WO2022158473A1 - Fuel reforming catalyst, fuel reforming method, and fuel reforming device - Google Patents

Fuel reforming catalyst, fuel reforming method, and fuel reforming device Download PDF

Info

Publication number
WO2022158473A1
WO2022158473A1 PCT/JP2022/001721 JP2022001721W WO2022158473A1 WO 2022158473 A1 WO2022158473 A1 WO 2022158473A1 JP 2022001721 W JP2022001721 W JP 2022001721W WO 2022158473 A1 WO2022158473 A1 WO 2022158473A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
catalyst
fuel reforming
reforming catalyst
component
Prior art date
Application number
PCT/JP2022/001721
Other languages
French (fr)
Japanese (ja)
Inventor
紘一郎 本田
裕基 中山
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to JP2022576708A priority Critical patent/JPWO2022158473A1/ja
Publication of WO2022158473A1 publication Critical patent/WO2022158473A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst

Definitions

  • the present invention relates to a fuel reforming catalyst, and more particularly, a fuel reforming catalyst, a fuel reforming method, and a fuel reforming method for reforming a fuel containing hydrocarbons with steam to reform a synthesis gas containing hydrogen. Concerning quality equipment.
  • an exhaust gas recirculation (EGR) system takes in part of the exhaust gas after combustion and reintakes it in order to reduce nitrogen oxides and improve fuel efficiency.
  • EGR exhaust gas recirculation
  • a fuel reforming engine system in which a heat exchange type fuel reformer and a fuel supply means (fuel injection valve) are combined with an EGR system, and a part of the fuel is passed through the fuel reformer and then burned in the cylinder. is proposed.
  • a fuel reforming engine system has the advantage of greatly improved thermal efficiency compared to a conventional EGR system. This utilizes H 2 O (water vapor) contained in the exhaust gas from the internal combustion engine and the heat of the exhaust gas to generate hydrogen and carbon monoxide from a portion of the fuel through a steam reforming reaction. It improves thermal efficiency by supplying it together with fuel to the internal combustion engine.
  • the heat of the exhaust gas is used for the endothermic reaction of the steam reforming reaction.
  • active species used in the steam reforming reaction include rhodium (Rh), platinum (Pt), palladium (Pd), ), ruthenium (Ru), iridium (Ir), and other highly active platinum group metals are used as reforming catalysts.
  • Patent Document 1 discloses the formula: A′ 1-x A′′ x B′ 1-y B′′ y O 3 (wherein A′ is lanthanum (La) and/or cerium (Ce), A " is at least one of lanthanum, calcium (Ca), samarium (Sm), cerium, strontium (Sr), barium (Ba), and praseodymium (Pr), and B' is cobalt (Co), iron (Fe), At least one of manganese (Mn) and gadolinium (Gd), and B′′ is ruthenium (Ru) and rhodium (Rh).) is used as a fuel reforming catalyst. is proposed.
  • A′ is lanthanum (La) and/or cerium (Ce)
  • a " is at least one of lanthanum, calcium (Ca), samarium (Sm), cerium, strontium (Sr), barium (Ba), and praseodymium (Pr)
  • B' is cobal
  • Patent Document 2 proposes a steam reforming catalyst in which Ru and Ir and/or Rh are carried on a carrier whose main component is alumina.
  • Patent Document 3 discloses that at least one active ingredient A selected from Pt, Pd, Ir, Rh and Ru, molybdenum (Mo), vanadium (V), tungsten (W), chromium (Cr) and rhenium (Re) , Co, Ce, and Fe, an oxide thereof, an alloy thereof, or a mixture thereof.
  • active ingredient A selected from Pt, Pd, Ir, Rh and Ru, molybdenum (Mo), vanadium (V), tungsten (W), chromium (Cr) and rhenium (Re) , Co, Ce, and Fe, an oxide thereof, an alloy thereof, or a mixture thereof.
  • Patent Document 4 a composite oxide support containing alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), and a rare earth oxide other than ceria supports a platinum group metal.
  • a steam reforming catalyst is proposed in which the surface composition of aluminum in the composite oxide support is 1.5 times or more the aluminum composition of the entire support.
  • Patent Document 5 proposes a steam reforming catalyst in which rhodium, which is an active metal species, is supported on a ceria-zirconia-alumina composite oxide support, and discloses that steam reforming of E20 gasoline was performed.
  • Patent Document 1 JP-A-2001-224963
  • Patent Document 2 JP-A-2008-55252
  • Patent Document 3 JP-A-2008-149313
  • Patent Document 4 JP-A-2016-165712
  • Patent Document 5 JP-A-2008-149313 2018-143988 publication
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a fuel reforming catalyst that has excellent reforming activity and excellent durability against deterioration factors such as catalyst poisoning. Another object of the present invention is to provide a fuel reforming method and a fuel reforming engine system using a fuel reforming catalyst.
  • the present inventors have found that instead of using a conventionally used platinum group compound such as rhodium alone as a metal active species of a reforming fuel catalyst, platinum group
  • platinum group The present inventors have noticed that the coexistence of a compound and a co-catalyst component such as a rare earth compound as a metal active species significantly improves the reforming activity as compared with a conventional single platinum group catalyst.
  • a co-catalyst component such as a rare earth compound as a metal active species significantly improves the reforming activity as compared with a conventional single platinum group catalyst.
  • the gist of the present invention is as follows.
  • a fuel reforming catalyst for reforming a fuel containing hydrocarbons into a synthesis gas containing hydrogen, a catalyst component and a co-catalyst component containing a platinum group metal element; a carrier that supports the catalyst component and the co-catalyst component; with A fuel reforming catalyst, wherein the promoter component comprises at least one element selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium.
  • the promoter component contains at least one element selected from the group consisting of scandium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium;
  • the fuel reforming catalyst described [3] The fuel reforming catalyst according to [1] or [2], wherein the promoter component is supported in an amount of 50 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the catalyst component. .
  • a fuel reforming engine system comprising reforming and adding the resulting hydrogen and carbon monoxide to a fuel supplied to an internal combustion engine.
  • the present invention it is possible to realize a fuel reforming catalyst that has high reforming activity at low temperatures (about 400°C to 600°C) and has excellent durability against deterioration factors such as catalyst poisoning.
  • fuel can be efficiently reformed even at low temperatures (about 400° C. to 600° C.), and fuel containing sulfur components can also be efficiently reformed. becomes possible.
  • a fuel reforming catalyst is a fuel reforming catalyst for reforming a fuel containing hydrocarbons into a synthesis gas containing hydrogen, and comprises a catalyst component containing a platinum group metal element and an assistant. It comprises a catalyst component and a carrier supporting the catalyst component and the co-catalyst component.
  • the catalyst component and the co-catalyst component supported on the carrier may be collectively referred to as "catalyst active species”.
  • a member holding a fuel reforming catalyst that is, a catalyst comprising a catalyst component, a co-catalyst component, and a carrier supporting both components is sometimes called a "base material".
  • the catalyst component used in the fuel reforming catalyst according to the invention comprises a platinum group metal element.
  • platinum group metal elements include ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). From the viewpoint of activity, Ru, Rh, Pd and Pt are preferred, and Rh and Pt are more preferred. These elements may be used alone or in combination of two or more.
  • Examples of combining two or more platinum group elements are not particularly limited, but a combination of two or more platinum group elements with excellent oxidation activity, a combination of two or more platinum group elements with excellent reduction activity, and platinum with excellent oxidation activity.
  • a combination of a group element and a platinum group element having excellent reduction activity can be mentioned.
  • a combination of a platinum group element having excellent oxidation activity and a platinum group element having excellent reduction activity is preferable as one aspect of the synergistic effect.
  • the combination of Pd and Rh, the combination of Pt and Rh, and the combination of Ru and Rh are preferred, and among these, the combination of Pt and Rh is more preferred.
  • the ratio is not particularly limited, but the platinum group metal element other than Rh is usually 1 part by mass or more, preferably 5 parts by mass, per 100 parts by mass of Rh. Above, it is more preferably 10 parts by mass or more, while the upper limit is usually 500 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less.
  • the ratio is within the above range, the performance as a fuel reforming catalyst is improved, and deactivation by poisoning substances such as sulfur can be suppressed.
  • the fuel reforming catalyst according to the present invention is characterized by containing, as catalytically active species, a promoter component selected from specific elements in addition to the catalyst component selected from the platinum group metal elements described above.
  • a promoter component selected from specific elements in addition to the catalyst component selected from the platinum group metal elements described above.
  • conventional platinum in addition to the platinum group metal element that has been conventionally used as a catalytically active species of a fuel reforming catalyst, by coexisting a specific element described later as a metal active species (promoter component), conventional platinum Remarkably improved reforming activity compared to a single platinum group catalyst, and surprisingly, it maintains stable reforming activity for a long period of time even in the presence of sulfur, which is a catalyst poison for platinum group catalysts. be able to. Although the reason for this is not clear, it is considered as follows.
  • the co-catalyst component exerts an electronic interaction with the catalyst component, and the catalyst component (platinum group element) is likely to act.
  • the catalyst component platinum group element
  • Rh is likely to be reduced by the co-catalyst component, and the catalytic activity is considered to be improved compared to the case where Rh alone is used as the catalyst component.
  • the co-catalyst component has a carrier structure
  • the presence of the co-catalyst component and the co-catalyst component on the surface of the carrier allows the co-catalyst component acts as acid and base sites on the carrier, and acts as a buffer for carbon deposition, which tends to progress at acid sites, and sulfur poisoning, which tends to progress at basic sites, and improves the durability of the catalyst component.
  • the above-mentioned specific element as a co-catalyst component exhibits the properties of both acids and bases in addition to favorable electronic interaction with the catalyst component.
  • co-catalyst components examples include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd).
  • Nd is particularly preferable, from the viewpoint of hydrogen generating ability and deactivation resistance due to sulfur content.
  • cerium is preferable for catalytic activity, long-term durability is a problem depending on the type of fuel (especially when even a small amount of sulfur is contained).
  • the ratio of the catalyst component and the co-catalyst component is not particularly limited, but the co-catalyst component is usually 10 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more with respect to 100 parts by mass of the catalyst component. , the upper limit is usually 2000 parts by mass or less, preferably 1000 parts by mass or less.
  • the ratio of both is within the above range, the catalytic activity (fuel reforming ability) of the catalyst component selected from platinum group metal elements is improved, and deactivation by poisoning substances such as sulfur can be suppressed.
  • the blending ratio means the total sum.
  • the amount of the above-described catalytically active species supported is not particularly limited, and may be appropriately supported according to the desired design conditions, cost requirements, etc., but it is 0.05 mass per 100 parts by mass of the support in terms of metal. It is preferably from 0.1 part to 20 parts by mass, and more preferably from 0.1 part by mass to 15 parts by mass. If the supported amount of the catalytically active species is small, there is a tendency that sufficient catalytic activity cannot be obtained in the steam reforming reaction of the fuel composed of hydrocarbons. There is a tendency that the catalytic activity per unit amount of active species does not improve. Considering both catalyst performance and cost, the amount of supported catalytically active species is more preferably 0.4 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the carrier.
  • the catalytically active species (catalyst component and co-catalyst component) supported on the carrier are preferably supported in the form of particles.
  • the particle diameter of the catalytically active species is preferably 1 to 100 nm, more preferably 2 to 50 nm, from the viewpoint of catalytic activity. If the particle size of the catalytically active species is too small, it tends to become an oxide state that does not exhibit catalytic activity. Activity tends to decrease.
  • the catalytically active species have a predetermined particle size as described above, for example, a catalyst component supply source (for example, platinum group metal nitrate or acetate) and a promoter component supply source (for example , Nitrate or acetate of the above-described predetermined element), impregnating the support with a predetermined amount of the solution, and then calcining the support to support the catalyst on the support.
  • the particle diameter of the catalyst particles can be adjusted by controlling the concentration of the solution (concentration of catalytically active species), the impregnation amount of the solution, and the calcination conditions (temperature and time).
  • the fuel reforming catalyst according to the present invention has the above-described catalytically active species supported on a carrier, but may contain other components other than the catalytically active species.
  • the ratio of the catalytically active species is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly 95% by mass or more (100% by mass including).
  • the carrier for supporting the catalytically active species described above is not particularly limited, and known carriers can be used, but inorganic oxides can be preferably used from the viewpoint of durability.
  • examples include alumina (Al 2 O 3 ) such as ⁇ , ⁇ , ⁇ , ⁇ , zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), and ceria (CeO 2 ). These may be used singly or in combination of two or more, or may be composite oxides thereof.
  • alumina is preferably used from the viewpoint of durability.
  • the carrier used in the fuel reforming catalyst of the present invention is preferably a porous body.
  • the porous body may have a BET specific surface area of 30 m 2 /g to 600 m 2 /g.
  • a carrier is produced by a conventionally known method as described later.
  • a slurry is prepared by kneading a catalytically active species component, a carrier component, a binder, a pore-forming agent, a solvent, etc., using a ball mill or the like, and after molding into a desired shape, drying and firing are carried out to obtain a pore-forming agent and a slurry.
  • the binder is removed and pores are formed in the carrier.
  • the average pore diameter is preferably 0.5 nm or more and 100 nm or less, more preferably 1 nm or more and 50 nm or less, from the viewpoint of diffusion of the fuel gas and contact with the catalyst. More preferably, the thickness is 2 nm or more and 10 nm or less. This is because if the pore diameter in the carrier is too large, the number of times of contact with the catalyst is reduced and the reaction is difficult to proceed, and if the pore diameter is too small, the fuel gas is difficult to diffuse and the reaction is similarly difficult to proceed.
  • the average pore size is determined by measuring the pore size of 10 arbitrarily selected individual carriers using a nitrogen adsorption type pore distribution meter or the like, and calculating the average value of these 10 pore sizes. can be obtained by
  • the fuel reforming catalyst of the present invention can be used alone, it may be held on a suitable substrate.
  • the base material is not particularly limited, and known ones can be used.
  • the above inorganic or metallic materials may be used singly or in combination of two or more.
  • alumina, silica, mullite, cordierite, stainless steel, and silicon carbide are preferred, and cordierite, stainless steel, and silicon carbide are more preferred.
  • preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 99% by mass or more (including 100% by mass) of the entire substrate is made of the above material. .
  • the base material may contain other components with the above-described material as a main component.
  • Fe 2 O 3 , SiO 2 , Na 2 O, etc. which are known to improve the heat resistance of the carrier, may be added to the above materials.
  • the shape of the substrate is not particularly limited, and various shapes such as spherical, cylindrical, bead, pellet, prismatic, tablet, needle, film, honeycomb monolith, etc. can be used depending on the application. can do. Among these, beads, pellets, and honeycomb monoliths are preferred. Therefore, it is particularly preferable that the substrate according to a preferred embodiment of the present invention is made of alumina, silica, mullite, cordierite, or stainless steel, and has a bead, pellet, or honeycomb monolith shape. I can say
  • the average diameter of the substrate is preferably 0.5 mm or more and 10 mm or less, and 0.7 mm or more, from the viewpoint of handleability and fluidity in a container. It is more preferably 5 mm or less, and even more preferably 1 mm or more and 3 mm or less.
  • the average diameter (diameter) of the carrier is preferably 1 mm or more and 10 mm or less, and more preferably 1 mm or more and 5 mm or less, from the viewpoint of handling properties and fluidity in the container. is more preferred.
  • the average diameter of the carrier is obtained by observing with an optical microscope or the like, measuring the major and minor diameters of 100 arbitrarily selected carriers (catalyst particles), and calculating the average of the major and minor diameters as the particle diameter. , can be obtained by calculating the average particle size of 100 individual particles.
  • the fuel reforming catalyst described above can be obtained by supporting a catalytically active species component (catalyst component and cocatalyst component) on a carrier.
  • the supporting method is not particularly limited, and conventionally known methods can be applied.
  • a carrier is impregnated with a mixed catalyst solution containing the nitrate or acetate of the above-described predetermined element, and then reduction or calcination is performed to precipitate catalytically active species components on the carrier in the form of particles. can be done.
  • the catalyst component supply source is first impregnated into the carrier, and then the support is impregnated with the promoter component supply source, and then the two are supported by reduction or calcination.
  • the promoter component supply source is first impregnated. may be impregnated into the carrier, and then the catalyst component supply source may be impregnated into the carrier and then reduced or calcined to support both.
  • a fuel reforming catalyst can be produced by performing treatments such as washing, calcination, and hydrogen reduction.
  • the above platinum group metal element (catalyst component) or rare earth element or alkaline earth element (promoter component) acetate, carbonate, nitrate, ammonium salt, citrate, dinitro Diammine salts and the like or their complexes can be mentioned.
  • the platinum group metal element is rhodium, rhodium (Rh) acetates, carbonates, nitrates, ammonium salts, citrates, dinitrodiamine salts, etc. or their of which nitrates are preferred.
  • platinum group metal element is platinum
  • the fuel reforming catalyst of the present invention when used in a fuel reforming device for internal combustion engines, for example, it is preferable to use the fuel reforming catalyst in a state in which it is held in a substrate such as a honeycomb monolith.
  • a method for manufacturing a fuel reforming honeycomb catalyst for an internal combustion engine using the fuel reforming catalyst of the present invention will be described below.
  • a metal salt of a catalyst component, a metal salt of a co-catalyst component, a carrier, and optionally a binder, a dispersant and a solvent are mixed to prepare a slurry solution, and the slurry solution is applied to a honeycomb monolith by a wash coating method or the like.
  • a honeycomb catalyst holding the fuel reforming catalyst can be obtained by impregnating the substrate with the slurry solution and firing the substrate impregnated with the slurry solution.
  • the solvent for the slurry solution is not particularly limited, but examples include solvents such as water (preferably pure water such as ion-exchanged water and distilled water). Although the concentration of such a metal salt solution is not particularly limited, it is preferably 0.001 mol/L or more and 0.5 mol/L or less as ions of the metal salt.
  • the temperature at which the base material impregnated with the slurry solution is fired is not particularly limited, but is usually 200°C or higher and 800°C or lower. If the calcination temperature is too low, the supply source of the catalytically active species element will not be sufficiently thermally decomposed, making it difficult to enter a metal state exhibiting catalytic activity, which tends to lower the activity. On the other hand, if the calcination temperature is too high, the supported catalytically active species element tends to become coarse particles and the catalytic activity in the steam reforming reaction of the fuel composed of hydrocarbons tends to decrease.
  • the firing time can also be adjusted as appropriate, but it is usually preferably 0.1 hours or more and 100 hours or less. If the calcination time is too short, the source material of the catalytically active species element will not be sufficiently thermally decomposed, and it will be difficult to change to a metallic state that exhibits catalytic activity, so the activity tends to decrease. On the other hand, even if the firing time is longer than necessary, no effect can be obtained, and the cost and the production amount per unit time tend to decrease.
  • the amount of supported catalytically active species can be measured with an ICP emission spectrometer.
  • the promoter component can be supported in an amount of 50 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the catalyst component.
  • the fuel reforming catalyst according to the present invention can be used not only for EGR applications in internal combustion engines, but also as a single catalyst as it is, and can be used as a catalyst in various devices involved in steam reforming reactions.
  • it can be applied to a hydrogen plant such as an oil refinery, a hydrogen production device for a fuel cell in a stationary distributed power source, a hydrogen production device from natural gas, and the like.
  • Hydrocarbons can be steam reformed by using the fuel reforming catalyst according to the present invention. That is, a hydrocarbon containing fuel can be contacted with a fuel reforming catalyst in the presence of water vapor to produce hydrogen and carbon monoxide.
  • the fuel containing hydrocarbons and steam may be independently supplied to the reactor, or they may be mixed in advance and then supplied to the reactor.
  • steam it is preferable to use a method of providing the reactor with the exhaust gas after combustion with hydrogen after reforming.
  • the hydrocarbons contained in the fuel are not particularly limited, and examples thereof include alkanes, alkenes, alkynes, aromatic compounds, alcohols, aldehydes, etc.
  • methane Linear or branched saturated aliphatic hydrocarbons such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, and decane; alicyclic saturated hydrocarbons such as cyclohexane, methylcyclohexane, and cyclooctane;
  • gaseous or liquid hydrocarbons having 2 to 12 carbon atoms such as polycyclic aromatic hydrocarbons are preferable, and hydrocarbons having 2 to 8 carbon atoms are more preferable.
  • saturated aliphatic hydrocarbons are preferred, and 50% or more of the fuel is more preferably saturated aliphatic hydrocarbons.
  • biomass fuel composed of hydrocarbons such as ethanol, gasoline, diesel fuel (light oil), natural gas, hydrocarbon gas, and biodiesel can be used.
  • a mixed fuel of ethanol and gasoline can be used.
  • ethanol has a high octane number
  • gasoline with a low octane number (for example, in the range of 30 to 85)
  • ethanol an octane number in the range of 80 to 100, which is equivalent to that of ordinary gasoline fuel, can be obtained.
  • the fuel reforming method of the present invention is used from the viewpoint that it is liquid at normal temperature, is easy to handle, has high safety, has high affinity with water (steam), and is easy to obtain.
  • natural gas methanol, ethanol and gasoline, and more preferably ethanol, gasoline and mixed fuels of ethanol and gasoline.
  • the mixing ratio of the fuel containing hydrocarbons and the water vapor contained in the exhaust gas is not particularly limited.
  • the molar ratio of water vapor to carbon (S/C) is preferably 0.2 to 10, more preferably 0.4 to 2.
  • the temperature of the reforming reaction is preferably 250-800°C, more preferably 350-700°C.
  • a fuel containing hydrocarbons can be reformed even at a low temperature of 400° C. or less, which has conventionally been difficult to steam reform a fuel containing hydrocarbons due to low catalytic activity. becomes possible.
  • by supplying the exhaust gas after combustion of the internal combustion engine to the reactor as a heat source it becomes unnecessary to prepare a separate heat source, which is advantageous in terms of structure and cost.
  • the fuel reforming catalyst according to the present invention is excellent in resistance to sulfur poisoning, it can exhibit stable catalytic performance over a long period of time even when the fuel contains a sulfur component.
  • Sulfur components contained in the fuel include, for example, S, S 2 ⁇ , SO, SO 2 , SO 3 , SO 4 2 ⁇ and compounds containing S.
  • Main sources of sulfur components include contact with sulfur components contained in fuel and sulfur components contained in exhaust gas after fuel combustion.
  • the EGR system which uses gasoline as a fuel and exhaust gas from an internal combustion engine as a steam and heat source, has a simple reformer structure and is advantageous in terms of cost, but the amount of contact between the fuel reforming catalyst and the sulfur content also increases. , the problem of reduced catalyst life tends to occur.
  • the fuel reforming method using the fuel reforming catalyst according to the present invention can improve the thermal efficiency by combining it with the EGR system. For example, by using the steam contained in the post-combustion exhaust gas from an internal combustion engine, the fuel containing hydrocarbons is brought into contact with the fuel reforming catalyst according to the present invention in the presence of steam, thereby partially or entirely converting the fuel. By reforming into hydrogen and carbon monoxide and adding the obtained hydrogen and carbon monoxide to the fuel supplied to the internal combustion engine, the thermal efficiency of the engine can be improved.
  • Example 1 ⁇ -alumina powder (average particle size: 28 ⁇ m, BET specific surface area: 141 m 2 /g) was impregnated with an aqueous solution of neodymium nitrate and dried. Next, ⁇ -alumina powder impregnated with an aqueous solution of neodymium nitrate (approximately 25 wt% in terms of Nd 2 O 3 ) was impregnated with an aqueous solution of rhodium nitrate (approximately 7 wt% in terms of Rh). After baking for 30 minutes, a rhodium-neodymium-supported alumina precursor was obtained.
  • the amount of hydrogen generated is relative to the amount of hydrogen generated by the same operation using a reaction tube filled with powder obtained in the same manner as in Example 1 except that only rhodium was used as a catalytically active species. value.
  • the measured hydrogen generation amount was as shown in Table 1 below.
  • Example 1 A catalyst-supporting alumina powder was prepared in the same manner as in Example 1, except that the ⁇ -alumina powder was not impregnated with the aqueous solution of neodymium nitrate, and the reaction tube was filled with the powder to measure the amount of hydrogen generated. The evaluation results were as shown in Table 1 below.
  • Examples 2 to 9 Catalyst-supported alumina powder was prepared in the same manner as in Example 1 except that the neodymium nitrate aqueous solution was changed to the metal nitrate aqueous solution shown in Table 1 and the supported amount was as shown in Table 1, and the reaction tube was filled with hydrogen generation amount. was measured.
  • the catalyst components, co-catalyst support amount, and hydrogen generation amount of each catalyst were as shown in Table 1 below.
  • ⁇ -alumina powder (average particle size: 28 ⁇ m, BET specific surface area: 141 m 2 /g) was impregnated with an aqueous solution of neodymium nitrate (approximately 25 wt % in terms of Nd 2 O 3 ) and dried.
  • neodymium nitrate approximately 25 wt % in terms of Nd 2 O 3
  • the ⁇ -alumina powder impregnated with the neodymium nitrate aqueous solution was impregnated with a platinum salt solution (manufactured by NECC, product name: A-solt) and dried.
  • the ⁇ -alumina powder impregnated with the platinum salt aqueous solution was impregnated with the rhodium nitrate aqueous solution described above and dried in the same manner as in Example 1 to prepare a catalyst-supporting alumina powder, which was filled in a reaction tube to generate hydrogen. Quantitative measurements were made.
  • the catalyst components, co-catalyst support amount, and hydrogen generation amount of each catalyst were as shown in Table 1 below.
  • Example 13 In Example 1, by changing the impregnation amount of the solution to the carrier, a catalyst-supporting alumina powder with a catalyst-supporting amount of 1.33% by mass of rhodium and 4.0% by mass of neodymium was prepared, and the obtained rhodium- Nitric acid and water were added to the neodymium-supported alumina powder to adjust the pH to 4 to 5, followed by wet pulverization with a ball mill to an average particle size of 12 ⁇ m to prepare a slurry solution of the catalyst-supported alumina powder.
  • honeycomb base material made of cordierite (number of cells/mil thickness: 600 cpsi/3.5 mil) was prepared, and the end of the honeycomb base material was immersed in the slurry solution, and from the opposite end side of the honeycomb base material, Vacuum suction was applied to impregnate the substrate surface with the slurry solution (wash coat amount: 150 g/L).
  • the honeycomb base material impregnated with the slurry solution in this manner was dried at 150° C. and fired at 450° C. in an air atmosphere to obtain a catalyst-carrying honeycomb base material.
  • the amount of catalyst supported on the catalyst-supported honeycomb substrate was 2.0 g/L for Rh and 6.0 g/L for neodymium.
  • Example 2 A catalyst-supporting honeycomb substrate was produced in the same manner as in Example 13 except that a catalyst-supporting alumina powder slurry with a catalyst-supporting amount of 2% by mass of rhodium was used, and the washcoat amount was 100 g/L. We evaluated the amount of hydrogen generated over time. The amounts of hydrogen generated in Example 13 and Comparative Example 2 at 0 seconds were almost the same.
  • Example 13 Even when the supported catalyst (Example 13) is used for reforming a fuel containing sulfur, compared with a conventional supported catalyst (equivalent to Comparative Example 2) consisting only of a platinum group metal element, It can be seen that the decrease in the amount of hydrogen generated is gradual, and the durability against deterioration factors such as catalyst poisoning is excellent.

