WO2022158561A1 - 植物ゲノムの編集方法 - Google Patents

植物ゲノムの編集方法 Download PDF

Info

Publication number
WO2022158561A1
WO2022158561A1 PCT/JP2022/002162 JP2022002162W WO2022158561A1 WO 2022158561 A1 WO2022158561 A1 WO 2022158561A1 JP 2022002162 W JP2022002162 W JP 2022002162W WO 2022158561 A1 WO2022158561 A1 WO 2022158561A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
genome
seq
editing
target
Prior art date
Application number
PCT/JP2022/002162
Other languages
English (en)
French (fr)
Inventor
慎一 有村
一星 中里
伸浩 堤
恵子 細田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2022576758A priority Critical patent/JPWO2022158561A1/ja
Priority to US18/272,978 priority patent/US20240218384A1/en
Publication of WO2022158561A1 publication Critical patent/WO2022158561A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/07Fusion polypeptide containing a localisation/targetting motif containing a mitochondrial localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04005Cytidine deaminase (3.5.4.5)

Definitions

  • the present invention relates to methods for editing or modifying plant genomes, specifically nuclear genomes, mitochondrial genomes and plastid genomes.
  • Genomes that play important roles are also contained in the genomes of plastids such as mitochondria and chloroplasts, and it is thought that genome editing, etc. contained in these intracellular organs will be effective in plant breeding. be done.
  • the plastid genome of higher plants is about 150 kb and contains about 120 genes, which are involved in photosynthesis, antibiotic resistance and herbicide resistance.
  • plastid genes for example, psbA , a key gene in the photochemical system, and rbcL , a key enzyme in dark reaction CO2 fixation, are important genes that control plant functions. It is expected to contribute to the optimization of the use of light energy, the enhancement of food production, the production of bioethanol and biomass, and the improvement of CO 2 absorption as a resource.
  • Gene transfer into the plastid genome has been performed for about 30 years. Gene transfer into the plastid genome has different advantages than gene transfer into the nuclear genome.
  • the plastid genome is maternally inherited, which prevents the spread of recombinant genes through pollen.
  • gene silencing which occurs during nuclear gene recombination, does not occur, it is relatively easy to express the desired gene product.
  • Non-Patent Documents 1 and 2 Although there are some successful examples of gene introduction technology into the plastid genome (for example, Patent Document 1, etc.), it is still a difficult technology. Furthermore, there is currently no practical technique for genome editing that modifies only a specific single base in the plastid genome. The use of recombinant plants produced by the above gene transfer is internationally regulated by the Cartagena Law.
  • the plant mitochondrial genome encodes not only genes involved in the electron transport system, ATP synthesis, and translation of mitochondrial genes, but also many open reading frames (ORFs) of unknown function.
  • ORFs open reading frames
  • the lack of sufficient utilization and characterization of plant mitochondrial genomes is due to the limited tools for modification, and the fact that single nucleotide polymorphisms (polymorphisms, One reason for this is thought to be the difficulty in identifying SNPs. So far, in two unicellular organisms, the green alga Chlamydomonas (Non-Patent Document 3) and yeast (Non-Patent Documents 4 and 5), stable introduction of genes into the mitochondrial genome has been performed by the particle gun method. Stable transformation (gene transfer) of the mitochondrial genome has so far been unsuccessful.
  • Non-Patent Document 6 bisected the cytidine deaminase (CD) gene of the Burkholderia cenocepacia DddA protein, each containing a uracil glycosylase inhibitor (UGI) and a transcription activator-like effector (TALE) DNA-binding domain. was transiently expressed in mammalian cells (Non-Patent Document 6). As a result, we succeeded in replacing target C:G pairs with T:A pairs in the mitochondrial genome. Conversion of C:G pairs to T:A pairs occurred in up to 50% of the mitochondrial genome within the cells.
  • Kang et al. also applied the technique of Mok et al. As a result of transiently expressing a fusion protein of UGI and TALE, it was reported that the frequency of mitochondrial genome editing was about 25% at maximum (Non-Patent Document 7).
  • the present invention provides a method for editing or modifying plant genomes, that is, plant nuclear genomes, plastid (e.g., chloroplast) genomes and mitochondrial genomes, particularly editing or modifying a target single base with high accuracy,
  • the object is to provide a highly efficient method.
  • Non-Patent Document 6 Non-Patent Document 6
  • TALEN transcription activator-like effector nuclease
  • TALECD protein sequence
  • nTALECD nuclear localization signal
  • ptpTALECD chloroplast localization signal
  • mitochondrial localization signal a nuclear localization signal
  • mtpTALECD mitochondrial localization signal
  • nTALECD, ptpTALECD, or mtpTALECD expressed from these three expression vectors translocate into the nucleus, chloroplast, or mitochondria, respectively, and perform target single-nucleotide editing (conversion of C:G pairs to T:A pairs). I have confirmed that it can be done.
  • the targeted C:G pair contained in the plant genome is homoplasmically modified, that is, For example, taking the plastid genome as an example, it is possible to modify almost all target C:G pairs of the plastid genome, which has about 1000 copies or more contained in cells within the plant individual, to T:A pairs. I found
  • plastids and mitochondria are both organelles that were formed as a result of free-living bacteria coexisting within cells, and contain their own genomic DNA.
  • the plastid genome has a more bacterial sequence and structure compared to the mitochondria, which are endosymbiotic for a longer period of time.
  • the plastid genome has transcription, translation, and DNA replication/repair systems that exhibit distinct bacterial types.
  • plant mitochondria duplicate and reuse some of the DNA replication and repair system enzymes used in plastids, and are a unique hybrid type that is different from the plastid genome and mammalian mitochondrial genome. It has a system, that is, the three organelle genomes have a tripartite pattern.
  • the present invention is the following (1) to (6).
  • a method for editing plant genomic DNA comprising modifying a target base on the genomic DNA to another base. Said modification may be performed by cytidine deaminase.
  • the cytidine deaminase may be any protein described in (a) or (b) below; (a) a protein consisting of the amino acid sequence represented by SEQ ID NO: 35; (b) A protein consisting of an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 35 and having cytidine deaminase activity.
  • the N-terminal portion of the cytidine deaminase and the other portion may be fused to separate TALEs (transcription activator-like effectors).
  • the above-mentioned method for editing plant genomic DNA comprises a fusion of part or all of the cytidine deaminase and TALE with the addition of a nuclear localization signal peptide, a plastid localization signal peptide, or a mitochondrial localization signal peptide.
  • a coding DNA (DNA encoding the fusion) is introduced into the nuclear genome of a plant cell (integrated into the nuclear genome DNA), and the fusion to which the signal peptide is added is expressed in the plant cell.
  • the method may include modifying the target base in nuclear genomic DNA, plastid genomic DNA or mitochondrial genomic DNA to another base.
  • a plant genome containing the plant genomic DNA edited by the plant genomic DNA editing method a plant cell containing the plant genome, and a seed or plant containing the plant cell.
  • a method for producing a plant having an edited plant genome comprising editing the plant genome by the plant genome DNA editing method according to any one of (1) to (4) above.
  • the sign "-" indicates a numerical range including the values on the left and right of it.
  • the method of the present invention it is possible to modify a single base in the plant genome, specifically the plant nuclear genome, plastid genome, or mitochondrial genome. Furthermore, according to the method of the present invention, target bases in almost all copies of the nuclear genome, plastid genome or mitochondrial genome within a plant individual can be modified.
  • Mechanism of action and expression vector of ptpTALECD targeting plastid genes a, Schematic representation of target regions in the pTALECD and 16S rRNA genes. The 16S rRNA sequences in the figure are SEQ ID NO: 39 and SEQ ID NO: 40 from the top. b shows the T-DNA region of the ptpTALECD tandem expression vector.
  • “1333C” is a protein consisting of the amino acid sequence from 45th to 138th positions on the C-terminal side of the DddA tox amino acid sequence represented by SEQ ID NO: 35, and "1333N" is represented by SEQ ID NO: 35.
  • FIG. b shows the construction steps of the ptpTALECD expression vector.
  • the ptpTALECD expression vector was constructed using LR Clonase TM II Plus enzyme (Thermo Fisher Scientific).
  • the FokI and CD half coding sequences (SEQ ID NOS: 7-1010) inserted into the step 2 entry vector used in Arimura et al., The plant Journal 2020 104, 1459-1471 were amplified by PCR.
  • the purified PCR amplification product was mixed with 5x In-Fusion HD Cloning Enzyme Premix (TaKaRa) and incubated at 50°C for 15 minutes.
  • ac shows the number of plant individuals with cytidine base substitution, editing efficiency and predicted amino acid substitution.
  • the sequence shown in a is SEQ ID NO: 41 and SEQ ID NO: 42 from the top
  • the sequence shown in b is SEQ ID NO: 43 and SEQ ID NO: 44 from the top
  • the sequence shown in c is SEQ ID NO: 45 from the top.
  • df shows representative analysis results of Sanger sequencing of the ptpTALECD target sequence in T1 individuals 23 days after dormancy - awakening cold-wet treatment (hereinafter referred to as "23DAS").
  • SEQ ID NO: 52, and f are SEQ ID NO: 53, SEQ ID NO: 53, and SEQ ID NO: 54 from the top.
  • g shows the number of plant individuals grouped for each target base substitution mutation type of T1 individuals of 11 DAS and 23 DAS.
  • h/c heteroplasmically or chimerically: heteroplasmic or chimeric substitution, homo: homoplasmic substitution, Cp: target cytosine where preferential substitution is predicted, Cp*: causing biological effects expected cytosine.
  • Fig. 2 shows the analysis results of leaves subjected to chimeric base editing.
  • a Leaf images showing partially different color schemes of 16S rRNA 1397NC(1397N-1397C) lineage 3 of 23DAS.
  • b genotyping of the ptpTALECD target region. The sequences shown in b are SEQ ID NO: 55, SEQ ID NO: 56 and SEQ ID NO: 57 from the top.
  • the genotype and phenotype of six T2 individuals of 16S rRNA 1397CN lineage 2 are shown.
  • the upper figure of a shows the results of PCR amplification of GFP and the target sequence 16S rRNA from 3 seeds each of GFP-positive and 3-negative seeds (that is, individuals that inherited the T-DNA vector in the nucleus (positive) and individuals that did not inherit the T-DNA vector in the nucleus (negative)).
  • the figure below shows genotyping results and phenotypes for the G5 single nucleotide substitution ( SNP).
  • b shows a representative phenotype of the 16S rRNA 1397CN line 2 T2 generation. Bars represent 1 mm.
  • c and d show T2 generation phenotypes of 16S rRNA 1397CN lineage 2 and 16S rRNA 1397CN lineage 15 in the presence of Spm (spectinomycin).
  • C shows images of two lines of T2 generation and wild-type seeds (0DAS) and seedlings (8DAS) on 1/2 MS medium containing 50 mg/L Spm (spectinomycin).
  • D is the result of summarizing the relationship between the presence or absence of GFP fluorescence in seeds and the color of 8DAS individuals.
  • W/G individuals with white or red cotyledons and green true leaves, ng: no germination.
  • FIG. b is a representative phenotypic image of the T2 individual shown in a. Bars represent 0.5 mm.
  • Construction of 2nd entry vector and destination vector a shows the construction process of the 2nd entry vector.
  • the 2nd entry vector (used in Arimura et al., The Plant Journal 104, 1459-1471 2020) and the RECA1 plastid transit peptide coding sequence were amplified by PCR.
  • the purified PCR amplification product was mixed with 5x In-Fusion HD Cloning Enzyme Premix (TaKaRa) and incubated at 50°C for 15 minutes.
  • b shows the construction steps of the destination vector.
  • the destination vector (used in Arimura et al., The Plant Journal 104, 1459-1471 2020) was amplified by PCR.
  • the purified PCR amplification product was mixed with 5x In-Fusion HD Cloning Enzyme Premix (TaKaRa) and incubated at 50°C for 15 minutes. After the assembled destination vector was cut with KpnI , the purified product was mixed with OLE1 GFP coding sequence amplified from 5x In-Fusion HD Cloning Enzyme Premix (TaKaRa) and pFAST02 (INPLANTAINNOVATIONS INC) and incubated at 50°C for 15 minutes. to construct the ptpTALECD expression vector.
  • UGI uracil glycosylase inhibitor: uracil glycosylase inhibitor. The sequences shown in a are SEQ ID NO: 58 and SEQ ID NO: 59 from the top.
  • b shows the number of plant individuals with cytidine base substitutions, editing efficiency and predicted amino acid substitutions in T1 individuals 11 days after dormancy - wake cold-wet treatment (11DAS).
  • Cp C at position T of 3′ side chain
  • Cp* special target of opt87
  • No. number of all T1 individuals
  • h/c heteroplasmic and/or chimeric substitution
  • homo homo Plasmic replacement.
  • the sequences shown in b are SEQ ID NO: 60 and SEQ ID NO: 61 from the top.
  • c Four representative examples of Sanger sequencing of PCR amplification products of target sequences.
  • the sequences shown in c are SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, and SEQ ID NO: 65 from the top.
  • d shows the number of plant individuals grouped for each target base substitution mutation type of T1 individuals of 11 DAS and 23 DAS. Mutation stability rate (%) was calculated by dividing the number of bases with mutation changes by the total number of substituted bases.
  • unstable is meant that the type of mutation differs between 11 DAS and 23 DAS individuals.
  • T2 individuals genotypes of T2 generation of 8 individuals of atp1 1397NC4 . Seed-specific GFP expression derived from T-DNA was confirmed by fluorescence. A positive signal for mtpTALECD amplification indicates that the mtpTALECD gene introduced into the nuclear genome was inherited. atp1 is a positive control for PCR amplification of mtpTALECD. The figure below shows Sanger data for two bases of the target window (G4 and C10: positions where the parent plant has mutations). NTC: no template control. b shows the genotypes of the T2 generation of the 4 lines of 20DAS, Col-0 and otp87.
  • the left figure is a representative example of plant individuals in 13DAS of Col-0, otp87 mutant, and otp87 modified atp1 with mtpTALECD.
  • the right figure shows the DNA and RNA sequences near 393Leu of atp1.
  • the C in the 393Leu codon is normally converted to a T by RNA editing of OTP87.
  • this conversion is not carried out, resulting in a Leu to Ser substitution, which hinders plant growth.
  • mtpTALECD was used to replace C with T in atp1 (bottom panel).
  • FIGS. 21a and 21b Bars represent 1 cm.
  • the sequences shown in the figure are SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 66, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 67 from the top.
  • RNA sequence logos showing the probability of occurrence of bases bound by each PPR motif of OTP87 based on the two key amino acids at positions 5 and 35 of each PPR motif of OTP87.
  • the actual RNA sequence corresponding to the predicted binding site is located upstream of the RNA editing site by OTP87 in at p1 (the sequence (SEQ ID NO: 68) is shown in A).
  • PPR motifs are numbered from the C-terminal amino acid.
  • the C-terminal S2 domain and N-terminal S domain correspond to the 4th base (-4A) and 25 bases upstream from the editing site (-25G), respectively.
  • mtpTALECD The target base of mtpTALECD (see description in b) is boxed.
  • b shows the RNA sequence and RNA editing site of the predicted binding site of OTP87 in apt1 (see top sequence).
  • -20G, -13G and -6G in the sequence were each replaced with A by 3 pairs of mtpTALECD.
  • alleles obtained by editing the plant number of each allele, and RNA editing from 1178C to U.
  • TALE binding sequences are underlined.
  • h/c heteroplasmically or chimerically: heteroplasmic or chimeric substitution, homo: homoplasmic substitution.
  • c shows a representative example of the RNA (complementary DNA) sequence near the RNA editing site of the obtained allele.
  • the example shown at the bottom shows data for an example in which C was converted to T(U) at the highest level among five (little) edited individuals (that is, RNA editing was ). Images of all analyzed plant individuals and their genotypes are shown in b and c of FIG. 22 and FIG.
  • results of Sanger sequencing of amplicons amplified with primers that bind to both nuclear mitochondrial (NUMT) and mitochondrial DNA sequences (1). Representative Sanger sequencing results of PCR amplification products amplified with primers that bind to both nuclear and mitochondrial DNA sequences (left) and primers that specifically bind to mitochondrial DNA (right) are shown. . Data shown at the same position on the left and right are the results of the same individual plant. h/c (heteroplasmically or chimerically): heteroplasmic or chimeric substitution, homo: homoplasmic substitution.
  • mitochondrial DNA is homoplasmically edited, and at the same time, homologous sequences exist in the nucleus, but those sequences are not edited.
  • the sequences shown are SEQ ID NO: 82, SEQ ID NO: 83, SEQ ID NO: 84, SEQ ID NO: 85 from top left, SEQ ID NO: 86, SEQ ID NO: 87, SEQ ID NO: 88 and SEQ ID NO: 89 from top right.
  • Genotype of T2 individuals results of DNA sequencing of the target region of T2 individuals are shown. Primers specific to the mitochondrial genome (NUMT is a non-amplifying primer) were used for PCR. The far right column shows the results of Sanger sequencing of the target region of 13 representative individuals (number 9) of each series. Some bases that were homoplasmically and/or heteroplasmically mutated in the T1 generation changed to a uniform genotype in the T2 generation. For example, in 1397CN24 , G4 was h/c in 11DAS in the T1 generation, but reverted to wild type in the T2 generation.
  • the sequences shown in the rightmost column are SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, and SEQ ID NO: 93 from top to bottom.
  • the T 1 genotype is the same for both 11DAS and 23DAS genotypes. ** The genotype of the individual (number 9 to number 13 of each line) is the genotype of 20 DAS.
  • h/c heteroplasmically or chimerically: heteroplasmic or chimeric substitution, homo: homoplasmic substitution.
  • T 1 opt87 individuals transformed with apt1 1397CN a shows an image of a plant individual in 13DAS. Bars represent 1 cm.
  • b shows the genotype of the T1 individual shown in a .
  • a Predicted binding RNA sequence of OTP87 in apt1 and its RNA editing site. Amino acid sequence substitutions induced by C:G to T:A conversion by mtpTALECD and RNA editing are shown.
  • b shows the appearance of all plant individuals analyzed in 12 DAS.
  • c shows the genotype of the T1 individual shown in b. Only data for individuals with confirmed mutations among 15 individuals are shown.
  • nTALECD Editing of the CYO1 gene by nTALECD.
  • a Representative examples of cyo1 mutant and wild-type phenotypes at true leaf emergence (11DAS).
  • b to d show representative examples of phenotypes in 7DAS of the T 1 generation transfected with nTALECD.
  • e shows the phenotype (7DAS) of cotyledons of the T1 generation into which nTALECD was introduced.
  • f shows the number of individuals for each cotyledon phenotype in the T 1 and WT populations of CYO1 ex1 (Example 1) and ex2 (Example 2).
  • DAS Days after stratification.
  • FIG. 3 shows off-target mutation information in regions near 200 bp (a) and near 1 kbp (b) of the target sequence examined by PCR Sanger sequencing at 35 DAS and the results of the number ratio of individuals in which mutations were detected to the examined individuals.
  • the first embodiment is a method for editing plant genomic DNA, which method includes modifying a target base on the genomic DNA to another base.
  • plant genome refers to the genome contained in the plant nucleus (nuclear genome), the genome contained in the plastid (plastid genome), or the genome contained in mitochondria (mitochondrial genome).
  • plastids refers to organelles present in cells of plants, algae, and the like, which perform assimilation such as photosynthesis, storage of sugars and fats, synthesis of various compounds, and the like. Is going. Examples of plastids include chloroplasts, white bodies and colored bodies.
  • Modification of the target base is not particularly limited, but may be performed using a base-modifying enzyme such as deaminase introduced into the nucleus, plastid, or mitochondria.
  • a base-modifying enzyme such as deaminase introduced into the nucleus, plastid, or mitochondria.
  • examples of such enzymes include cytidine deaminase, which converts cytosine (C) in DNA to uridine (U).
  • C cytosine
  • U uridine
  • an enzyme that modifies C to U in double-stranded DNA for example, the cytidine deaminase domain of Burkholderia cenocepacia DddA (hereinafter referred to as DddA tox : SEQ ID NO: 35), or It is substantially the same protein as DddA tox .
  • the protein substantially identical to DddA tox is not particularly limited, but for example, 70% or more, preferably 80% or more, more preferably 90% or more of the amino acid sequence represented by SEQ ID NO:35. , 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, most preferably 99% or more,
  • it is a protein having cytidine deaminase activity (activity to convert C to U in double-stranded DNA).
  • a modification enzyme such as deaminase (eg, cytidine deaminase) to recognize the target base.
  • deaminase eg, cytidine deaminase
  • the vicinity of the target base in nuclear genomic DNA, plastid genomic DNA or mitochondrial genomic DNA for example, 0 to 1000 bases, preferably 5 to 100 bases, more preferably 5 to 50 bases from the target base
  • a modification enzyme can be linked to TALE (transcription activator-like effector) that binds to genomic DNA (within the base range), and the modification enzyme-TALE fusion protein can be introduced into the plant nucleus, plastid or mitochondria. good.
  • DNA encoding the modifying enzyme-TALE fusion protein is introduced into the nuclear genomic DNA (integrated into the nuclear genomic DNA), and the modifying enzyme-TALE fusion protein expressed in the cytoplasm is transferred to the nucleus, pigment It may be transported (introduced) into the body or mitochondria.
  • the nuclear genome DNA is the DNA encoding the fusion in which various signal peptides (nuclear localization signal peptide, plastid localization signal peptide, or mitochondrial localization signal peptide) are added (bonded) to the modified enzyme-TALE fusion protein. It is desirable to introduce
  • NLS nuclear localization signal/sequence
  • Nuclear localization signal peptides that can be used in embodiments of the present invention include, but are not limited to, NLS peptide of SV40 large T antigen (PKKKRKV, SEQ ID NO: 111), NLS peptide of nucleoplasmin (AVKRPAATKKAGQAKKKKLD, SEQ ID NO: 112) , EGL-13 NLS peptide (MSRRRKANPTKLSENAKKLAKEVEN, SEQ ID NO: 113), c-Myc NLS peptide (PAAKRVKLD, SEQ ID NO: 114), TUS protein NLS peptide (KLKIKRPVK, SEQ ID NO: 115), and the like.
  • nuclear localization signal peptides that can be used. For example, see NLSdb (https://rostlab.org/services/nlsdb/browse/signals), which is a database of nuclear localization signals.
  • a plastid localization signal peptide (which does not have a clear higher-order structure or sequence homology, but for example, a basic amino acid and a peptide that is rich in multiple hydrophobic amino acids and low in acidic amino acids, and exhibits the function of being selectively transported specifically to chloroplasts and plastids by adding it to the N-terminus of the protein amino acid sequence).
  • a method can be mentioned.
  • a plastid localization signal peptide that can be used in the embodiment of the present invention is preferably, for example, a signal peptide possessed by a protein localized in plant plastids.
  • Preferred signal peptides include, but are not limited to, signal peptides from proteins such as RECA1, RBCS, CAB, NEP, SIG1-5, GUN2-5, as well as nuclear-encoded chloroplast ribosomal proteins such as RPL12 and RPS9.
  • nuclear-encoded chloroplast-derived signal peptide nuclear-encoded chloroplast-derived signal peptide, signal peptide derived from nuclear-encoded chloroplast tRNA aminoacyltransferase, signal peptide derived from nuclear-encoded chloroplast heat shock protein, signal peptides derived from proteins such as FtsZ, FtsH, MinC, MinD, and MinE, nuclear-encoded
  • proteins such as FtsZ, FtsH, MinC, MinD, and MinE
  • nuclear-encoded nuclear-encoded
  • signal peptides derived from chloroplast photosynthesis-related enzyme complex enzymes signal peptides derived from nuclear-encoded plastid lipid-metabolizing enzymes
  • signal peptides derived from nuclear-encoded thylakoid-constituting proteins nuclear-encoded thylakoid-constituting proteins.
  • the modified enzyme-TALE fusion protein has a mitochondrial translocation signal peptide (which does not have a clear higher-order structure or sequence homology, but for example, basic amino acids and and a method of expression by fusing a peptide, etc., which exhibits the characteristic that a plurality of hydrophobic amino acids appear alternately.
