C20 alkynyl group used in Formula 1 may include acetylene, and at least one hydrogen atom of the alkynyl group may be substituted with a substituent as defined in “Substitution” above.
상기 화학식 1에서 사용되는 C3-C20의 시클로알킬기의 구체적인 예로는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 등을 들 수 있고, 상기 시클로알킬기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.Specific examples of the C3-C20 cycloalkyl group used in Formula 1 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like, and at least one hydrogen atom of the cycloalkyl group is as defined in the above-mentioned "substitution". It can be substituted with the same substituent.
상기 화학식 1에서 사용되는 C3-C20의 시클로알케닐기의 구체적인 예로는 시클로프로페닐, 시클로부테닐, 시클로펜테닐, 시클로헥세닐 등을 들 수 있고, 상기 시클로알케닐기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.Specific examples of the C3-C20 cycloalkenyl group used in Formula 1 include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like, and at least one hydrogen atom among the cycloalkenyl groups is It may be substituted with a substituent as defined in "substituting".
상기 화학식 1에서 사용되는 C6-C20의 아릴기는 단독 또는 조합하여 사용되어, 하나 이상의 고리를 포함하는 방향족 시스템인 것을 의미하며, 예를 들어 페닐, 나프틸 등을 들 수 있다. 또한 상기 아릴기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.The C6-C20 aryl group used in Formula 1 is used alone or in combination to mean an aromatic system including one or more rings, and examples thereof include phenyl and naphthyl. In addition, one or more hydrogen atoms in the aryl group may be substituted with a substituent as defined in the above-mentioned "substitution".
상기 화학식 1에서 사용되는 C6-C20의 헤테로아릴기는 N, O, P 또는 S 중에서 선택된 하나 이상의 헤테로원자를 포함하고, 나머지 고리원자가 탄소인 유기 화합물인 것을 의미하며, 예를 들어 피리딜 등을 들 수 있다. 또한 상기 헤테로아릴기 중 하나 이상의 수소 원자는 상술한 "치환"에서 정의한 바와 같은 치환기로 치환가능하다.The C6-C20 heteroaryl group used in Formula 1 means an organic compound containing one or more heteroatoms selected from N, O, P or S, and the remaining ring atoms are carbon, for example, pyridyl, etc. can In addition, one or more hydrogen atoms in the heteroaryl group may be substituted with a substituent as defined in the above-mentioned "substitution".
이하, 실시예와 비교예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다. 그러나, 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되지 않는다는 것은 자명한 사실일 것이다.Hereinafter, the configuration of the present invention and its effects will be described in more detail through Examples and Comparative Examples. However, it will be apparent that these examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited to these examples.
[실시예] [Example]
실시예 1: 동박적층필름Example 1: Copper clad laminated film
기재로서 약 25㎛ 두께의 폴리이미드 필름(PI첨단소재 제조, 유전율(Dk): 3.3, 유전손실(Df): 0.005 @28 GHz)을 준비하였다. A polyimide film (manufactured by PI Advanced Materials, dielectric constant (D k ): 3.3, dielectric loss (D f ): 0.005 @28 GHz) was prepared as a substrate as a base material.
이와 별도로, 실란 커플링제로서 N-2-(아미노에틸)-8-아미노옥틸-트리메톡시실란(N-2-(aminoethyl)-8-aminooctyl-trimethoxysilane)과 7-옥테닐트리메톡시실란 (7-octenyltrimethoxysilane)을 1:0.5의 중량비로 증류수 10 g에 혼합 및 교반하여 혼합 수용액을 얻었다. 상기 혼합 수용액에 에탄올 50 g 및 이소프로필알콜 50 g에 용해시키고 1시간 교반하여 프라이머층 형성용 조성물을 제조하였다. 상기 프라이머층 형성용 조성물을 상기 폴리이미드 필름의 상면에 바코터를 이용하여 도포하고 150 ℃에서 약 2분간 건조하여 약 300 nm 두께의 프라이머층을 형성하였다. 상기 프라이머층 위에 RF 플라즈마 처리를 수행하였다. RF 플라즈마 처리는 아르곤가스와 산소가스를 4:1 부피비로 투입하여 약 1000 W 전력으로 수행하였다. 상기 프라이머층의 상면에 물리기상증착법(PVD)으로 순도 99.995%의 구리를 이용하여 1200 Å 두께로 구리 시드층을 형성하였다. 상기 구리 시드층 상에 전해구리도금법으로 약 12㎛ 두께의 구리도금층을 형성하여 동박적층필름을 제조하였다. Separately, as a silane coupling agent, N-2-(aminoethyl)-8-aminooctyl-trimethoxysilane (N-2-(aminoethyl)-8-aminooctyl-trimethoxysilane) and 7-octenyltrimethoxysilane ( 7-octenyltrimethoxysilane) was mixed and stirred in 10 g of distilled water at a weight ratio of 1:0.5 to obtain a mixed aqueous solution. A composition for forming a primer layer was prepared by dissolving 50 g of ethanol and 50 g of isopropyl alcohol in the mixed aqueous solution and stirring for 1 hour. The composition for forming the primer layer was applied to the upper surface of the polyimide film using a bar coater and dried at 150° C. for about 2 minutes to form a primer layer with a thickness of about 300 nm. RF plasma treatment was performed on the primer layer. RF plasma treatment was performed with about 1000 W of power by introducing argon gas and oxygen gas in a volume ratio of 4:1. A copper seed layer to a thickness of 1200 Å was formed on the upper surface of the primer layer using copper having a purity of 99.995% by physical vapor deposition (PVD). A copper clad laminate was prepared by forming a copper plating layer with a thickness of about 12 μm on the copper seed layer by an electrolytic copper plating method.
사용한 전해구리 도금액은 Cu2+ 농도 28 g/L, 황산 180 g/L의 용액으로서, 추가로 광택제로서 3-N,N-디메틸아미노디티오카바모일-1-프로판술폰산 0.01 g/L와 보정제(Atotech사 제품)를 포함한 것을 이용하였다. 전해도금은 30℃에서 수행하였으며, 전류밀도 1 A/m²으로 전류를 인가하여 제작하였다.The electrolytic copper plating solution used was a solution of Cu 2+ concentration of 28 g/L and sulfuric acid 180 g/L, and was further calibrated with 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid 0.01 g/L as a brightener. (manufactured by Atotech) was used. Electrolytic plating was performed at 30°C, and was manufactured by applying a current at a current density of 1 A/m².
실시예 2: 동박적층필름Example 2: Copper clad laminated film
기재로서 50㎛ 두께의 폴리이미드 필름(PI첨단소재 제조, 유전율(Dk): 3.3, 유전손실(Df): 0.005 @28GHz)을 준비한 것을 제외하고는, 실시예 1과 동일한 방법으로 동박적층필름을 제작하였다.Copper clad laminate in the same manner as in Example 1, except that a 50 μm thick polyimide film (manufactured by PI Advanced Materials, dielectric constant (D k ): 3.3, dielectric loss (D f ): 0.005 @28GHz) was prepared as a substrate. A film was made.
실시예 3: 동박적층필름Example 3: Copper clad laminated film
상기 프라이머층의 상면에 물리기상증착법(PVD)으로 구리와 니켈이 90:10의 중량(%)비를 갖는 구리와 니켈 합금을 이용하여 1200 Å 두께의 구리와 니켈의 구리합금 시드층을 형성한 것을 제외하고는, 실시예 1과 동일한 방법으로 동박적층필름을 제작하였다.A copper alloy seed layer of 1200 Å thick copper and nickel was formed on the upper surface of the primer layer using a copper and nickel alloy having a weight (%) ratio of copper and nickel of 90:10 by physical vapor deposition (PVD). Except that, a copper clad laminated film was prepared in the same manner as in Example 1.
실시예 4: 동박적층필름Example 4: Copper clad laminated film
기재로서 약 50㎛ 두께의 폴리이미드 필름(유전율(Dk): 3.4, 유전손실(Df): 0.007 @20GHz)을 준비하였고, 실란 커플링제로서 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 1g을 사용하여 약 5 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 1과 동일한 방법으로 동박적층필름을 제조하였다.A polyimide film with a thickness of about 50 μm (dielectric constant (D k ): 3.4, dielectric loss (D f ): 0.007 @ 20 GHz) was prepared as a substrate, and 1 g of aminopropyltriethoxysilane was used as a silane coupling agent. A copper clad laminate was prepared in the same manner as in Example 1, except that a primer layer having a thickness of about 5 nm was formed.
실시예 5: 동박적층필름Example 5: Copper clad laminated film
실란 커플링제로서 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 5g을 사용하여 약 15 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 15 nm was formed using 5 g of aminopropyltriethoxysilane as a silane coupling agent.
