WO2022158412A1 - Substrate for filter, and filtration material for filter - Google Patents

Substrate for filter, and filtration material for filter Download PDF

Info

Publication number
WO2022158412A1
WO2022158412A1 PCT/JP2022/001331 JP2022001331W WO2022158412A1 WO 2022158412 A1 WO2022158412 A1 WO 2022158412A1 JP 2022001331 W JP2022001331 W JP 2022001331W WO 2022158412 A1 WO2022158412 A1 WO 2022158412A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
heat
fibers
fiber
base material
Prior art date
Application number
PCT/JP2022/001331
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 中村
元道 福田
常括 竹内
祐介 志水
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021007819A external-priority patent/JP2024033025A/en
Priority claimed from JP2021007820A external-priority patent/JP2024033026A/en
Priority claimed from JP2021055856A external-priority patent/JP2024033028A/en
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Publication of WO2022158412A1 publication Critical patent/WO2022158412A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/24Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes

Definitions

  • the present invention relates to a filter substrate and a filter medium.
  • porous membranes have been used as filter media for air filters and filter media for liquid filters.
  • Porous membrane materials include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PP polypropylene
  • these porous membranes can achieve high collection efficiency and low pressure loss, so they are used as filter media for air filters in clean room filters and cyclone vacuum cleaner filters that require high collection efficiency.
  • filters for water purification, industrial wastewater, industrial water, etc. may be subjected to harsh conditions such as cleaning work with strong alkalis such as sodium hydroxide. It is also widely used as a filter medium for liquid filters.
  • the porous membrane has low mechanical strength and also has a problem in dimensional stability, so it is difficult to use the porous membrane alone. Therefore, there is a need for a filter material that is a composite of a filter substrate and a porous membrane.
  • Nonwoven fabrics are often used as filter substrates from the viewpoint of flexibility and porosity.
  • filter base material may be abbreviated as “base material”
  • filter medium may be abbreviated as “filter medium”.
  • Combining the base material and the porous membrane is performed by bonding by heat fusion, bonding with an adhesive, or the like. Bonding with an adhesive is not preferable because the adhesive clogs the pores of the porous membrane, which may lead to an increase in pressure loss and a decrease in collection efficiency. Therefore, it is preferable to form a composite by bonding by thermal fusion.
  • Lamination by thermal fusion bonding involves lamination by heat-pressure treatment, and the heat-pressure treatment increases the density of the base material, which may increase the pressure loss.
  • the porous membrane may peel off from the substrate during use of the filter. Therefore, the filter base material is required to have a high peel strength, which is difficult to achieve a high density when bonded by thermal fusion bonding.
  • PTFE has high chemical resistance
  • the base material for a filter shrinks or deteriorates during cleaning work with strong alkali, when it is used again as a filter, damage to the base material or liquid leakage may occur, resulting in use as a filter for liquids. can be difficult to do.
  • the base material to be combined with the porous membrane is, for example, made of polyolefin-based resin or polyester-based resin, has a weight per unit area of 40 g/m 2 to 120 g/m 2 , a thickness of 0.3 mm to 0.9 mm, and is burstable.
  • a nonwoven fabric having a strength of 199 kPa to 600 kPa, a puncture strength of 8 N to 24 N, and a porosity of 65% to 90% is disclosed (see Patent Document 1).
  • Patent Document 1 there is a concern that the base material becomes denser and the pressure loss increases when the base material is attached by thermal fusion bonding, and the peel strength between the porous membrane and the base material is not sufficient.
  • Patent Document 2 discloses a spunbond nonwoven fabric made of core-sheath composite fibers of polyester/polyethylene as a base material (see Patent Document 2).
  • the base material of Patent Document 2 has a high density during bonding by thermal fusion bonding, and there is a concern that the pressure loss will increase, and the peel strength between the base material and the porous membrane is not sufficient. There was a concern that problems such as the porous membrane peeling off from the substrate would occur.
  • the filter medium of Patent Document 2 is assumed to be used only for air filters, and is not assumed to be used as a filter for liquids. There was a concern that problems such as deterioration of the nonwoven fabric would occur when it was used.