Abstract

[Problem] To provide a fuel reforming catalyst having excellent reforming activity and excellent durability against deterioration factors such as catalyst poisoning. [Solution] This fuel reforming catalyst for reforming a hydrocarbon-containing fuel into a hydrogen-containing synthesis gas comprises: a catalyst component containing a platinum group metal element and a promoter component; and a carrier for supporting the catalyst component and the promoter component, wherein the promoter component contains at least one element selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, barium, nickel and strontium.

Description

燃料改質触媒、燃料改質方法および燃料改質装置Fuel reforming catalyst, fuel reforming method and fuel reformer 関連出願の相互参照Cross-reference to related applications
 本願は、2021年1月20日に出願された日本国特許出願2021-7352号、および2021年1月20日に出願された日本国特許出願2021-7363号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。 This application claims priority based on Japanese Patent Application No. 2021-7352 filed on January 20, 2021 and Japanese Patent Application No. 2021-7363 filed on January 20, 2021. , the entire disclosures of which are incorporated herein by reference.
 本発明は、燃料改質触媒に関し、より詳細には、炭化水素を含む燃料を水蒸気により改質して水素を含む合成ガスに改質するための燃料改質触媒、燃料改質方法および燃料改質装置に関する。 TECHNICAL FIELD The present invention relates to a fuel reforming catalyst, and more particularly, a fuel reforming catalyst, a fuel reforming method, and a fuel reforming method for reforming a fuel containing hydrocarbons with steam to reform a synthesis gas containing hydrogen. Concerning quality equipment.
 内燃機関において、窒素酸化物の低減や燃費向上のため、燃焼後の排気ガスの一部を取り入れ再度吸気させる排気再循環(EGR)システムが知られている。近年、EGRシステムに熱交換型燃料改質器と燃料供給手段(燃料噴射弁)とを組み合わせて、燃料の一部を燃料改質器に通した後、気筒内で燃焼させる燃料改質エンジンシステムが提案されている。燃料改質エンジンシステムは、通常のEGRシステムに比べて、熱効率が大幅に向上するという利点がある。これは、内燃機関からの排気ガス中に含まれるHO(水蒸気)と排気ガスの熱を利用して、水蒸気改質反応により燃料の一部から水素および一酸化炭素を生成させ、これらを内燃機関に燃料とともに供給することによって熱効率を向上させるものである。なお、排気ガスの熱は、水蒸気改質反応の吸熱反応に利用される。 In an internal combustion engine, an exhaust gas recirculation (EGR) system is known that takes in part of the exhaust gas after combustion and reintakes it in order to reduce nitrogen oxides and improve fuel efficiency. In recent years, a fuel reforming engine system in which a heat exchange type fuel reformer and a fuel supply means (fuel injection valve) are combined with an EGR system, and a part of the fuel is passed through the fuel reformer and then burned in the cylinder. is proposed. A fuel reforming engine system has the advantage of greatly improved thermal efficiency compared to a conventional EGR system. This utilizes H 2 O (water vapor) contained in the exhaust gas from the internal combustion engine and the heat of the exhaust gas to generate hydrogen and carbon monoxide from a portion of the fuel through a steam reforming reaction. It improves thermal efficiency by supplying it together with fuel to the internal combustion engine. The heat of the exhaust gas is used for the endothermic reaction of the steam reforming reaction.
 このような燃料改質エンジンシステムにおいては、燃料改質器の大きさに制限があるため、水蒸気改質反応に使用される活性種には、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、イリジウム(Ir)等の高い活性を有する白金族金属が改質触媒として用いられる。例えば、特許文献1には、式:A’1-xA”B’1-yB”(式中、A’はランタン(La)および/またはセリウム(Ce)であり、A”はランタン、カルシウム(Ca)、サマリウム(Sm)、セリウム、ストロンチウム(Sr)、バリウム(Ba)、プラセオジム(Pr)の少なくとも1種であり、B’はコバルト(Co)、鉄(Fe)、マンガン(Mn)、ガドリウム(Gd)の少なくとも1種であり、B”はルテニウム(Ru)、ロジウム(Rh)である。)で表されるペロブスカイト型複合酸化物を燃料改質用触媒として使用することが提案されている。 In such a fuel reforming engine system, since the size of the fuel reformer is limited, active species used in the steam reforming reaction include rhodium (Rh), platinum (Pt), palladium (Pd), ), ruthenium (Ru), iridium (Ir), and other highly active platinum group metals are used as reforming catalysts. For example, Patent Document 1 discloses the formula: A′ 1-x A″ x B′ 1-y B″ y O 3 (wherein A′ is lanthanum (La) and/or cerium (Ce), A " is at least one of lanthanum, calcium (Ca), samarium (Sm), cerium, strontium (Sr), barium (Ba), and praseodymium (Pr), and B' is cobalt (Co), iron (Fe), At least one of manganese (Mn) and gadolinium (Gd), and B″ is ruthenium (Ru) and rhodium (Rh).) is used as a fuel reforming catalyst. is proposed.
 また、特許文献2は、Ruと、Irおよび/またはRhを、アルミナを主成分とする担体に担持させた水蒸気改質触媒を提案している。 In addition, Patent Document 2 proposes a steam reforming catalyst in which Ru and Ir and/or Rh are carried on a carrier whose main component is alumina.
 また、特許文献3は、Pt、Pd、Ir、RhおよびRuの少なくとも1種の活性成分Aと、モリブデン(Mo)、バナジウム(V)、タングステン(W)、クロム(Cr)、レニウム(Re)、Co、Ce、Feの少なくとも1種の金属、その酸化物、その合金またはその混合物である活性成分Baとを含む金属触媒を担体に担持させた燃料改質反応用触媒を提案している。 In addition, Patent Document 3 discloses that at least one active ingredient A selected from Pt, Pd, Ir, Rh and Ru, molybdenum (Mo), vanadium (V), tungsten (W), chromium (Cr) and rhenium (Re) , Co, Ce, and Fe, an oxide thereof, an alloy thereof, or a mixture thereof.
 また、特許文献4は、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)と、セリア以外の希土類酸化物とを含有する複合酸化物担体に、白金族金属を担持した触媒系において、該複合酸化物担体において、アルミニウムの表面組成が担体全体のアルミニウムの組成の1.5倍以上とした水蒸気改質触媒を提案している。 Further, in Patent Document 4, a composite oxide support containing alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), and a rare earth oxide other than ceria supports a platinum group metal. In the catalyst system, a steam reforming catalyst is proposed in which the surface composition of aluminum in the composite oxide support is 1.5 times or more the aluminum composition of the entire support.
 さらに、特許文献5は、活性金属種であるロジウムをセリア-ジルコニア-アルミナ複合酸化物担体に担持した水蒸気改質触媒を提案しており、E20ガソリンの水蒸気改質を行ったことを開示している。 Furthermore, Patent Document 5 proposes a steam reforming catalyst in which rhodium, which is an active metal species, is supported on a ceria-zirconia-alumina composite oxide support, and discloses that steam reforming of E20 gasoline was performed. there is
  特許文献1:特開2001-224963号公報
  特許文献2:特開2008-55252号公報
  特許文献3:特開2008-149313号公報
  特許文献4:特開2016-165712号公報
  特許文献5:特開2018-143988号公報
Patent Document 1: JP-A-2001-224963 Patent Document 2: JP-A-2008-55252 Patent Document 3: JP-A-2008-149313 Patent Document 4: JP-A-2016-165712 Patent Document 5: JP-A-2008-149313 2018-143988 publication
 一般に自動車等の耐久消費財に用いられる部材には、10年ないし15年の長期にわたり性能低下を起こさないといった実用性が求められる。上記した燃料改質触媒においても、高温環境下や燃料由来の硫黄等の触媒被毒成分の共存する過酷な環境下で優れた性能が保持される必要がある。しかしながら、特許文献1~5に記載された改質燃料触媒は、水蒸気と炭化水素類とから水素および一酸化炭素を生成する活性種としては有用であるものの、改質反応性はまだ改善の余地がある。また、硫黄等の触媒被毒成分や、副反応により生成するカーボンの堆積による触媒劣化要因に対する耐久性が実用性の観点から不十分であった。 In general, materials used in durable consumer goods such as automobiles are required to be practical so that performance does not deteriorate over a long period of 10 to 15 years. The above-described fuel reforming catalyst also needs to maintain excellent performance in a high-temperature environment or in a severe environment in which catalyst-poisoning components such as fuel-derived sulfur coexist. However, although the reforming fuel catalysts described in Patent Documents 1 to 5 are useful as active species for generating hydrogen and carbon monoxide from steam and hydrocarbons, there is still room for improvement in reforming reactivity. There is In addition, from the viewpoint of practical use, the durability against catalyst poisoning components such as sulfur and catalyst deterioration factors due to deposition of carbon produced by side reactions is insufficient.
 本発明は、上記課題に鑑みてなされたものであり、優れた改質活性と、触媒被毒等の劣化要因に対する耐久性に優れた燃料改質触媒を提供することを目的としている。また、本発明の別の目的は、燃料改質触媒を用いた燃料改質方法および燃料改質エンジンシステムを提供することである。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a fuel reforming catalyst that has excellent reforming activity and excellent durability against deterioration factors such as catalyst poisoning. Another object of the present invention is to provide a fuel reforming method and a fuel reforming engine system using a fuel reforming catalyst.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、改質燃料触媒の金属活性種として、従来用いられていたロジウム等の白金族化合物を単独で使うのではなく、白金族化合物と、希土類化合物等の助触媒成分とを金属活性種として共存させることにより、従来の白金族系の単独触媒よりも改質活性が顕著に向上することに気付いた。そして、驚くべきことに、白金族系触媒の触媒毒である硫黄の共存下であっても長期間安定的な改質活性が維持されることを見出した。即ち、本発明の要旨は以下のとおりである。 As a result of extensive research to achieve the above object, the present inventors have found that instead of using a conventionally used platinum group compound such as rhodium alone as a metal active species of a reforming fuel catalyst, platinum group The present inventors have noticed that the coexistence of a compound and a co-catalyst component such as a rare earth compound as a metal active species significantly improves the reforming activity as compared with a conventional single platinum group catalyst. Surprisingly, they have found that stable reforming activity is maintained for a long period of time even in the presence of sulfur, which is a catalyst poison of platinum group catalysts. That is, the gist of the present invention is as follows.
[1] 炭化水素類を含む燃料を、水素を含む合成ガスに改質するための燃料改質触媒であって、
 白金族金属元素を含む触媒成分および助触媒成分と、
 前記触媒成分および助触媒成分を担持する担体と、
を備え、
 前記助触媒成分が、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム 、サマリウム 、ユウロピウム 、バリウム、ニッケル、およびストロンチウムからなる群より選択される少なくとも1種の元素を含む、燃料改質触媒。
[2] 前記助触媒成分が、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、プロメチウム 、サマリウム 、ユウロピウム 、バリウム、ニッケル、およびストロンチウムからなる群より選択される少なくとも1種の元素を含む、[1]に記載の燃料改質触媒。
[3] 前記助触媒成分が、前記触媒成分100質量部に対して、50質量部以上、1000質量部以下の量で担持されている、[1]または[2]に記載の燃料改質触媒。
[4] 前記担体が多孔質体からなる、[1]~[3]のいずれか一項に記載の燃料改質触媒。
[5] 前記燃料は、炭素数が2以上12以下の炭化水素類を50質量%以上含む、[1]~[4]のいずれか一項に記載の燃料改質触媒。
[6] 白金族金属元素がロジウムおよび白金を含む、[1]~[5]のいずれか一項に記載の燃料改質触媒。
[7] 前記燃料が自動車用燃料である、[1]~[6]のいずれか一項に記載の燃料改質触媒。
[8] [1]~[7]のいずれか一項に記載の燃料改質触媒を用いた燃料改質方法であって、
 硫黄成分と炭化水素類とを含む燃料を、水蒸気の存在下で前記燃料改質触媒と接触させて、水素および一酸化炭素を生成することを含む、方法。
[9] 内燃機関からの燃焼後排ガスおよび[1]~[7]のいずれか一項に記載の燃料改質触媒により、炭化水素類を含む燃料の一部または全部を水素および一酸化炭素に改質し、得られた水素および一酸化炭素を、内燃機関へ供給する燃料に添加する、ことを含む燃料改質エンジンシステム。
[1] A fuel reforming catalyst for reforming a fuel containing hydrocarbons into a synthesis gas containing hydrogen,
a catalyst component and a co-catalyst component containing a platinum group metal element;
a carrier that supports the catalyst component and the co-catalyst component;
with
A fuel reforming catalyst, wherein the promoter component comprises at least one element selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium.
[2] to [1], wherein the promoter component contains at least one element selected from the group consisting of scandium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium; The fuel reforming catalyst described.
[3] The fuel reforming catalyst according to [1] or [2], wherein the promoter component is supported in an amount of 50 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the catalyst component. .
[4] The fuel reforming catalyst according to any one of [1] to [3], wherein the carrier is made of a porous material.
[5] The fuel reforming catalyst according to any one of [1] to [4], wherein the fuel contains 50% by mass or more of hydrocarbons having 2 to 12 carbon atoms.
[6] The fuel reforming catalyst according to any one of [1] to [5], wherein the platinum group metal element contains rhodium and platinum.
[7] The fuel reforming catalyst according to any one of [1] to [6], wherein the fuel is automotive fuel.
[8] A fuel reforming method using the fuel reforming catalyst according to any one of [1] to [7],
A method comprising contacting a fuel comprising a sulfur component and hydrocarbons with said fuel reforming catalyst in the presence of steam to produce hydrogen and carbon monoxide.