  • a plastid translocation signal peptide that can be used in the embodiment of the present invention is preferably, for example, a signal peptide possessed by a protein localized in plant mitochondria.
  • Preferred signal peptides include, but are not limited to, Arabidopsis thaliana ATPase ⁇ ' subunit-derived signal peptide (MFKQASRLLS RSVAAASSKS VTTRAFSTEL PSTLDS, SEQ ID NO: 116), rice ALDH2a gene product-derived signal peptide (MAARRAASSL LSRGLIARPS AASSTGDSAI LGAGSARGFL PGSLHRFSAA PAAAATAAAT EEPIQPPVDV KYTKLLINGN FVDAASGKTF ATVDP, SEQ ID NO: 117) and the signal peptide from pea cytochrome c oxidase Vb-3 (MWRRLFTSPH LKTLSSSSLS RPRSAVAGIR CVDLSRHVAT QSAASVKKRV EDVV, SEQ ID NO: 118), as well as the signal peptide from Arabidopsis ATPase ⁇ subunit and chaperonin Signal peptide from CPN-60 (Logan et
  • a method of directly introducing a plasmid DNA or mRNA encoding a modifying enzyme-TALE fusion protein or a modifying enzyme-TALE fusion protein into cells can also be used.
  • two modification enzyme-TALE fusion proteins for example, TALE left and TALE right shown in Fig. 1 for modification of the plastid genome
  • TALE left and TALE right shown in Fig. 1 for modification of the plastid genome
  • a tandem-expressing Ti plasmid appended with a nuclear localization signal peptide, a plastid localization signal or a mitochondrial localization signal peptide for simultaneous expression in one Ti plasmid and localization to the nucleus, plastids or mitochondria. good (see, for example, Non-Patent Document 6).
  • the full-length protein such as DddA tox
  • DddA tox when used as a target base modification enzyme and adversely affects cells due to toxicity, partial proteins obtained by cleaving the full-length protein at an appropriate position may be used as described above. may be fused to TALE left and TALE right of , and each fusion protein may be translocated into the plastid. Two partial proteins split at appropriate positions can reassociate at the stage of binding in the vicinity of the target base and exhibit the desired activity (see Examples).
  • DddA tox is used as a modifying enzyme, for example, the amino acid sequence of DddA tox represented by SEQ ID NO: 35 may be divided between amino acids at positions 40 to 100 in the amino acid sequence.
  • the modifying enzyme-TALE fusion protein may be fused with another protein having a function of improving the action of the fusion protein.
  • examples of such proteins include Uracil Glycosylase Inhibitor (UGI).
  • UGI inhibits U-removing uracil glycosylase activity.
  • cytidine deaminase is used as the modifying enzyme, UGI serves to prevent removal of the modified U from C and maintain modification by the cytidine deaminase-TALE fusion protein.
  • the target base in nuclear genomic DNA, plastid genomic DNA and mitochondrial genomic DNA is homoplasmic (intracellular and a state in which all mutations are the same within a tissue or within an individual), the target base can be modified to T. Therefore, the present invention provides very effective means for improving individual plants.
  • the nuclear genome in which the target base in the plant nuclear genomic DNA is modified, and the target base in the plant plastid genomic DNA is modified by the plant genomic DNA editing method according to the first embodiment.
  • modified plastid genome or mitochondrial genome in which the target base in the mitochondrial DNA of a plant is modified a nucleus having the nuclear genome, a plastid having the plastid genome or a mitochondria having the mitochondrial genome, the nuclear genome, the pigment A plant cell having a somatic or mitochondrial genome, the cytoplasm of the plant cell, or a seed or plant (adult plant) containing the plant cell.
  • the plant (adult plant) in the present embodiment includes an adult plant differentiated from a transformed cell in which the target base in the nuclear genomic DNA, the target base in the plastid genomic DNA, or the target base in the mitochondrial genomic DNA is modified.
  • the seeds in the second embodiment include not only seeds obtained from the T 0 /T 1 generation, but also seeds obtained from progeny generations.
  • the third embodiment is a method for producing a plant having an edited plant genome, which includes editing the plant genome by the method for editing plant genomic DNA according to the first embodiment. That is, the third embodiment is a method for producing a nuclear genome-edited plant, comprising editing the nuclear genome using the plant genomic DNA editing method according to the first embodiment.
  • a method for producing a plant having an edited plastid genome which comprises editing the plastid genome using the method for editing plant genomic DNA according to the first embodiment, or A method for producing a plant having an edited mitochondrial genome, comprising editing the mitochondrial genome using the method for editing plant genomic DNA according to the first embodiment.
  • the plants according to the first, second and third embodiments are not particularly limited, and may be any seed plant.
  • plants of the Gramineae family such as rice, wheat, corn, barley, rye, sorghum, etc.
  • plants of the Brassicaceae family for example, the genus A.
  • solanaceous plants such as tomatoes, potatoes, green peppers, green peppers and petunias
  • Asteraceous plants such as sunflowers and dandelions
  • Convolvulaceae plants such as bindweed and sweet potatoes
  • leguminous plants such as adzuki beans and kidney beans
  • cucurbitaceous plants such as pumpkins, cucumbers and melons
  • amaryllidaceous plants such as onions, green onions and garlic.
  • Materials and methods I-1-1. Plant materials and cultivation conditions Wild Arabidopsis thaliana Columbia-0 (Col-0) and transgenic strains were grown at 22°C under long day conditions (light period: 16 hours, dark period: 8 hours). cultivated in Col-0 seeds were grown in 1/2 MS medium (pH 5.7), 1/2 MS containing Plant Preservative Mixture (Plant Cell Technology, USA) (1 mL/L), Gamborg's Vitamin Solution (Sigma-Aldrich, USA) (1 mL/L) and agar (8 g/L) Seeded on the medium.
  • TALE target sequences are bound on both sides of the cytidine deaminase target region using the Old TALEN Targeter (https://tale-nt.cac.cornell.edu/node/add/talen-old) It was designed to The first recognized base should be 3' adjacent to T as much as possible.
  • the minimum length of the TALE target sequence was 15 bp for sequence-specific binding of TALE.
  • the binding sequence of TALE is shown below.
  • TALE left binding sequence 5'-TAACCCAACACCTTACGGCACG-3' (SEQ ID NO: 1)
  • psbA TALE left binding sequence 5'-TTTCGCGTTCTCTCTAA-3' (SEQ ID NO: 5)
  • TALECD expression vectors For each target, a pair of left and right ptpTALECDs integrated into a Ti plasmid (Fig. 2) was prepared using the Platinum Gate assembling kit and multisite Gateway (Thermo Fisher) as previously reported. (Kazama et al., Nature plants 5, 722-730 2019.). The DNA-binding domains of ptpTALECDs were assembled using the Platinum Gate TALEN system (Sakuma et al., Scientific reports 3, 1-8 2013.) (Fig. 2a).
  • the FokI coding sequence of mitoTALENs used in assembly-step 2 of the previous report was previously replaced with the CD half and UGI coding sequences using the In-Fusion HD cloning Kit (TaKaRa, Japan, Fig. 3).
  • the CD half and UGI coding sequences were designed to encode the same amino acid sequence as disclosed in Non-Patent Document 3, using codons optimized for Arabidopsis thaliana, and published by Eurofins Genomics (https://www.eurofinsgenomics). .jp/jp/orderpages/gsy/gene-synthesis-multiple/).
  • the ORFs of the assembled 1st entry vector, 3rd entry vector and 2nd entry vector were subjected to multi-LR reaction using LR Clonase TM II Plus enzyme (Thermo Fisher Scientific) (Fig. 2b) to generate Ti plasmid (Arimura et al., The Plant Journal 104, 1459-1471 2020.).
  • the 2nd entry vector was the terminator of Arabidopsis heat shock protein (Nagaya et al., Plant and cell physiology 51, 328-332 2010.), the Arabidopsis RPS5A promoter, and the N- It has a terminal peptide (51 amino acids) (Fig. 8a).
  • This Ti plasmid converts the CaMV 35S promoter of the Gateway destination Ti plasmid pK7WG2 (Karimi et al., Trends in plant science 7, 193-195 2002.) into the Arabidopsis RPS5A promoter (Tsutsui et al., Plant and Cell Physiology 58, 46-56 2017.). and inserted the PTP coding sequence and proOleosin::Ole1-GFP from pFAST02 (http://www.inplanta.jp/pfast.html, INPLANTA INNOVATIONS INC., Japan) (Fig. 8b).
  • G1333C+UGI sequence (SEQ ID NO: 7)
  • G1333C is a protein consisting of the amino acid sequence from 45th to 138th positions on the C-terminal side of the DddA tox amino acid sequence represented by SEQ ID NO:35.
  • UGI User Glycosylase Inhibitor
  • SEQ ID NO: 37 linker peptide
  • G1333N+UGI sequence GGATCTGGTAGCTATGCGTTAGGACCCTATCAGATTTCAGCTCCTCAATTGCCTGCCTATAATGGGCAAACTGTTGGCACCTTTTACTACGTCAATGATGCTGGAGGGTTAGAATCCAAGGTGTTCTCAAGTGGTGGTTCTGGAGGTAGTACGAATCTTTCGGACATCATAGAGAAGGAAACTGGAAAACAGCTCGTTATCCAAGAGAGCATTCTCATGTTGCCAGAAGAAGTTGAAGAGGTTATAGGCAACAAACCGGAATCTGACATTCTGGTACATACCGCTTATGATGAGTCAACAGATGAACGTCATGCTTTTGACATCTGATGCACCAGAATACAAACCTTGGGCACTTGTGATTCAGGATTCCAATGGTGAGAACAAGATCAAGATGCTA( ⁇ 8) “G1333N” is a protein consisting of the amino acid sequence from 1st to 44th positions on the N-terminal side of the DddA tox amino acid sequence represented by SEQ ID NO:35.
  • G1397C+UGI sequence GGTTCTGCGATTCCAGTTAAGAGAGGAGCTACAGGAGAAACGAAAGTCTTTACTGGGAATTCCAATTCTCCCAAATCACCGACTAAAGGCGGATGTAGTGGTGGTAGTACCAATCTTTCCGACATTATCGAGAAGGAAACAGGTAAACAACTCGTAATCCAAGAAAGCATACTGATGCTTCCTGAAGAGGTTGAAGAGGTCATAGGGAACAAACCTGAAAGCGACATTTTGGTTCATACTGCCTATGATGAGTCTACAGATGAACGTGATGTTGCTAACCTCAGATGCACCTGAATACAAGCCATGGGCTTTAGTGATTCAGGATTCGAATGGAGAGAACAAGATCAAGATGCTC( ⁇ 9)
  • G1397C is a protein consisting of the amino acid sequence from 95th to 138th positions on the C-terminal side of the DddA tox amino acid sequence represented by SEQ ID NO:35.
  • G1397N+UGI (SEQ ID NO: 10) “G1397N” is a protein consisting of the amino acid sequence from 1st to 94th positions on the N-terminal side of the DddA tox amino acid sequence represented by SEQ ID NO:35.
  • PTP coding sequence of RecA1 ATGGATTCACAGCTAGTCTTGTCTCTGAAGCTGAATCCAAGCTTCACTCCTCTTTCTCCTCTCTTCCCTTTCACTCCATGTTCTTCTTTTTCGCCGTCGCTCCGGTTTTCTTCTTGCTACTCCCGCCGCCTCTATTCTCCGGTTACCGTCTACGCCGCGAAG (SEQ ID NO: 11)
  • PTP is the plastid transit peptide of Arabidopsis RECA1 (amino acid sequence shown in SEQ ID NO:38).
  • the primer sequences used for vector construction are shown in Table 1 below.
  • transgenic T1 seeds were selected using fluorescence from GFP as an index. GFP-positive seeds were sown on 1/2 MS medium containing 125 mg/L Claforan. Additionally, GFP-negative seeds were sown on 1/2 MS medium containing 50 mg/L kanamycin and 125 mg/L Claforan.
  • SNPs single nucleotide polymorphisms
  • Macrogen Japan was commissioned to prepare a PE library using the Nextera XT DNA library Prep Kit (Illumina), and sequencing was performed using the Illumina NovaSeq 6000 platform. Analysis of the 150 bp paired end sequence read was performed using Geneious prime (Biomatatters Ltd). Sequence reads were attached to the chloroplast genome sequence of Arabidopsis thaliana, and the sequences detected as SNPs with the reference chloroplast genome sequence in 50% or more of the reads are shown in Table 2.
  • T2 seeds from T1 individuals with homoprosmic substitution of C5 of 16S rRNA were added to 0 , 10 or 50 mg/L spectinomycin. Seeded on MS medium. Germinated cotyledon phenotypes were observed at 8 DAS.
  • I-1-8 Image Processing Plant images were taken with an iPhone® Xs (Apple inc., US) and a LEICA MC 170 HD (Leica, Germany). Gel images were taken with ChemiDoc TM MP Imaging System (BIORAD, USA). Images were also processed with Adobe Photoshop 2021 (Adobe, USA).
  • a uracil glycosylase inhibitor (UGI) (Non-Patent Document 3) was ligated to inhibit the hydrolysis of uracil (U) produced by cytidine deaminase (Fig. 1b).
  • the DddA tox (CD) and UGI sequences were optimized for Arabidopsis codon usage.
  • a pair of PTP-pTALECD-UGI (ptpTALECD) (a pair containing the N-terminal side and the C-terminal side of CD) was placed in a single plant under the RPS5A promoter (Arimura et al., The Plant Journal 104, 1459-1471 2020.) It was expressed by a transforming vector (Fig. 1b).
  • Each expression vector was introduced into Arabidopsis thaliana and the target region of T1 was sequenced by the Sanger method at 23DAS. Only constructs from which T1 was obtained are shown in Figures 4a, b and c. Substitution of C/G pairs to T/ A was confirmed in multiple T1s in all three target sequences (Fig. 4a-f). In addition to strains with heteroplasmic or chimeric substitutions (h/c; Fig. 4a-f), surprisingly, strains with homoplasmic substitutions of the target base (homo) many were recognized. Not all C/G pairs in the target region were replaced, and the replaced C/G pairs were biased in all three regions (Fig. 4a-c).
  • the three regions of the homoplasmically substituted bases were C of (5')TC(3'), which is considered more susceptible to mutation by Mok et al. (Non-Patent Document 3) (Fig. 4a -c), the C of (5')AC(3') of the 16S rRNA gene was also replaced homoplasmically (Fig. 4a).
  • Plastid SNPs for which 50% or more of the reads differ from the reference genome in at least one T1 individual are shown in Table 2. Overlapping mutations in repetitive sequences of the plastid genome were counted as one mutation. It was confirmed that most of the target bases in 13 individuals were homoplasmically substituted. Bases in another individual were confirmed to be heteroplasmically or chimerically substituted (Table 2). There were 6 major off-target point mutations (substitution frequency>50%) in 16S rRNA 1397C-1397N (1397CN) lineage 1, but no off-target point mutations were detected in the other lines (Table 2). ). 16S rRNA 1397CN line 1 died at 23 DAS without producing true leaves.
  • T2 individuals were identified as T-DNA transgenes. They were classified into free individuals (null segregants) and transgenic individuals. All T2 individuals stably harbored the mutation in homoplasmic form (Figs. 6a and 7a). Interestingly, the cotyledons of some T2 individuals were white, red or variegated (Figs. 6b and 7b), phenotypically distinct from their parental individuals. All such individuals were GFP-positive (Figs. 6a and 7a), and many (8 out of 9) harbored other mutations at ⁇ 400 bp examined within the 16S rRNA sequence (Fig. 7a).
  • G5 of the 16S rRNA gene corresponds to G that is expected to cause biological effects of E. coli 16S rRNA, and the substitution mutation of G in this E. coli 16S rRNA causes spectinomycin resistance ( Spm r ).
  • T2 seeds collected from T1 individuals ( 16S rRNA 1397C - 1397N line 2 ) in which G5 was homoplasmically substituted with A were sown on spectinomycin-containing medium. Many of the seedlings germinated from these seeds showed spectinomycin resistance, regardless of the presence or absence of GFP fluorescence from the seeds (Fig. 6c).
  • T2 individuals from 16S rRNA 1397C-1397N lineage 2 displayed a spectinomycin-sensitive ( Spms )-like phenotype (white immature plants with purple cotyledons, Fig. 6c). . All of these spectinomycin-sensitive immature individuals germinated from GFP-positive seeds (Fig. 6c), and many of them (5 out of 5 individuals, Fig. 9) harbor multiple de novo mutations in the 16S rRNA gene. had. This result suggests that the de novo mutation causes dysfunction of 16S rRNA , resulting in a spectinomycin sensitivity-like phenotype (spectinomycin is a drug that inhibits 16S rRNA ).
  • GFP - negative T2 individuals display the spectinomycin - resistant or spectinomycin - sensitive phenotype predicted from the G5 SNP in T1 individuals suggest that null segregating T2 individuals This suggests that the mutation that the individual had is likely to be inherited.
  • ptpTALECD is capable of introducing target region-specific and homoplasmic mutations that convert C to T in the plastid genome of Arabidopsis thaliana, and this mutation is stably inherited in progeny seeds ( probably followed the maternal mode of inheritance).
  • T1 seeds were selected by their seed-specific GFP fluorescence (Non-Patent Document 7; Shimada et al., Plant J. 61, 519-528 2010.). These T1 seeds were sown on the medium described above containing 125 mg/L Claforan. T 1 plants were transplanted to Jiffy-7 at 23 DAS. otp87 seed (GABI_073C06) was obtained from the ABRC Stock Center. Homozygosity of the T-DNA insertion of OTP87 in plants was confirmed by PCR (Hammani et al., J. Biol. Chem. 286, 21361-21371 2011.).
  • TALE binding sequences are shown in Figures 10a and 13b.
  • the bases recognized by TALE were adjacent to the 3' side of thymine, and the length was set to about 20 bp.
  • the length of the targeting window (16 bp) and the position of the specific target cytosine (C10) were set based on the successful examples disclosed in the previous report (Nakazato et al., Nature Plants 7 906-913 2021).
  • Genotyping of T1 and T2 plant individuals PCR for Sanger sequencing was performed using KOD One PCR Master Mix (Toyobo). Alternatively, standard protocols were performed using DNA crudely extracted from cotyledons. Nucleic acid templates for PCR for Sanger sequencing (FIGS. 12, 13, 21, and 23) were extracted using Maxwell RSC Plant RNA Kit (Promega) without using attached DNase I. DNA in the extracted nucleic acid was digested with Deoxyribonuclease (RT Grade) for Heat Stop (Nippon Gene) to prepare an RNA template for RT-PCR.
  • RT Grade Deoxyribonuclease
  • Heat Stop Nippon Gene
  • RT-PCR was performed using PrimeScript TM II High Fidelity One Step RT-PCR Kit (TaKaRa). Part of the mtpTALECD reading frame was amplified with primers to identify transformants. We amplified mitochondrial DNA, sequences around the target window of cDNA, and homologous sequences in nuclear DNA. Purified PCR products were read by Sanger sequencing and the data were analyzed by Geneious Prime (v. 2021. 2.2).
  • Total DNA for NGS was extracted from mature leaves using the DNeasy Plant Pro Kit (QIAGEN). Sequencing of 11-sample paired-end libraries using the VAHTS Universal Pro DNA Library Prep Kit for Illumina (Vazyme, China) and 5 Gbases/sample using the Illumina NovaSeq 6000 platform was performed at GENEWIZ Japan. Whole-genome sequence data for SNP calling was obtained for 3 samples of wild-type plants and 8 samples of T2 plants ( 2 samples each of 4 lines). As preprocessing for analysis, PEAT [v1.2.4 (Li et al., BMC Bioinformatics, (BioMed Central, 2015), pp. 1-11.)] was used to trim low-quality sequences and adapter sequences contained in reads.
  • Paired-end reads for each strain were mapped to reference sequences (mitochondrial genome BK010421.1 and chloroplast genome AP000423.1) in single-end mode using BWA (v 0.7.12) (Durbin, Bioinformatics 25 1754-1760 2009). ). Inappropriate map reads with ⁇ 97% sequence identity or ⁇ 80% alignment coverage were filtered out. SNPs were called with the samtools mpileup command (-uf -d 50000 -L 2000) and the bcftools call command (-m -A -P 0.1 (Li et al., Bioinformatics 25 207-2079 2009)).
  • Non-Patent Document 6 Non-Patent Document 7; Nakazato et al., Nat. Plants 7, 906-913 2021; Lee et al., Nat. Commun. 12, 1-6 2021
  • the coding sequence of the CD domain was replaced with Gly It was split at the nucleotide immediately after the 1333 or Gly 1397 codon.
  • Sequence of the DNA binding domain of platinum TALEN (Sakuma et al., Sci. Rep.
  • the mitochondrial targeting signal sequence of Arabidopsis thaliana ATPase delta prime subunit was ligated to the 5' side of pTALE-CD-UGI (mtpTALECD, Figure 14).
  • mtpTALECD mtpTALECD
  • Figure 14 A pair of mtpTALECD expression cassettes were constructed in tandem into a single binary vector. Each mtpTALECD was placed under the control of the Arabidopsis thaliana RPS5A promoter (Fig. 14), which has been used for highly efficient genome editing of Arabidopsis thaliana (Arimura et al., Plant J. 104 1459-1471 2020; Nakazato et al., Nat.
  • 1333C-1333N (abbreviated as 1333CN, meaning that the C-terminal half of the Gly 1333-split CD domain is fused to the left TALE domain and the N-terminal half to the right), 1333N- Four binary vectors were constructed, named 1333C (1333NC), 1397C-1397N (1397CN) and 1397N-1397C (1397NC) (Fig. 10a).
  • Each vector was transformed into the Arabidopsis thaliana nuclear genome by the floral dip method (Clough et al., Plant J. 16 735-743 1998) to replace targeted C:G pairs in the mitochondrial genome with T:A pairs.
  • the total DNA of leaves of the T1 transformant was amplified by PCR, and the nucleotide sequence of the PCR product was determined by the Sanger method.
  • T1 transformants the number of transformants obtained with all four vectors
  • 36 individuals had C:G replaced by T:A in the target window (Fig. 16 and Figure 17).
  • Plant nuclear genomes often contain large sequence segments with high homology to mitochondrial DNA called nuclear mitochondrial DNA or NUMT (Noutsos et al., Genome Res.
  • Genotyping was performed again using new primers for T1 plants in which mutations were detected in the first genotyping. Many transformants appeared to have homoplasmic substitutions of bases within the target window (FIGS. 10B and C). In addition to mutations in the 10th target C, the 3rd , 4th and 7th Gs of the target window were replaced in some T1 plants. Most of the converted Cs were 3' to T or A, as previously reported (Fig. 10b). Base substitution activity and preference for the positions of substituted bases within the target window differed among the four vectors, and the C with the most frequent homoplasmic substitution within the target window was found in vectors 1397C-1397N (1397CN , Fig. 10b) was the 10th C. As a result, mitochondrial mutants in which only the true target base (10th C) was substituted in the target window both 11 and 23 days after the end of cold-wet treatment to promote germination (days after stratification, DAS). 5 individuals were obtained.
  • PCR fragments were sequenced by Sanger's method using different leaf total DNA templates from 11 DAS and 23 DAS for each transformant. , confirmed the type of mutation.
  • a total of 76 mutated bases were detected on at least one of these days (Fig. 10d).
  • 14 bases were heteroplasmic or chimeric (h/c; i.e. not homoplasmic) substituted on both days, and 25 bases were substituted differently on both days (the number of bases substituted for each type and their proportions, see FIG. 10D).
  • the remaining 37 bases which accounted for about half of the detected mutated bases, were homoplasmically substituted on both days [48.7% (37/76), Fig. 10d].
  • Phenotypic complementary RNA editing of ppr mutants with mtpTALECD is a hallmark of the mitochondrial and chloroplast genomes of land plants, where specific Cs in post-transcriptional RNA molecules are converted to Us. This is mediated by nuclear-encoded, mitochondria-targeted PPR proteins (Small et al., Plant J. 101 1040-1056 2020).
  • RNA editing we performed two experiments involving RNA editing. First, otp87 mutants exhibiting growth retardation were investigated. In wild-type plants, the PPR protein OTP87 converts 1178C in the atp1 transcript (C10 in the target window, Fig.
  • RNA editing efficiency represented as Sanger sequencing data of RT-PCR products of atp1 transcripts, was reduced only in allele pattern (iv) ( Figures 13b and c, Figures 22a and c, Figure 23).
  • III Editing of Nuclear Genome III-1.
  • Materials and Methods III-1-1 Plant material, growth conditions, transformation, and screening of transformants Arabidopsis Col-0 and transformants were grown under long day conditions (16 hours light, 8 hours dark) at 22°C. Col-0 seeds were sown on 1/2 MS-Agar plates (Non-Patent Document 7). 2-3 week old seedlings were transferred to Jiffy-7 (Jiffy Products International) and then subjected to Agrobacterium infection. Col-0 mature plants were transformed by the floral dip method (Clough et al., The Plant Journal 16, 735-743 1998.). The obtained T1 generation was analyzed.
  • RNA template for Sanger sequencing was extracted using Maxwell RSC Plant RNA Kit (Promega) without using DNase I attached. Gene) to prepare an RNA template for RT-PCR.
  • RT-PCR was performed using the PrimeScript TM II High Fidelity One Step RT-PCR Kit (TaKaRa).Part of the mtpTALECD reading frame was amplified with primers.
  • the nucleotide sequence in the CYO1 target sequence was sequenced by the Sanger method. As a result, it was confirmed that base substitution occurred at a high efficiency (>40%) for a specific C in the base sequence, and biallelic/homogeneous mutants could be easily obtained in the T1 generation (Fig. 25). .
  • PKT31 and MSH1 Target Single Nucleotide Substitution
  • PKT31 and MSH1 were selected as target sequences different from CYO1 , and the nucleotide sequences within the target window of both alleles were sequenced by the Sanger method.
  • bases C10-C11 or G4-G6 were edited (Fig. 26). Therefore, it is clear that single-nucleotide editing can be stably performed even in target sequences other than CYO1 , and that targeted single -nucleotide-edited biallelic/homogeneous mutants can be easily obtained in the T1 generation. Became.
  • Off-target Editing in the Vicinity of the Target Window When a single base substitution is performed using the method of the present invention, the extent to which editing other than the target base, ie, off-target editing, occurs was investigated. As a result, although off-target nucleotide substitutions occurred (all TC ⁇ TT), their frequency was low, and indels (insertions and/or deletions of nucleotide sequences) were not observed around the target sequence (Fig. 27).
  • plants modified using the method of the present invention are expected to contribute to enhancement of food production, improvement of biofuel production, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明は、植物ゲノム(核ゲノム、色素体ゲノムおよびミトコンドリアゲノム)の編集または改変方法、特に一塩基の編集または改変の提供を目的とする。具体的には、植物細胞中のゲノムDNA、すなわち、核ゲノムDNA、色素体ゲノムDNAおよびミトコンドリアゲノムDNAを編集する方法であって、これらのゲノムDNA上の標的塩基を他の塩基に改変することを含む方法である。当該改変は、例えば、シチジンデアミナーゼ、特に、二重鎖DNAを基質とする当該酵素によって行われる。