  • An object of the present invention is to obtain a filter base material in which the pressure loss does not easily increase and a high peel strength can be obtained between the porous membrane and the filter base material when they are attached by thermal fusion bonding. is. Another object of the present invention is to obtain a filter base material that is excellent in chemical resistance and is resistant to deterioration even when used under severe conditions such as strong alkali.
  • Another object of the present invention is to provide a filter material for filters that is resistant to pressure loss, has peel strength, has excellent chemical resistance, and is resistant to deterioration even when used under severe conditions such as strong alkali.
  • the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B); (2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. 80% by mass of the filter base material. 2.
  • said non-binder fibers (NB) are at least one selected from the group consisting of synthetic fibers and wood pulp. 3.
  • the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer;
  • the layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass.
  • the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B); (2) containing a drawn polyester fiber as the non-binder fiber (NB), (3)
  • the heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester, (4)
  • a filter base material wherein the compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
  • the crystalline copolyester of the sheath of the core-sheath type polyester fiber is (i) a copolymer polyester whose dicarboxylic acid component is terephthalic acid and whose diol component is ethylene glycol and tetramethylene glycol; (ii) a copolymer polyester in which the dicarboxylic acid component is terephthalic acid and the diol component is ethylene glycol, tetramethylene glycol and ⁇ -caprolactone; and (iii) the dicarboxylic acid component is terephthalic acid and isophthalic acid and the diol component is ethylene.
  • the filter substrate according to 8 above which is at least one selected from the group consisting of copolymerized polyesters of glycol and tetramethylene glycol. 10.
  • the filter base material according to item 8 or 9 which has a basis weight of 30 to 180 g/m 2 .
  • [Filter material for filter] 11.
  • a filter material for a filter comprising the filter substrate and the porous membrane according to any one of the preceding items 1 to 10.
  • the filter medium for filters according to 11 above, wherein the material of the porous membrane is polytetrafluoroethylene.
  • the present invention it is possible to obtain a filter substrate that achieves both high collection efficiency and low pressure loss, and provides high peel strength between the porous membrane and the filter substrate. Moreover, according to the present invention, it is possible to obtain a filter base material which is excellent in chemical resistance and hardly deteriorates even when used under severe conditions such as strong alkali.
  • the filter material for filters of the present invention is resistant to pressure loss, has peel strength, has excellent chemical resistance, and is resistant to deterioration even when used under severe conditions such as strong alkali.
  • the filter base material of the present invention is a filter base material for use as a filter material for a filter by laminating a porous membrane by heat-sealing, and the filter base material is a non-binder fiber (NB) and heat-sealed. It is a wet-laid nonwoven fabric containing adhesive binder fibers (B).
  • a wet-laid nonwoven fabric is a nonwoven fabric produced by a wet-laid papermaking method that provides a uniform texture.
  • each fiber is dispersed in water to prepare a slurry.
  • the slurry is made into paper using a paper machine to obtain a wet-laid nonwoven fabric.
  • Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
  • a fourdrinier method, a cylinder method, an inclined wire method, or the like can be used.
  • the filter substrate of the present invention can also be produced using a combination paper machine in which two or more of the same or different papermaking systems selected from these papermaking systems are installed online.
  • a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
  • the "paper-making method” in which wet paper sheets made by each paper-making method are laminated, after forming one layer It can be produced by a "casting method” or the like in which a slurry in which fibers are dispersed is cast and laminated on the layer.
  • the layer previously formed may be in a wet paper state or in a dry state.
  • two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
  • the mechanical strength of the filter substrate is improved by incorporating the step of raising the temperature of the nonwoven fabric to the melting point or softening temperature of the heat-fusible binder fiber (B) or higher in the manufacturing process.
  • a filter material for a filter is obtained by laminating the base material for a filter of the present invention and a porous membrane by heat-sealing. Bonding can be performed by heat and pressure treatment.
  • the heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender.