[9] Some or all of the fuel containing hydrocarbons is converted into hydrogen and carbon monoxide by the post-combustion exhaust gas from the internal combustion engine and the fuel reforming catalyst according to any one of [1] to [7]. A fuel reforming engine system comprising reforming and adding the resulting hydrogen and carbon monoxide to a fuel supplied to an internal combustion engine.
 本発明によれば、低温(400℃~600℃程度)での改質活性が高く、触媒被毒等の劣化要因に対する耐久性に優れた燃料改質触媒を実現することができる。また、本発明による燃料改質触媒を用いることによって、燃料を低温(400℃~600℃程度)でも効率よく改質することができ、さらに、硫黄成分を含有する燃料も効率よく改質することが可能となる。 According to the present invention, it is possible to realize a fuel reforming catalyst that has high reforming activity at low temperatures (about 400°C to 600°C) and has excellent durability against deterioration factors such as catalyst poisoning. In addition, by using the fuel reforming catalyst according to the present invention, fuel can be efficiently reformed even at low temperatures (about 400° C. to 600° C.), and fuel containing sulfur components can also be efficiently reformed. becomes possible.
<燃料改質触媒>
 本発明の一実施形態による燃料改質触媒は、炭化水素類を含む燃料を、水素を含む合成ガスに改質するための燃料改質触媒であって、白金族金属元素を含む触媒成分および助触媒成分と、触媒成分および助触媒成分を担持する担体とを備えるものである。以下、本明細書においては、担体に担持された触媒成分および助触媒成分を併せて「触媒活性種」と呼ぶ場合がある。また、燃料改質触媒(即ち、触媒成分および助触媒成分と、両成分を担持する担体とを備えた触媒)を保持する部材を「基材」と呼ぶ場合がある。
<Fuel reforming catalyst>
A fuel reforming catalyst according to one embodiment of the present invention is a fuel reforming catalyst for reforming a fuel containing hydrocarbons into a synthesis gas containing hydrogen, and comprises a catalyst component containing a platinum group metal element and an assistant. It comprises a catalyst component and a carrier supporting the catalyst component and the co-catalyst component. Hereinafter, in this specification, the catalyst component and the co-catalyst component supported on the carrier may be collectively referred to as "catalyst active species". A member holding a fuel reforming catalyst (that is, a catalyst comprising a catalyst component, a co-catalyst component, and a carrier supporting both components) is sometimes called a "base material".
[触媒成分]
 本発明による燃料改質触媒に使用される触媒成分は、白金族金属元素を含む。白金族金属元素としては、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)が挙げられ、これらのなかでも、改質反応における触媒活性の観点から、Ru、Rh、Pd、Ptが好ましく、Rh、Ptがより好ましい。これら元素は単独で使用されてもよく、また2種以上を組み合わせて用いてもよい。
[Catalyst component]
The catalyst component used in the fuel reforming catalyst according to the invention comprises a platinum group metal element. Examples of platinum group metal elements include ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). From the viewpoint of activity, Ru, Rh, Pd and Pt are preferred, and Rh and Pt are more preferred. These elements may be used alone or in combination of two or more.
 白金族元素を2種以上組み合わせる例としては、特に限定されないが、酸化活性に優れる二種以上の白金族元素の組み合わせ、還元活性に優れる二種以上の白金族元素の組み合わせ、酸化活性に優れる白金族元素と還元活性に優れる白金族元素の組み合わせが挙げられる。このなかでも、相乗効果の一つの態様として、酸化活性に優れる白金族元素と還元活性に優れる白金族元素の組み合わせが好ましい。具体的には、PdとRhとの組み合わせ、PtとRhとの組み合わせ、RuとRhとの組み合わせが好ましく、これらのなかでも、PtとRhとの組み合わせがより好ましい。このような組み合わせとすることにより、水蒸気改質反応性に加えて、排ガス浄化性能、特にライトオフ性能がより向上する傾向にある。 Examples of combining two or more platinum group elements are not particularly limited, but a combination of two or more platinum group elements with excellent oxidation activity, a combination of two or more platinum group elements with excellent reduction activity, and platinum with excellent oxidation activity. A combination of a group element and a platinum group element having excellent reduction activity can be mentioned. Among these, a combination of a platinum group element having excellent oxidation activity and a platinum group element having excellent reduction activity is preferable as one aspect of the synergistic effect. Specifically, the combination of Pd and Rh, the combination of Pt and Rh, and the combination of Ru and Rh are preferred, and among these, the combination of Pt and Rh is more preferred. By such a combination, in addition to the steam reforming reactivity, the exhaust gas purification performance, especially the light-off performance tends to be further improved.
 触媒成分が、Rhと、Rh以外の白金族金属元素を含む場合の割合は特に制限されないが、Rh100質量部に対し、Rh以外の白金族金属元素を通常1質量部以上、好ましくは5質量部以上、より好ましくは10質量部以上であり、一方上限は通常500質量部以下、好ましくは300質量部以下、より好ましくは200質量部以下である。割合が上記範囲であると、燃料改質触媒としての性能が向上するとともに硫黄などの被毒物質による失活を抑制することができる。 When the catalyst component contains Rh and a platinum group metal element other than Rh, the ratio is not particularly limited, but the platinum group metal element other than Rh is usually 1 part by mass or more, preferably 5 parts by mass, per 100 parts by mass of Rh. Above, it is more preferably 10 parts by mass or more, while the upper limit is usually 500 parts by mass or less, preferably 300 parts by mass or less, more preferably 200 parts by mass or less. When the ratio is within the above range, the performance as a fuel reforming catalyst is improved, and deactivation by poisoning substances such as sulfur can be suppressed.
[助触媒成分]
 本発明による燃料改質触媒は触媒活性種として、上記した白金族金属元素から選択される触媒成分に加えて、特定元素から選択される助触媒成分を含むことに特徴を有している。本発明においては、燃料改質触媒の触媒活性種として従来使用されてきた白金族金属元素に加えて、後記する特定の元素を金属活性種(助触媒成分)として共存させることにより、従来の白金族系の単独触媒よりも改質活性が顕著に向上するとともに、驚くべきことに、白金族系触媒の触媒毒である硫黄の共存下であっても長期間安定的な改質活性を維持することができる。この理由は明らかではないが下記のように考えられる。
[Co-catalyst component]
The fuel reforming catalyst according to the present invention is characterized by containing, as catalytically active species, a promoter component selected from specific elements in addition to the catalyst component selected from the platinum group metal elements described above. In the present invention, in addition to the platinum group metal element that has been conventionally used as a catalytically active species of a fuel reforming catalyst, by coexisting a specific element described later as a metal active species (promoter component), conventional platinum Remarkably improved reforming activity compared to a single platinum group catalyst, and surprisingly, it maintains stable reforming activity for a long period of time even in the presence of sulfur, which is a catalyst poison for platinum group catalysts. be able to. Although the reason for this is not clear, it is considered as follows.
 即ち、上記した白金族金属元素から選択される触媒成分と特定元素から選択される助触媒成分とを併用することにより、触媒成分に対して助触媒成分が電子的な相互作用を及ぼし、触媒成分(白金族元素)が作用しやすい状態となっていることが考えられる。具体的な例として触媒成分がRhの場合、助触媒成分によってRhが還元された状態をとりやすくなり、Rh単独の触媒成分とした場合に比べて触媒活性が向上するものと考えられる。また、助触媒成分を担体構造とする例(Ce-Zr粒子等)も知られているものの、本発明においては、担体の表面に触媒成分と助触媒成分とが存在することで、助触媒成分が担体の酸・塩基点として作用し、酸点で進行しやすい炭素析出や塩基点で進行しやすい硫黄被毒の緩衝材となり、触媒成分の耐久性も向上するものと考えられる。
 特に、助触媒成分としての上記した特定元素は、触媒成分との好適な電子相互作用に加え、酸・塩基の双方の性質を示すため、各種被毒に対する高い緩衝作用を生じさせると推測している。
That is, by using together the catalyst component selected from the platinum group metal elements and the co-catalyst component selected from the specific elements, the co-catalyst component exerts an electronic interaction with the catalyst component, and the catalyst component (platinum group element) is likely to act. As a specific example, when the catalyst component is Rh, Rh is likely to be reduced by the co-catalyst component, and the catalytic activity is considered to be improved compared to the case where Rh alone is used as the catalyst component. In addition, although examples (Ce—Zr particles, etc.) in which the co-catalyst component has a carrier structure are also known, in the present invention, the presence of the co-catalyst component and the co-catalyst component on the surface of the carrier allows the co-catalyst component acts as acid and base sites on the carrier, and acts as a buffer for carbon deposition, which tends to progress at acid sites, and sulfur poisoning, which tends to progress at basic sites, and improves the durability of the catalyst component.
In particular, the above-mentioned specific element as a co-catalyst component exhibits the properties of both acids and bases in addition to favorable electronic interaction with the catalyst component. there is
 上記した白金族金属元素からなる触媒成分と組み合わせて使用できる助触媒成分としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm) 、サマリウム(Sm) 、ユウロピウム(Eu) 、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(tm)、イッテルビウム(Yb)、ルテチウム(Lu)等の希土類元素;バリウム(Ba)、ストロンチウム(Sr)等のアルカリ土類金属;ニッケル(Ni)等の第10族元素が挙げられるが、本発明においては、水蒸気改質反応により生成する水素の発生能力の観点および燃料に含まれる硫黄分による失活耐性の観点から、Sc、Y、La、Ce、Pr、Nd、Pm、Ba、Ni、Srからなる群より選択される少なくとも1種の元素を助触媒成分として用いる。これら元素は単独で使用されてもよく、また2種以上を組み合わせて用いてもよい。 Examples of co-catalyst components that can be used in combination with the above-described platinum group metal element catalyst components include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). , Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (tm), Ytterbium (Yb) , rare earth elements such as lutetium (Lu); alkaline earth metals such as barium (Ba) and strontium (Sr); and Group 10 elements such as nickel (Ni). Selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Ba, Ni, and Sr from the viewpoint of the ability to generate hydrogen generated by and the resistance to deactivation by the sulfur content contained in the fuel. At least one element is used as a promoter component. These elements may be used alone, or two or more of them may be used in combination.
 上記した助触媒成分元素のかなかでも、水素発生能力や硫黄分による失活耐性の観点からは、Sc、Y、La、Pr、Nd、Pmがより好ましく、Ndが特に好ましい。なお、セリウムは触媒活性には好ましいものの、燃料の種類によっては(特に硫黄が微量でも含まれる場合)、長期耐久性に課題がある。 Among the above promoter component elements, Sc, Y, La, Pr, Nd, and Pm are more preferable, and Nd is particularly preferable, from the viewpoint of hydrogen generating ability and deactivation resistance due to sulfur content. Although cerium is preferable for catalytic activity, long-term durability is a problem depending on the type of fuel (especially when even a small amount of sulfur is contained).
 触媒成分と助触媒成分との割合は特に制限されないが、触媒成分100質量部に対して、助触媒成分は通常10質量部以上、好ましくは50質量部以上、より好ましくは100質量部以上であり、上限は通常2000質量部以下、好ましくは1000質量部以下である。両者の割合が上記範囲であると、白金族金属元素から選択される触媒成分の触媒活性(燃料改質能力)が向上すると共に、硫黄などの被毒物質による失活を抑制することができる。
 なお、触媒成分および助触媒成分として複数の元素が含まれている場合の配合割合は、その総和を意味するものとする。
The ratio of the catalyst component and the co-catalyst component is not particularly limited, but the co-catalyst component is usually 10 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more with respect to 100 parts by mass of the catalyst component. , the upper limit is usually 2000 parts by mass or less, preferably 1000 parts by mass or less. When the ratio of both is within the above range, the catalytic activity (fuel reforming ability) of the catalyst component selected from platinum group metal elements is improved, and deactivation by poisoning substances such as sulfur can be suppressed.
In addition, when a plurality of elements are included as the catalyst component and the co-catalyst component, the blending ratio means the total sum.
 上記した触媒活性種の担持量は特に制限されず、目的とする設計条件やコスト要求等に応じて適宜必要量担持させればよいが、金属換算で担体100質量部に対して0.05質量部以上20質量部以下であることが好ましく、0.1質量部以上15質量部以下であることがより好ましい。触媒活性種の担持量が少ないと炭化水素類からなる燃料の水蒸気改質反応において十分な触媒活性が得られない傾向にあり、一方、担持量が多すぎると、金属元素が粗大粒子化し、触媒活性種の単位量あたりの触媒活性が向上しない傾向にある。触媒性能とコストとの両立を考慮すると、触媒活性種の担持量は、担体100質量部に対して0.4質量部以上8質量部以下であることがより好ましい。 The amount of the above-described catalytically active species supported is not particularly limited, and may be appropriately supported according to the desired design conditions, cost requirements, etc., but it is 0.05 mass per 100 parts by mass of the support in terms of metal. It is preferably from 0.1 part to 20 parts by mass, and more preferably from 0.1 part by mass to 15 parts by mass. If the supported amount of the catalytically active species is small, there is a tendency that sufficient catalytic activity cannot be obtained in the steam reforming reaction of the fuel composed of hydrocarbons. There is a tendency that the catalytic activity per unit amount of active species does not improve. Considering both catalyst performance and cost, the amount of supported catalytically active species is more preferably 0.4 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the carrier.