Description

植物ゲノムの編集方法
 本発明は、植物ゲノム、具体的には、核ゲノム、ミトコンドリアゲノムおよび色素体(plastid)ゲノムの編集または改変方法に関する。
 高等植物の品種改良を行うにあたり、核ゲノムの編集または改変は有効な方法であると考えられている。また、ミトコンドリアや葉緑体などの色素体に存在するゲノムにも重要な役割を担う遺伝子が含まれており、これら細胞内器官に含まれるゲノム編集等も植物の品種改良において有効であると考えられる。
 高等植物の色素体ゲノムは、150 kb程度で約120個の遺伝子が含まれており、それらの遺伝子は、光合成、抗生物質耐性や除草剤耐性などに関わっている。色素体の遺伝子のうち、例えば、光化学系の鍵遺伝子であるpsbAや暗反応CO2固定の鍵酵素であるrbcLなどは、植物機能を司る重要な遺伝子で、これらの遺伝子の改良は、植物の光エネルギー利用の最適化、食料生産増強、バイオエタノール生産およびバイオマスの増産、CO2の吸収資源化の向上などに寄与することが期待される。
 色素体ゲノムへの遺伝子導入は、およそ30年前から実施されている。色素体ゲノムへの遺伝子導入には、核ゲノムへの遺伝子導入とは異なるメリットがある。例えば、色素体ゲノムは母性遺伝をするため、花粉を通じて組換遺伝子が拡散することを防ぐことができる。また、核の遺伝子組換えの際に生じる、ジーンサイレンシングが生じないため、所望の遺伝子産物の発現が比較的容易である。
 しかしながら、色素体ゲノムへの外来遺伝子導入は、それほど容易なことではない。遺伝子導入には、特殊な装置(例えば、パーティクルガン)や培養技術が必要である。また、遺伝子導入可能な植物種が限られており、モデル植物であるシロイヌナズナやイネでさえも、葉緑体ゲノムへの外来遺伝子導入は困難である(非特許文献1および非特許文献2)。色素体ゲノムへの遺伝子導入技術は、いくつかの成功例はあるものの(例えば、特許文献1など)、依然として難しい技術である。
 さらに、色素体ゲノム中の特定の一塩基のみを改変するゲノム編集に関しては、今のところ実用的な技術は存在していない。前述の遺伝子導入により作出された組換え植物は、カルタヘナ法によりその使用が国際的に規制されている。これに対し、植物中に元来存在する色素体ゲノムの特定の一塩基のみを改変することは、国により取り扱いは異なるものの、カルタヘナ法の適用外となる場合もある。そのため、色素体ゲノムへの遺伝子導入ではなく、色素体ゲノム中の特定の一塩基のみを改変する技術の開発が待たれるところである。
 植物ミトコンドリアゲノムには、電子伝達系、ATP合成およびミトコンドリア遺伝子の翻訳などに関わる遺伝子だけでなく、機能未知のオープンリーディングフレーム(open reading frame;ORF)も多くコードされている。植物ミトコンドリアゲノムの利用や特性評価が十分になされていないのは、その改変ツールが限られていることや、改変に伴い農作物形質に影響を与えるゲノム中の一塩基多型(single nucleotide;polymorphism, SNP)の同定が難しいことが一因であると考えられる。これまでに、緑藻クラミドモナス(非特許文献3)と酵母(非特許文献4および5)という2つの単細胞生物では、パーティクルガン法によるミトコンドリアゲノムへの遺伝子安定導入が行われてきたが、高等植物のミトコンドリアゲノムの安定的な形質転換(遺伝子導入)は今のところ成功例がない。
 最近、Mokらは、Burkholderia cenocepacia DddAタンパク質のシチジンデアミナーゼ(cytidine deaminase;CD)遺伝子を二分し、各々に、ウラシルグリコシラーゼインヒビター(uracil glycosylase inhibitor;UGI)およびTALE(transcription activator-like effector)のDNA結合ドメインを融合させたタンパク質を、哺乳類細胞内で一過性に発現させた(非特許文献6)。その結果、ミトコンドリアゲノム中の標的C:G対をT:A対に置換することに成功した。C:G対からT:A対への変換は、細胞内のミトコンドリアゲノム中、最大50%で生じていた。
 また、Kangらは、レタスとナタネのカルスのミトコンドリアゲノムの標的塩基対の置換(C:GからT:Aへの変換)するために、Mokらの技術を応用し、レタスおよびナタネのカルスにUGIとTALEの融合タンパク質を一過性に発現させた結果、ミトコンドリアゲノム編集頻度が最大で25%程度であることを報告した(非特許文献7)。
 以上のように、植物ゲノムの一塩基編集技術は、年々進歩してはいるものの、現段階ではその編集効率は低く、さらなる技術の改良が必要である。
特開2009-225721
Yuら, Plant physiology 175, 186-193 2017. Rufら, Nature plants 5, 282-289 2019. Remacleら, Proc. Natl. Acad. Sci. 103, 4771-4776 2006. Foxら, Proc. Natl. Acad. Sci. 85, 7288-7292 1988. Johnstonら, Science 240, 1538-1541 1988. Mokら, Nature 583, 631-637 2020. Kangら, Nat. Plants 7, 899-905 2021. Gualbertoら, Biochimie 100, 107-120 2014. Smithら, Proc Natl Acad Sci USA 100, 892-897 2003
 上記事情に鑑み、本発明は、植物ゲノム、すなわち、植物の核ゲノム、色素体(例えば、葉緑体)ゲノムおよびミトコンドリアゲノムの編集または改変方法、特に標的一塩基の編集または改変を精度良く、高い効率で行う方法の提供を目的とする。
 本発明者らは、Mokら(非特許文献6)によって報告された技術を植物の核ゲノム、色素体ゲノムおよびミトコンドリアゲノムの編集に利用できないかについて、鋭意研究を行った。
 まず、本発明者らは、編集の標的となる一塩基を含む10-20bpの前後の7bpから21bpずつを認識するゲノム編集酵素TALEN(transcription activator-like effector nuclease)に用いられるDNA結合配列TALEリピートを設計し、これらにDddA Cytidine deaminaseを半分に割ったものを左右一組それぞれに融合したタンパク質配列(TALECD)を設計した。
 次に、この二つのタンパク質に、核移行(局在化)シグナル(nuclear localization signal;NLS)を付加(nTALECD)、葉緑体移行(局在)シグナルを付加(ptpTALECD)またはミトコンドリア局在シグナルを付加(mtpTALECD)した各タンパク質の各発現ベクター(3種の各ペプチド付加タンパク質をコードするDNAを核ゲノムに安定的に導入するベクター)を構築し、これらのベクターを植物の幹細胞内の核に形質転換した(各TALECDをコードするDNAを植物核ゲノムDNA中に組み込まれ、上記各TALECDを安定的(一過的にではなく)に発現し得るようになる)。これら3種の発現ベクターから発現したnTALECD、ptpTALECDまたはmtpTALECDは、各々、核、葉緑体またはミトコンドリア内へ移行し、標的一塩基の編集(C:GペアからT:Aペアへの変換)を行うことが確認できた。
 上記本発明にかかる植物ゲノムの編集方法を使用すると、当該植物ゲノム(核ゲノム、色素体ゲノムおよびミトコンドリアゲノム)に含まれる標的としたC:Gペアがホモプラスミックに改変されること、すなわち、例えば、色素体ゲノムを例にすると、当該植物個体内の細胞中に含まれる約1000コピー以上ある色素体ゲノムのほぼ全ての標的C:GペアをT:Aペア改変することが可能であることを見いだした。
 ところで、色素体とミトコンドリアは、どちらも自由生活していたバクテリアが細胞内共生した結果できた細胞小器官であり、独自のゲノムDNAを保持している。しかしながら、より長い期間細胞内共生をしているミトコンドリアと比較して、色素体ゲノムは、よりバクテリアに近い配列と構造を持っている。また、色素体ゲノムは、ミトコンドリアゲノムとは異なり、明らかなバクテリア型を示す転写、翻訳およびDNA複製・修復システムを有している。また、植物のミトコンドリアは、色素体で使われているDNA複製・修復システムの酵素群の一部を重複させて一部流用しており、色素体ゲノム、哺乳類ミトコンドリアゲノムとも異なった独自のハイブリッド型システムを有しており、つまりこの3種類のオルガネラゲノムは三者三様の様式を持っている。実際に、色素体ゲノムDNAおよび哺乳類ミトコンドリアゲノムDNAの修復因子として同定されている分子の中には、全く異なる修復分子が多数存在する。そのため、ミトコンドリアおよび色素体の各ゲノムDNAの改変を行なった際に現れるゲノムDNA修復や変化も異なっている(非特許文献8および非特許文献9などを参照のこと)。
 以上のように、哺乳類のミトコンドリアと、植物の色素体およびミトコンドリアは、全く異質の細胞内器官であるため、哺乳類のミトコンドリアゲノムに適用可能な編集技術が、植物のミトコンドリアゲノム編集と色素体ゲノム編集に適用できるとは限らない。
 従って、上述の「標的としたC:Gペアがホモプラスミックに改変される」との結果は、非特許文献6に開示された「ほ乳類細胞中の標的C:Gペアのせいぜい42 %程度しか改変されなかった」との結果からは、到底予測できない顕著な効果であると言える。また、非特許文献7に開示された植物のミトコンドリアゲノムおよび色素体ゲノムの編集技術に関しても、その一塩基改変率は、各々、約25%および約38%であった。この結果を踏まえると、本発明にかかる植物ゲノムの編集方法は、非特許文献7に開示される方法と比較しても、極めて効率的な植物ゲノムの編集方法であると言える。
 すなわち、本発明は以下の(1)~(6)である。
(1)植物ゲノムDNAの編集方法であって、該ゲノムDNA上の標的塩基を他の塩基に改変することを含む方法である。前記改変は、シチジンデアミナーゼによって行われてもよい。
(2)前記植物ゲノムDNAの編集方法は、前記シチジンデアミナーゼが、以下の(a)または(b)に記載のいずれかのタンパク質であってもよい;
(a)配列番号35で表されるアミノ酸配列からなるタンパク質、
(b)配列番号35で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ、シチジンデアミナーゼ活性を有するタンパク質。
(3)前記植物ゲノムDNAの編集方法は、前記シチジンデアミナーゼのN末端側一部分とそれ以外の部分が、各々、別々のTALE(transcription activator-like effector)と融合していてもよい。
(4)前記植物ゲノムDNAの編集方法は、前記シチジンデアミナーゼの一部または全部とTALEとの融合体に、核移行シグナルペプチド、色素体移行シグナルペプチドまたはミトコンドリア移行シグナルペプチドを付加した該融合体のコードDNA(該融合体をコードするDNA)を、植物細胞内の核ゲノムに導入し(核ゲノムDNAに組込み)、該シグナルペプチドを付加した融合体を植物細胞内で発現させることにより、植物の核ゲノムDNA、色素体ゲノムDNAまたはミトコンドリアゲノムDNA中の標的塩基を他の塩基に改変することを含む方法であってもよい。
(5)前記植物ゲノムDNAの編集方法により編集された植物ゲノムDNAを含む、植物ゲノム、該植物ゲノムを有する植物細胞、該植物細胞を含む種子または植物である。
(6)植物ゲノムが編集された植物の作製方法であって、上記(1)から(4)までのいずれかに記載の植物ゲノムDNA編集方法で植物ゲノムを編集することを含む方法。
 なお、本明細書において「~」の符号は、その左右の値を含む数値範囲を示す。
 本発明にかかる方法によれば、植物ゲノム、具体的には、植物の核ゲノム、色素体ゲノム、またはミトコンドリアゲノム中の一塩基を改変することが可能である。さらに、本発明にかかる方法によれば、植物個体内の核ゲノム、色素体ゲノムまたはミトコンドリアゲノムのほぼ全てのコピーの標的塩基を改変することができる。
色素体の遺伝子を標的とするptpTALECDの作用機序と発現ベクター。aは、pTALECDおよび16SrRNA 遺伝子中の標的領域を模式的に示す。図中の16S rRNA配列は上から配列番号39および配列番号40である。bは、ptpTALECDのタンデム発現ベクターのT-DNA領域を示す。「1333C」は、配列番号35で表されるDddAtoxのアミノ酸配列のC末端側、第45番目から第138番目までのアミノ酸配列からなるタンパク質で、「1333N」は、配列番号35で表されるDddAtoxのアミノ酸配列のN末端側、第1番目から第44番目までのアミノ酸配列からなるタンパク質である。「1397C」は、配列番号35で表されるDddAtoxのアミノ酸配列のC末端側、第95番目から第138番目までのアミノ酸配列からなるタンパク質で、「1397N」は、配列番号35で表されるDddAtoxのアミノ酸配列のN末端側、第1番目から第94番目までのアミノ酸配列からなるタンパク質である。
ptpTALECD発現ベクター構築工程の模式図。aは、pTALECD ORFを構築するためのアセンブリーステップを示す。基本的にPlatinum TALEN Kitを使用したが、エントリーベクターのステップ2は、図8に示す工程により作製した。bは、ptpTALECD発現ベクターの構築工程を示す。ptpTALECD発現ベクターは、LR ClonaseTM II Plus enzyme(Thermo Fisher Scientific)を使用して構築した。
シチジンデアミナーゼ(すなわち、DddAtox)を分割した片側(本明細書では「CD half」と記載する)のコード配列によるFokIコード配列の置換。Arimuraら, The plant Journal 2020 104, 1459-1471で使用されたステップ2のエントリーベクターに挿入されているFokIコード配列およびCD halfのコード配列(配列番号7~10)をPCRで増幅した。精製したPCR増幅産物を5 x In-Fusion HD Cloning Enzyme Premix(TaKaRa)と混合し、50℃で15分間インキュベートした。
標的領域内のシチジンの編集結果。a-cは、シチジン塩基が置換された植物個体の数、編集効率および予想されるアミノ酸の置換を示す。a中に示される配列は、上から配列番号41、配列番号42、b中に示される配列は、上から配列番号43、配列番号44、c中に示される配列は、上から配列番号45、配列番号46である。d-fは、休眠覚醒の冷湿処理後23日(以下「23DAS」のように記載する)のT1個体における、ptpTALECD標的配列のサンガーシークエンスに関し、代表的な解析結果を示す。d中に示される配列は、上から配列番号47、配列番号47、配列番号48、配列番号49、配列番号50、e中に示される配列は、上から配列番号51、配列番号52、配列番号51、配列番号52、f中に示される配列は、上から配列番号53、配列番号53、配列番号54である。gは、11DASおよび23DASのT1個体の標的塩基の置換変異タイプごとにまとめた植物個体の数を示す。h/c(heteroplasmically or chimerically):ヘテロプラスミックまたはキメラ状の置換、homo:ホモプラスミックな置換、Cp:優先的な置換が予測される標的シトシン、Cp*:生物学的な影響を引き起こすことが予想されるシトシン。
キメラ状に塩基編集が行われた葉の解析結果を示す。aは、23DASの16S rRNA 1397NC(1397N-1397C) 系列3の部分的に異なる配色を示す葉の画像を示す。bは、ptpTALECD標的領域の遺伝子型の解析結果を示す。b中に示される配列は、上から配列番号55、配列番号56、配列番号57である。
T2世代の解析結果。16SrRNA1397CN 系列2のT2個体6個の遺伝子型と表現型を示す。aの上図は種子がGFPポジティブとネガティブ(つまり核にT-DNAベクターを受け継いだ個体(ポジティブ)と受け継いでいない個体(ネガティブ))3個体ずつのGFPと標的配列16SrRNAのPCR増幅結果で、下図はG5一塩基置換(SNP)の遺伝子型解析結果と表現型を示す。bは16SrRNA1397CN 系列2のT2世代の代表的な表現型を示す。バーは1 mmを表す。cおよびdは、Spm(スペクチノマイシン)存在下における16SrRNA1397CN 系列2および16SrRNA1397CN 系列15のT2世代の表現型を示す。Cは、50 mg/L Spm(スペクチノマイシン)を含む1/2 MS培地上の2つの系列のT2世代および野生型の種子(0DAS)および実生(8DAS)の画像を示す。Dは種子のGFP蛍光の有無と8DASの個体の色との関係をまとめた結果である。W/G:白または赤の子葉と緑の本葉を持つ個体、n.g:発芽せず。
T2個体の遺伝子型および表現型に関する解析結果。aは16SrRNA1397CN 系列2、系列8および1397NC 系列3の自殖により得られたT2個体の遺伝子型および表現型をまとめた結果である。bはaに示したT2個体の代表的な表現型の画像である。バーは0.5 mmを表す。
2ndエントリーベクターとデスティネーションベクターの構築。aは2ndエントリーベクターの構築行程を示す。2ndエントリーベクター(Arimuraら, The Plant Journal 104, 1459-1471 2020で使用したもの)とRECA1色素体移行ペプチドコード配列をPCRで増幅した。精製したPCR増幅産物を5 x In-Fusion HD Cloning Enzyme Premix(TaKaRa)と混合し、50℃で15分間インキュベートした。bはデスティネーションベクターの構築行程を示す。デスティネーションベクター(Arimuraら, The Plant Journal 104, 1459-1471 2020で使用したもの)をPCRで増幅した。精製したPCR増幅産物を5 x In-Fusion HD Cloning Enzyme Premix(TaKaRa)と混合し、50℃で15分間インキュベートした。アセンブルしたデスティネーションベクターはKpnIで切断したのち、精製産物を5 x In-Fusion HD Cloning Enzyme Premix(TaKaRa)およびpFAST02(INPLANTAINNOVATIONS INC)から増幅したOLE1GFPコード配列と混合し、50℃で15分間インキュベートして、ptpTALECD発現ベクターを構築した。
Spmr(スペクチノマイシン耐性)個体およびSpms様(スペクチノマイシン感受性様)個体の13DASにおける子葉の遺伝子型。種子GFP蛍光の有無、G5のSNPの有無、および図6cに示すSpmr個体(16Sr RNA1397CN 系列15のT2)およびSpms様(16SrRNA1397CN 系列2のT2)個体の13DASの表現型を示す。W/G:白または赤の子葉と緑の本葉
apt1中の標的塩基へのホモプラスミックな変異の導入。aは1対のpTALECDタンパク質、標的塩基および標的領域を模式的に示した。CDの分割位置については、図1の説明を参照のこと。N末端側半分およびC末端側半分のCDを、各々、TALEに融合した。UGI(uracil glycosylase inhibitor):ウラシルグリコシラーゼインヒビター。a中に示す配列は、上から配列番号58、配列番号59である。bは、休眠覚醒の冷湿処理後11日(11DAS)のT1個体におけるシチジン塩基が置換された植物個体の数、編集効率および予想されるアミノ酸の置換を示す。Cp:3’側鎖のTの位置のC、Cp*:opt87の特別な標的、No.:全T1個体の数、h/c:ヘテロプラスミックおよび/またはキメラ状の置換、homo:ホモプラスミックな置換。b中に示す配列は、上から配列番号60、配列番号61である。cは、標的配列をPCR増幅産物のサンガーシークエンスの4つの代表例を示す。c中に示す配列は、上から配列番号62、配列番号63、配列番号64、配列番号65である。dは、11DASおよび23DASのT1個体の標的塩基の置換変異タイプごとにまとめた植物個体の数を示す。変異安定性率(%)は、変異が変化した塩基の数を置換された塩基の総数で除して算出した。「不安定」な変異とは、11DASと23DASの個体間で変異のタイプが異なることを意味する。