실시예 6: 동박적층필름Example 6: Copper-clad laminated film
실란 커플링제로서 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 3g을 사용하여 약 10 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 10 nm was formed using 3 g of aminopropyltriethoxysilane as a silane coupling agent.
실시예 7: 동박적층필름Example 7: Copper-clad laminated film
실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane) 0.2 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 0.8 g을 사용하여 약 5 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.The same method as in Example 4, except that a primer layer having a thickness of about 5 nm was formed using 0.2 g of vinyltriethoxysilane and 0.8 g of aminopropyltriethoxysilane as a silane coupling agent. to prepare a copper-clad laminated film.
실시예 8: 동박적층필름Example 8: Copper clad laminated film
실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane) 0.2 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 0.8 g을 사용하여 약 5 nm 두께의 프라이머층을 형성하였고, 상기 프라이머층의 상면에 물리기상증착법(PVD)으로 구리와 니켈이 90:10의 중량(%)비를 갖는 구리와 니켈 합금을 이용하여 1200 Å 두께의 구리와 니켈합금 시드층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.As a silane coupling agent, 0.2 g of vinyltriethoxysilane and 0.8 g of aminopropyltriethoxysilane were used to form a primer layer with a thickness of about 5 nm, and a physical vapor deposition method ( PVD) in the same manner as in Example 4, except that a copper and nickel alloy seed layer having a thickness of 1200 Å was formed using a copper and nickel alloy having a weight (%) ratio of 90:10 to copper and nickel. A copper-clad laminated film was prepared.
실시예 9: 동박적층필름Example 9: Copper-clad laminated film
실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane) 2.5 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 2.5 g을 사용하여 약 15 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.The same method as in Example 4, except that a primer layer having a thickness of about 15 nm was formed using 2.5 g of vinyltriethoxysilane and 2.5 g of aminopropyltriethoxysilane as a silane coupling agent. to prepare a copper-clad laminated film.
실시예 10: 동박적층필름Example 10: Copper-clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비하였고, 실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane) 0.6 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 2.4 g을 사용하여 약 10 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.A low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 μm was prepared as a substrate, and 0.6 g of vinyltriethoxysilane and aminopropyltriethoxysilane as a silane coupling agent. A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of about 10 nm was formed using 2.4 g of (aminopropyltriethoxysilane).
실시예 11: 동박적층필름Example 11: Copper clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비하였고, 상기 프라이머층의 상면에 물리기상증착법(PVD)으로 구리와 니켈이 90:10의 중량(%)비를 갖는 구리와 니켈 합금을 이용하여 1200 Å 두께의 구리와 니켈의 구리합금 시드층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.A low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) of about 50 μm thick was prepared as a base material, and copper and nickel were coated with 90:10 on the upper surface of the primer layer by physical vapor deposition (PVD). A copper clad laminate was prepared in the same manner as in Example 4, except that a copper alloy seed layer of copper and nickel having a thickness of 1200 Å was formed using a copper and nickel alloy having a weight (%) ratio.
비교예 1: 동박적층필름Comparative Example 1: Copper-clad laminated film
기재로서 약 25㎛ 두께의 액정 폴리머(LCP) 필름(Kaneka사 제조, 유전율(Dk): 3.1, 유전손실(Df): 0.0022 @28 GHz)을 준비하였다. As a substrate, a liquid crystal polymer (LCP) film (manufactured by Kaneka, dielectric constant (D k ): 3.1, dielectric loss (D f ): 0.0022 @28 GHz) having a thickness of about 25 µm was prepared.
이와 별도로, 약 5000cP 점도의 디메틸아세트아미드(dimethylacetamide; DMAC) 용매에 폴리디아세틸렌(polydiacetylene; PDA)-4, 4'-옥시디아닐린(4, 4'-oxydianiline; ODA) 용액과, 3, 3', 4, 4'-비페닐테트라카르복시산 이무수물(3,3',4,4'-biphenyltetracarboxylic acid dianhydride, BPDA)를 첨가하고 약 1시간 동안 교반하여 폴리아믹산 용액의 접착층 형성용 조성물을 준비하였다. 상기 접착층 형성용 조성물을 상기 액정 폴리머(LCP) 필름의 상면에 바 코터를 이용하여 도포하고 12㎛ 두께의 동박을 2개의 회전하는 닙 롤러 사이를 통과시켜 라미네이트된 동박적층필름을 제조하였다.Separately, a solution of polydiacetylene (PDA)-4, 4'-oxydianiline (ODA) in a dimethylacetamide (DMAC) solvent having a viscosity of about 5000 cP, 3, 3 ', 4, 4'-biphenyltetracarboxylic acid dianhydride (3,3',4,4'-biphenyltetracarboxylic acid dianhydride, BPDA) was added and stirred for about 1 hour to prepare a composition for forming an adhesive layer of a polyamic acid solution . The composition for forming the adhesive layer was applied to the upper surface of the liquid crystal polymer (LCP) film using a bar coater, and a 12 μm thick copper foil was passed between two rotating nip rollers to prepare a laminated copper clad laminate.
비교예 2: 동박적층필름Comparative Example 2: Copper-clad laminated film
기재로서 약 25㎛ 두께의 변성-폴리이미드(modified PI; m-PI) 필름(Kaneka사 제조, 유전율(Dk): 3.1, 유전손실(Df): 0.006 @28GHz)을 준비하였다. As a substrate, a modified PI (m-PI) film (manufactured by Kaneka, dielectric constant (D k ): 3.1, dielectric loss (D f ): 0.006 @28GHz) having a thickness of about 25 μm was prepared.
이와 별도로, 약 5000 cP 점도의 디메틸아세트아미드(dimethylacetamide; DMAC) 용매에 폴리디아세틸렌(polydiacetylene; PDA)-4, 4'-옥시디아닐린(4, 4'-oxydianiline; ODA) 용액과, 3, 3', 4, 4'-벤조페논테트라카르복시산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride; BTDA)-피로멜리트산 이무수물(pyromellitic dianhydride; PMDA) 용액을 첨가하고 약 1시간 동안 교반하여 폴리아믹산 용액의 접착층 형성용 조성물을 준비하였다. 상기 접착층 형성용 조성물을 상기 변성-폴리이미드 필름의 상면에 바 코터로 이용하여 도포하고 12㎛ 두께의 동박을 2개의 회전하는 닙 롤러 사이를 통과시켜 라미네이트된 동박적층필름을 제조하였다.Separately, a solution of polydiacetylene (PDA)-4, 4'-oxydianiline (ODA) in a dimethylacetamide (DMAC) solvent having a viscosity of about 5000 cP, 3, A solution of 3',4,4'-benzophenonetetracarboxylic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride; BTDA)-pyromellitic dianhydride (PMDA) was added and the mixture was stirred for about 1 hour. A composition for forming an adhesive layer of a polyamic acid solution was prepared by stirring. The composition for forming an adhesive layer was applied to the upper surface of the modified-polyimide film by using a bar coater, and a 12 μm thick copper foil was passed between two rotating nip rollers to prepare a laminated copper clad laminate.
비교예 3: 동박적층필름 Comparative Example 3: Copper clad laminated film
상면에 프라이머층 형성용 조성물을 도포하지 않은 약 50㎛ 두께의 폴리이미드 필름(유전율(Dk): 3.4, 유전손실(Df): 0.007 @20GHz)을 준비한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다.Except for preparing a polyimide film (dielectric constant (D k ): 3.4, dielectric loss (D f ): 0.007 @ 20 GHz) of about 50 μm thickness without applying the composition for forming a primer layer on the upper surface, Example 4 and A copper-clad laminated film was prepared in the same manner.
비교예 4: 동박적층필름 Comparative Example 4: Copper-clad laminated film
상면에 프라이머층 형성용 조성물을 도포하지 않은 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다. A copper clad laminate was laminated in the same manner as in Example 4, except that a low-k polyimide film (D k : 3.2, D f : 0.004 @20GHz) having a thickness of about 50 μm was prepared on the upper surface of which the composition for forming a primer layer was not applied. A film was prepared.
비교예 5: 동박적층필름 Comparative Example 5: Copper-clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비하였고, 실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane, 신에츠, KBE-1003) 10.5 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane, 다우케미칼, OFS-6011) 4.5 g을 사용하여 65 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다. A low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 μm was prepared as a substrate, and 10.5 g of vinyltriethoxysilane (Shin-Etsu, KBE-1003) as a silane coupling agent and A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of 65 nm was formed using 4.5 g of aminopropyltriethoxysilane (Dow Chemical, OFS-6011).