  • the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
  • porous membranes such as polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; If a porous membrane with a low heat resistance temperature is used, the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
  • the filter substrate ⁇ 1> of the present invention is a filter substrate for use as a filter material by laminating porous membranes by thermal fusion, (1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B); (2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. It is characterized by being ⁇ 80% by mass.
  • Non-binder fiber (NB) means that the cross-sectional shape of the fiber does not change even at the melting point or softening temperature of the heat-fusible binder fiber (B), or even if the cross-sectional shape changes, the fiber shape is maintained. It is a fiber that has character and serves as the main fiber. In general, the melting point or softening point of the synthetic fiber as the non-binder fiber (NB) is higher than the melting point or softening point of the heat-fusible binder fiber (B). Also, the non-binder fibers (NB) in the present invention preferably contain organic fibers.
  • non-binder fibers such as glass fibers and carbon fibers are included in non-binder fibers (NB) in a broad sense. If the binder fibers (NB) are only inorganic fibers, the substrate may be damaged during the heat and pressure treatment. Therefore, the non-binder fibers (NB) preferably contain organic fibers, and more preferably do not contain inorganic fibers.
  • the cross-sectional shape of the non-binder fibers (NB) is preferably circular.
  • fibers having irregular cross-sections such as T-shaped, Y-shaped, and triangular can also be contained within a range that does not impair other characteristics.
  • the blending ratio of the non-binder fibers (NB) is 10 to 80% by mass, more preferably 20 to 75% by mass, and 30 to 70% by mass with respect to the total fiber components contained in the wet-laid nonwoven fabric. is more preferred. If the blending ratio of the non-binder fibers (NB) is less than 10% by mass, the thickness of the base material is too low during lamination by thermal fusion bonding, resulting in a base material with too high a density, resulting in high pressure loss of the filter medium. too large to be suitable as a filter.
  • the blending ratio of the non-binder fibers (NB) is more than 80% by mass, the amount of the heat-fusible binder fibers (B) is small, so the fibers easily fall off from the base material, and when used as a filter, the fibers fall off. A problem arises in that the fibers flow downstream and adversely affect it.
  • the non-binder fibers (NB) preferably contain wood pulp.
  • wood pulp bleached hardwood kraft pulp (abbreviation: LBKP, English notation: Hardwood Bleached Kraft Pulp), softwood bleached kraft pulp (abbreviation: NBKP, English notation: Softwood Bleached Kraft Pulp), hardwood bleached sulfite pulp (abbreviation: LBSP) , English name: Hardwood Bleached Sulfite Pulp), Softwood Bleached Sulfite Pulp (abbreviation: NBSP, English name: Softwood Bleached Sulfite Pulp), Hardwood Unbleached Kraft Pulp (abbreviation: LUKP, English name: Hardwood Unbleached Sulfite Pulp) Bleached kraft pulp (abbreviation: NUKP, English notation: Softwood Unbleached Kraft Pulp) and the like. If the fibers of the wood pulp are fine, the pressure loss tends to increase, so although there is no particular limitation, it is
  • the blending ratio of the wood pulp is not particularly limited, but it is preferably less than 50% by mass, preferably 40% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. It is more preferably less than 30% by mass, and even more preferably less than 30% by mass. If the blending ratio of the wood pulp is 50% by mass or more, the wood pulp clogs the pores of the base material, which may increase the pressure loss. Peel strength may be reduced.
  • non-binder fibers cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp can be used.
  • Non-binder fibers preferably comprise synthetic fibers.
  • Synthetic fibers as non-binder fibers (NB) include, for example, polyester fibers such as polyethylene terephthalate (PET) fibers and polybutylene terephthalate fibers; polyolefin fibers such as polypropylene fibers and polyethylene fibers; polystyrene or modified polymers and copolymers of these polymers.
  • PET polyethylene terephthalate
  • polybutylene terephthalate fibers polyolefin fibers such as polypropylene fibers and polyethylene fibers
  • polystyrene or modified polymers and copolymers of these polymers polyacrylonitrile fiber
  • Polyvinyl alcohol fiber Polyamide fiber
  • Urethane fiber Polyphenylene sulfide fiber
  • fiber obtained by spinning the material and the like.