T2個体の解析結果。aは、atp1 1397NC 4の8個体のT2世代の遺伝子型を示す。T-DNA由来の種子特異的なGFP発現を蛍光で確認した。mtpTALECDの増幅のポジティブシグナルは核ゲノムに導入したmtpTALECD遺伝子が受け継がれたことを示す。atp1はmtpTALECDのPCR増幅に対するポジティブコントロールである。ターゲットウィンドウの2塩基(G4およびC10:親植物が変異を有する位置)のサンガーデータを下図に示す。NTC:no template control(鋳型を添加しないコントロール)。bは、20DASの4系列、Col-0およびotp87のT2世代の遺伝子型を示す。4T1系列(atp1 1333CN 3、1333NC 7、1397CN 24、および1397NC 4)の5つの核mtpTALECD遺伝子フリーのT2世代(図16および図17に挙げたT2 no.9-13)は、ミトコンドリアのホモプラスミック変異を受け継いでおり、Col-0と同程度に成長し、otp87よりもよく成長した。バーは1cmを表す。cは、代表的なT2個体の8個体(4のT1系列、各々に由来する2個体の子孫)のミトコンドリアゲノムにおける、オンターゲット(on-target)SNPおよびオフターゲット(off-target)SNPの解析結果である。これらの個体は、いずれもmtpTALECD遺伝子を含んでいなかった。X軸およびY軸は、各々、変異したSNPの位置と頻度を示す(リファレンスゲノム(BK010421.1)と≧5%異なっていた)。アリル頻度はAFmu-AFWTで計算した。AFmuは各変異のSNPのアリル頻度で、AFWTは3つの野生型個体の同じSNPの平均値である。
mtpTALECDによる、otp87変異体におけるミトコンドリアatp1 RNAの修復。左図は、Col-0、otp87変異体、およびmtpTALECD でatp1 を修飾したotp87の13DASにおける植物個体の代表例である。 右図は、atp1の393Leu近傍のDNA配列およびRNA配列を示す。最上図において、393Leuコドン中のCは通常OTP87のRNA編集によってTに変換される。otp87変異体(中図)においては、この変換が行われず、LeuからSerへの置換が生じ、植物個体の成長が妨げられる。変異体の成長を正常な成長に戻すために、mtpTALECD を用いてatp1中のCをTに置換した(最下図)。この場合、OTP87によるRNA編集は不要であった。この置換により、otp87変異体の成長は野生型の成長と同程度にまで回復した。他の実験結果を図21のaおよびbに示した。バーは1 cmを表す。図中に示される配列は、上から配列番号66、配列番号67、配列番号66、配列番号66、配列番号67、配列番号67である。
OTP87のRNA編集に対する、atp1配列中のOTP87予測結合配列中の変異の影響。aには、OTP87の各PPRモチーフの5位および35位の2つの重要なアミノ酸に基づいた、OTP87の各PPRモチーフが結合する塩基の出現確率を示すRNA配列ロゴを示す。予測結合部位に対応する実際のRNA配列は、atp1中のOTP87によるRNA編集部位の上流に位置している(Aにその配列(配列番号68)を示す)。PPRモチーフはC末端のアミノ酸から番号を付した。C末端のS2ドメインおよびN末端のSドメインは、各々、4番目の塩基(-4A)および編集部位から25上流の塩基(-25G)に対応する。mtpTALECDの標的塩基(bの説明を参照のこと)は、四角で囲んだ。bは、apt1中のOTP87の予想される結合部位のRNA配列とRNA編集サイトを示す(一番上の配列を参照のこと)。配列中の-20G、-13Gおよび-6Gは、各々、3ペアのmtpTALECDによってAに置換された。また、編集によって得られたアリル、各アリルの植物番号、1178CからUへのRNA編集を示す。TALE結合配列を下線で示す。h/c(heteroplasmically or chimerically):ヘテロプラスミックまたはキメラ状の置換、homo:ホモプラスミックな置換。なお、b中に示される配列は、上から配列番号69、配列番号70、配列番号71、配列番号72、配列番号73、配列番号74、配列番号75、配列番号76、配列番号77、配列番号78、配列番号79、配列番号80、配列番号81である。cは、得られたアリルのRNA編集サイト近傍のRNA(相補的DNA)配列の代表例を示す。c中、一番下に示す例は、5つの(little)編集個体の中でも最も高いレベルでCがT(U)に変換された例のデータを示す(つまり、RNA editingはこれらの個体の中でほとんど起こらないことを示している)。解析した全ての植物個体のイメージとその遺伝子型を図22のbおよびc、図23に示した。
mtpTALECDタンデム発現ベクターの概略図を示す。図11aで用いたプライマーを示す。
核内ミトコンドリア(NUMT;nuclear mitochondrial)DNA配列およびミトコンドリアDNA配列の両方に結合するプライマーで増幅したアンプリコンのサンガーシークエンシングの結果(1)。核内ミトコンドリアDNA配列およびミトコンドリアDNA配列の両方に結合するプライマー(左側)、およびミトコンドリアDNAに特異的に結合するプライマー(右側)を用いて増幅したPCR増幅産物のサンガーシークエンシング結果の代表例を示す。左右同じ位置に示すデータは、同一の植物個体の結果である。h/c(heteroplasmically or chimerically):ヘテロプラスミックまたはキメラ状の置換、homo:ホモプラスミックな置換。(つまり、これらの個体では、ミトコンドリアDNAはhomoplasmicに編集されていること、また同時に、核に相同な配列が存在するがそれらの配列は編集されていないことを示している。)図中に示された配列は、左側上から、配列番号82、配列番号83、配列番号84、配列番号85、右側上から、配列番号86、配列番号87、配列番号88および配列番号89である。
核内ミトコンドリア(NUMT;nuclear mitochondrial)DNA配列およびミトコンドリアDNA配列の両方に結合するプライマーで増幅したアンプリコンのサンガーシークエンシングの結果(2)。11DASおよび23DASの遺伝子型リストを示す。;DNAは子葉から抽出した。**;これらの塩基置換によってアミノ酸はGからN(塩基G3およびG4がAに置換されたとき)、S(G3のみがAに置換されたとき)またはD(G4のみがAに置換されたとき)に置き換わる。n.e.;解析せず。
核内ミトコンドリア(NUMT;nuclear mitochondrial)DNA配列およびミトコンドリアDNA配列の両方に結合するプライマーで増幅したアンプリコンのサンガーシークエンシングの結果(3)。11DASおよび23DASの遺伝子型リストを示す。**;これらの塩基置換によってアミノ酸はGからN(塩基G3およびG4がAに置換されたとき)、S(G3のみがAに置換されたとき)またはD(G4のみがAに置換されたとき)に置き換わる。
T2個体の遺伝子型。T2個体の標的領域のDNAシークエンシングの結果を示す。ミトコンドリアゲノムに特異的なプライマー(NUMTは増幅しないプライマー)をPCRに使用した。最右列は、各系列の13個体の代表個体(番号9)の標的領域のサンガーシークエンシングの結果を示す。T1世代において、ホモプラスミックおよび/またはヘテロプラスミックに変異したいくつかの塩基は、T2世代では、均一の遺伝子型に変化した。例えば、1397CN 24において、G4はT1世代の11DASにおいてh/cであったが、T2世代では野生型に戻っていた。最右列に示される配列は、上から配列番号90、配列番号91、配列番号92、配列番号93である。T1の遺伝子型は、11DASおよび23DASの遺伝子型ともに同一である。**個体(各系列の番号9~番号13)の遺伝子型は20DASの遺伝子型である。h/c(heteroplasmically or chimerically):ヘテロプラスミックまたはキメラ状の置換、homo:ホモプラスミックな置換。
mitoTALENおよびmtpTALECDで処理したT2個体から取得した、NGSショートリードのミトコンドリアゲノムカバレッジ解析パターンの比較。mitoTALENで処理したT2個体のカバレッジカバーを既報(Arimuraら, Plant J. 104 1459-1471 2020)から取得した。配列情報は図2cに挙げたものと同じである。Col-0を含む全ての植物個体に共通する狭いギャップは、色素体ゲノム中の配列と相同なリードを除去することによって生じたアーティファクトである。図中の白丸および黒丸は、各々、mtpTALECDおよびmitoTALENの標的部位を示す。
T2個体のatp1様NUMTシークエンスのアンプリコンシークエンス。4系列の各番号9-12の個体を代表例として選択した。atp1の1178Cに対応するCを矢印で示した。標的領域と相同な配列において、重要な置換は生じていないことがシークエンス結果から示された。図中に示される配列は全て、配列番号94である。
apt1 1397CNで形質転換したT opt87個体成長状態および遺伝子型。aは、13DASにおける植物個体のイメージを示す。バーは1 cmを表す。bは、a図に示したT1個体の遺伝子型を示す。
OTP87の予測される結合配列を編集したT1個体のうち、解析した全ての個体の表現型と遺伝子型(1)。aは、apt1中のOTP87の予測結合RNA配列およびそのRNA編集部位を示す。mtpTALECDによるC:GからT:Aへの変換によって誘導されたアミノ酸配列置換と、RNA編集を示す。bは、12DASにおいて解析した全ての植物個体の外見を示す。cは、bに示したT1個体の遺伝子型を示す。15個体中変異が確認された個体のみのデータを示した。
OTP87の予測される結合配列を編集したT1個体のうち、解析した全ての個体の表現型と遺伝子型(2)。変異アリルのサンガーシークエンシングの代表例と、1178CRNA編集の有無を示す。図中に示される配列は、上から配列番号95、配列番号96、配列番号97、配列番号98、配列番号99、配列番号100、配列番号101、配列番号102、配列番号103、配列番号104、配列番号105、配列番号106、配列番号107、配列番号108、配列番号109、配列番号110である。
nTALECDによる、CYO1遺伝子の編集。aは、 本葉出葉時(11DAS)のcyo1変異体と野生型の表現型の代表例を示す。b~dは、 nTALECDを導入したT1世代の7DASにおける表現型の代表例を示す。eは、nTALECDを導入したT1世代の子葉の表現型(7DAS)を示す。fは、CYO1 ex1(例1)およびex2(例2)のT1個体 集団およびWT個体集団の子葉の表現型ごとの個体数を示す。DAS;Days after stratification。
CYO1中の標的配列への部位特異的な塩基置換の導入。21DAS時点のPCRサンガーシーケンスで調べたCYO1 ex1/ex2標的配列の塩基ごとの変異導入個体数を示す。h/c;野生型と変異型のヘテロまたはキメラを意味する。ex1, ex2ともにこれらの変異によって、終止コドンが形成される(ex1: CGA to TGA, ex2: TGG to TGA or TAG or TAA)
PKT3またはMSH1中の標的配列への部位特異的な塩基置換の導入。PKT3MSH1の標的配列において21DAS時点のPCRサンガーシーケンスで調べた塩基ごとの変異導入個体数を示す。h/c;野生型と変異型のヘテロまたはキメラを意味する。
標的配列近傍におけるオフターゲット編集の有無の検討。35DAS時点のPCRサンガーシーケンスで調べた標的配列の200bp近傍(a)および1kbp近傍(b)の領域におけるオフターゲット変異情報および調べた個体に対する変異が検出された個体の数比の結果を示す。
 以下に本発明を実施するための形態について説明する。
 第1の実施形態は、植物ゲノムDNAの編集方法であって、該ゲノムDNA上の標的塩基を他の塩基に改変することを含む方法である。
 本実施形態において、「植物ゲノム」とは、植物の核に含まれるゲノム(核ゲノム)、色素体に含まれるゲノム(色素体ゲノム)またはミトコンドリアに含まれるゲノム(ミトコンドリアゲノム)のことである。なお、本実施形態において、「色素体」とは、植物や藻類などの細胞中に存在する小器官のことで、光合成などの同化作用、糖や脂肪などの貯蔵、種々の化合物の合成などを行っている。色素体の例として、葉緑体、白色体および有色体などが挙げられる。
 標的塩基の改変は、特に限定はしないが、核、色素体またはミトコンドリア内に導入したデアミナーゼなどの塩基改変酵素を使用して実施してもよい。このような酵素として、例えば、DNA中のシトシン(C)をウリジン(U)に改変する、シチジンデアミナーゼなどが挙げられる。特に好ましくは、二重鎖DNA中のCをUに改変する酵素で、例えば、バークホルデリア・セノセパシアのDddA(Burkholderia cenocepacia DddA)のシチジンデアミナーゼドメイン(以下DddAtoxとする:配列番号35)、またはDddAtoxと実質的に同一のタンパク質である。ここで、DddAtoxと実質的に同一のタンパク質とは、特に限定はしないが、例えば、配列番号35で表されるアミノ酸配列と70%以上、好ましくは80%以上、より好ましくは、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、最も好ましくは99%以上のアミノ酸同一性を有するアミノ酸配列を含み、かつ、シチジンデアミナーゼ活性(二重鎖DNA中のCをUに改変する活性)を有するタンパク質である。
 植物の核ゲノムDNA、色素体ゲノムDNAまたはミトコンドリアゲノムDNAの標的塩基を特異的に改変するためには、デアミナーゼ(例えば、シチジンデアミナーゼなど)などの改変酵素に標的塩基を認識させる必要がある。そのための1つの手段として、例えば、核ゲノムDNA、色素体ゲノムDNAまたはミトコンドリアゲノムDNA中の標的塩基近傍(例えば、標的塩基から0~1000塩基、好ましくは5~100塩基、より好ましくは5~50塩基の範囲内)のゲノムDNAに結合するTALE(transcription activator-like effector)に改変酵素を連結し、改変酵素-TALE融合体タンパク質を植物の核、色素体またはミトコンドリアへ導入する方法を用いてもよい。より具体的には、例えば、改変酵素-TALE融合体タンパク質をコードするDNAを核ゲノムDNAに導入し(核ゲノムDNAに組込み)、細胞質で発現した改変酵素-TALE融合体タンパク質を、核、色素体またはミトコンドリア内に輸送(導入)してもよい。この場合、改変酵素-TALE融合体タンパク質に後述の各種シグナルペプチド(核移行シグナルペプチド、色素体移行シグナルペプチドまたはミトコンドリア移行シグナルペプチド)を付加(結合)させた融合体をコードするDNAを核ゲノムDNAに導入することが望ましい。
 改変酵素-TALE融合体タンパク質を核内に輸送する方法として、改変酵素-TALE融合体タンパク質に核移行(局在)シグナル(nuclear localization signal/sequence;NLS)ペプチドを融合させて発現させる方法を挙げることができる。本発明の実施形態において使用可能な核移行シグナルペプチドは、限定はしないが、例えば、SV40ラージT抗原のNLSペプチド(PKKKRKV、配列番号111)、ヌクレオプラズミンのNLSペプチド(AVKRPAATKKAGQAKKKKLD、配列番号112)、EGL-13のNLSペプチド(MSRRRKANPTKLSENAKKLAKEVEN、配列番号113)、c-MycのNLSペプチド(PAAKRVKLD、配列番号114)、TUSタンパク質のNLSペプチド(KLKIKRPVK、配列番号115)などを挙げることができる。これら以外にも使用可能な核移行シグナルペプチドは存在しており、例えば、核移行シグナルのデータベースであるNLSdb(https://rostlab.org/services/nlsdb/browse/signals)などを参照のこと。
 改変酵素-TALE融合体タンパク質を色素体内に輸送する方法として、改変酵素-TALE融合体タンパク質に色素体移行シグナルペプチド(明確な高次構造や配列相同性をもたないが、例えば、塩基性アミノ酸と複数の疎水性アミノ酸に富み酸性アミノ酸が少なく、タンパク質アミノ酸配列のN末端に付加することで葉緑体や色素体に特異的に選別輸送される機能を示すペプチドなど)を融合させて発現させる方法を挙げることができる。本発明の実施形態において使用可能な色素体移行シグナルペプチドは、例えば、植物色素体に局在するタンパク質が持つシグナルペプチドが好ましい。好ましいシグナルペプチドとしては、限定はしないが、例えば、RECA1、RBCS、CAB、NEP、SIG1~5、GUN2~5などのタンパク質由来のシグナルペプチドの他、RPL12およびRPS9などの核コード葉緑体リボソームタンパク質由来のシグナルペプチド、核コード葉緑体tRNAアミノアシル転移酵素由来のシグナルペプチド、核コード葉緑体ヒートショックタンパク質由来のシグナルペプチド、FtsZ、FtsH、MinC、MinD、MinEなどタンパク質由来のシグナルペプチド、核コード葉緑体光合成関連酵素複合体酵素群由来のシグナルペプチド、核コード色素体脂質代謝酵素群由来のシグナルペプチド、核コードチラコイド構成タンパク質群由来のシグナルペプチドなどがある。色素体移行シグナルペプチドについては、例えば、von HEIJNEら, Eur. J. Biochem. 180, 535-545 1989.などを参照のこと。
 改変酵素-TALE融合体タンパク質をミトコンドリア内に輸送する方法として、改変酵素-TALE融合体タンパク質にミトコンドリア移行シグナルペプチド(明確な高次構造や配列相同性をもたないが、例えば、塩基性アミノ酸と複数の疎水性アミノ酸が交互に現れる特徴を示すペプチドなど)を融合させて発現させる方法を挙げることができる。本発明の実施形態において使用可能な色素体移行シグナルペプチドは、例えば、植物ミトコンドリアに局在するタンパク質が持つシグナルペプチドが好ましい。好ましいシグナルペプチドとしては、限定はしないが、例えば、シロイヌナズナのATPase δ’サブユニット由来のシグナルペプチド(MFKQASRLLS RSVAAASSKS VTTRAFSTEL PSTLDS、配列番号116)、イネのALDH2a遺伝子産物由来のシグナルペプチド(MAARRAASSL LSRGLIARPS AASSTGDSAI LGAGSARGFL PGSLHRFSAA PAAAATAAAT EEPIQPPVDV KYTKLLINGN FVDAASGKTF ATVDP、配列番号117)およびエンドウのチトクロームcオキシダーゼVb-3由来のシグナルペプチド(MWRRLFTSPH LKTLSSSSLS RPRSAVAGIR CVDLSRHVAT QSAASVKKRV EDVV、配列番号118)の他、シロイヌナズナのATPase βサブユニット由来のシグナルペプチドおよびchaperonin CPN-60由来のシグナルペプチド(Loganら, Journal of Experimental Botany 50 865-871 2000)、イネのALDHのシグナルペプチド(Nakazonoら, Plant Physiology 124 587-598 2000)およびイネのF1F0-ATPase inhibitor proteinのシグナルペプチド(Nakazonoら, Plant 210 188-194 2000)などを挙げることができる。
 あるいは、改変酵素-TALE融合体タンパク質をコードするプラスミドDNA、mRNAおよび改変酵素-TALE融合体タンパク質などを直接細胞内へ導入する方法(導入方法としては、例えば、ウィルス法、パーティクルガン法、PEG法、細胞膜透過性ペプチド法など)も使用可能である。
 植物ゲノムDNA中の標的塩基を高い確率で改変するために、2つの、改変酵素-TALE融合体タンパク質(例えば、色素体ゲノムの改変を例にした図1に記載のTALE leftとTALE right)を、1つのTiプラスミドで同時に発現させ、かつ、核、色素体またはミトコンドリアに局在させるために、核移行シグナルペプチド、色素体移行シグナルまたはミトコンドリア移行シグナルペプチドを付加したタンデム発現Tiプラスミドを用いてもよい(例えば、非特許文献6を参照)。