비교예 6: 동박적층필름 Comparative Example 6: Copper-clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비하였고, 실란 커플링제로서 비닐트리에톡시실란(vinyltriethoxysilane, 신에츠, KBE-1003) 9.0 g과 아미노프로필트리에톡시실란(aminopropyltriethoxysilane, 다우케미칼, OFS-6011) 1.0 g을 사용하여 43 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 4와 동일한 방법으로 동박적층필름을 제조하였다. A low-dielectric constant polyimide film (D k : 3.2, D f : 0.004 @20GHz) with a thickness of about 50 μm was prepared as a substrate, and 9.0 g of vinyltriethoxysilane (Shin-Etsu, KBE-1003) as a silane coupling agent and A copper clad laminate was prepared in the same manner as in Example 4, except that a primer layer having a thickness of 43 nm was formed using 1.0 g of aminopropyltriethoxysilane (Dow Chemical, OFS-6011).
비교예 7: 동박적층필름 Comparative Example 7: Copper-clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20 GHz)을 준비하였고, 실란 커플링제로서 아미노프로필트리에톡시실란(aminopropyltriethoxysilane) 6.0 g을 사용하여 45 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 10과 동일한 방법으로 동박적층필름을 제조하였다. About 50 μm thick as a substrate A low-k polyimide film (D k : 3.2, D f : 0.004 @20 GHz) was prepared, and a 45 nm-thick primer layer was formed using 6.0 g of aminopropyltriethoxysilane as a silane coupling agent. Except that, a copper clad laminated film was prepared in the same manner as in Example 10.
비교예 8: 동박적층필름 Comparative Example 8: Copper-clad laminated film
기재로서 약 50㎛ 두께의 저유전율 폴리이미드 필름(Dk: 3.2, Df: 0.004 @20GHz)을 준비하였고, 실란 커플링제로서 비닐트리에톡시실란(aminopropyltriethoxysilane) 6.0 g을 사용하여 30 nm 두께의 프라이머층을 형성한 것을 제외하고는, 실시예 10과 동일한 방법으로 동박적층필름을 제조하였다. About 50 μm thick as a substrate A low-k polyimide film (D k : 3.2, D f : 0.004 @20GHz) was prepared, and 6.0 g of vinyltriethoxysilane as a silane coupling agent was used to form a 30 nm-thick primer layer except that Then, a copper clad laminated film was prepared in the same manner as in Example 10.
평가예 1: 물성 평가Evaluation Example 1: Physical property evaluation
실시예 1~11 및 비교예 1~8에 의해 제조된 각각의 동박적층필름의 물성을 하기와 같이 평가하였다. 그 결과의 일부를 하기 표 1 내지 표 4, 도 4a 내지 도 4c, 및 도 5에 각각 나타내었다.The physical properties of each of the copper-clad laminated films prepared in Examples 1 to 11 and Comparative Examples 1 to 8 were evaluated as follows. Some of the results are shown in Tables 1 to 4, Figs. 4a to 4c, and Fig. 5, respectively.
(1) 유전율(Dk) 및 유전손실(Df)(1) permittivity (D k ) and dielectric loss (D f )
각각의 동박적층필름의 기재에 대하여 4cm x 4cm 크기의 샘플로 만들어 네트워크 분석기(Network analyzer, Anritsu사 제조)와 28 GHz 또는 20 GHz 공동공진기(cavity resonator, AET사 제조)를 이용하여 유전율(Dk) 및 유전손실(Df)을 측정하였다. 그 결과를 표 1 내지 표 4에 나타내었다. For the substrate of each copper clad laminate, a sample of 4 cm x 4 cm was made, and the dielectric constant (D k ) and dielectric loss (D f ) were measured. The results are shown in Tables 1 to 4.
(2) 프라이머층 두께(nm)(2) Primer layer thickness (nm)
각각의 동박적층필름의 프라이머층의 두께를 FIB(Focused Ion Beam)-TEM 장비를 이용하여 측정하였다. 그 결과의 일부를 표 3 및 표 4에 나타내었다. The thickness of the primer layer of each copper clad laminate was measured using a FIB (Focused Ion Beam)-TEM equipment. Some of the results are shown in Tables 3 and 4.
(3) 전송손실(dB/cm)(3) Transmission loss (dB/cm)
실시예 1 및 비교예 1~2의 동박적층필름의 기재에 대하여 식각으로 폭 100 ㎛, 길이 100 mm, 종방향 40 mm 간격으로 10개의 직선 회로를 형성하였다. 그리고나서, 상기 직선 회로가 형성된 전송로의 각 신호 도체와 접지 도체를 측정기(Vector Network Analyzer)의 측정 포트에 각각 접속하고 주파수 28 GHz까지 신호를 인가하여 국제공개특허 WO2005-101034에 개시된 측정방법으로 전송손실을 구하였다. 그 결과를 표 1에 나타내었다.With respect to the substrate of the copper clad laminated films of Example 1 and Comparative Examples 1 and 2, 10 straight circuits were formed at intervals of 100 µm in width, 100 mm in length, and 40 mm in the longitudinal direction by etching. Then, each signal conductor and the ground conductor of the transmission path in which the straight circuit is formed are respectively connected to a measurement port of a vector network analyzer, and a signal is applied up to a frequency of 28 GHz using the measurement method disclosed in International Patent Application Publication No. WO2005-101034. The transmission loss was calculated. The results are shown in Table 1.
(4) XRD 분석(I[200]/I[311]) (4) XRD analysis (I [200]/ I [311] )
실시예 1 및 비교예 1~2의 동박적층필름의 구리함유층 또는 동박의 [311] 방위면 및 [200] 방위면 피크세기에 대하여 XRD(X선 회절) 분석을 실시하였다. XRD 분석은 CuKα radiation(1.540598Å을 이용한 Rigaku RINT2200HF+ 회절계(diffractometer)를 이용하여 실시하였고, [200] 방위면은 브래그 2θ 50.5 ± 0.5°에서 피크를, 그리고 [311] 방위면은 브래그 2θ 90.0±0.5°에서 피크를 나타내었다. 동박적층필름의 구리함유층 또는 동박의 [311] 방위면 및 [200] 방위면의 피크세기로부터 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비를 계산하였다. 그 결과를 표 1에 나타내었다.XRD (X-ray diffraction) analysis was performed on the peak intensities of the [311] azimuth and [200] azimuth planes of the copper-containing layer or copper foil of the copper clad laminated films of Example 1 and Comparative Examples 1-2. XRD analysis was performed using a Rigaku RINT2200HF+ diffractometer using CuKα radiation (1.540598 Å), [200] a peak at Bragg 2θ 50.5 ± 0.5°, and [311] Azimuth, Bragg 2θ 90.0± Peak intensity in the [200] orientation for the peak intensity in the [311] orientation from the peak intensity in the [311] orientation and [200] orientation of the copper-containing layer of the copper-clad laminated film or copper foil was calculated, and the results are shown in Table 1.
(5) 표면조도(Rz)(5) Surface roughness (R z )
실시예 1 및 비교예 1~2의 동박적층필름의 표면에 대하여 원자힘현미경(AFM; Atomic Force Microscope)으로 표면조도(Rz)를 측정하였다. 표면조도(Rz)는 측정 구간 전체를 5등분하여 각 등분 별로 최대값을 구하고 구한 값들의 합을 5로 나누어 얻었다. 그 결과를 표 1에 나타내었다.The surface roughness (R z ) of the copper-clad laminated films of Example 1 and Comparative Examples 1 and 2 was measured with an atomic force microscope (AFM). The surface roughness (R z ) was obtained by dividing the entire measurement section into 5 equal parts, obtaining the maximum value for each equal segment, and dividing the sum of the obtained values by 5. The results are shown in Table 1.
(6) MIT (피로수명, 회)(6) MIT (fatigue life, times)
실시예 1 및 비교예 1~2의 동박적층필름에 대하여 JIS C 6471에 따라 MIT로 피로수명을 하였다. MIT 측정을 위해 각각의 동박적층필름을 15 mm x 170 mm 크기로 잘라 패턴(폭: 1000 ㎛)을 에칭한 후 24시간 동안 보관하고 오븐기 80 ℃에서 1시간 동안 보관한 샘플을 준비하였다. 상기 샘플의 양단에 (+), (-)전극을 걸어주어 MIT를 측정하였다. 그 결과를 표 1에 나타내었다.The copper-clad laminated films of Example 1 and Comparative Examples 1 and 2 were subjected to fatigue life by MIT in accordance with JIS C 6471. For MIT measurement, each copper clad laminate was cut into 15 mm x 170 mm size, and the pattern (width: 1000 μm) was etched, stored for 24 hours, and a sample stored for 1 hour at 80 °C in an oven was prepared. MIT was measured by applying (+) and (-) electrodes to both ends of the sample. The results are shown in Table 1.
MIT 측정장비로는 SFT-9250, TOYO SEIKI사를 사용하였다. SFT-9250 and TOYO SEIKI were used as MIT measuring equipment.