  • the fineness of synthetic fibers as non-binder fibers is preferably 0.1 to 6.0 decitex, more preferably 0.6 to 3.3 decitex. If the fineness of the synthetic fiber is less than 0.1 decitex, the papermaking property tends to be poor, the texture tends to be poor, and the cost is increased. On the other hand, when the fineness of the synthetic fiber exceeds 6.0 decitex, the texture tends to be poor.
  • the synthetic fiber preferably has a fiber length of 2 to 20 mm, more preferably 3 to 10 mm. When the fiber length of the synthetic fiber is less than 2 mm, the fiber tends to come off from the wire in the wet papermaking method, and the yield may decrease. On the other hand, if the fiber length of the synthetic fiber exceeds 20 mm, the screen may be clogged with fibers in the wet papermaking method, making papermaking difficult. In addition, the texture may become uneven due to the entanglement of the fibers.
  • the fineness of the heat-fusible binder fiber (B) is preferably 0.1 to 6.0 decitex, more preferably 0.2 to 3.3 decitex.
  • the fineness of the heat-fusible binder fiber (B) is less than 0.1 decitex, the resulting nonwoven fabric has a small thickness and a high density, which may increase the pressure loss.
  • the heat-fusible binder fiber (B) has a fineness of more than 6.0 decitex, the texture of the nonwoven fabric may be poor and may not be suitable as a filter base material.
  • the fiber length of the heat-fusible binder fiber (B) is preferably 2-20 mm, more preferably 3-10 mm.
  • the fiber length of the heat-fusible binder fiber (B) When the fiber length of the heat-fusible binder fiber (B) is less than 2 mm, the fiber tends to come off from the wire in the wet papermaking method, and the yield may decrease. On the other hand, if the fiber length of the heat-fusible binder fibers (B) exceeds 20 mm, the fibers may clog the screen in the wet papermaking method, making papermaking difficult. In addition, the texture may become uneven due to the entanglement of the fibers.
  • heat-fusible binder fibers examples include single fibers and composite fibers such as core-sheath fibers (core-shell type) and parallel fibers (side-by-side type).
  • core-shell type core-sheath fibers
  • monofilaments include fibers of polyethylene, unstretched polyester, unstretched polyphenylene sulfide, and the like.
  • Composite fibers can improve the mechanical strength without forming a film on the surface of the nonwoven fabric.
  • Core-sheath fibers include, for example, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), polyester (core) and a combination of polyethylene (sheath).
  • core polypropylene
  • core polyethylene
  • core polypropylene
  • core high-melting polyester
  • sheath low-melting polyester
  • full-melting type single fibers made only of low-melting resin such as polyethylene tend to form a film in the drying process, and pressure loss may increase, but it can be used as long as it does not impair the characteristics. be able to.
  • the heat-fusible binder fiber (B) is preferably a core-sheath fiber that does not easily decrease in thickness during lamination by heat
  • the blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, more preferably 25 to 80% by mass, more preferably 30 to 70% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. % is more preferred. If the blending ratio of the heat-fusible binder fibers (B) is less than 10% by mass, there is a problem that a large amount of fibers fall off due to insufficient components for stopping the non-binder fibers (NB). On the other hand, when the blending ratio of the heat-fusible binder fiber (B) is more than 90% by mass, the non-woven fabric has a small thickness and a high density. Unsuitable as a filter due to increased pressure loss.
  • the melting point of the heat-fusible binder fiber (B) is preferably less than 180°C, preferably less than 170°C, and more preferably less than 160°C.
  • the melting point of the heat-fusible binder fiber (B) is higher than 180° C., it is necessary to apply a high temperature during lamination by heat-sealing, thereby crushing the synthetic fiber as the non-binder fiber (NB). As it becomes easier, the pressure loss may increase.
  • wet heat adhesive binder fiber (b) In addition to the heat-fusible binder fibers (B), wet heat adhesive binder fibers (b) can also be used. Hot water-soluble fibers such as polyvinyl alcohol (PVA)-based fibers can be used as the wet heat adhesive binder fibers (b).