 また、標的塩基の改変酵素としてDddAtoxなど、全長タンパク質をそのまま使用すると毒性のために細胞への悪影響が生じる場合には、当該全長タンパク質を適切な位置で切断した部分タンパク質を、各々、前出のTALE leftおよびTALE rightに融合させ、各融合タンパク質を色素体内へ移行させてもよい。適切な位置で分割された2つの部分タンパク質は、標的塩基近傍に結合した段階で再会合し、所望の活性を発揮することができる(実施例を参照のこと)。改変酵素としてDddAtoxを使用する場合、例えば、配列番号35で表されるDddAtoxのアミノ酸配列において、第40番目から第100番目のアミノ酸配列のいずれかのアミノ酸間で分割してもよく、例えば、第44番目と第45番目のアミノ酸の間、第94番目と第95番目のアミノ酸の間で分割してもよい。
 さらに、改変酵素-TALE融合体タンパク質には、当該融合体タンパク質の作用を向上させる機能を有する、他のタンパク質を融合してもよい。そのようなタンパク質として、例えば、ウラシルグリコシラーゼインヒビター(Uracil Glycosylase Inhibitor:UGI)などがある。UGIは、Uを取り除くウラシルグリコシラーゼの活性を阻害する。従って、シチジンデアミナーゼを改変酵素として使用する場合には、UGIが、Cから改変されたUが除去されるのを防ぎ、シチジンデアミナーゼ-TALE融合体タンパク質による改変を維持する役割を果たす。
 第1の実施形態において、例えば、前述のシチジンデアミナーゼ(CD)であるDddAtoxを改変酵素として使用すると、核ゲノムDNA、色素体ゲノムDNAおよびミトコンドリアゲノムDNA中の標的Cをホモプラスミック(細胞内および組織内または個体内で全て同じ変異になる状態)に標的塩基をTに改変することができる。従って、本発明は、植物個体の改良を行うための非常に有効な手段を提供する。
 第2の実施形態は、第1の実施形態にかかる植物ゲノムDNAの編集方法により、植物の核ゲノムDNA中の標的塩基が改変された核ゲノム、植物の色素体ゲノムDNA中の標的塩基が改変された色素体ゲノムもしくは植物のミトコンドリアDNA中の標的塩基が改変されたミトコンドリアゲノム、該核ゲノムを有する核、該色素体ゲノムを有する色素体もしくは該ミトコンドリアゲノムを有するミトコンドリア、該核ゲノム、該色素体ゲノムもしくはミトコンドリアゲノムを有する植物細胞、当該植物細胞の細胞質、または、当該植物細胞を含む種子もしくは植物(植物成体)である。
 本実施形態における植物(植物成体)には、核ゲノムDNA中の標的塩基、色素体ゲノムDNA中の標的塩基もしくはミトコンドリアゲノムDNA中の標的塩基が改変された形質転換細胞から分化して植物成体となった世代(T0または、植物によってはT1)のみならず、T0 /T1から得られた子孫世代も含まれる。また、第2の実施形態における種子には、前記T0 /T1世代から得られた種子のみならず、子孫世代から得られる種子も含まれる。
 第3の実施形態は、植物ゲノムが編集された植物の作製方法であって、第1の実施形態にかかる植物ゲノムDNAの編集方法で植物ゲノムを編集する事を含む方法である。
 すなわち、第3の実施形態は、第1の実施形態にかかる植物ゲノムDNAの編集方法を用いて、核ゲノムを編集することを含む、核ゲノムが編集された植物の作製方法、
 第1の実施形態にかかる植物ゲノムDNAの編集方法を用いて、色素体ゲノムを編集することを含む、色素体ゲノムが編集された植物の作製方法、または、
 第1の実施形態にかかる植物ゲノムDNAの編集方法を用いて、ミトコンドリアゲノムを編集することを含む、ミトコンドリアゲノムが編集された植物の作製方法である。
 第1、第2および第3の実施形態にかかる植物は、特に限定されず、種子植物であれば、いかなるものであってもよい。あえて例示するならば、例えば、イネ科植物、例えば、イネ、コムギ、トウモロコシ、オオムギ、ライムギ、ソルガムなど、あるいは、アブラナ科の植物、例えば、ミヤマナズナ属、シロイヌナズナ属(シロイヌナズナなど)、セイヨウワサビ属(セイヨウワサビなど)、イワナズナ属、アブラナ属(タアサイ、カラシナ、タカナ、セイヨウアブラナ、ミズナ、ハゴロモカンラン(ケール)、ハボタン、カリフラワー、キャベツ、メキャベツ(コモチカンラン)、ブロッコリー、チンゲンサイ、ノザワナ、アブラナ、ハクサイ、コマツナ、カブなど)、アマナズナ属、ナズナ属、タネツケバナ属、カラクサナズナ属、エダウチナズナ属、イヌナズナ属、キバナスズシロ属(ルッコラなど)、ハナダイコン属、ダイコンモドキ属、マガリバナ属、イオノプシディウム属、マメグンバイナズナ属、ニワナズナ属、ゴウダソウ属、マルコルミア属、アラセイトウ属、オランダガラシ属、オオアラセイトウ属、ダイコン属(ダイコン、ハツカダイコンなど)、ミヤガラシ属、イヌガラシ属、キハナハタザオ属、グンバイナズナ属、ワサビ属(ワサビなど)などに属する植物を使用することができる。さらに、トマト、ジャガイモ、ピーマン、シシトウ、ペチュニアなどのナス科植物、ヒマワリ、タンポポなどのキク科植物、ヒルガオ、サツマイモなどのヒルガオ科植物、コンニャク、タロイモ、サトイモ、ヤツガシラなどのサトイモ科植物、ダイズ、アズキ、インゲンなどマメ科植物、カボチャ、キュウリ、メロンなどのウリ科植物、タマネギ、ネギ、ニンニクなどのヒガンバナ科植物などを例示することができる。
 本明細書において引用されたすべての文献の開示内容は、全体として明細書に参照により組み込まれる。また、本明細書全体において、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
I.色素体ゲノムの編集
I-1.材料および方法
I-1-1.植物材料および栽培条件
 野生株のシロイヌナズナコロンビア-0株(Arabidopsis thaliana Columbia-0:Col-0)と遺伝子組換株は、22℃、長日条件(明期:16時間、暗期:8時間)で栽培した。Col-0の種子は、ムラシゲ・スクーグ培地用混合塩類(Wako、Japan)(2.3 g/L)、MES(500 mg/ L)およびスクロース(10g/L)を含む1/2 MS培地(pH=5.7)、Plant Preservative Mixture(Plant Cell Technology、USA)(1 mL/L)、Gamborg’s Vitamin Solution(Sigma-Aldrich、USA)(1 mL/L)およびアガー(8 g/L)を含む1/2 MS培地上に播いた。播種から1-2週間後の苗をJiffy-7(Jiffy Products International B.V.、Netherlands)に植え替え、その後、アグロバクテリウムトランスフェクションに使用した。なお、いくつかの成長が遅いT1は、冷湿処理後(days after stratification:DAS)23日(23DAS)に1/2 MS培地を含むプラントボックスに植え替えた。
I-1-2.TALE結合配列のデザイン
 TALE標的配列は、Old TALEN Targeter (https://tale-nt.cac.cornell.edu/node/add/talen-old)を使用して、シチジンデアミナーゼ標的領域の両側に結合するようにデザインした。最初に認識する塩基は、可能な限りTに隣接する3’側である必要がある。TALE標的配列の最小の長さは、TALEが配列特異的に結合するために15bpとした。TALEの結合配列を以下に示す。
16S rRNA
TALE left結合配列:5’-TAACCCAACACCTTACGGCACG-3’(配列番号1)
TALE right結合配列:5’-CGGACACAGGTGGTGCAT-3’(配列番号2)
rpoC1
TALE left結合配列:5’-TGTTGATGTTTATACCGA-3’(配列番号3)
TALE right結合配列:5’-TCGGAATGAATCACAAAAT-3’(配列番号4)
psbA
TALE left結合配列:5’-TTTCGCGTCTCTCTAA-3’(配列番号5)
TALE right結合配列:5’-TTAAATAAACCAAGGATTT-3’(配列番号6)
I-1-3.TALECD発現ベクターの構築
 各標的に対する、Tiプラスミドに組み込んだ1ペアの左側(left)および右側(right)のptpTALECDs(図2)は、Platinum Gate assembling kit およびmultisite Gateway (Thermo Fisher)を使用し、既報のmitoTALENsの作製方法に従って構築した(Kazamaら, Nature plants 5, 722-730 2019.)。
 ptpTALECDs のDNA結合ドメインは、Platinum Gate TALEN system(Sakumaら, Scientific reports 3, 1-8 2013.)を使用してアセンブリーした(図2a)。既報のassembly-step2 で用いたmitoTALENs のFokIコード配列を、予め、In-Fusion HD cloning Kit(TaKaRa, Japan、図3)を使用して、CD halfとUGIのコード配列で置き換えた。CD halfとUGIのコード配列は、非特許文献3に開示されるアミノ酸配列と同じ配列をコードするようにデザインし、シロイヌナズナに最適化したコドンを使用し、Eurofins Genomics(https://www.eurofinsgenomics.jp/jp/orderpages/gsy/gene-synthesis-multiple/)に委託して合成した。アセンブルした1stエントリーベクター、3rdエントリーベクターおよび2nd エントリーベクターの ORF を、LR ClonaseTM II Plus enzyme (Thermo Fisher Scientific)(図2b)を用いたmulti-LR反応を行って、Tiプラスミド(Arimuraら, The Plant Journal 104, 1459-1471 2020.)に組み込んだ。2nd エントリーベクターは、 シロイヌナズナヒートショックタンパク質のターミネーター(Nagayaら, Plant and cell physiology 51, 328-332 2010.)、シロイヌナズナRPS5A プロモーターおよび シロイヌナズナRECA1の色素体移行ペプチド(plastid transit peptide :PTP)のN-末端ペプチド(51アミノ酸)を有している(図8a)。このTiプラスミドは、Gateway destination Ti plasmid pK7WG2(Karimiら, Trends in plant science 7, 193-195 2002.)のCaMV 35S プロモーターをシロイヌナズナRPS5A プロモーター(Tsutsuiら, Plant and Cell Physiology 58, 46-56 2017.)で置換し、PTPコード配列およびpFAST02(http://www.inplanta.jp/pfast.html, INPLANTA INNOVATIONS INC., Japan)(図8b)由来のproOleosin::Ole1-GFPを挿入して構築した。
 以下にCD half-UGI配列およびRecA1 PTP配列を示す。
G1333C+UGI配列:
GGTAGTCCAACTCCGTATCCGAATTACGCCAATGCAGGACATGTTGAAGGTCAATCTGCATTGTTCATGAGGGATAACGGCATTTCTGAAGGGTTGGTGTTCCACAACAACCCTGAAGGAACATGTGGATTTTGCGTCAACATGACAGAAACCCTTCTCCCAGAAAACGCTAAGATGACAGTAGTTCCACCTGAAGGTGCTATTCCTGTCAAAAGAGGTGCTACTGGTGAAACCAAGGTGTTTACTGGGAATTCCAATTCACCCAAAAGCCCAACGAAAGGTGGGTGTAGTGGAGGATCTACAAATCTCTCTGACATCATTGAGAAAGAGACTGGAAAGCAACTAGTCATTCAGGAGTCAATCCTGATGTTACCAGAGGAGGTTGAGGAAGTGATAGGCAATAAGCCCGAAAGCGATATACTTGTTCATACTGCCTATGACGAATCGACGGATGAGAACGTAATGCTTCTAACCTCAGATGCTCCTGAGTACAAACCTTGGGCGTTAGTTATCCAGGATTCCAATGGAGAGAACAAGATCAAGATGTTG(配列番号7)
 「G1333C」は、配列番号35で表されるDddAtoxのアミノ酸配列のC末端側、第45番目から第138番目までのアミノ酸配列からなるタンパク質である。また、UGI(Uracil Glycosylase Inhibitor)は、配列番号36で表されるアミノ酸配列からなり、「G1333C」とはリンカーペプチド(配列番号37)で連結されている(以下、UGIアミノ酸配列とリンカーペプチドについて同じ)。
G1333N+UGI配列:
GGATCTGGTAGCTATGCGTTAGGACCCTATCAGATTTCAGCTCCTCAATTGCCTGCCTATAATGGGCAAACTGTTGGCACCTTTTACTACGTCAATGATGCTGGAGGGTTAGAATCCAAGGTGTTCTCAAGTGGTGGTTCTGGAGGTAGTACGAATCTTTCGGACATCATAGAGAAGGAAACTGGAAAACAGCTCGTTATCCAAGAGAGCATTCTCATGTTGCCAGAAGAAGTTGAAGAGGTTATAGGCAACAAACCGGAATCTGACATTCTGGTACATACCGCTTATGATGAGTCAACAGATGAGAACGTCATGCTTTTGACATCTGATGCACCAGAATACAAACCTTGGGCACTTGTGATTCAGGATTCCAATGGTGAGAACAAGATCAAGATGCTA(配列番号8)
 「G1333N」は、配列番号35で表されるDddAtoxのアミノ酸配列のN末端側、第1番目から第44番目までのアミノ酸配列からなるタンパク質である。
G1397C+UGI配列:
GGTTCTGCGATTCCAGTTAAGAGAGGAGCTACAGGAGAAACGAAAGTCTTTACTGGGAATTCCAATTCTCCCAAATCACCGACTAAAGGCGGATGTAGTGGTGGTAGTACCAATCTTTCCGACATTATCGAGAAGGAAACAGGTAAACAACTCGTAATCCAAGAAAGCATACTGATGCTTCCTGAAGAGGTTGAAGAGGTCATAGGGAACAAACCTGAAAGCGACATTTTGGTTCATACTGCCTATGATGAGTCTACAGATGAGAACGTGATGTTGCTAACCTCAGATGCACCTGAATACAAGCCATGGGCTTTAGTGATTCAGGATTCGAATGGAGAGAACAAGATCAAGATGCTC(配列番号9)
 「G1397C」は、配列番号35で表されるDddAtoxのアミノ酸配列のC末端側、第95番目から第138番目までのアミノ酸配列からなるタンパク質である。
G1397N+UGI:
GGGTCTGGATCGTATGCTTTAGGACCGTATCAGATCTCAGCTCCACAATTGCCTGCATATAACGGACAAACTGTTGGGACCTTTTACTACGTTAACGATGCTGGTGGATTGGAGTCCAAAGTGTTCTCTTCTGGTGGCCCAACTCCATATCCCAATTATGCGAATGCAGGCCATGTTGAAGGTCAATCAGCCCTATTCATGAGAGATAACGGAATAAGTGAAGGACTGGTGTTTCACAACAATCCAGAAGGTACTTGTGGATTTTGCGTAAACATGACTGAGACACTTCTCCCAGAAAATGCCAAGATGACAGTTGTACCTCCTGAAGGTTCTGGTGGATCGACAAACCTTTCAGACATTATCGAGAAAGAGACAGGCAAACAGCTAGTGATTCAAGAGTCCATTCTCATGCTTCCCGAAGAAGTTGAGGAAGTCATTGGGAATAAGCCGGAAAGTGACATACTCGTTCATACGGCTTACGATGAGAGCACGGATGAGAATGTCATGTTGCTTACCAGTGATGCACCTGAATACAAACCTTGGGCTTAGTCATCCAGGACAGCAATGGTGAGAACAAGATCAAGATGCTG(配列番号10)
 「G1397N」は、配列番号35で表されるDddAtoxのアミノ酸配列のN末端側、第1番目から第94番目までのアミノ酸配列からなるタンパク質である。 
RecA1 のPTPコード配列:
ATGGATTCACAGCTAGTCTTGTCTCTGAAGCTGAATCCAAGCTTCACTCCTCTTTCTCCTCTCTTCCCTTTCACTCCATGTTCTTCTTTTTCGCCGTCGCTCCGGTTTTCTTCTTGCTACTCCCGCCGCCTCTATTCTCCGGTTACCGTCTACGCCGCGAAG(配列番号11)
 「PTP」は、シロイヌナズナRECA1の色素体移行ペプチドである(アミノ酸配列は配列番号38に示す)。
 ベクター構築に用いたプライマー配列を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
I-1-4.植物の形質転換および形質転換体のスクリーニング
 Col-0をフローラルディップ法(Cloughら, The Plant Journal 16, 735-743 1998.)により、上述の形質転換ベクターのいずれかを保持するAgrobacterium tumefaciens 株C58C1で形質転換した。まず、GFPからの蛍光を指標にして遺伝子導入T1種子を選択した。GFPポジティブの種子を、125 mg/L クラフォランを含む1/2 MS培地上に播いた。さらに、GFPネガティブの種子を、50 mg/L カナマイシンおよび125 mg/L クラフォランを含む1/2 MS培地上に播いた。
I-1-5.サンガーシークエンシングおよび次世代シークエンシング(NGS)
 Maxwell(登録商標)RSC Plant DNA Kit(Promega, USA)を用いて、選択した実生の第2本葉から、総DNAを抽出した。遺伝子導入株のジェノタイピングのために、シチジンデアミナーゼ標的配列近傍の色素体DNA配列領域を、標的遺伝子に対応した以下に示すプライマーセットで増幅した。標的塩基の置換を検出するために、精製したPCR産物に塩基配列のサンガー法で決定した。
16SrRNA
フォワードプライマー:5’-GGTTCCAAACTCAACGGTGG-3’(配列番号27)
リバースプライマー:5’-TAGGGGCAGAGGGAATTTCC-3’(配列番号28)
psbA
フォワードプライマー:5’-GGTATTATTTTAGTGGCCCA-3’(配列番号29)
リバースプライマー:5’-GCCTGTGATAATAGGAAAGC-3’(配列番号30)
rpoC
フォワードプライマー:5’- AGACGGTTTTCAGTGCTAGT-3’(配列番号31)
リバースプライマー:5’- TTTGGGGAGGGGTTTTTTAC-3’(配列番号32)
 全てのDNA配列データを用いて、色素体およびミトコンドリアゲノム中の一塩基多型(single nucleotide polymorphism :SNP)を判定した。まず、Nextera XT DNA library Prep Kit(Illumina)を用いたPEライブラリーの調製をMacrogen Japanに委託し、Illumina NovaSeq 6000 platformを用いて配列決定を行った。150bp paired endのシークエンスリードの解析はGeneious prime (Biomatters Ltd)を用いて行なった。シロイヌナズナの葉緑体ゲノム配列にシークエンスリードを貼り付け、50%以上のリードにおいてリファレンス葉緑体ゲノム配列とのSNPsとして検出された配列を表2に表示した。
Figure JPOXMLDOC01-appb-T000002
 