 担体に担持される触媒活性種(触媒成分および助触媒成分)は粒子状の形態で担持されていることが好ましい。この場合の触媒活性種の粒子径は、触媒活性の観点からは、1~100nmであることが好ましく、より好ましくは2~50nmである。触媒活性種の粒子径が小さすぎると触媒活性を示さない酸化物状態になりやすい傾向にあり、一方、粒子径が大きすぎると、活性サイトの量が減少し、触媒活性種の単位量あたり触媒活性が低下する傾向にある。 The catalytically active species (catalyst component and co-catalyst component) supported on the carrier are preferably supported in the form of particles. In this case, the particle diameter of the catalytically active species is preferably 1 to 100 nm, more preferably 2 to 50 nm, from the viewpoint of catalytic activity. If the particle size of the catalytically active species is too small, it tends to become an oxide state that does not exhibit catalytic activity. Activity tends to decrease.
 触媒活性種を上記したような所定の粒子径となるようにするには、例えば、触媒成分の供給源(一例として、白金族金属の硝酸塩または酢酸塩)および助触媒成分の供給源(一例として、上記した所定の元素の硝酸塩または酢酸塩)を含有する溶液に、担体を浸漬して所定量の溶液を担体に含浸させた後、これを焼成することによって担体に触媒を担持する方法を用い、当該溶液濃度(触媒活性種の濃度)や当該溶液の含浸量、焼成条件(温度および時間)を制御することにより、触媒粒子の粒子径を調整することができる。 In order to make the catalytically active species have a predetermined particle size as described above, for example, a catalyst component supply source (for example, platinum group metal nitrate or acetate) and a promoter component supply source (for example , Nitrate or acetate of the above-described predetermined element), impregnating the support with a predetermined amount of the solution, and then calcining the support to support the catalyst on the support. , the particle diameter of the catalyst particles can be adjusted by controlling the concentration of the solution (concentration of catalytically active species), the impregnation amount of the solution, and the calcination conditions (temperature and time).
 本発明による燃料改質触媒は、上記した触媒活性種が担体に担持されたものであるが、触媒活性種以外の他の成分を含有していてもよい。但し、担体を除く燃料改質触媒のうち、上記した触媒活性種の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましく、特に95質量%以上(100質量%含む)であることが好ましい。 The fuel reforming catalyst according to the present invention has the above-described catalytically active species supported on a carrier, but may contain other components other than the catalytically active species. However, in the fuel reforming catalyst excluding the carrier, the ratio of the catalytically active species is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly 95% by mass or more (100% by mass including).
[担体]
 上記した触媒活性種を担持する担体としては特に制限されるものではなく、公知のものを使用することができるが、耐久性の観点から無機酸化物を好ましく使用するこができる。例えば、α、γ、δ、θなどのアルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、セリア(CeO)等が挙げられる。これらは単独で使用してもよいし二種以上を混合してもよく、また、これらの複合酸化物であってもよい。これらのなかでも耐久性の観点からアルミナが好ましく用いられる。
[Carrier]
The carrier for supporting the catalytically active species described above is not particularly limited, and known carriers can be used, but inorganic oxides can be preferably used from the viewpoint of durability. Examples include alumina (Al 2 O 3 ) such as α, γ, δ, θ, zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), and ceria (CeO 2 ). These may be used singly or in combination of two or more, or may be composite oxides thereof. Among these, alumina is preferably used from the viewpoint of durability.
 本発明の燃料改質触媒に使用される担体は多孔質体であることが好ましい。多孔質体としては、BET比表面積が30m/g~600m/gのものが挙げられる。多孔質体とするには、後記するような従来公知の方法により担体を作製する。例えば、触媒活性種成分および担体成分と、バインダー、造孔剤、溶媒等を、ボールミル等により混練することによりスラリーを調製し、所望の形状に成形した後に乾燥、焼成することにより造孔剤やバインダーが除去され、担体中に細孔が形成される。 The carrier used in the fuel reforming catalyst of the present invention is preferably a porous body. The porous body may have a BET specific surface area of 30 m 2 /g to 600 m 2 /g. In order to obtain a porous body, a carrier is produced by a conventionally known method as described later. For example, a slurry is prepared by kneading a catalytically active species component, a carrier component, a binder, a pore-forming agent, a solvent, etc., using a ball mill or the like, and after molding into a desired shape, drying and firing are carried out to obtain a pore-forming agent and a slurry. The binder is removed and pores are formed in the carrier.
 担体が多孔質体からなる場合の平均細孔径は、燃料ガスの拡散と触媒への接触の観点から、0.5nm以上100nm以下であることが好ましく、1nm以上50nm以下であることがより好ましく、2nm以上10nm以下であることがさらに好ましい。担体中の細孔径が大き過ぎると触媒との接触回数が減り反応が進みにくくなり、細孔径が小さ過ぎると燃料ガスが拡散しづらくなり、同様に反応が進みづらくなるためである。なお、本明細書において、平均細孔径は、任意に10個選択した個々の担体について、窒素吸着型の細孔分布計などにより細孔径を測定し、これら10個の細孔径の平均値を算出することにより求めることができる。 When the carrier is made of a porous material, the average pore diameter is preferably 0.5 nm or more and 100 nm or less, more preferably 1 nm or more and 50 nm or less, from the viewpoint of diffusion of the fuel gas and contact with the catalyst. More preferably, the thickness is 2 nm or more and 10 nm or less. This is because if the pore diameter in the carrier is too large, the number of times of contact with the catalyst is reduced and the reaction is difficult to proceed, and if the pore diameter is too small, the fuel gas is difficult to diffuse and the reaction is similarly difficult to proceed. In the present specification, the average pore size is determined by measuring the pore size of 10 arbitrarily selected individual carriers using a nitrogen adsorption type pore distribution meter or the like, and calculating the average value of these 10 pore sizes. can be obtained by
[基材]
 本発明の燃料改質触媒は単独で使用することもできるが、適当な基材に保持されていてもよい。基材として特に制限されるものではなく、公知のものを使用することができる。例えば、担体として、アルミナ、シリカ、ムライト(アルミナ-シリカ)、コージェライト、コージェライト-アルファアルミナ、ジルコンムライト、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルミノシリケート類、チタン酸アルミニウム、炭化ケイ素、窒化ケイ素等のセラミックスや、耐火性金属、例えばステンレス鋼または鉄を基とするフェライト系ステンレス等の耐食性合金等の金属材料を挙げることができる。上記した無機または金属材料は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記したなかでも、アルミナ、シリカ、ムライト、コージェライト、ステンレススチール、炭化ケイ素が好ましく、コージェライト、ステンレススチール、炭化ケイ素を含むのがより好ましい。この場合、基材全体に対して、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは99質量%以上(100質量%を含む)が上記材料からなる基材を用いるとよい。
[Base material]
Although the fuel reforming catalyst of the present invention can be used alone, it may be held on a suitable substrate. The base material is not particularly limited, and known ones can be used. For example, as a support, alumina, silica, mullite (alumina-silica), cordierite, cordierite-alpha alumina, zircon mullite, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, petalite ( ceramics such as platinum, aluminosilicates, aluminum titanate, silicon carbide, silicon nitride, and metal materials such as refractory metals such as stainless steel and corrosion-resistant alloys such as iron-based ferritic stainless steel. . The above inorganic or metallic materials may be used singly or in combination of two or more. Among these, alumina, silica, mullite, cordierite, stainless steel, and silicon carbide are preferred, and cordierite, stainless steel, and silicon carbide are more preferred. In this case, preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 99% by mass or more (including 100% by mass) of the entire substrate is made of the above material. .
 また、基材は、上記した材料を主成分として他の成分が含まれていてもよい。例えば、担体の耐熱性向上で知られているようなFe、SiO、NaO等を上記した材料に添加してもよい。 Moreover, the base material may contain other components with the above-described material as a main component. For example, Fe 2 O 3 , SiO 2 , Na 2 O, etc., which are known to improve the heat resistance of the carrier, may be added to the above materials.
 基材の形状は特に制限されるものではなく、球状、円柱状、ビーズ状、ペレット状、角柱状、打錠状、針状、膜状、ハニカムモノリス状等、用途に応じて種々の形状とすることができる。これらのなかでも、ビーズ状、ペレット状、ハニカムモノリス状であるのが好ましい。したがって、本発明における好ましい実施形態による基材は、材料として、アルミナ、シリカ、ムライト、コージェライト、ステンレススチールからなり、その形状は、ビーズ状、ペレット状またはハニカムモノリス状であるものが特に好ましいと言える。 The shape of the substrate is not particularly limited, and various shapes such as spherical, cylindrical, bead, pellet, prismatic, tablet, needle, film, honeycomb monolith, etc. can be used depending on the application. can do. Among these, beads, pellets, and honeycomb monoliths are preferred. Therefore, it is particularly preferable that the substrate according to a preferred embodiment of the present invention is made of alumina, silica, mullite, cordierite, or stainless steel, and has a bead, pellet, or honeycomb monolith shape. I can say
 基材の形状がビーズ状またはペレット状である場合の基材の平均径は、ハンドリング性や容器内での流動性の観点から、0.5mm以上10mm以下であるのが好ましく、0.7mm以上5mm以下であるのがより好ましく、1mm以上3mm以下であるのがさらに好ましい。また、担体の形状が球状である場合の担体の平均径(直径)は、ハンドリング性や容器内での流動性の観点から、1mm以上10mm以下であるのが好ましく、1mm以上5mm以下であるのがより好ましい。なお、担体の平均径は、光学顕微鏡などを用いて観察し、任意に選択した100個の担体(触媒粒子)の長径および短径を測定して長径と短径の平均を粒子径として算出し、100個の個々の粒子の粒子径の平均値を算出することにより求めることができる。 When the shape of the substrate is bead or pellet, the average diameter of the substrate is preferably 0.5 mm or more and 10 mm or less, and 0.7 mm or more, from the viewpoint of handleability and fluidity in a container. It is more preferably 5 mm or less, and even more preferably 1 mm or more and 3 mm or less. Further, when the shape of the carrier is spherical, the average diameter (diameter) of the carrier is preferably 1 mm or more and 10 mm or less, and more preferably 1 mm or more and 5 mm or less, from the viewpoint of handling properties and fluidity in the container. is more preferred. The average diameter of the carrier is obtained by observing with an optical microscope or the like, measuring the major and minor diameters of 100 arbitrarily selected carriers (catalyst particles), and calculating the average of the major and minor diameters as the particle diameter. , can be obtained by calculating the average particle size of 100 individual particles.
<燃料改質触媒の製造方法>
 上記した燃料改質触媒は、触媒活性種成分(触媒成分および助触媒成分)を担体に担持することによって得ることができる。担持方法は特に制限されるものではなく、従来公知の方法を適用することができ、例えば、触媒成分の供給源(一例として、白金族金属の硝酸塩または酢酸塩)および助触媒成分の供給源(一例として、上記した所定の元素の硝酸塩または酢酸塩)とを含む混合触媒溶液を担体に含浸させた後、還元や焼成を行うことで、担体上に触媒活性種成分を粒子状に析出させることができる。あるいは、触媒成分供給源を先に担体に含浸させ、次いで助触媒成分供給源を担体に含浸させた後に還元や焼成を行うことで両者を担持させたり、逆に、助触媒成分供給源を先に担体に含浸させ、次いで触媒成分供給源を担体に含浸させた後に還元や焼成を行うことで両者を担持させてもよい。その後必要に応じて、洗浄、焼成、水素還元等の処理を行うことで、燃料改質触媒を製造することができる。
<Method for producing fuel reforming catalyst>
The fuel reforming catalyst described above can be obtained by supporting a catalytically active species component (catalyst component and cocatalyst component) on a carrier. The supporting method is not particularly limited, and conventionally known methods can be applied. As an example, a carrier is impregnated with a mixed catalyst solution containing the nitrate or acetate of the above-described predetermined element, and then reduction or calcination is performed to precipitate catalytically active species components on the carrier in the form of particles. can be done. Alternatively, the catalyst component supply source is first impregnated into the carrier, and then the support is impregnated with the promoter component supply source, and then the two are supported by reduction or calcination. Conversely, the promoter component supply source is first impregnated. may be impregnated into the carrier, and then the catalyst component supply source may be impregnated into the carrier and then reduced or calcined to support both. After that, if necessary, a fuel reforming catalyst can be produced by performing treatments such as washing, calcination, and hydrogen reduction.