(7) 표면 접촉각(°)(7) Surface contact angle (°)
실시예 4~6, 8, 및 비교예 3~4의 동박적층필름의 프라이머층 표면에 대하여 접촉각 측정기(KYOUWA사 제조)를 이용하여 물 3uL 및 디아이오도메탄 1uL으로 표면 접촉각을 측정하였다. 그 결과를 표 3에 나타내었다.With respect to the surface of the primer layer of the copper clad laminated films of Examples 4 to 6, 8, and Comparative Examples 3 to 4, the surface contact angle was measured with 3 uL of water and 1 uL of diiodomethane using a contact angle measuring device (manufactured by KYOUWA). The results are shown in Table 3.
(8) TEM/EDAX분석 - 니켈원소의 함량분포 (8) TEM/EDAX analysis - content distribution of nickel element
실시예 3의 동박적층필름에 대하여 TEM/EDAX를 이용하여 깊이 분석도(depth profile) 및 니켈원소의 함량분포를 분석하였다. 그 결과를 도 4a 내지 도 4c에 나타내었다. For the copper clad laminate of Example 3, a depth profile and a content distribution of nickel elements were analyzed using TEM/EDAX. The results are shown in Figs. 4a to 4c.
분석에 사용한 TEM/EDAX는 Titan G2 ChemiSTEM Cs Probe, FEI Company사 장비를 이용하였다.TEM/EDAX used for the analysis was Titan G2 ChemiSTEM Cs Probe, FEI Company's equipment was used.
(9) XPS 분석 (9) XPS analysis
실시예 2~3의 동박적층필름에 대하여 그 표면에 폭 1 mm 회로패턴을 형성하고 회로 패턴이 형성된 동박적층필름의 전체의 반대면을 전면 에칭한 뒤 상기 회로 패턴이 형성된 동박적층필름을 오븐기에서 150 ℃ 온도로 12시간 동안 열처리하였다. 그리고나서 동박적층필름에서 구리함유층으로서 구리함유 시드층 및 구리 도금층을 180 ° 각도 및 50 m/min 속도로 박리한 뒤 상기 구리함유 시드층 표면에 대한 XPS를 분석하였다. 그 결과를 표 2 및 도 5에 나타내었다. For the copper clad laminated films of Examples 2 to 3, a circuit pattern with a width of 1 mm was formed on the surface, and the entire opposite surface of the copper clad laminate on which the circuit pattern was formed was etched, and then the copper clad laminate on which the circuit pattern was formed was heated in an oven. Heat treatment was carried out at 150 °C for 12 hours. Then, the copper-containing seed layer and the copper plating layer as copper-containing layers from the copper-clad laminate were peeled off at an angle of 180° and a speed of 50 m/min, and then XPS on the surface of the copper-containing seed layer was analyzed. The results are shown in Table 2 and FIG. 5 .
분석에 사용한 XPS는 K-Alpha, ThermoFisher사 장비를 이용하였다.XPS used for analysis was K-Alpha, ThermoFisher's equipment.
(10) XRF 분석 - Si 함량(cps) (10) XRF analysis - Si content (cps)
실시예 7, 9~11, 및 비교예 5~8의 동박적층필름의 프라이머층 표면에 대하여 XRF (X-ray fluorescence spectrometry, Minipal4, Panalytical사) 분석기기로 He(헬륨) 분위기에서 6.2 kv, 45 s의 분석조건으로 Si 함량을 측정하였다. 그 결과를 표 4에 나타내었다.For the primer layer surface of the copper-clad laminated films of Examples 7, 9-11, and Comparative Examples 5-8, XRF (X-ray fluorescence spectrometry, Minipal4, Panalytical) was used to analyze the Si content was measured under the analysis conditions of s. The results are shown in Table 4.
(11) 기재 구조체에 대한 구리함유층의 접착력(또는 박리강도, kgf/cm) (11) Adhesive force of the copper-containing layer to the base structure (or peel strength, kgf/cm)
1) 접착력 평가 1 1) Adhesion evaluation 1
실시예 1~3 및 비교예 1~2의 동박적층필름에 대하여 3 mm 폭으로 절취선을 넣어 샘플을 준비하였다. 상기 샘플들에 대하여 박리강도 시험기(Shimazu사 제조, AG-50NIS)를 이용하여 50 mm/min 인장속도 및 180° 각도로 박리하여 기재 구조체에 대한 구리함유층의 박리강도(kgf/cm)를 측정하였다. 그 결과를 표 1 및 표 2에 나타내었다. For the copper clad laminated films of Examples 1 to 3 and Comparative Examples 1 to 2, a 3 mm width perforated line was put to prepare a sample. The samples were peeled at a tensile speed of 50 mm/min and a 180° angle using a peel strength tester (manufactured by Shimazu, AG-50NIS) to measure the peel strength (kgf/cm) of the copper-containing layer with respect to the substrate structure. . The results are shown in Tables 1 and 2.
2) 접착력 평가 22) Adhesion evaluation 2
실시예 4~11 및 비교예 3~8의 동박적층필름에 대하여 약 3 mm 폭의 회로패턴이 형성된 샘플을 제조하였다. 각각의 샘플에 대하여 접착력 측정기(TA.XT.plus, Texture Analyser사 제조)를 이용하여 50㎜/min의 속도로 25 ℃에서('상온접착력') 및 140 ℃ ~ 160 ℃에서 160 ~ 180 시간 동안 방치한 후에('내열접착력') 기재 구조체로부터 구리함유층을 분리할 때의 박리강도(kgf/cm)를 측정하였다. 그 결과를 표 3 및 표 4에 나타내었다.For the copper-clad laminated films of Examples 4 to 11 and Comparative Examples 3 to 8, a sample having a circuit pattern having a width of about 3 mm was prepared. For each sample, using an adhesive force meter (TA.XT.plus, Texture Analyzer, Inc.) at 25 ℃ at a rate of 50 mm/min ('room temperature adhesive force') and 140 ℃ ~ 160 ℃ 160 ~ 180 hours After standing ('heat-resistant adhesive strength'), the peel strength (kgf/cm) when the copper-containing layer was separated from the base structure was measured. The results are shown in Tables 3 and 4.
(12) 염산처리 후 회로패턴의 박리여부 (12) Whether the circuit pattern is peeled off after hydrochloric acid treatment
실시예 2~6, 8, 및 비교예 3~4의 동박적층필름에 대하여 그 표면에 약 1 mm 폭의 회로패턴을 형성하고 회로패턴이 형성된 동박적층필름 전체의 반대면을 전면 에칭한 뒤, 오븐기에서 150 ℃ 온도로 12 시간 동안 열처리하였다. 그리고 나서 열처리한 동박적층필름을 염산(HCl) 10% 용액에 3분 동안 침지하고 박리여부를 육안으로 관찰하였다. 회로패턴의 박리여부는 다음과 같은 기준으로 판정하였다. 그 결과를 표 2 및 표 3에 나타내었다. With respect to the copper clad laminated films of Examples 2 to 6, 8 and Comparative Examples 3 to 4, a circuit pattern having a width of about 1 mm was formed on the surface, and the entire opposite surface of the copper clad laminate on which the circuit pattern was formed was etched, It was heat-treated in an oven at 150 °C for 12 hours. Then, the heat-treated copper clad laminate was immersed in a 10% hydrochloric acid (HCl) solution for 3 minutes, and peeling was visually observed. Whether or not the circuit pattern was peeled off was determined based on the following criteria. The results are shown in Tables 2 and 3.