 
I-1-6.T2個体のジェノタイピング
 各標的遺伝子に対応するT1個体から得たT2種子を1/2 M培地上に播いた。7DASまたは13DASの実生の子葉の16SrRNAのジェノタイピングは、T1個体の場合と同様に行った。GFPのPCRは以下に示すプライマーを用いて行った。
フォワードプライマー:5’- GGTGATATCCCGCGGATGGTGAGCAAGGGCGAGGA-3’(配列番号33)
リバースプライマー:5’- ACGTAACATGCCGGGCTTGTACAGCTCGTCCATGC-3’(配列番号34)
I-1-7.スペクチノマイシン耐性個体のスクリーニング
 11DASおよび23DASに、16SrRNAのC5がホモプロスミックに置換されたT1個体由来のT2種子を、0、10または50 mg/L スペクチノマイシンを含む1/2 MS培地に播いた。発芽した子葉の表現型は、8DASに観察した。
I-1-8.画像処理
 植物の画像は、iPhone(登録商標)Xs(Apple inc., US)およびLEICA MC 170 HD(Leica, Germany)で撮影した。ゲルの画像はChemiDocTM MP Imaging System(BIORAD, USA)で撮影した。また、画像はAdobe Photoshop 2021で加工した(Adobe, USA)。
I-2.結果
I-2-1.TALECD発現ベクター
 配列番号35で表されるDddAtoxのアミノ酸配列中、第44番目と第45番目のアミノ酸の間、または第94番目と第95番目のアミノ酸の間で、DddAtoxを分割し、N末端側またはC末端側を、platinum TALE DNA 結合ドメイン(Sakumaら, Scientific reports 3, 1-8 2013.)のC末端に連結した(pTALECD、図1a)。pTALECDのN末端側に、シロイヌナズナのRECA1タンパク質の色素体標的シグナルペプチド(plastid targeting signal peptide:PTP)(図1b)を連結した。また、シチジンデアミナーゼによって生じたウラシル(U)の加水分解を阻害するために、ウラシルグリコシラーゼインヒビター(uracil glycosylase inhibitor:UGI)(非特許文献3)を連結した(図1b)。DddAtox(CD)およびUGIの塩基配列は、シロイヌナズナのコドン使用頻度に最適化した。PTP-pTALECD-UGI(ptpTALECD)のペア(CDのN末端側とC末端側を含むペア)を、RPS5Aプロモーター(Arimuraら, The Plant Journal 104, 1459-1471 2020.)下にて、単一植物形質転換ベクターにより発現させた(図1b)。既報(Kazamaら, Nature plants 5, 722-730 2019.)に開示された方法を修正して、各標的配列に対するタンデムptpTALECD発現ベクターを容易にTiプラスミド上に構築するためのアセンブリーシステムを確立した(図2aおよびb)。本実施例では、既報で開示される方法で使用されたベクター中のFokIをCD-UGIに置き換えた(図3)。構築したベクターをフローラルディップ法によりシロイヌナズナの核に導入し、色素体ゲノムの3領域、すなわち、16S rRNA遺伝子領域(図4a)、rpoC1領域(図4b)およびpsbA領域(図4c)において、C/GをT/Aに置換することを試みた。
 以上のようにして、各12種類のptpTALECD発現ベクター(4つのCD halfの組み合わせ(図1aを参照のこと)で3つの領域を標的とする発現ベクター)を構築した。
 各発現ベクターを、シロイヌナズナに導入し、23DASに、T1の標的領域をサンガー法で配列決定した。T1が得られたコンストラクトのみを、図4a、bおよびcに示した。3領域の全ての標的配列において、C/GペアがT/Aに置換されていることが、複数のT1で確認された(図4a-f)。ヘテロプラスミックに置換された株またはキメラ状に置換された株(h/c;図4a-f)に加え、驚くべきことに、標的塩基がホモプラスミックに置換されている(homo)株が多数認められた。標的領域の全てのC/Gペアが置換されたわけではなく、置換されたC/Gペアは、3領域全てにおいて偏りがみられた(図4a-c)。ホモプラスミックに置換された塩基は3つの領域は、Mokら(非特許文献3)によって変異がより生じやすいとされている(5’)TC(3’)のCであったが(図4a-c)、16SrRNA 遺伝子の(5’)AC(3’)のCもホモプラスミックに置換された(図4a)。
 個体の成長過程における変異の安定性を調べるために、11DASと23DASのT1の新生葉(または11DASにおいて成長の遅い個体の子葉)から抽出した総DNAの塩基配列を調べた。11DASと23DASにおいて、標的領域内で塩基変異が生じた個体のうち、いくつかの個体は両時点で変異塩基をヘテロプラスミックにまたはキメラ状(h/c)のまま保持していた(全体の30.0%、15/50、図4g)。また、他の個体は、両時点で変異の状態が異なっていた(例えば、homo(ホモプラスミック変異)がh/cになったものが全体の4.0 %、2/50;h/cが野生型になったものが全体の14.0%、7/50;h/cがhomoになったものが全体の8.0%、4/50;野生型がh/cになったものが全体の2.0%、1/50)(図4g)。残りの多くの個体は両時点で変異塩基をホモプラスミックのまま保持していた(42.0%、21/50、図4g)。興味深いことに、T1個体(16SrRNA 1397VC3)の子葉では、野生型様の緑色の部分と色の薄い部分が存在しており、各領域における16SrRNA 中のCp*(生物学的な影響を引き起こすことが予想されるシトシン)における変異率が異なっていた(図5aおよびb)。意外にも、11DASのホモプラスミックに置換された塩基は、23DASにおいてもそのほとんどがホモプラスミックに置換されたままであった(91.3%、21/23)。この結果は、ptpTALECD発現ベクターで形質転換されたT1の標的塩基が、高い頻度でホモプラスミックに置換され、かつその変異が成長過程を通して安定して維持されることを示唆している。
 次に、母性遺伝する色素体ゲノムおよびミトコンドリアゲノムにおけるptpTALECDのオフターゲット効果(標的以外の塩基が置換されること)を調べた(前掲の表2)。14個のT1個体の総ゲノム配列を決定した(Novaseq, illumina)。13個の個体において標的のほとんどのC塩基がホモプラスミックにTに置換されていた(16SrRNA 1397C-1397N(1397CN) 系列2、系列7、系列8、系列12、系列16、1397N-1397C(1397NC) 系列1、系列2、系列3:psbA 1397C-1397N(1397CN) 系列6、 1397N-1397C(1397NC) 系列1、系列5:rpoC1 1397C-1397N(1397CN) 系列16)が、残りの1標的(rpoC1 1397C-1397N(1397CN) 系列3、図4a-c参照のこと)は、ヘテロプラスミックまたはキメラ状に置換されていた。少なくとも1つのT1個体において、リードの50%以上が参照ゲノムとは異なる色素体SNPを表2に示す。色素体ゲノムの反復配列中の重複する変異は、1変異としてカウントした。13個体中の標的塩基のほとんどがホモプラスミックに置換されていることを確認した。他の1個体中の塩基は、ヘテロプラスミックまたはキメラ状に置換されていることを確認した(表2)。主なオフターゲット点突然変異(置換頻度>50%)は、16SrRNA 1397C-1397N (1397CN)  系列1において6箇所あったが、他の系列では、オフターゲット点突然変異は検出されなかった(表2)。16SrRNA 1397CN 系列1は、本葉をつけることなく、23DASに枯死した。ミトコンドリアゲノムに関しては、16SrRNA 1397CN 系列1を含めた14個体全てのミトコンドリアゲノム中に顕著なオフターゲット変異は検出されなかった。これらの結果は、ptpTALECDは、オルガネラのゲノム中に希にしかオフターゲット点突然変異を導入せず、標的領域のC/Gを特異的、かつホモプラスミックにT/Aに置換することを示している。
 16SrRNA 標的ptpTALECDベクターで形質転換し、最初のCp*(G5)および/またはC10がホモプラスミックに置換されたT1個体は、1個体(16SrRNA 1397C-1397N 系列1)を除いて、全てが稔性であった。CからTへの置換変異が子孫に受け継がれるかどうか調べるために、これら3株(16SrRNA 1397C-1397N 系列2、系列8および1397N-1397C 系列3)のT2個体のジェノタイピングを実施した(図6aおよび図7a)。T-DNA上のOle1 pro::Ole1-GFP13由来の種子特異的なGFP(green fluorescent protein)(図1b)とGFP PCR(図6a)の結果に基づいて、T2個体をT-DNA 導入遺伝子フリー個体(ヌル分離個体)と遺伝子導入個体に分類した。いずれのT2個体も、安定的にホモプラスミックに変異を保持していた(図6aおよび図7a)。興味深いことに、いくつかのT2個体の子葉は、白色、赤色または斑入りであり(図6bおよび図7b)、その親個体の表現型とは異なっていた。このような個体は、全てGFPポジティブで(図6aおよび図7a)、その多くが(9個体中8個体)は16SrRNA配列内で調べた~400 bpにおいて、他の変異を有していた(図7a)。ptpTALECD発現に使用したRPS5Aプロモーターは、卵細胞において顕著に発現していることが報告されているため、de novo突然変異がT2個体の発生初期段階において生じ、異常な子葉をつけたのではないかと考えられる。このようなT2個体とは異なり、ヌル分離個体であるT2個体は、上述のような付加的な表現型を示すことなく、標的変異を保持していた。以上の結果は、人工的に導入した点変異を持つ色素体ゲノムは、安定的に子孫に受け継がれ、しかも、核のT-DNAの継承とは独立していることを示している。さらに、上記結果は、色素体ゲノム中に標的点変異を持つヌル分離個体が、うまく確立し得ることも示している。
 16SrRNA遺伝子のG5は、大腸菌(E. coli16SrRNAの生物学的な影響を引き起こすことが予想されるGに対応しており、この大腸菌16SrRNAのGの置換変異は、スペクチノマイシン耐性(Spmr)を付与することが知られている。G5がホモプラスミックにAに置換されたT1個体(16SrRNA 1397C-1397N 系列2)から採取したT2種子を、スペクチノマイシン含有培地に播種した。種子からのGFP蛍光の有無とは無関係に、これらの種子から発芽した実生の多くは、スペクチノマイシン耐性を示した(図6c)。しかし、16SrRNA 1397C-1397N 系列2由来のT2個体のいくつかは、スペクチノマイシン感受性(Spms)様の表現型(紫色の子葉を持つ白色の未発達な植物体、図6c)を示した。これらスペクチノマイシン感受性未発達個体は、全てGFPポジティブな種子から発芽しており(図6c)、それらの多くは(5個体中5個体、図9)、複数のde novo変異を16SrRNA遺伝子中に有していた。この結果は、de novo変異が16SrRNAの機能不全を引き起こし、その結果、スペクチノマイシン感受性様の表現型(スペクチノマイシンは16SrRNAを阻害する薬剤)となることを示唆する。驚くべきことに、G5に変異を持たないT1個体(16SrRNA 1397C-1397N 系列15)の子孫のいくつかも、スペクチノマイシン耐性を示した。これらの子孫(18個体)は、GFPポジティブ種子から発芽した(図6c)。これらの子孫のうち5個体においてG5がホモプラスミックにAに置換されていたおり、残りの13個体においても、多くのG5がAに置換されていた(図9)。この結果は、受け継がれたT-DNAがG5にde novo変異を引き起こしたことを示唆する。これらの結果から、G5のAへのホモプラスミックな変異は、スペクチノマイシン耐性をシロイヌナズナに付与することを示唆している。さらに、GFPネガティブなT2個体が、T1個体におけるG5のSNPから予測されるスペクチノマイシン耐性またはスペクチノマイシン感受性の表現型を示すという結果は、ヌル分離T2個体が、その親の個体が有していた変異を受け継ぎ易いことを示唆している。
 上記結果から、ptpTALECDは、シロイヌナズナの色素体ゲノムにおいて、標的領域特異的かつホモプラスミックにCをTに変換する変異を導入することが可能で、この変異は安定に子孫の種子に受け継がれる(おそらく母性遺伝様式に従う)ことが示された。
II.ミトコンドリアゲノムの編集
II-1.材料および方法
II-1-1.植物材料、生育条件、形質転換、および形質転換体のスクリーニング
 シロイヌナズナCol-0、otp87 (ホモ接合T-DNA挿入系統、GK-073C06-011724)、および形質転換体を22℃の長日条件(16時間明、8時間暗)で栽培した。Col-0の種子は1/2 MS-Agarプレートに播種した(非特許文献7)。2-3週齢の実生をJiffy-7(Jiffy Products International)に移し、その後アグロバクテリウム感染に供した。Col-0およびotp87の成熟植物をフローラルディップ法(Cloughら, The Plant Journal 16, 735-743 1998.)により形質転換した。得られたT1種子を、その種子特異的なGFPの蛍光により選択した(非特許文献7;Shimadaら, Plant J. 61, 519-528 2010.)。これらのT1種子を、125 mg/Lのクラフォランを含む上記の培地に播種した。T1植物は、23DASでJiffy-7に移植した。otp87種子(GABI_073C06)はABRCストックセンターから入手した。植物におけるOTP87のT-DNA挿入のホモ接合性はPCRで確認した(Hammaniら, J. Biol. Chem. 286, 21361-21371 2011.)。
II-1-2.TALE結合配列の設計およびベクター構築
 TALE 結合配列を 図10aおよび図13bに示した。TALE が認識する塩基はチミンの 3′ 側に隣接し、長さは約 20 bp に設定した。ターゲットウィンドウの長さ(16bp)と特別な標的シトシンの位置(C10)は、既報(Nakazatoら, Nature Plants 7 906-913 2021)に開示される成功例に基づいて設定した。mtpTALECDを発現するバイナリーベクターは、Platinum Gate TALENシステム(Sakumaら, Sientific reports 3 1-8 2013)とmultisite Gateway(Thermo Fisher)を用いて、既報(Nakazatoら, Nature Plants 7 906-913 2021)とほぼ同様に構築した。ただし、multi-LR 反応に用いるデスティネーションベクターとエントリーベクターについては、葉緑体移行シグナルの代わりにミトコンドリア局在シグナルを持つものを使用した。
II-1-3.T1およびT2植物個体のジェノタイピング
 サンガーシークエンス用のPCR(図10、図11、図15、図16、図17、図20)は、KOD One PCR Master Mix(東洋紡)を用いて、本葉または子葉から粗抽出したDNAを用いて標準プロトコルで行った。サンガーシークエンス用PCR(図12、図13、図21、図23)の核酸テンプレートは、Maxwell RSC Plant RNA Kit (Promega) を用いて付属のDNase Iを使用せずに抽出した。抽出した核酸中の DNA を Deoxyribonuclease(RT Grade)for Heat Stop(Nippon Gene)で分解し、 RT-PCR の RNA テンプレートを調製した。RT-PCR は PrimeScriptTM II High Fidelity One Step RT-PCR Kit(TaKaRa)を用いて実施した。mtpTALECD リーディングフレームの一部をプライマーで増幅し、形質転換体を同定した。ミトコンドリアDNA、cDNAのターゲットウィンドウ周辺の配列とその核DNA中の相同配列を増幅した。精製したPCR産物をサンガーシークエンスで読み取り、そのデータをGeneious Prime(v. 2021. 2.2)で解析した。
 NGS用の全DNAは成熟葉からDNeasy Plant Pro Kit(QIAGEN)を用いて抽出した。VAHTS Universal Pro DNA Library Prep Kit for Illumina(Vazyme, China)を用いた11サンプルのペアエンドライブラリーとIllumina NovaSeq 6000プラットフォームを用いた5Gbase/サンプルのシーケンシングは、GENEWIZ Japanで実施した。野生型植物個体3サンプルとT2植物個体8サンプル(4系統各2サンプル)についてSNPコールを行うための全ゲノム配列データを取得した。解析の前処理として、PEAT [v1.2.4(Liら, BMC Bioinformatics, (BioMed Central, 2015), pp. 1-11.)]を用いてリードに含まれる低品質配列やアダプター配列をトリミングした。各株のペアエンドリードを、BWA (v 0.7.12) を用いてシングルエンドモードで参照配列(ミトコンドリアゲノム BK010421.1 および葉緑体ゲノム AP000423.1) にマップした(Durbin, Bioinformatics 25 1754-1760 2009)。配列の同一性が97 %以下、またはアラインメントのカバー率が80 %以下の不適切なマップリードをフィルターで除外した。SNPはsamtools mpileupコマンド(-uf -d 50000 -L 2000)とbcftools callコマンド(-m -A -P 0.1(Liら, Bioinformatics 25 207-2079 2009))でコールした。bcftoolsで算出したアリル頻度(allele frequency, AF)により、最終的に(T1サンプルのAF)-(野生型3個体の平均AF)≧0.05のSNPをoff-target SNP候補として検出し、NUMTやミトコンドリアゲノム内の配列に類似する葉緑体ゲノム配列由来の多くのartefact SNPを除去した(図11c)。
II-1-4.PPR結合配列の予測
 atp1におけるOTP87の結合部位を予測するために、PPRコード(Takanakaら, PLos one 8 e65343 2013;Yanら, Nucleic acids research 4 3728-3738 2019)を使用した。このコードでは、各PPRリピートの5位と35位の2つの重要なアミノ酸残基の組み合わせから、個々のPPRリピートがどのヌクレオチドを認識する可能性があるかを計算するために使用された。各モチーフの結合確率は、図13aに示すウェブログ(http://weblogo.berkeley.edu/)で描いた。