 触媒活性種成分の供給源としては、上記した白金族金属元素(触媒成分)または希土類元素もしくはアルカリ土類元素(助触媒成分)の酢酸塩、炭酸塩、硝酸塩、アンモニウム塩、クエン酸塩、ジニトロジアンミン塩等またはそれらの錯体が挙げられる。例えば、白金族金属元素がロジウムである場合は、担持されやすさと高分散性の観点から、ロジウム(Rh)の酢酸塩、炭酸塩、硝酸塩、アンモニウム塩、クエン酸塩、ジニトロジアミン塩等またはそれらの錯体の溶液が挙げられ、それらのなかでも硝酸塩が好ましい。また、白金族金属元素が白金である場合は、担持されやすさと高分散性の観点から、白金(Pt)の酢酸塩、炭酸塩、硝酸塩、アンモニウム塩、クエン酸塩、ジニトロジアミン塩等またはそれらの錯体が挙げられ、それらのなかでもジニトロジアミン塩が好ましい。 As a source of the catalytically active species component, the above platinum group metal element (catalyst component) or rare earth element or alkaline earth element (promoter component) acetate, carbonate, nitrate, ammonium salt, citrate, dinitro Diammine salts and the like or their complexes can be mentioned. For example, when the platinum group metal element is rhodium, rhodium (Rh) acetates, carbonates, nitrates, ammonium salts, citrates, dinitrodiamine salts, etc. or their of which nitrates are preferred. In addition, when the platinum group metal element is platinum, platinum (Pt) acetate, carbonate, nitrate, ammonium salt, citrate, dinitrodiamine salt, etc. or them from the viewpoint of ease of carrying and high dispersibility Among them, dinitrodiamine salts are preferred.
 また、本発明の燃料改質触媒を、例えば内燃機関向けの燃料改質装置に用いる場合は、ハニカムモノリス状等の基材に、燃料改質触媒が保持された状態で用いることが好ましい。以下に、本発明の燃料改質触媒を用いた内燃機関向け燃料改質用ハニカム触媒の製造方法について説明する。 Further, when the fuel reforming catalyst of the present invention is used in a fuel reforming device for internal combustion engines, for example, it is preferable to use the fuel reforming catalyst in a state in which it is held in a substrate such as a honeycomb monolith. A method for manufacturing a fuel reforming honeycomb catalyst for an internal combustion engine using the fuel reforming catalyst of the present invention will be described below.
 一例として、触媒成分の金属塩、助触媒成分の金属塩、担体、適宜必要に応じてバインダー、分散剤および溶媒を混合してスラリー溶液を調製し、該スラリー溶液をウォッシュコート法等でハニカムモノリス状基材に含浸させ、スラリー溶液を含浸させた基材を焼成することにより燃料改質触媒が保持されたハニカム触媒を得ることができる。 As an example, a metal salt of a catalyst component, a metal salt of a co-catalyst component, a carrier, and optionally a binder, a dispersant and a solvent are mixed to prepare a slurry solution, and the slurry solution is applied to a honeycomb monolith by a wash coating method or the like. A honeycomb catalyst holding the fuel reforming catalyst can be obtained by impregnating the substrate with the slurry solution and firing the substrate impregnated with the slurry solution.
 上記スラリー溶液の溶媒としては、特に制限されないが、例えば、水(好ましくはイオン交換水および蒸留水等の純水)等の溶媒が挙げられる。なお、このような金属塩の溶液の濃度としては、特に制限されないが金属塩のイオンとして0.001mol/L以上、0.5mol/L以下であることが好ましい。 The solvent for the slurry solution is not particularly limited, but examples include solvents such as water (preferably pure water such as ion-exchanged water and distilled water). Although the concentration of such a metal salt solution is not particularly limited, it is preferably 0.001 mol/L or more and 0.5 mol/L or less as ions of the metal salt.
 スラリー溶液を含浸させた基材を焼成する際の温度は、特に制限されないが通常は200℃以上、800℃以下である。焼成温度が低すぎると触媒活性種元素の供給源が十分に熱分解せず、触媒活性を示すメタル状態になりにくくなるため、活性が低くなる傾向にある。一方、焼成温度が高すぎると、担持した触媒活性種元素が粗大粒子化して炭化水素類からなる燃料の水蒸気改質反応における触媒活性が低下する傾向にある。 The temperature at which the base material impregnated with the slurry solution is fired is not particularly limited, but is usually 200°C or higher and 800°C or lower. If the calcination temperature is too low, the supply source of the catalytically active species element will not be sufficiently thermally decomposed, making it difficult to enter a metal state exhibiting catalytic activity, which tends to lower the activity. On the other hand, if the calcination temperature is too high, the supported catalytically active species element tends to become coarse particles and the catalytic activity in the steam reforming reaction of the fuel composed of hydrocarbons tends to decrease.
 また、焼成する時間も適宜調整することができるが、通常は0.1時間以上、100時間以下であることが好ましい。焼成時間が短すぎると触媒活性種元素の供給源物が十分に熱分解せず、触媒活性を示すメタル状態になりにくくなるため、活性が低くなる傾向にある。一方、焼成時間を必要以上に長くしても効果は得られず、コストと単位時間あたりの生産量が低下する傾向にある。 The firing time can also be adjusted as appropriate, but it is usually preferably 0.1 hours or more and 100 hours or less. If the calcination time is too short, the source material of the catalytically active species element will not be sufficiently thermally decomposed, and it will be difficult to change to a metallic state that exhibits catalytic activity, so the activity tends to decrease. On the other hand, even if the firing time is longer than necessary, no effect can be obtained, and the cost and the production amount per unit time tend to decrease.
 担持された触媒活性種の量は、ICP発光分光分析装置によって測定することができる。担体に含浸させる各供給源の濃度や量を適宜調整することにより、触媒成分の100質量部に対して、助触媒成分を50質量部以上、1000質量部以下の量で担持させることができる。 The amount of supported catalytically active species can be measured with an ICP emission spectrometer. By appropriately adjusting the concentration and amount of each supply source impregnated in the carrier, the promoter component can be supported in an amount of 50 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the catalyst component.
<燃料改質触媒の用途>
 本発明による燃料改質触媒は、内燃機関向けのEGR用途はもちろんのこと、そのまま単独の触媒として使用することもでき、水蒸気改質反応に係わる様々な装置における触媒として利用可能である。例えば製油所などの水素プラントや、定置型分散電源における燃料電池用水素製造装置、天然ガスからの水素製造装置等にも適用することができる。
<Application of fuel reforming catalyst>
The fuel reforming catalyst according to the present invention can be used not only for EGR applications in internal combustion engines, but also as a single catalyst as it is, and can be used as a catalyst in various devices involved in steam reforming reactions. For example, it can be applied to a hydrogen plant such as an oil refinery, a hydrogen production device for a fuel cell in a stationary distributed power source, a hydrogen production device from natural gas, and the like.
<燃料改質方法>
 本発明による燃料改質触媒を用いることによって、炭化水素を水蒸気改質することができる。すなわち、炭化水素を含む燃料を水蒸気の存在下で燃料改質触媒と接触させて、水素および一酸化炭素を生成させることができる。
<Fuel reforming method>
Hydrocarbons can be steam reformed by using the fuel reforming catalyst according to the present invention. That is, a hydrocarbon containing fuel can be contacted with a fuel reforming catalyst in the presence of water vapor to produce hydrogen and carbon monoxide.
 本発明の燃料改質方法において、炭化水素類を含む燃料と水蒸気とはそれぞれ独立して反応装置に供給してもよいし、予めこれらを混合した後、反応装置に供給してもよい。
 反応装置に水蒸気を供給する際は、改質後の水素燃焼後の排ガスを反応装置に提供する方法を用いると、別途水蒸気供給源を用意しなくともよくなるため装置が簡便となり好ましい。
In the fuel reforming method of the present invention, the fuel containing hydrocarbons and steam may be independently supplied to the reactor, or they may be mixed in advance and then supplied to the reactor.
When steam is supplied to the reactor, it is preferable to use a method of providing the reactor with the exhaust gas after combustion with hydrogen after reforming.
 燃料に含まれる炭化水素類としては特に制限はなく、例えば、アルカン類、アルケン類、アルキン類、芳香族化合物、アルコール類、アルデヒド類等が含まれるものが挙げられ、具体的には、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖状または分岐状の飽和脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン、シクロオクタン等の脂環式飽和炭化水素、単環または多環芳香族炭化水素等のガス状または液状の炭素数が2以上12以下の炭化水素類が好ましく、炭素数2以上8以下の炭化水素がより好ましい。これらのなかでも飽和脂肪族炭化水素が好ましく、燃料の50%以上が飽和脂肪族炭化水素であることがより好ましい。 The hydrocarbons contained in the fuel are not particularly limited, and examples thereof include alkanes, alkenes, alkynes, aromatic compounds, alcohols, aldehydes, etc. Specifically, methane, Linear or branched saturated aliphatic hydrocarbons such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, and decane; alicyclic saturated hydrocarbons such as cyclohexane, methylcyclohexane, and cyclooctane; Alternatively, gaseous or liquid hydrocarbons having 2 to 12 carbon atoms such as polycyclic aromatic hydrocarbons are preferable, and hydrocarbons having 2 to 8 carbon atoms are more preferable. Among these, saturated aliphatic hydrocarbons are preferred, and 50% or more of the fuel is more preferably saturated aliphatic hydrocarbons.
 また、炭化水素類からなる燃料としては、エタノール、ガソリン、ディーゼル燃料(軽油)、天然ガス、炭化水素ガス、バイオディーゼル等の炭化水素類からなるバイオマス燃料を用いることができる。更に、自動車等の内燃機関において炭化水素類からなる燃料として使用する場合には、例えば、エタノールとガソリンとの混合燃料を用いることができる。このような混合燃料としては、エタノールはオクタン価が高いので、オクタン価が低いガソリン(例えば、30~85の範囲)とエタノールを混合することにより、通常のガソリン燃料と同等の80~100の範囲のオクタン価に調整した混合燃料を得ることができ、自動車等の内燃機関の燃料として好適に用いることができる。 In addition, as the fuel composed of hydrocarbons, biomass fuel composed of hydrocarbons such as ethanol, gasoline, diesel fuel (light oil), natural gas, hydrocarbon gas, and biodiesel can be used. Furthermore, when used as a fuel composed of hydrocarbons in internal combustion engines such as automobiles, for example, a mixed fuel of ethanol and gasoline can be used. As such a mixed fuel, since ethanol has a high octane number, by mixing gasoline with a low octane number (for example, in the range of 30 to 85) and ethanol, an octane number in the range of 80 to 100, which is equivalent to that of ordinary gasoline fuel, can be obtained. can be obtained, and can be suitably used as a fuel for internal combustion engines such as automobiles.
 炭化水素類を含む燃料のうち、常温で液体であるため取り扱いやすく、安全性が高く、水(水蒸気)との親和性が高く、入手がしやすいという観点から、本発明の燃料改質方法を、天然ガス、メタノール、エタノールおよびガソリンに対して適用することが好ましく、エタノール、ガソリン、およびエタノールとガソリンとの混合燃料に対して適用することがより好ましい。 Among the fuels containing hydrocarbons, the fuel reforming method of the present invention is used from the viewpoint that it is liquid at normal temperature, is easy to handle, has high safety, has high affinity with water (steam), and is easy to obtain. , natural gas, methanol, ethanol and gasoline, and more preferably ethanol, gasoline and mixed fuels of ethanol and gasoline.
 炭化水素類を含む燃料と排ガス中に含まれる水蒸気との混合比は特に制限はないが、例えば、炭化水素類を含む燃料がエタノールの場合においては、水蒸気と炭素のモル比(S/C)が0.2~10であることが好ましく、0.4~2であることがより好ましい。本発明の燃料改質触媒を用いることによって、コーキングが発生していた低S/Cの条件下においても炭化水素類を含む燃料を改質することができる。 The mixing ratio of the fuel containing hydrocarbons and the water vapor contained in the exhaust gas is not particularly limited. For example, when the fuel containing hydrocarbons is ethanol, the molar ratio of water vapor to carbon (S/C) is preferably 0.2 to 10, more preferably 0.4 to 2. By using the fuel reforming catalyst of the present invention, fuel containing hydrocarbons can be reformed even under low S/C conditions where coking occurs.
 また、改質反応の温度としては250~800℃が好ましく、350~700℃がより好ましい。本発明の燃料改質触媒によれば、従来、触媒活性が低く、炭化水素類を含む燃料の水蒸気改質が困難であった400℃以下の低温においても炭化水素類からなる燃料を改質させることが可能となる。また、550℃以上の高温においても高い活性を保持することが可能となり、炭化水素類からなる燃料を水蒸気により改質させることが可能となる。
 また、熱源として内燃機関燃焼後の排ガスを反応器に供給することで、別途熱源の用意が不要となり、構造やコスト的に優位となる。
The temperature of the reforming reaction is preferably 250-800°C, more preferably 350-700°C. According to the fuel reforming catalyst of the present invention, a fuel containing hydrocarbons can be reformed even at a low temperature of 400° C. or less, which has conventionally been difficult to steam reform a fuel containing hydrocarbons due to low catalytic activity. becomes possible. In addition, it is possible to maintain high activity even at a high temperature of 550° C. or higher, and it becomes possible to reform a fuel composed of hydrocarbons with steam.
In addition, by supplying the exhaust gas after combustion of the internal combustion engine to the reactor as a heat source, it becomes unnecessary to prepare a separate heat source, which is advantageous in terms of structure and cost.
 また、本発明による燃料改質触媒は、耐硫黄被毒性に優れているため、燃料が硫黄成分を含む場合であっても、安定した触媒性能を長期間にわたって発揮することができる。燃料に含まれる硫黄成分としては、例えば、S、S2-、SO、SO、SO、SO 2-等のほか、Sを含む化合物が挙げられる。主な硫黄成分の由来としては、燃料に含まれる硫黄成分との接触や燃料燃焼後の排ガスに含まれる硫黄成分が挙げられる。 Further, since the fuel reforming catalyst according to the present invention is excellent in resistance to sulfur poisoning, it can exhibit stable catalytic performance over a long period of time even when the fuel contains a sulfur component. Sulfur components contained in the fuel include, for example, S, S 2− , SO, SO 2 , SO 3 , SO 4 2− and compounds containing S. Main sources of sulfur components include contact with sulfur components contained in fuel and sulfur components contained in exhaust gas after fuel combustion.
<燃料改質エンジンシステム>