X: 동박적층필름 상에 회로패턴이 부착되어 있는 면적이 90% 이상임 (또는 회로패턴의 미박리)X: The area where the circuit pattern is attached on the copper clad laminate film is 90% or more (or the circuit pattern is not peeled off)
△: 동박적층필름 상에 회로패턴이 부착되어 있는 면적이 11%~89%임 (또는 회로패턴의 일부 박리)△: The area where the circuit pattern is attached on the copper clad laminate film is 11% to 89% (or partial peeling of the circuit pattern)
○: 동박적층필름 상에 회로패턴이 부착되어 있는 면적이 10% 이하임 (또는 회로패턴의 전부 박리)○: The area where the circuit pattern is attached on the copper clad laminate film is 10% or less (or the entire circuit pattern is peeled off)
구분division |
기재의 종류 (두께, ㎛)written type (thickness, μm) |
기재 (@ 28 GHz)write (@ 28 GHz) |
전송 손실 (dB/cm)send Loss (dB/cm) |
I[200]/I[311] I [200] /I [311] |
표면 조도 (Rz, ㎛)surface illuminance (R z , μm) |
피로 수명 (회)fatigue life span (episode) |
박리 강도 (kgf/cm)peeling burglar (kgf/cm) |
|
유전율 (Dk)permittivity (D k ) |
유전 손실(Df)heredity Loss (D f ) |
|||||||
실시예 1Example 1 |
폴리이미드 필름 (25 ㎛)polyimide film (25 μm) |
3.33.3 | 0.0050.005 | 0.70.7 | 9.49.4 | 0.010.01 | 280280 | 0.870.87 |
비교예 1Comparative Example 1 |
액정 폴리머(LCP) 필름 (25 ㎛)Liquid crystalline polymer (LCP) film (25 μm) |
3.13.1 | 0.00220.0022 | 0.90.9 | -- | 0.60.6 | 265265 | 0.800.80 |
비교예 2Comparative Example 2 |
변성-폴리이미드 (m-PI) 필름 (25 ㎛)Modified-polyimide (m-PI) film (25 μm) |
3.13.1 | 0.00600.0060 | 1.11.1 | 1.21.2 | 0.30.3 | 225225 | 1.21.2 |
표 1에서 보이는 바와 같이, 실시예 1의 동박적층필름의 폴리이미드 필름 기재는 비교예 2의 동박적층필름의 변성-폴리이미드(m-PI) 필름 기재와 비교하여 주파수 28 GHz에서 유전손실(Df)이 낮았으며, 비교예 1~2의 동박적층필름의 기재와 비교하여 전송손실이 낮았다.As shown in Table 1, the polyimide film substrate of the copper-clad laminated film of Example 1 had a dielectric loss (Df) at a frequency of 28 GHz compared with the modified-polyimide (m-PI) film substrate of the copper-clad laminated film of Comparative Example 2 ) was low, and the transmission loss was low compared to the base material of the copper clad laminated films of Comparative Examples 1 and 2.
실시예 1의 폴리이미드 필름 기재 및 실란 커플링제 함유 프라이머층을 포함하는 동박적층필름은 비교예 2의 변성-폴리이미드(m-PI) 필름 기재 및 폴리아믹산 함유 접착층이 라미네이트된 동박적층필름과 비교하여 XRD 분석에 의한 I[200]/I[311]가 낮았다. The copper clad laminate film comprising the polyimide film substrate of Example 1 and the primer layer containing a silane coupling agent was compared with the copper clad laminate film in which the modified-polyimide (m-PI) film substrate of Comparative Example 2 and the polyamic acid-containing adhesive layer were laminated Therefore, I [200] /I [311] by XRD analysis was low.
실시예 1의 폴리이미드 필름 기재 및 실란 커플링제 함유 동박적층필름은 비교예 1~2의 액정 폴리머(LCP) 필름 기재 또는 변성-폴리이미드(m-PI) 필름 기재와, 폴리아믹산 함유 접착층이 라미네이트된 동박적층필름과 비교하여 표면조도는 낮았고 피로수명은 높았다. 실시예 1의 동박적층필름은 기재 구조체에 대한 구리함유층의 접착력 또는 박리강도가 비교예 1의 동박적층필름과 비교하여 높았다.The polyimide film substrate of Example 1 and the silane coupling agent-containing copper clad laminate film were laminated with the liquid crystal polymer (LCP) film substrate or modified-polyimide (m-PI) film substrate of Comparative Examples 1 and 2, and an adhesive layer containing polyamic acid. Compared with the copper clad laminate film, the surface roughness was low and the fatigue life was high. The copper-clad laminated film of Example 1 had higher adhesion or peel strength of the copper-containing layer to the base structure compared with the copper-clad laminated film of Comparative Example 1.
이로부터, 실시예 1의 동박적층필름은 28 GHz의 고주파수에서 낮은 유전손실, 낮은 전송손실, 및 XRD 분석에 의한 낮은 I[200]/I[311]을 가지면서 동시에 높은 피로수명과, 높은 기재 구조체에 대한 구리함유층의 접착력을 가짐을 확인할 수 있다.From this, the copper-clad laminated film of Example 1 has low dielectric loss, low transmission loss, and low I [200] /I [311] by XRD analysis at a high frequency of 28 GHz while At the same time It can be confirmed that the copper-containing layer has a high fatigue life and high adhesion to the substrate structure.
구분division |
기재의 종류 (두께, ㎛)written type (thickness, μm) |
기재 (@ 28 GHz)write (@ 28 GHz) |
박리강도 (kgf/mm)Peel strength (kgf/mm) | 염산처리 후 회로패턴의 박리여부Whether the circuit pattern is peeled off after hydrochloric acid treatment | |
유전율 (Dk)permittivity (D k ) |
유전손실 (Df)dielectric loss (D f ) |
||||
실시예 2Example 2 |
폴리이미드 필름 (50 ㎛)polyimide film (50 μm) |
3.33.3 | 0.0050.005 | 0.850.85 | △△ |
실시예 3Example 3 |
폴리이미드 필름 (50 ㎛)polyimide film (50 μm) |
3.33.3 | 0.0050.005 | 0.850.85 | X X |
표 2에서 보이는 바와 같이, 실시예 3의 구리와 니켈의 구리합금 시드층을 포함하는 동박적층필름은 염산처리 후 회로패턴의 박리현상이 발생하지 않았다. 이와 비교하여, 실시예 2의 구리 시드층을 포함하는 동박적층필름은 염산처리 후 회로패턴이 일부 박리되었다. As shown in Table 2, in the copper clad laminate film including the copper alloy seed layer of copper and nickel of Example 3, the circuit pattern peeling phenomenon did not occur after hydrochloric acid treatment. In comparison, in the copper clad laminate film including the copper seed layer of Example 2, the circuit pattern was partially peeled off after hydrochloric acid treatment.
한편, 도 4a를 참조하면, 실시예 3의 동박적층필름은 아래에서부터 폴리이미드 필름 기재, 프라이머층, 및 구리와 니켈의 구리합금 시드층이 순서대로 배치되어 있음을 확인할 수 있다. 도 4b 및 도 4c를 참조하면, 실시예 3의 동박적층필름은 폴리이미드 필름 기재로부터 구리함유층, 구체적으로 구리합금 시드층을 향하여 약 0~60 mm까지의 영역, 즉 심부가, 폴리이미드 필름 기재로부터 구리합금 시드층를 향하여 60 mm 초과의 영역, 즉 표면부보다 니켈원소의 함량이 많음을 확인할 수 있다.Meanwhile, referring to FIG. 4A , in the copper clad laminate of Example 3, it can be confirmed that the polyimide film substrate, the primer layer, and the copper alloy seed layer of copper and nickel are sequentially arranged from the bottom. 4B and 4C, the copper clad laminated film of Example 3 has a region from the polyimide film substrate to the copper-containing layer, specifically, the copper alloy seed layer to about 0 to 60 mm, that is, the deep portion, the polyimide film substrate. It can be seen that the content of the nickel element is greater than the area of more than 60 mm toward the copper alloy seed layer, that is, the surface portion.
도 5를 참조하면, 실시예 2의 동박적층필름의 구리 시드층의 결합에너지 933.58 eV 내지 953.98 eV 영역에서 피크강도(ICu)에 대한 실시예 3의 동박적층필름의 구리와 니켈의 구리합금 시드층의 결합에너지 933.58 eV 내지 953.98 eV 영역에서 피크강도(ICu+Ni)의 비(ICu+Ni/ICu)는 0.87이었다.Referring to FIG. 5 , the copper alloy seed of copper and nickel of the copper clad laminate of Example 3 with respect to the peak strength (I Cu ) in the region of 933.58 eV to 953.98 eV of binding energy of the copper seed layer of the copper clad laminate of Example 2 The ratio of the peak intensity (I Cu+Ni ) (I Cu+Ni /I Cu ) was 0.87 in the layer binding energy 933.58 eV to 953.98 eV region.