II-1-5.画像処理
 植物の写真はデジタルカメラ(OLYMPUS OM-D E-M5)で撮影し、Adobe Photoshop 2021で処理した。
II-2.結果
II-2-1.atp1の標的一塩基置換
 塩基編集のターゲットとして、ミトコンドリアATPase subunit 1atp1)のRNA編集部位に相当する塩基対、atp1-1178Cを選択した。野生型植物ではこのCは転写後RNA上ではUに変換され翻訳される。従って、一塩基置換効率とその遺伝性を評価する際に、C:GからT:Aへの置換は、植物に悪影響を与えないと思われる。この標的塩基を置換するために、Burkholderia cenocepacia DddAタンパク質(1,427アミン酸、非特許文献6)のC末端にあるシチジンデアミナーゼ(cytidine deaminase;CD)ドメインを含むベクターを4種類作製した。既報(非特許文献6;非特許文献7;Nakazatoら, Nat. Plants 7, 906-913 2021;Leeら, Nat. Commun. 12, 1-6 2021)と同様に、CDドメインのコード配列をGly 1333またはGly 1397のコドン直後のヌクレオチドで分割した。分割されたCD半分の各配列(N末端とC末端側)を、最大21塩基を認識するplatinum TALEN(Sakumaら, Sci. Rep. 3 1-8 2013)のDNA結合ドメインの配列(以下、pTALEと記す)の3′側に融合した。シトシンから生成したウラシルが除去されないように、pTALE-CDの配列をUGIの配列の5′側に融合した(非特許文献6;Molら, Cell 82, 701-708 1995、pTALE-CD-UGI)。CDとUGIの塩基配列は、既報(Nakazatoら, Nat. Plants 7, 906-913 2021)と同じであり、シロイヌナズナのコドン使用法に最適化した。シロイヌナズナ ATPase delta prime subunitのミトコンドリア標的シグナルの配列(Arimuraら, Plant J. 104 1459-1471 2020)を pTALE-CD-UGI の5′側に連結した (mtpTALECD、図14)。一対のmtpTALECDをそれぞれ発現させるカセットをタンデムに、単一のバイナリーベクターに構築した。各mtpTALECDは、シロイヌナズナの高効率なゲノム編集に用いられてきたシロイヌナズナRPS5Aプロモーター(図14)の制御下に置かれた(Arimuraら, Plant J. 104 1459-1471 2020;Nakazatoら, Nat. Plants 7, 906-913 2021;Tsutsuiら, Plant Cell Physiol. 58 46-56 2017)。1333C-1333N(1333CNと略す。この名称は、Gly 1333で分割したCDドメインのC末端半分が左のTALEドメインに、N末端半分が右に融合していることを意味している)、1333N-1333C(1333NC)、1397C-1397N(1397CN)および 1397N-1397C(1397NC)と名付けた、4つのバイナリーベクターを構築した(図10a)。
 ミトコンドリアゲノムの標的C:G対をT:A対に置換するために、各ベクターをシロイヌナズナの核ゲノムにフローラルディップ法(Cloughら, Plant J. 16 735-743 1998)により形質転換した。T1形質転換体の葉の総DNAをPCRで増幅し、そのPCR産物塩基配列をサンガー法で決定した。調べたT1形質転換体78個体(4つのベクター全てで得られた形質転換体の数)のうち、36個体がターゲットウィンドウ内のC:GがT:Aに置換されていた(図16および図17)。植物の核ゲノムには、nuclear mitochondrial DNAあるいはNUMTと呼ばれるミトコンドリアDNAと高い相同性をもつ大きな配列断片がしばしば存在する(Noutsosら, Genome Res. 15 616-628 2005;Zhangら, Int. J. Mol. Sci. 21 707 2020)。塩基配列解読の過程で、シロイヌナズナCol-0の2番染色体上のNUMTの一部であるatp1とほぼ同一の核内配列(At2g07698)が増幅されていることが分かった(Noutsosら, Genome Res. 15 616-628 2005)。そこで、NUMT配列が増幅されないように、ミトコンドリアDNAを特異的に増幅するプライマーを新たに設計し、その後の解析に用いた。
 最初のジェノタイピングで変異が検出されたT1植物について、新しいプライマーを用いて再度ジェノタイピングを行った。
 多くの形質転換体は、ターゲットウィンドウ内の塩基がホモプラスミックに置換されたようであった(図10B およびC)。10番目の標的Cの変異に加え、ターゲットウィンドウの3、4、7番目のGが一部のT1植物で置換されていた。変換されたCのほとんどは、以前に報告されたように、TまたはAの3’側にあった(図10b)。塩基置換活性やターゲットウィンドウ内の置換された塩基の位置の嗜好性は4つのベクターで異なっており、ターゲットウィンドウ内で最も頻繁にホモプラスミックに置換されたCは、ベクターが1397C-1397N(1397CN、図10b)の場合は10番目のCであった。結果として、発芽を促すための冷湿処理終了11日後および23日後 (days after stratification, DAS) の両時点で、ターゲットウィンドウに真の標的塩基(10番目のC)のみが置換されたミトコンドリア変異体を5個体得た。
 導入変異の種類が植物の発生過程で変化するかどうかを確認するため、各形質転換体について、11 DASと23 DASの異なる葉の総DNAを鋳型にしたPCR断片の配列をサンガー法で決定し、変異の種類を確認した。これらの日の少なくとも一方において、合計76個の変異塩基が検出された(図10d)。このうち、14塩基は両日ともヘテロプラスミックまたはキメリック(h/c;すなわちホモプラスミックではない)に置換されており、25塩基は両日で異なる様式で置換されていた(各タイプの置換塩基数とその割合は図10Dを参照されたい)。検出された変異塩基の約半数を占める残りの37塩基は、両日ともホモプラスミックに置換されていた[48.7% (37/76)、図10d]。これらの結果は、mtpTALECDによってターゲットウィンドウ内のC:G対が効率的にT:Aに置換され、T1世代でも2時点の葉で安定的にホモプラスミック変異が検出される形質転換体が存在することを示している。
II-2-2.導入変異の種子後代への遺伝
 導入した変異が種子後代に遺伝するかどうかを確認するため、ターゲットウィンドウ内のC:G対がホモプラスミックに置換された4つのT1植物それぞれについて、13個体のT2後代をジェノタイピングした。調べた全てのT2個体は、核内にmtpTALECD遺伝子を持つかどうかにかかわらず、親のホモプラスミック変異を受け継いだ(図11a、図18)。このことは、mtpTALECDによって導入されたミトコンドリアゲノムのホモプラスミック変異が、種子後代に安定遺伝したことを示す。4系統のそれぞれについて、mtpTALECD遺伝子を持たない子孫は、アミノ酸置換を引き起こす2つの異なる変異 [G391DおよびS392N(図11b)]を持つ植物でも、野生型植物と同様に生育した。T1世代でヘテロプラスミックまたはキメリックに変異した塩基の一部は、T2世代で均一なジェノタイプを持つことが観察された(図18)。
II-2-3.ミトコンドリアゲノム上のオフターゲット変異
 ミトコンドリアゲノムにおけるmtpTALECDのオフターゲット効果を調べるため、既にターゲットウィンドウに生じた親のホモプラスミック変異を受け継いだことが確認されているT2植物(図18)においてSNP頻度を測定した。参照配列(BK010421.1)と異なる系統特異的な変異SNPの位置と頻度をFig. 2Cにドットで示した。これらのデータから、ターゲットウィンドウ外のオフターゲット変異の頻度は、各植物のミトコンドリアDNAコピーの10%以下であることが示された。
 これらの8つの個体において、ミトコンドリアゲノム全体のカバレッジパターンは、野生型植物におけるカバレッジパターンと非常に似ていた(図19)。また、これまでのmitoTALENを使用した研究(Kazamaら, Nat. Plants 5, 722-730 2019;Arimuraら, Plant J. 104 1459-1471 2020)で見られたような、欠失や配列の再編成、新しい繰り返し配列の生成といったミトコンドリアゲノムの構造変化の兆候は見られなかった。
 ターゲットウィンドウ内のSNPsの位置にあるリードの約20%は、変異型塩基を持たなかった(図11c)。しかし、これら8つの植物のミトコンドリアatp1のPCR産物の配列では、このようなC:G対からT:A対へのホモプラスミックな置換が見られ(図18)、核ゲノムのatp1様配列(At2g07698)のPCR産物の配列には、ターゲットウィンドウに相当する配列に置換が見られなかった(図20)。これらの結果は、全ゲノムシークエンスで検出された野生型C:G SNPは、核内のatp1様配列に由来するという考えを支持するものであった。また、この配列では基本的に塩基置換されておらず(図20)、配列中の低頻度なオフターゲット変異(1397CN 24-10および12、図20)は交配により除去可能である。いずれにせよ、ミトコンドリアゲノム(図11c)でも、ターゲットウィンドウに類似した核DNA配列(図20)でも、大きなオフターゲット変異は検出されなかった。
II-2-4.mtpTALECDを用いたppr変異体の表現型の相補
 RNA編集は、陸上植物のミトコンドリアおよび葉緑体ゲノムの特徴であり、転写後のRNA分子の特定のCがUに変換される。これは、核にコードされたミトコンドリア標的のPPRタンパク質によって媒介される(Smallら, Plant J. 101 1040-1056 2020)。ミトコンドリアゲノムの分子的な解析におけるmtpTALECDの有用性を検証するために、RNA編集に関連する2つの実験を行った。まず、生育遅延を示すotp87変異体について調べた。野生型植物では、PPRタンパク質OTP87がatp1転写産物の1178C(ターゲットウィンドウのC10、図10a)とnad7転写産物の27CをUに変換している(Hammaniら, J. Biol. Chem. 286 21361-21371 2011)。前者のRNA編集のみがアミノ酸置換(S393L)を引き起こすため、これが生じないことがotp87の成長遅延の原因であると提唱されている。そこで、mtpTALECDによってatp1の1178CをDNAレベルでTに置換することで、RNA編集の欠損、ひいては成長の遅れが改善されるかどうかを調べた。mtpTALECD発現ベクターの1つである1397CN(図10b)をotp87変異体の核ゲノムに導入した。調べた14個体のT1植物のうち、7個体は野生型植物と同様に生育した(図12、図21a)。これらの7個体は、本葉のDNAおよびRNAレベルで1178C(C10)からT(またはU)へのホモプラスミック置換を有していた(図12、図21a)。これらの結果は、atp1転写産物の1178Cを編集できないことが、otp87変異体の生育遅延の原因であることを示している。
II-2-5.OTP87によるatp1の認識
 2つ目の実験では、OTP87が結合すると予測されるatp1配列について調べた(Takenakaら, PloS One 8 e65343 2013、図13a、図22a)。PLS型PPRタンパク質であるOTP87が結合すると推定されるヌクレオチドとその確率を、図13aの上部にヌクレオチドロゴとして示している。これらは、各PPRモチーフの5位と35位の2つの重要なアミノ酸残基[例えば、P、L、S(Takenakaら, PloS One 8 e65343 2013;Yanら, Nucleic Acids Res. 47 3728-3738 2019;Barkanら, PLoS Genet. 8 ,e1002910 2012;Yagiら, PloS One 8, e57286 2013)の組み合わせによって予測されたものである。OTP87が結合すると予測されるRNA編集部位上流の実際のatp1配列を、図13aの下部に示した。今回の実験では、この配列がRNA編集に必要なのか、必要であればどの塩基が関与しているのかを確認するために、この配列のいくつかのC:G対をT:A対に置換した。1178Cの上流20, 13, 6塩基にある3つのGをそれぞれAに置き換える3つのmtpTALECD発現ベクターを構築した(-20G, -13G, -6Gと表記、図13a、図22a)。各系統(Col-0背景)のT1種子15粒を播種し、実生のDNAおよびRNA配列を解析して、mtpTALECDによるDNA変異のパターンおよび1178CでのRNA編集効率への影響を確認した。本研究では-13Gの置換には成功しなかったが、OTP87の結合予測配列において以下の4つのアリルパターンのミトコンドリアゲノム変異体を得ることができた。(i) -24C を T に置換、(ii) -20G が A に置換、(iii) -24C と -20G がそれぞれ T と A に置換、 (iv) -7G と -6G が共に A に置換(図13b)。atp1転写産物のRT-PCR産物のサンガーシークエンスデータとして表されるRNA編集効率は、アリルパターン(iv)においてのみ低下した(図13bおよびc、図22aおよびc、図23)。これらの結果は、OTP87の予測される結合配列の少なくとも1~2塩基が実際にRNA編集の効率に影響を与えることを示し、-7Gおよび/または-6Gが1178Cの編集に、そして恐らくatp1転写物を認識し結合するために必要であり、-24Cと-20GはそれぞれUとAに置換してもこの場合これらの活性に影響しない(少なくともあまり大きくは影響しない)ことを示している。
III.核ゲノムの編集
III-1.材料および方法
III-1-1.植物材料、生育条件、形質転換、および形質転換体のスクリーニング
 シロイヌナズナCol-0および形質転換体を22℃の長日条件(16時間明、8時間暗)で栽培した。Col-0の種子は1/2 MS-Agarプレートに播種した(非特許文献7)。2-3週齢の実生をJiffy-7(Jiffy Products International)に移し、その後アグロバクテリウム感染に供した。Col-0成熟植物をフローラルディップ法(Cloughら, The Plant Journal 16, 735-743 1998.)により形質転換した。得られたT1世代について解析を行った。
III-1-2.TALE結合配列の設計およびベクター構築
 ptpTALECD(Nakazatoら, Nature Plants 7 906-913 2021)のコンストラクトを元に、葉緑体移行シグナル(PTP)をSV40核移行シグナル(SV40NLS)に置換し、nTALECDを作製した。標的であるAtCYO1AtPKT3AtMSH1の3遺伝子座それぞれについて2か所に終止コドンあるいは遺伝子の機能への影響が大きいと推定されるアミノ酸置換を導入することを目的に標的配列を設計し、各標的配列に対応するnTALECD発現ベクター計6コンストラクトを作製し、フローラルディップ法によるアグロバクテリウムへの感染を通してCol-0に形質転換した。
III-1-3.T1植物個体のジェノタイピング
 サンガーシークエンス用のPCRは、KOD One PCR Master Mix(東洋紡)を用いて、本葉または子葉から粗抽出したDNAを用いて標準プロトコルで行った。サンガーシークエンス用PCR(の核酸テンプレートは、Maxwell RSC Plant RNA Kit (Promega) を用いて付属のDNase Iを使用せずに抽出した。抽出した核酸中の DNA を Deoxyribonuclease(RT Grade)for Heat Stop(Nippon Gene)で分解し、 RT-PCR の RNA テンプレートを調製した。RT-PCR は PrimeScriptTM II High Fidelity One Step RT-PCR Kit(TaKaRa)を用いて実施した。mtpTALECD リーディングフレームの一部をプライマーで増幅し、形質転換体を同定した。ミトコンドリアDNA、cDNAのターゲットウィンドウ周辺の配列とその核DNA中の相同配列を増幅した。精製したPCR産物をサンガーシークエンスで読み取り、そのデータをGeneious Prime(v. 2021. 2.2)で解析した。
III-1-4.画像処理
 植物の写真はデジタルカメラ(OLYMPUS OM-D E-M5)で撮影し、Adobe Photoshop 2021で処理した。
III-2.結果
III-2-1.CYO1の標的一塩基置換
 11DASのcyo1変異体と野生型(図24a)およびnTALECDを導入したT1形質転換体の7DASの子葉の表現型(図24b-d)の代表例を図25に示す。cyo1変異体は、子葉のみがアルビノになる表現型を示す。
 cyo1機能喪失型は劣性変異であるため、多くのT1個体で全体的(図24c)または部分的(図24d)にバイアレリックあるいはホモに機能喪失型の変異が導入されていることが示唆された。
 CYO1の標的配列中の塩基配列を、サンガー法で配列決定を行った。その結果、塩基配列中の特定のCについて高効率(>40%)で塩基置換が生じており、かつT1世代で容易にバイアレリック/ホモ変異体を獲得できることが確認された(図25)。
III-2-2.PKT31およびMSH1の標的一塩基置換
 次に、CYO1とは異なる標的配列としてPKT31およびMSH1を選択して、両アレルのターゲットウィンドウ内の塩基配列についてサンガー法で配列決定を行った。
 その結果、C10~C11またはG4~G6の塩基が編集されたことが確認された(図26)。従って、CYO1以外の標的配列においても、安定的に一塩基編集が可能であること、これら全てにおいても標的とした一塩基編集のバイアレリック/ホモ変異体をT1世代で容易に獲得できることが明らかになった。
III-2-3.ターゲットウィンドウ近傍におけるオフターゲット編集
 本発明の方法を使用して一塩基置換を行う場合、標的塩基以外の編集、すなわちオフターゲット編集が生じる程度について検討を行った。
 その結果、オフターゲット塩基置換は発生するものの(すべてTC→TT)、その頻度は低く、インデル(塩基配列の挿入および/または欠失)は標的配列周辺には見られなかった(図27)。
 本発明にかかる方法を使用することにより、植物ゲノム(核ゲノム、色素体ゲノムおよびミトコンドリアゲノム)の一塩基編集が可能になる。従って、本発明にかかる方法を使用して改変した植物は、食料生産の増強やバイオ燃料の生産等の改善に寄与することが期待される。