 ガソリンを燃料に含み、水蒸気及び熱源に内燃機関の排ガスを用いたEGRシステムは、改質装置の構造が簡便となりコスト的に優位となるが、燃料改質触媒と硫黄分との接触量も増え、触媒寿命が低下するという問題が発生しやすくなる。
 これに対し、本発明による燃料改質触媒を用いた燃料改質方法は、EGRシステムに組み合わせることにより、熱効率を向上させることができる。例えば、内燃機関からの燃焼後排ガスに含まれる水蒸気を利用して、炭化水素類を含む燃料を水蒸気の存在下で本発明による燃料改質触媒と接触させることにより、燃料の一部または全部を水素および一酸化炭素に改質し、得られた水素および一酸化炭素を、内燃機関へ供給する燃料に添加することで、エンジンの熱効率を向上させることができる。
<Fuel reforming engine system>
The EGR system, which uses gasoline as a fuel and exhaust gas from an internal combustion engine as a steam and heat source, has a simple reformer structure and is advantageous in terms of cost, but the amount of contact between the fuel reforming catalyst and the sulfur content also increases. , the problem of reduced catalyst life tends to occur.
In contrast, the fuel reforming method using the fuel reforming catalyst according to the present invention can improve the thermal efficiency by combining it with the EGR system. For example, by using the steam contained in the post-combustion exhaust gas from an internal combustion engine, the fuel containing hydrocarbons is brought into contact with the fuel reforming catalyst according to the present invention in the presence of steam, thereby partially or entirely converting the fuel. By reforming into hydrogen and carbon monoxide and adding the obtained hydrogen and carbon monoxide to the fuel supplied to the internal combustion engine, the thermal efficiency of the engine can be improved.
 以下に実施例および比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
 γ―アルミナ粉末(平均粒子径が28μm、BET比表面積が141m/g)に、硝酸ネオジム水溶液を含浸させ、乾燥させた。次いで、硝酸ネオジム水溶液(Nd換算で約25wt%)を含浸させたγアルミナ粉末に、硝酸ロジウム水溶液(Rh換算で約7wt%)を含浸させた後、大気雰囲気化中、600℃で30分間焼成して、ロジウム-ネオジム担持アルミナ前駆体を得た。各元素の担持量を、ICP発光分光分析装置により測定したところ、ロジウム0.8質量%、ネオジム4.0質量%であった。
 得られたロジウム-ネオジム担持アルミナ粉末に、硝酸および水を添加しpHを4~5に調整した後、ボールミルにて粒子径(D90)が12μm以下となるまで湿式粉砕し、触媒担持アルミナ粉末のスラリー溶液を調製した。
[Example 1]
γ-alumina powder (average particle size: 28 μm, BET specific surface area: 141 m 2 /g) was impregnated with an aqueous solution of neodymium nitrate and dried. Next, γ-alumina powder impregnated with an aqueous solution of neodymium nitrate (approximately 25 wt% in terms of Nd 2 O 3 ) was impregnated with an aqueous solution of rhodium nitrate (approximately 7 wt% in terms of Rh). After baking for 30 minutes, a rhodium-neodymium-supported alumina precursor was obtained. When the amount of each element carried was measured by an ICP emission spectrometer, it was 0.8% by mass of rhodium and 4.0% by mass of neodymium.
Nitric acid and water are added to the obtained rhodium-neodymium-supported alumina powder to adjust the pH to 4 to 5, and then wet pulverized with a ball mill until the particle size (D90) is 12 μm or less, and the catalyst-supported alumina powder is obtained. A slurry solution was prepared.
 得られたスラリー溶液を乾燥させた固形物を粉末状にしたものを反応管に50mg充填した後、反応管を600℃に昇温し、反応管にレギュラーガソリンと大気の混合ガスを模した炭化水素類を含む原料ガス(O:0.5vol%、iso-オクタン:0.045vol%、Ar:5vol%、HO:1vol%、He:balance(S/C=3.5))を300cc/分の流量にて5分間供給し反応させた。反応管を経たガスの成分を質量分析装置を用いて分析し、原料ガスが改質されることで得られた水素発生量を評価した。なお、水素発生量は、ロジウムのみを触媒活性種とした以外は実施例1と同様にして得られた粉末を充填した反応管を用いて同様の操作により発生した水素発生量を100とした相対値である。測定された水素発生量は下記表1に示されるとおりであった。 After filling 50 mg of powdered solid matter obtained by drying the obtained slurry solution into a reaction tube, the temperature of the reaction tube was raised to 600 ° C., and carbonization was performed in the reaction tube to simulate a mixed gas of regular gasoline and the atmosphere. A raw material gas containing hydrogen (O 2 : 0.5 vol%, iso-octane: 0.045 vol%, Ar: 5 vol%, H 2 O: 1 vol%, He: balance (S/C = 3.5)) The gas was supplied for 5 minutes at a flow rate of 300 cc/min for reaction. The components of the gas that passed through the reaction tube were analyzed using a mass spectrometer, and the amount of hydrogen generated by reforming the raw material gas was evaluated. The amount of hydrogen generated is relative to the amount of hydrogen generated by the same operation using a reaction tube filled with powder obtained in the same manner as in Example 1 except that only rhodium was used as a catalytically active species. value. The measured hydrogen generation amount was as shown in Table 1 below.
[比較例1]
 γ-アルミナ粉末に硝酸ネオジム水溶液を含浸させなかった以外は、実施例1と同様にして触媒担持アルミナ粉末を作製し、反応管に充填して水素発生量の測定を行った。評価結果は下記表1に示されるとおりであった。
[Comparative Example 1]
A catalyst-supporting alumina powder was prepared in the same manner as in Example 1, except that the γ-alumina powder was not impregnated with the aqueous solution of neodymium nitrate, and the reaction tube was filled with the powder to measure the amount of hydrogen generated. The evaluation results were as shown in Table 1 below.
[実施例2~9]
 硝酸ネオジム水溶液を、表1に示す金属の硝酸塩水溶液に変更し表1に示す担持量とした以外は実施例1と同様して触媒担持アルミナ粉末を作製し、反応管に充填して水素発生量の測定を行った。各触媒の触媒成分、助触媒の担持量、および水素発生量は下記表1に示されるとおりであった。
[Examples 2 to 9]
Catalyst-supported alumina powder was prepared in the same manner as in Example 1 except that the neodymium nitrate aqueous solution was changed to the metal nitrate aqueous solution shown in Table 1 and the supported amount was as shown in Table 1, and the reaction tube was filled with hydrogen generation amount. was measured. The catalyst components, co-catalyst support amount, and hydrogen generation amount of each catalyst were as shown in Table 1 below.
[実施例10~12]
 γ―アルミナ粉末(平均粒子径が28μm、BET比表面積が141m/g)に、硝酸ネオジム水溶液(Nd換算で約25wt%)を含浸させ、乾燥させた。次いで、硝酸ネオジム水溶液を含浸したγアルミナ粉末に、白金塩溶液(NECC社製、製品名:A-solt)を含浸させ、乾燥させた。続いて、白金塩水溶液を含浸させたγアルミナ粉末に上記した硝酸ロジウム水溶液を含浸させ、乾燥した以外は実施例1と同様にして触媒担持アルミナ粉末を作製し、反応管に充填して水素発生量の測定を行った。各触媒の触媒成分、助触媒の担持量、および水素発生量は下記表1に示されるとおりであった。
[Examples 10-12]
γ-alumina powder (average particle size: 28 μm, BET specific surface area: 141 m 2 /g) was impregnated with an aqueous solution of neodymium nitrate (approximately 25 wt % in terms of Nd 2 O 3 ) and dried. Next, the γ-alumina powder impregnated with the neodymium nitrate aqueous solution was impregnated with a platinum salt solution (manufactured by NECC, product name: A-solt) and dried. Subsequently, the γ-alumina powder impregnated with the platinum salt aqueous solution was impregnated with the rhodium nitrate aqueous solution described above and dried in the same manner as in Example 1 to prepare a catalyst-supporting alumina powder, which was filled in a reaction tube to generate hydrogen. Quantitative measurements were made. The catalyst components, co-catalyst support amount, and hydrogen generation amount of each catalyst were as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例13]
 実施例1において、担体への溶液の含浸量を変更することにより、触媒担持量がロジウム1.33質量%、ネオジム4.0質量%とした触媒担持アルミナ粉末を調製し、得られたロジウム-ネオジム担持アルミナ粉末に、硝酸および水を添加しpHを4~5に調整した後、ボールミルにて平均粒子径が12μmとなるまで湿式粉砕し、触媒担持アルミナ粉末のスラリー溶液を調製した。
 次いで、コージェライト製のハニカム基材(セル数/ミル厚:600cpsi/3.5mil)を用意し、ハニカム基材の端部をスラリー溶液に浸漬させ、ハニカム基材の反対側の端部側から減圧吸引して、基材表面にスラリー溶液を含浸させた(ウォッシュコート量150g/L)。
 このようにしてスラリー溶液を含浸させたハニカム基材を150℃で乾燥させ、大気雰囲気下、450℃で焼成することにより、触媒担持ハニカム基材を得た。得られた触媒担持ハニカム基材の触媒担持量(触媒容積に対する触媒量)はRh 2.0g/L、ネオジム6.0g/Lであった。
[Example 13]
In Example 1, by changing the impregnation amount of the solution to the carrier, a catalyst-supporting alumina powder with a catalyst-supporting amount of 1.33% by mass of rhodium and 4.0% by mass of neodymium was prepared, and the obtained rhodium- Nitric acid and water were added to the neodymium-supported alumina powder to adjust the pH to 4 to 5, followed by wet pulverization with a ball mill to an average particle size of 12 μm to prepare a slurry solution of the catalyst-supported alumina powder.
Next, a honeycomb base material made of cordierite (number of cells/mil thickness: 600 cpsi/3.5 mil) was prepared, and the end of the honeycomb base material was immersed in the slurry solution, and from the opposite end side of the honeycomb base material, Vacuum suction was applied to impregnate the substrate surface with the slurry solution (wash coat amount: 150 g/L).
The honeycomb base material impregnated with the slurry solution in this manner was dried at 150° C. and fired at 450° C. in an air atmosphere to obtain a catalyst-carrying honeycomb base material. The amount of catalyst supported on the catalyst-supported honeycomb substrate (amount of catalyst with respect to catalyst volume) was 2.0 g/L for Rh and 6.0 g/L for neodymium.
 得られた触媒担持ハニカム基材を用いて、エンジン排ガスを模したガス(CO:0.71%、HC:0.12%、NO:0.03%、O:0.69%、CO:14%、HO:14%、N:Balance、A/F=14.7 with パーターベーション(パーター O:0.31%、CO:63%)、A/F±0.2 2.5Hz)とレギュラーガソリンを模したガス(C1022:0.362%、SO:0.31%)とを混合した硫黄含有混合ガスの水蒸気改質を行い、レギュラーガソリン車におけるEGR使用環境(S/C=3.5、温度600℃、SV≒50000h-1)を模した条件にて、水素発生量および被毒物質存在下での耐久性評価を行った。原料ガスに切り替え、反応が安定した段階を0秒とし、0秒時点での水素発生量を100とした経時的な水素発生量の評価を行った。 Gases simulating engine exhaust gas (CO: 0.71%, HC: 0.12%, NO: 0.03%, O 2 : 0.69%, CO 2 : 14%, H 2 O: 14%, N 2 : Balance, A/F = 14.7 with perturbation (perturbation O 2 : 0.31%, CO: 63%), A/F ± 0.2 2 .5 Hz) and a gas simulating regular gasoline (C 10 H 22 : 0.362%, SO 2 : 0.31%) was steam-reformed, and EGR was used in a regular gasoline vehicle. Under conditions simulating the environment (S/C=3.5, temperature 600° C., SV≈50000 h −1 ), the amount of hydrogen generated and the durability in the presence of poisoning substances were evaluated. The stage at which the reaction was stabilized after switching to the raw material gas was defined as 0 seconds, and the amount of hydrogen generated at 0 seconds was defined as 100, and the amount of hydrogen generated over time was evaluated.
[比較例2]
 触媒担持量がロジウム2質量%とした触媒担持アルミナ粉末のスラリーを用い、ウォッシュコート量を100g/Lとした以外は実施例13と同様にして触媒担持ハニカム基材を製造し、上記と同様にして経時的な水素発生量の評価を行った。なお、0秒時点での実施例13および比較例2の水素発生量は、ほぼ同値であった。
[Comparative Example 2]
A catalyst-supporting honeycomb substrate was produced in the same manner as in Example 13 except that a catalyst-supporting alumina powder slurry with a catalyst-supporting amount of 2% by mass of rhodium was used, and the washcoat amount was 100 g/L. We evaluated the amount of hydrogen generated over time. The amounts of hydrogen generated in Example 13 and Comparative Example 2 at 0 seconds were almost the same.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の評価結果からも明らかなように、白金族金属元素からなる触媒成分に加えて特定の助触媒成分を併用した担持触媒(実施例1~12)を充填した系では、従来の白金族金属元素のみからなる担持触媒(比較例1相当)を充填した系と比較して水素発生量が多く、触媒性能が向上していることがわかる。
 また、ガソリン車に本発明の燃料改質触媒を適用した場合を模した表2の評価結果からも明らかなように、白金族金属元素からなる触媒成分に加えて特定の助触媒成分を併用した担持触媒(実施例13)は、硫黄分を含む燃料の改質に使用した場合であっても、従来の白金族金属元素のみからなる担持触媒(比較例2相当)と比較して、経時的に水素発生量の低下が緩やかであり、触媒被毒等の劣化要因に対する耐久性に優れていることがわかる。
As is clear from the evaluation results in Table 1, in a system filled with a supported catalyst (Examples 1 to 12) in which a specific promoter component is used in addition to a catalyst component made of a platinum group metal element, conventional platinum group Compared to a system filled with a supported catalyst (corresponding to Comparative Example 1) consisting only of metal elements, it can be seen that the amount of hydrogen generated is greater and the catalytic performance is improved.
In addition, as is clear from the evaluation results in Table 2, which simulates the case where the fuel reforming catalyst of the present invention is applied to a gasoline vehicle, a specific co-catalyst component was used in addition to the catalyst component composed of a platinum group metal element. Even when the supported catalyst (Example 13) is used for reforming a fuel containing sulfur, compared with a conventional supported catalyst (equivalent to Comparative Example 2) consisting only of a platinum group metal element, It can be seen that the decrease in the amount of hydrogen generated is gradual, and the durability against deterioration factors such as catalyst poisoning is excellent.