구분division |
기재의 종류 (두께, ㎛)written type (thickness, μm) |
기재 (@ 20 GHz)write (@ 20 GHz) |
프라이 머층 두께 (nm)fry Murphym thickness (nm) |
표면접촉각 (°)surface contact angle (°) |
박리강도 (kgf/cm)peel strength (kgf/cm) |
회로패턴의 박리여부Whether the circuit pattern is peeled off | |||
유전율 (Dk)permittivity (D k ) |
유전 손실 (Df)heredity Loss (D f ) |
물water |
디아이오도 메탄diiodo methane |
25℃25℃ | 140℃ ~ 160℃140℃ ~ 160℃ | ||||
실시예 4Example 4 |
폴리 이미드 필름 (50 ㎛)Poly imide film (50 μm) |
3.43.4 | 0.0070.007 | 55 | 6060 | 3333 | 0.810.81 | 0.450.45 | XX |
실시예 5Example 5 |
폴리 이미드 필름 (50 ㎛)Poly imide film (50 μm) |
3.43.4 | 0.0070.007 | 1515 | 4848 | 5656 | 0.850.85 | 0.600.60 | XX |
실시예 6Example 6 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 1010 | 5353 | 4848 | 0.900.90 | 0.700.70 | XX |
실시예 8Example 8 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 55 | 6969 | 3333 | 0.920.92 | 0.810.81 | XX |
비교예 3comparative example 3 |
폴리 이미드 필름 (50 ㎛)Poly imide film (50 μm) |
3.43.4 | 0.0070.007 | 00 | 7878 | 1616 | 0.600.60 | 0.310.31 | △△ |
비교예 4comparative example 4 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 00 | 8383 | 88 | 0.420.42 | 0.320.32 | △△ |
표 3에서 보이는 바와 같이, 실시예 4~6 및 8의 동박적층필름의 프라이머층 표면의 수접촉각은 48° 내지 69°이고 디아이오도메탄(diiodomethane) 접촉각은 33° 내지 56°이었다. 실시예 4~6 및 8의 동박적층필름의 기재 구조체에 대한 구리함유층의 25 ℃에서 박리강도('상온접착력')는 0.80 kgf/cm 이상이고 140 ℃ ~ 160 ℃에서 박리강도('내열접착력')는 0.45 kgf/cm 이상이고 상온에서 염산처리 후 회로패턴의 박리현상이 발생하지 않았다. As shown in Table 3, the water contact angle of the primer layer surface of the copper clad laminated films of Examples 4 to 6 and 8 was 48° to 69°, and the diiodomethane contact angle was 33° to 56°. The peel strength ('room temperature adhesion') of the copper-containing layer to the base structure of the copper-clad laminated films of Examples 4 to 6 and 8 was 0.80 kgf/cm or more, and the peel strength at 140 °C to 160 °C ('heat-resistant adhesive strength') ) was 0.45 kgf/cm or more, and there was no peeling of the circuit pattern after hydrochloric acid treatment at room temperature.
그 결과, 실시예 4~6 및 8의 기재로서 (저유전율) 폴리이미드 필름, 프라이머층으로서 아미노계 실란커플링제 또는 아미노계 실란 커플링제와 비닐계 실란 커플링제를 15 nm 이하의 두께로 포함하고, 구리(합금) 시드층을 포함하는 동박적층필름은 인쇄회로기판 제조공정에서 사용될 수 있음을 확인할 수 있다.As a result, as a base material of Examples 4 to 6 and 8, a (low dielectric constant) polyimide film, and an amino-based silane coupling agent or an amino-based silane coupling agent and a vinyl-based silane coupling agent as a primer layer were included in a thickness of 15 nm or less, , it can be confirmed that the copper clad laminate film including the copper (alloy) seed layer can be used in the printed circuit board manufacturing process.
이와 비교하여, 프라이머층을 포함하지 않는 비교예 3~4의 동박적층필름은 기재 구조체에 대한 구리함유층의 낮은 상온접착력과 낮은 내열접착력을 나타냈다. 이로 인해, 비교예 3~4의 동박적층필름에 형성된 회로패턴은 염산처리 후 일부 박리현상이 발생하였다. 또한 저유전율 폴리이미드 필름 기재를 사용한 비교예 4의 동박적층필름은 보다 낮은 상온접착력을 나타냈다. 이는 저유전율 폴리이미드 필름 기재에 의해 동박적층필름 표면에 반응성 관능기가 적어 접착력이 저하되는 것으로 여겨진다. In comparison, the copper clad laminated films of Comparative Examples 3 to 4 not including the primer layer exhibited low room temperature adhesion and low heat resistance adhesion of the copper-containing layer to the base structure. For this reason, the circuit patterns formed on the copper clad laminated films of Comparative Examples 3 and 4 had some peeling phenomenon after hydrochloric acid treatment. In addition, the copper-clad laminated film of Comparative Example 4 using the low dielectric constant polyimide film substrate showed lower room temperature adhesion. It is considered that the low dielectric constant polyimide film substrate reduces the adhesive strength due to the small amount of reactive functional groups on the surface of the copper clad laminate film.
구분division |
기재의 종류 (두께, ㎛)written type (thickness, μm) |
기재 (@ 20 GHz)write (@ 20 GHz) |
프라이머층 두께 (nm)primer layer thickness (nm) |
Si함량 (cps)Si content (cps) |
박리강도 (kgf/cm)peel strength (kgf/cm) |
||
유전율 (Dk)permittivity (D k ) |
유전손실 (Df)dielectric loss (D f ) |
25℃ 25℃ | 140℃ ~ 160℃140℃ ~ 160℃ | ||||
실시예 7Example 7 |
폴리 이미드 필름 (50 ㎛)Poly imide film (50 μm) |
3.43.4 | 0.0070.007 | 55 | 2828 | 0.810.81 | 0.550.55 |
실시예9Example 9 |
폴리 이미드 필름 (50 ㎛)Poly imide film (50 μm) |
3.43.4 | 0.0070.007 | 1515 | 105105 | 0.880.88 | 0.700.70 |
실시예10Example 10 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 1010 | 6363 | 0.880.88 | 0.700.70 |
실시예11Example 11 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 55 | 2525 | 0.920.92 | 0.810.81 |
비교예5Comparative Example 5 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 6565 | 193193 | 0.350.35 | 0.150.15 |
비교예6Comparative Example 6 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 4343 | 160160 | 0.520.52 | 0.450.45 |
비교예7Comparative Example 7 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 4545 | 162162 | 0.650.65 | 0.450.45 |
비교예8Comparative Example 8 |
저유전율 폴리 이미드 필름 (50 ㎛)low dielectric constant Poly imide film (50 μm) |
3.23.2 | 0.0040.004 | 3030 | 123123 | 0.700.70 | 0.380.38 |
표 4에서 보이는 바와 같이, 실시예 7, 9~11의 동박적층필름의 프라이머층 표면에 대한 Si 함량은 28 cps 내지 105 cps이었다. 실시예 7, 9~11의 동박적층필름의 기재 구조체에 대한 구리함유층의 25 ℃에서 박리강도('상온접착력')는 0.80 kgf/cm 이상이고 140 ℃ ~ 160 ℃에서 박리강도('내열접착력')는 0.50 kgf/cm 이상이었다. 실시예 7, 9~11의 동박적층필름의 기재 구조체에 대한 구리함유층의 상온접착력 및 내열접착력은 비교예 5~8의 동박적층필름과 비교하여 높았다. As shown in Table 4, the Si content on the surface of the primer layer of the copper clad laminated films of Examples 7 and 9 to 11 was 28 cps to 105 cps. The peel strength ('room temperature adhesion') of the copper-containing layer to the base structure of the copper clad laminated films of Examples 7 and 9 to 11 was 0.80 kgf/cm or more, and the peel strength at 140 °C to 160 °C ('heat-resistant adhesive strength') ) was 0.50 kgf/cm or more. Room temperature adhesion and heat resistance of the copper-containing layer to the base structure of the copper clad laminated films of Examples 7 and 9 to 11 were higher than those of the copper clad laminated films of Comparative Examples 5 to 8.
그 결과, 실시예 7, 9~11의 기재로서 (저유전율) 폴리이미드 필름, 프라이머층으로서 아미노계 실란 커플링제와 비닐계 실란 커플링제를 15 nm 이하의 두께로 포함하고, 구리(합금) 시드층을 포함하는 동박적층필름은 인쇄회로기판 제조공정에서 사용될 수 있음을 확인할 수 있다.As a result, the (low dielectric constant) polyimide film as a base material of Examples 7 and 9-11, and an amino-based silane coupling agent and a vinyl-based silane coupling agent as a primer layer were included in a thickness of 15 nm or less, and a copper (alloy) seed It can be confirmed that the copper-clad laminate film including the layer can be used in the printed circuit board manufacturing process.