Claims (9)

  1.  植物ゲノムDNAの編集方法であって、
    該ゲノムDNA上の標的塩基を他の塩基に改変することを含む、前記方法。
  2.  前記改変が、シチジンデアミナーゼにより行われる、請求項1に記載の方法。
  3.  前記シチジンデアミナーゼが、以下の(a)または(b)に記載のいずれかのタンパク質であることを特徴とする請求項2に記載の方法;
    (a)配列番号35で表されるアミノ酸配列からなるタンパク質、
    (b)配列番号35で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ、シチジンデアミナーゼ活性を有するタンパク質。
  4.  前記シチジンデアミナーゼのN末端側一部分とそれ以外の部分が、各々、別々のTALE(transcription activator-like effector)と融合していることを特徴とする、請求項3に記載の方法。
  5.  前記シチジンデアミナーゼの一部または全部とTALEとの融合体に、核移行シグナルペプチド、色素体移行シグナルペプチドまたはミトコンドリア移行シグナルペプチドを付加した該融合体のコードDNAを、植物細胞内の核ゲノムに導入し、該シグナルペプチドを付加した融合体を植物細胞内で発現させることを含む、請求項3または請求項4に記載の方法。
  6.  請求項1から請求項5までのいずれか1項に記載の方法により編集された植物ゲノムDNAを含む、植物ゲノム。
  7.  請求項6に記載の植物ゲノムを有する植物細胞。
  8.  請求項7に記載の植物細胞を含む種子または植物。
  9.  植物ゲノムが編集された植物の作製方法であって、
    請求項1から請求項5までのいずれか1項に記載の植物ゲノムDNA編集方法で植物ゲノムを編集することを含む、前記方法。

     
PCT/JP2022/002162 2021-01-22 2022-01-21 植物ゲノムの編集方法 WO2022158561A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022576758A JPWO2022158561A1 (ja) 2021-01-22 2022-01-21
US18/272,978 US20240218384A1 (en) 2021-01-22 2022-01-21 Method for editing plant genome

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021009001 2021-01-22
JP2021-009001 2021-01-22
US202163285223P 2021-12-02 2021-12-02
US63/285,223 2021-12-02

Publications (1)

Publication Number Publication Date
WO2022158561A1 true WO2022158561A1 (ja) 2022-07-28

Family

ID=82548780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002162 WO2022158561A1 (ja) 2021-01-22 2022-01-21 植物ゲノムの編集方法

Country Status (3)

Country Link
US (1) US20240218384A1 (ja)
JP (1) JPWO2022158561A1 (ja)
WO (1) WO2022158561A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053550A1 (ja) * 2022-09-09 2024-03-14 国立大学法人 東京大学 ゲノム編集技術
WO2024181386A1 (ja) * 2023-03-01 2024-09-06 国立大学法人 東京大学 ゲノムへのランダム変異導入法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072399A1 (ja) * 2014-11-04 2016-05-12 国立大学法人神戸大学 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体
WO2017090761A1 (ja) * 2015-11-27 2017-06-01 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換する、単子葉植物のゲノム配列の変換方法、及びそれに用いる分子複合体
WO2021155065A1 (en) * 2020-01-28 2021-08-05 The Broad Institute, Inc. Base editors, compositions, and methods for modifying the mitochondrial genome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072399A1 (ja) * 2014-11-04 2016-05-12 国立大学法人神戸大学 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体
WO2017090761A1 (ja) * 2015-11-27 2017-06-01 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換する、単子葉植物のゲノム配列の変換方法、及びそれに用いる分子複合体
WO2021155065A1 (en) * 2020-01-28 2021-08-05 The Broad Institute, Inc. Base editors, compositions, and methods for modifying the mitochondrial genome

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARIMURA, SHINICHI: "Plant Organelle Genome Editing Technology: Invitation to Joint Research", IKUSHUGAKU KENKYU - BREEDING RESEARCH, NIHON IKUSHU GAKKAI, TOKYO, JP, vol. 23, no. Suppl. 2, 23 September 2021 (2021-09-23), JP , pages 86, XP009538485, ISSN: 1344-7629 *
KANG BEUM-CHANG; BAE SU-JI; LEE SEONGHYUN; LEE JEONG SUN; KIM ANNIE; LEE HYUNJI; BAEK GAYOUNG; SEO HUIYUN; KIM JIHUN; KIM JIN-SOO: "Chloroplast and mitochondrial DNA editing in plants", NATURE PLANTS, NATURE PUBLISHING GROUP UK, LONDON, vol. 7, no. 7, 1 July 2021 (2021-07-01), London , pages 899 - 905, XP037512448, DOI: 10.1038/s41477-021-00943-9 *
LI RIQING, SI NIAN CHAR, BO LIU, HUA LIU, XIANRAN LI, BING YANG : "High-efficiency plastome base editing in rice with TAL cytosine deaminase", MOLECULAR PLANT, vol. 14, no. 9, 12 July 2021 (2021-07-12), pages 1412 - 1414, XP055953658, DOI: 10.1016/j.molp.2021.07.007 *
MOK BEVERLY Y.; DE MORAES MARCOS H.; ZENG JUN; BOSCH DUSTIN E.; KOTRYS ANNA V.; RAGURAM ADITYA; HSU FOSHENG; RADEY MATTHEW C.; PET: "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 583, no. 7817, 8 July 2020 (2020-07-08), London, pages 631 - 637, XP037200062, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2477-4 *
NAKANO, ISSEI ET AL.: "Target Base Editing in the Plant Organelle Genome", IKUSHUGAKU KENKYU - BREEDING RESEARCH, NIHON IKUSHU GAKKAI, TOKYO, JP, vol. 23, no. Suppl. 2, 23 September 2021 (2021-09-23), JP , pages 30, XP009538486, ISSN: 1344-7629 *
NAKAZATO ISSEI; OKUNO MIKI; YAMAMOTO HIROSHI; TAMURA YOSHIKO; ITOH TAKEHIKO; SHIKANAI TOSHIHARU; TAKANASHI HIDEKI; TSUTSUMI NOBUHI: "Targeted base editing in the plastid genome of Arabidopsis thaliana", NATURE PLANTS, NATURE PUBLISHING GROUP UK, LONDON, vol. 7, no. 7, 1 July 2021 (2021-07-01), London , pages 906 - 913, XP037512453, DOI: 10.1038/s41477-021-00954-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053550A1 (ja) * 2022-09-09 2024-03-14 国立大学法人 東京大学 ゲノム編集技術
WO2024181386A1 (ja) * 2023-03-01 2024-09-06 国立大学法人 東京大学 ゲノムへのランダム変異導入法

Also Published As

Publication number Publication date
US20240218384A1 (en) 2024-07-04
JPWO2022158561A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6777549B2 (ja) オリゴヌクレオチド仲介型遺伝子修復を使用した標的遺伝子修飾の効率を高めるための方法および組成物
WO2022158561A1 (ja) 植物ゲノムの編集方法
US20230365984A1 (en) Compositions and methods for increasing shelf-life of banana
González et al. Comparative potato genome editing: Agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene
US11773398B2 (en) Modified excisable 5307 maize transgenic locus lacking a selectable marker
US20220372523A1 (en) Organelle genome modification
US20220364105A1 (en) Inir12 transgenic maize
Rather et al. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato
US11326177B2 (en) INIR12 transgenic maize
US11369073B2 (en) INIR12 transgenic maize
US11359210B2 (en) INIR12 transgenic maize
US20220030822A1 (en) Inht26 transgenic soybean
CA3188277A1 (en) Inir17 transgenic maize
Zhou et al. Targeted A-to-G base editing in the organellar genomes of Arabidopsis with monomeric programmable deaminases
WO2023130031A2 (en) Inot1824 transgenic maize
Shan Bridging the Genetic and Phenotypic Consequences of Polyploidy: Transcriptome, Methylome, and Transgenic Studies of Tragopogon (Asteraceae)
WO2023230459A2 (en) Compositions and methods for targeting donor polynucelotides in soybean genomic loci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742680

Country of ref document: EP

Kind code of ref document: A1