Claims (9)

  1.  炭化水素類を含む燃料を、水素を含む合成ガスに改質するための燃料改質触媒であって、
     白金族金属元素を含む触媒成分および助触媒成分と、
     前記触媒成分および助触媒成分を担持する担体と、
    を備え、
     前記助触媒成分が、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム 、サマリウム 、ユウロピウム 、バリウム、ニッケル、およびストロンチウムからなる群より選択される少なくとも1種の元素を含む、燃料改質触媒。
    A fuel reforming catalyst for reforming a fuel containing hydrocarbons into a synthesis gas containing hydrogen,
    a catalyst component and a co-catalyst component containing a platinum group metal element;
    a carrier that supports the catalyst component and the co-catalyst component;
    with
    A fuel reforming catalyst, wherein the promoter component comprises at least one element selected from the group consisting of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium.
  2.  前記助触媒成分が、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、プロメチウム 、サマリウム 、ユウロピウム 、バリウム、ニッケル、およびストロンチウムからなる群より選択される少なくとも1種の元素を含む、請求項1に記載の燃料改質触媒。 2. The fuel of claim 1, wherein the promoter component comprises at least one element selected from the group consisting of scandium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, barium, nickel, and strontium. reforming catalyst.
  3.  前記助触媒成分が、前記触媒成分100質量部に対して、50質量部以上、1000質量部以下の量で担持されている、請求項1または2に記載の燃料改質触媒。 The fuel reforming catalyst according to claim 1 or 2, wherein the promoter component is supported in an amount of 50 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the catalyst component.
  4.  前記担体が多孔質体からなる、請求項1~3のいずれか一項に記載の燃料改質触媒。 The fuel reforming catalyst according to any one of claims 1 to 3, wherein the carrier is made of a porous material.
  5.  前記燃料は、炭素数が2以上12以下の炭化水素類を50質量%以上含む、請求項1~4のいずれか一項に記載の燃料改質触媒。 The fuel reforming catalyst according to any one of claims 1 to 4, wherein the fuel contains 50% by mass or more of hydrocarbons having 2 to 12 carbon atoms.
  6.  白金族金属元素がロジウムおよび白金を含む、請求項1~5のいずれか一項に記載の燃料改質触媒。 The fuel reforming catalyst according to any one of claims 1 to 5, wherein the platinum group metal elements include rhodium and platinum.
  7.  前記燃料が自動車用燃料である、請求項1~6のいずれか一項に記載の燃料改質触媒。 The fuel reforming catalyst according to any one of claims 1 to 6, wherein the fuel is automotive fuel.
  8.  請求項1~7のいずれか一項に記載の燃料改質触媒を用いた燃料改質方法であって、
     硫黄成分と炭化水素類とを含む燃料を、水蒸気の存在下で前記燃料改質触媒と接触させて、水素および一酸化炭素を生成することを含む、方法。
    A fuel reforming method using the fuel reforming catalyst according to any one of claims 1 to 7,
    A method comprising contacting a fuel comprising a sulfur component and hydrocarbons with said fuel reforming catalyst in the presence of steam to produce hydrogen and carbon monoxide.
  9.  内燃機関からの燃焼後排ガスおよび請求項1~7のいずれか一項に記載の燃料改質触媒により、炭化水素類を含む燃料の一部または全部を水素および一酸化炭素に改質し、得られた水素および一酸化炭素を、内燃機関へ供給する燃料に添加する、ことを含む燃料改質エンジンシステム。 A part or all of a fuel containing hydrocarbons is reformed into hydrogen and carbon monoxide by using a post-combustion exhaust gas from an internal combustion engine and the fuel reforming catalyst according to any one of claims 1 to 7, and adding hydrogen and carbon monoxide obtained to a fuel supplied to an internal combustion engine.
PCT/JP2022/001721 2021-01-20 2022-01-19 Fuel reforming catalyst, fuel reforming method, and fuel reforming device WO2022158473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576708A JPWO2022158473A1 (en) 2021-01-20 2022-01-19