이와 비교하여, 저유전율 폴리이미드 필름 기재를 사용한 비교예 5~6의 동박적층필름은 보다 낮은 상온접착력을 나타냈다. 이는 저유전율 폴리이미드 필름 기재에 의해 동박적층필름 표면에 반응성 관능기가 적어 접착력이 저하되는 것으로 여겨진다. 비교예 5의 동박적층필름은 두께가 두꺼운 프라이머층을 포함하여 자가반응에 의한 겔이 형성되기에, 기재 구조체에 대한 구리함유층의 상온접착력 및 내열접착력이 낮았다. 비교예 7~8에 의해 제조된 동박적층필름은 실시예 11과 동일한 조건으로 구리함유층 및 전해도금층을 형성하였으나, 적용된 프라이머층의 조성의 차이로 낮은 기재 구조체에 대한 구리함유층의 상온 접착력과 낮은 내열접착력을 나타내었으며, 염산처리 후 기재 구조체에 대한 구리함유층의 박리강도도 낮아 패턴이 일부 박리되는 현상을 보였다. In comparison, the copper-clad laminated films of Comparative Examples 5 to 6 using the low dielectric constant polyimide film substrate showed lower room temperature adhesion. It is considered that the low dielectric constant polyimide film substrate reduces adhesive strength due to the small number of reactive functional groups on the surface of the copper clad laminate film. Since the copper clad laminate film of Comparative Example 5 formed a gel by self-reaction including a thick primer layer, room temperature adhesion and heat resistance adhesion of the copper-containing layer to the substrate structure were low. The copper-clad laminated films prepared in Comparative Examples 7 to 8 formed a copper-containing layer and an electrolytic plating layer under the same conditions as in Example 11. However, due to the difference in the composition of the applied primer layer, room temperature adhesion and low heat resistance of the copper-containing layer to the substrate structure was low. Adhesion was shown, and the peeling strength of the copper-containing layer to the substrate structure was also low after hydrochloric acid treatment, so that the pattern was partially peeled off.
Claims (23)
- 기재의 적어도 일 면에 프라이머층이 배치된 기재 구조체; 및a substrate structure having a primer layer disposed on at least one surface of the substrate; and상기 기재 구조체 상에 배치된 구리함유층;을 포함하고,Including; a copper-containing layer disposed on the base structure;상기 구리함유층의 X선 회절(X-ray diffraction; XRD) 분석에 의한 [311] 방위면의 피크세기에 대한 [200] 방위면의 피크세기의 비(I[200]/I[311])가 2.0 이상인, 동박적층필름.The ratio of the peak intensity of the [200] orientation to the peak intensity of the [311] orientation by X-ray diffraction (XRD) analysis of the copper-containing layer (I [200] /I [311] ) 2.0 or more, copper clad laminated film.
- 제1항에 있어서, According to claim 1,상기 구리함유층 표면의 표면조도(Rz)가 0.1 ㎛ 이하인, 동박적층필름.The surface roughness (R z ) of the surface of the copper-containing layer is 0.1 μm or less, the copper-clad laminated film.
- 제1항에 있어서, According to claim 1,25 ℃에서 상기 기재 구조체에 대한 구리함유층의 박리강도가 0.80 kgf/cm 이상인, 동박적층필름.The peeling strength of the copper-containing layer with respect to the base structure at 25 ° C. is 0.80 kgf / cm or more, the copper clad laminated film.
- 제1항에 있어서, According to claim 1,150 ℃에서 2시간 열처리 후 상온에서 30 분간 2회 방치하고, 240 ℃에서 10 분간 추가 열처리 후에 측정한 상기 기재 구조체에 대한 구리함유층의 박리강도가 0.45 kgf/cm 이상인, 동박적층필름.After heat treatment at 150 ° C. for 2 hours, left twice at room temperature for 30 minutes, and after additional heat treatment at 240 ° C. for 10 minutes, the peel strength of the copper-containing layer with respect to the substrate structure is 0.45 kgf / cm or more, the copper clad laminated film.
- 제1항에 있어서, According to claim 1,상기 구리함유층이 구리 시드층 또는 구리와, 니켈, 아연, 베릴륨, 및 크롬 중에서 선택된 1종 이상의 구리합금 시드층을 포함하는, 동박적층필름.The copper-clad laminated film, wherein the copper-containing layer comprises a copper seed layer or a seed layer of at least one copper alloy selected from copper and nickel, zinc, beryllium, and chromium.
- 제5항에 있어서, 6. The method of claim 5,상기 구리함유층이 구리와 니켈의 구리합금 시드층을 포함하고,The copper-containing layer includes a copper alloy seed layer of copper and nickel,상기 구리합금 시드층의 심부가 표면부보다 니켈원소의 함량이 많은 것인, 동박적층필름.The copper clad laminated film, wherein the core portion of the copper alloy seed layer contains more nickel than the surface portion.
- 제5항에 있어서, 6. The method of claim 5,상기 구리 시드층 또는 구리합금 시드층의 표면에 대한 XPS 분석시 결합에너지 933.58 eV 내지 953.98 eV 영역에서 하기 식 1의 피크강도비를 만족하는, 동박적층필름: A copper clad laminate film that satisfies the peak intensity ratio of Equation 1 below in the region of binding energy 933.58 eV to 953.98 eV during XPS analysis of the surface of the copper seed layer or the copper alloy seed layer:[식 1][Equation 1]ICu+Ni/ICu ≤ 0.9I Cu+Ni /I Cu ≤ 0.9식 중, during the meal,ICu+Ni는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리합금 시드층의 피크강도이며,I Cu + Ni is the peak strength of the copper alloy seed layer in the region of binding energy 933.58 eV to 953.98 eV,ICu는 결합에너지 933.58 eV 내지 953.98 eV 영역에서 구리 시드층의 피크강도이다.I Cu is the peak intensity of the copper seed layer in the region of binding energy 933.58 eV to 953.98 eV.
- 제5항에 있어서, 6. The method of claim 5,상기 구리 시드층 또는 구리합금 시드층이 스퍼터층인, 동박적층필름.wherein the copper seed layer or the copper alloy seed layer is a sputtering layer.
- 제5항에 있어서,6. The method of claim 5,상기 구리 시드층 또는 구리합금 시드층의 일 면에 금속도금층을 더 포함하는, 동박적층필름.The copper clad laminate film further comprising a metal plating layer on one surface of the copper seed layer or the copper alloy seed layer.
- 제1항에 있어서,According to claim 1,상기 기재가 폴리이미드계 기재이고, The substrate is a polyimide-based substrate,상기 폴리이미드계 기재가 주파수 20 GHz에서 3.4 이하의 유전율(Dk) 및 0.007 이하의 유전손실(Df)을 갖는, 동박적층필름.The polyimide-based substrate has a dielectric constant (D k ) of 3.4 or less and a dielectric loss (D f ) of 0.007 or less at a frequency of 20 GHz, a copper clad laminate film.
- 제10항에 있어서,11. The method of claim 10,상기 폴리이미드계 기재가 주파수 28 GHz에서 3.3 이하의 유전율(Dk) 및 0.005 이하의 유전손실(Df)을 갖는, 동박적층필름.The polyimide-based substrate has a dielectric constant (D k ) of 3.3 or less and a dielectric loss (D f ) of 0.005 or less at a frequency of 28 GHz, a copper clad laminate film.
- 제10항에 있어서,11. The method of claim 10,상기 폴리이미드계 기재가 주파수 28 GHz에서 0.8 dB/cm 이하의 전송손실을 갖는, 동박적층필름.The polyimide-based substrate has a transmission loss of 0.8 dB/cm or less at a frequency of 28 GHz, a copper-clad laminated film.
- 제1항에 있어서,According to claim 1,상기 기재의 두께가 5 ㎛ 내지 100 ㎛인, 동박적층필름.The thickness of the substrate is 5 μm to 100 μm, the copper clad laminated film.
- 제1항에 있어서,According to claim 1,상기 프라이머층이 하기 화학식 1로 표시되는 실란 커플링제를 포함하는, 동박적층필름:A copper-clad laminated film, wherein the primer layer includes a silane coupling agent represented by the following formula (1):[화학식 1][Formula 1]RCmH2mSi(OCnH2n)3 RC m H 2m Si(OC n H 2n ) 3식 중,during the meal,R은 치환 또는 비치환된 C2-C20의 알케닐기, -N(R1)(R2), 또는 이들 조합이고, 여기서 R1, R2는 서로 독립적으로 수소원자, 할로겐원자, 치환 또는 비치환된 C1-C10의 알킬기, 치환 또는 비치환된 C2-C10의 알케닐기, 치환 또는 비치환된 C2-C10의 알키닐기, 치환 또는 비치환된 C3-C20의 시클로알킬기, 치환 또는 비치환된 C3-C20의 시클로알케닐기, 치환 또는 비치환된 C6-C20의 아릴기, 또는 치환 또는 비치환된 C6-C20의 헤테로아릴기이며,R is a substituted or unsubstituted C2-C20 alkenyl group, —N(R 1 )(R 2 ), or a combination thereof, wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted a C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, a substituted or unsubstituted C2-C10 alkynyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C3- a C20 cycloalkenyl group, a substituted or unsubstituted C6-C20 aryl group, or a substituted or unsubstituted C6-C20 heteroaryl group,n은 1 내지 5의 정수이며,n is an integer from 1 to 5,m은 0 내지 10이다. m is 0 to 10.
- 제1항에 있어서,According to claim 1,상기 프라이머층이 아미노계 실란 화합물, 비닐계 실란 화합물, 또는 이들 혼합물을 포함하는, 동박적층필름.The primer layer comprising an amino-based silane compound, a vinyl-based silane compound, or a mixture thereof.