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-007352 2021-01-20
JP2021-007363 2021-01-20
JP2021007352 2021-01-20
JP2021007363 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158473A1 true WO2022158473A1 (en) 2022-07-28

Family

ID=82549447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001721 WO2022158473A1 (en) 2021-01-20 2022-01-19 Fuel reforming catalyst, fuel reforming method, and fuel reforming device

Country Status (2)

Country Link
JP (1) JPWO2022158473A1 (en)
WO (1) WO2022158473A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022879A (en) * 1988-03-12 1990-01-08 Satoru Igarashi Catalyst for steam reforming of hydrocarbon
JP2011088066A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Reforming catalyst, reformer, and hydrogen production apparatus
WO2013136821A1 (en) * 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
JP2014113518A (en) * 2012-12-06 2014-06-26 Nissan Motor Co Ltd Fuel reforming catalyst
JP2015196142A (en) * 2014-04-02 2015-11-09 株式会社豊田中央研究所 Steam modification catalyst, steam modification method and steam modification reaction apparatus using the same
JP2016104467A (en) * 2014-12-01 2016-06-09 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Steam modification catalyst of hydrocarbon-containing gas, hydrogen manufacturing device and hydrogen manufacturing method
JP2019203487A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Fuel reforming device and control method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022879A (en) * 1988-03-12 1990-01-08 Satoru Igarashi Catalyst for steam reforming of hydrocarbon
JP2011088066A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Reforming catalyst, reformer, and hydrogen production apparatus
WO2013136821A1 (en) * 2012-03-14 2013-09-19 エヌ・イーケムキャット株式会社 Catalyst composition for exhaust gas cleaning and catalyst for automobile exhaust gas cleaning
JP2014113518A (en) * 2012-12-06 2014-06-26 Nissan Motor Co Ltd Fuel reforming catalyst
JP2015196142A (en) * 2014-04-02 2015-11-09 株式会社豊田中央研究所 Steam modification catalyst, steam modification method and steam modification reaction apparatus using the same
JP2016104467A (en) * 2014-12-01 2016-06-09 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Steam modification catalyst of hydrocarbon-containing gas, hydrogen manufacturing device and hydrogen manufacturing method
JP2019203487A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Fuel reforming device and control method therefor

Also Published As

Publication number Publication date
JPWO2022158473A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
RU2549402C1 (en) Catalytic exhaust gas neutraliser
CN101204673B (en) Exhaust gas purging catalyst and method for producing the exhaust gas purging catalyst
JP2003320253A (en) Hydrocarbon partial oxidation catalyst and production of hydrogen-containing gas using the same
JP6725994B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
CN113042045B (en) Exhaust gas purifying catalyst
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
Wu et al. Effect of MOx (M= Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion
CN109641200B (en) Methane oxidation catalyst, preparation process and use method thereof
US7585810B2 (en) Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
JP2010279911A (en) Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst
CN113042047A (en) Catalyst for exhaust gas purification
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
WO2013039037A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JPH09248462A (en) Exhaust gas-purifying catalyst
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
WO2023026775A1 (en) Catalyst structure, fuel reforming method, and fuel reforming system
WO2022158473A1 (en) Fuel reforming catalyst, fuel reforming method, and fuel reforming device
US11577226B2 (en) Exhaust gas purification catalyst
JP2022112020A (en) Fuel reforming catalyst, fuel reforming method, and fuel reforming device
JP7161972B2 (en) Reforming catalyst and fuel reforming method using the same
JP2014113518A (en) Fuel reforming catalyst
JP2004066170A (en) Monolithic fuel reforming catalyst, and manufacturing method thereof
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JP2014057947A (en) Hydrogen generation catalyst, method for producing hydrogen generation catalyst and system using hydrogen generation catalyst
JP4875295B2 (en) Reforming catalyst for partial oxidation and reforming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742595

Country of ref document: EP

Kind code of ref document: A1