- 제15항에 있어서,16. The method of claim 15,상기 아미노계 실란 화합물 대 비닐계 실란 화합물의 중량비가 1:1 내지 9:1인, 동박적층필름.The weight ratio of the amino-based silane compound to the vinyl-based silane compound is 1:1 to 9:1, the copper clad laminated film.
- 제1항에 있어서,According to claim 1,상기 프라이머층 표면에 대한 XRF(X-ray fluorescence spectrometry) 분석에 의한 Si 함량이 10 cps 내지 120 cps인, 동박적층필름.The Si content by X-ray fluorescence spectrometry (XRF) analysis on the surface of the primer layer is 10 cps to 120 cps, the copper-clad laminated film.
- 제1항에 있어서, According to claim 1,상기 프라이머층 표면의 수접촉각이 45° 내지 70°인, 동박적층필름.A copper clad laminate film having a water contact angle of 45° to 70° on the surface of the primer layer.
- 제1항에 있어서,According to claim 1,상기 프라이머층의 두께가 500 nm 이하인, 동박적층필름.The thickness of the primer layer is 500 nm or less, the copper clad laminated film.
- 제1항에 있어서,According to claim 1,상기 기재의 두께가 25㎛ 두께일 때, 상기 필름의 JIS C 6471에 따른 MIT 측정에 의한 피로수명시 270 회 이상인, 동박적층필름.When the thickness of the substrate is 25㎛, the fatigue life of the film according to MIT measurement according to JIS C 6471 is 270 times or more, the copper clad laminated film.
- 제1항 내지 제20항 중 어느 한 항에 따른 동박적층필름을 포함하는 전자소자.An electronic device comprising the copper clad laminate according to any one of claims 1 to 20.
- 기재를 준비하는 단계;preparing a substrate;상기 기재의 적어도 일 면에 프라이머층 형성용 조성물을 도포하여 프라이머층을 형성하는 단계; 및forming a primer layer by applying a composition for forming a primer layer on at least one surface of the substrate; and상기 프라이머층 상에 스퍼터링으로 구리함유층을 형성하여 제1항 내지 제20항 중 어느 한 항에 따른 동박적층필름을 제조하는 단계;를 포함하는, 동박적층필름의 제조방법.A method of manufacturing a copper-clad laminated film comprising a; forming a copper-containing layer on the primer layer by sputtering to prepare the copper-clad laminated film according to any one of claims 1 to 20.
- 제22항에 있어서,23. The method of claim 22,상기 프라이머층을 형성하는 단계 이후 플라즈마 처리를 수행하는 단계를 더 포함하는, 동박적층필름의 제조방법.Further comprising the step of performing plasma treatment after the step of forming the primer layer, a method of manufacturing a copper clad laminate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280001311.2A CN115119544A (en) | 2021-01-20 | 2022-01-18 | Copper-clad plate, electronic component comprising same and manufacturing method of copper-clad plate |
JP2022535900A JP7513717B2 (en) | 2021-01-20 | 2022-01-18 | Copper foil laminate film, electronic device including same, and method for manufacturing said copper foil laminate film |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0008262 | 2021-01-20 | ||
KR1020210008262A KR102460622B1 (en) | 2021-01-20 | 2021-01-20 | Copper clad laminate film, electronic device including the same |
KR10-2021-0011026 | 2021-01-26 | ||
KR1020210011026A KR102538130B1 (en) | 2021-01-26 | 2021-01-26 | Copper clad layer, electronic device including the same, and method of preparing the copper clad layer |
KR1020210117738A KR102548431B1 (en) | 2021-09-03 | 2021-09-03 | Copper clad laminate film, electronic device including the same |
KR10-2021-0117738 | 2021-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022158831A1 true WO2022158831A1 (en) | 2022-07-28 |
Family
ID=82549899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/000932 WO2022158831A1 (en) | 2021-01-20 | 2022-01-18 | Copper clad laminate film, electronic element including same, and method for manufacturing copper clad laminate film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7513717B2 (en) |
CN (1) | CN115119544A (en) |
WO (1) | WO2022158831A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120096032A (en) * | 2010-04-30 | 2012-08-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Laminate for flexible wiring |
KR101715532B1 (en) * | 2012-07-26 | 2017-03-10 | 엔지케이 인슐레이터 엘티디 | Copper alloy and production method thereof |
KR20200025801A (en) * | 2018-08-31 | 2020-03-10 | 도레이첨단소재 주식회사 | Flexible copper clad laminate and method for manufacturing the same |
KR20200037803A (en) * | 2017-08-02 | 2020-04-09 | 카부시기가이샤 신키쥬쯔 겐규죠 | Composite of metal and resin |
KR20200129468A (en) * | 2019-05-08 | 2020-11-18 | 도레이첨단소재 주식회사 | Laminate structure, flexible copper clad laminate film including the same, method of manufacturing the laminate structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000151052A (en) * | 1998-11-18 | 2000-05-30 | Nitto Denko Corp | Flexible wiring board |
KR100629360B1 (en) * | 2005-05-30 | 2006-10-02 | 한국화학연구원 | Method of surface modification of polyimide film using ethyleneimines coupling agent, manufacturing method of flexible copper clad laminate and its product thereby |
JP5752536B2 (en) * | 2011-08-23 | 2015-07-22 | Jx日鉱日石金属株式会社 | Rolled copper foil |
-
2022
- 2022-01-18 JP JP2022535900A patent/JP7513717B2/en active Active
- 2022-01-18 WO PCT/KR2022/000932 patent/WO2022158831A1/en active Application Filing
- 2022-01-18 CN CN202280001311.2A patent/CN115119544A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120096032A (en) * | 2010-04-30 | 2012-08-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Laminate for flexible wiring |
KR101715532B1 (en) * | 2012-07-26 | 2017-03-10 | 엔지케이 인슐레이터 엘티디 | Copper alloy and production method thereof |
KR20200037803A (en) * | 2017-08-02 | 2020-04-09 | 카부시기가이샤 신키쥬쯔 겐규죠 | Composite of metal and resin |
KR20200025801A (en) * | 2018-08-31 | 2020-03-10 | 도레이첨단소재 주식회사 | Flexible copper clad laminate and method for manufacturing the same |
KR20200129468A (en) * | 2019-05-08 | 2020-11-18 | 도레이첨단소재 주식회사 | Laminate structure, flexible copper clad laminate film including the same, method of manufacturing the laminate structure |
Also Published As
Publication number | Publication date |
---|---|
JP2023514919A (en) | 2023-04-12 |
CN115119544A (en) | 2022-09-27 |
JP7513717B2 (en) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020185016A1 (en) | Packaging substrate and semiconductor device comprising same | |
WO2019194389A1 (en) | Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same | |
WO2012087058A2 (en) | Printed circuit board and method for manufacturing the same | |
WO2019194386A1 (en) | Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same | |
WO2019135533A1 (en) | Method for manufacturing electromagnetic interference shielding film | |
WO2012087059A2 (en) | Printed circuit board and method for manufacturing the same | |
WO2012087060A2 (en) | Printed circuit board and method for manufacturing the same | |
WO2020180149A1 (en) | Packaging substrate and semiconductor apparatus comprising same | |
WO2019235712A1 (en) | Siloxane compound and polyimide precursor composition comprising same | |
WO2015046956A1 (en) | Modified polyphenylene oxide, and copper-clad laminate using same | |
WO2021145664A1 (en) | Circuit board | |
WO2024085727A1 (en) | Board for electronic parts, method for manufacturing board for electronic parts, and display device and semiconductor device including same | |
WO2022158831A1 (en) | Copper clad laminate film, electronic element including same, and method for manufacturing copper clad laminate film | |
WO2018221876A1 (en) | Method for manufacturing flexible printed circuit board and flexible printed circuit board manufactured by same | |
WO2015156540A1 (en) | Double-sided flexible copper clad laminate for micro-wiring, manufacturing method therefor, and printed circuit board for micro-wiring | |
WO2021256869A1 (en) | Circuit board | |
WO2015099451A1 (en) | Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same | |
WO2021040364A1 (en) | Circuit board | |
WO2020185023A1 (en) | Packaging substrate and method for manufacturing same | |
WO2018043766A1 (en) | Copper thin film substrate and method for manufacturing same | |
WO2020185021A1 (en) | Packaging substrate, and semiconductor device comprising same | |
WO2022045663A1 (en) | Resin composition for semiconductor package and copper foil-attached resin comprising same | |
WO2022010266A1 (en) | Electromagnetic shielding material and manufacturing method therefor | |
WO2023059008A1 (en) | Circuit board and semiconductor package comprising same | |
WO2023191508A1 (en) | Circuit board and semiconductor package comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022535900 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22742807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22742807 Country of ref document: EP Kind code of ref document: A1 |