  • PVA polyvinyl alcohol
  • the wet heat adhesive binder fiber (b) hardly dissolves in water at room temperature and maintains its fiber form, but when heated on the dryer surface of the wet papermaking method, it begins to dissolve easily, and at that moment the touch roll By pressurizing with a pressurizing facility such as the following, followed by dehydration and drying, it is re-solidified and a binder effect is obtained.
  • the effect of this wet heat adhesive binder fiber (b) on the adhesive strength can be considered from the softening point in water.
  • the softening point in water roughly indicates the temperature at which the wet paper is heated by a drier in the wet papermaking process, and the wet heat adhesive binder fibers (b) begin to melt and exhibit the adhesive function.
  • the wet heat adhesive binder (B) having a lower softening point in water is used, the wet heat adhesive binder fiber (b), which is a precondition for adhesion, becomes easier to dissolve and the adhesion effect increases.
  • the softening point in water is too low, there arises a problem that adhesion to the drier is likely to occur.
  • the temperature of the wet paper In order for the wet heat adhesive binder fiber (b) to dissolve, the temperature of the wet paper must be higher than its softening point in water. When the temperature of the wet paper is lower than the softening point of the wet heat adhesive binder fiber (b) in water, the wet heat adhesive binder fiber (b) does not dissolve, and therefore the binder effect is completely lost.
  • the steam temperature of the dryer In the case of the Yankee dryer, the steam temperature of the dryer is about 130 to 160°C, and the temperature of the wet paper in contact with it is considered to be 60 to 90°C.
  • the binder fiber (b) preferably has a softening point in water of 65 to 85°C.
  • the wet heat adhesive binder fiber (b) forms a film to close the pores of the base material and does not contribute to adhesion to the porous film even if the heat and pressure treatment is performed in the absence of moisture.
  • the blending ratio is not particularly limited, when the wet heat adhesive binder fiber (b) is used, it is preferably less than 20% by mass based on the total fiber components contained in the wet nonwoven fabric. Moreover, there is no problem even if the wet heat adhesive binder fiber (b) is not contained.
  • the fineness of the wet heat adhesive binder fiber (b) is not particularly limited, it is preferably 0.3 to 5.0 dtex, more preferably 1.0 to 3.0 dtex. If the fineness is less than 0.3 decitex, it may fall off from the papermaking wire. On the other hand, if it exceeds 5.0 decitex, it may be difficult to obtain sufficient strength due to the small specific surface area.
  • the fiber length is preferably 3 to 6 mm in consideration of texture and dispersibility.
  • the filter substrate ⁇ 1> is not particularly limited, but preferably has a basis weight in the range of 30 to 120 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 120 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
  • the density of the filter substrate ⁇ 1> is not particularly limited, it is preferably 0.1 to 0.5 g/cm 3 .
  • the density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , the fibers may come off during lamination by heat-sealing, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
  • Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
  • Filter substrate ⁇ 1> can also be produced using a combination paper machine in which two or more of the same or different papermaking methods selected from these papermaking methods are installed online.
  • a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
  • the "paper-making method” in which the wet paper made by each paper-making method is laminated, after forming one layer It can be produced by a “casting method” or the like in which a slurry in which fibers are dispersed is cast and laminated on the layer.
  • the layer previously formed may be in a wet paper state or in a dry state.
  • two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
  • the present invention includes a filter medium ⁇ 1> including the aforementioned filter substrate ⁇ 1> and a porous membrane. That is, the filter material ⁇ 1> is a filter material including a filter substrate and a porous membrane, (1)
  • the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B), (2)
  • the blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. It is characterized by being ⁇ 80% by mass.
  • the filter base material and the porous membrane are preferably bonded together by thermal fusion.
  • Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE).
  • PE polyethylene
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance.
  • PTFE also has excellent chemical resistance.
  • the thickness of the porous membrane is preferably 1-50 ⁇ m, more preferably 2-30 ⁇ m.
  • the Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010.
  • the filter medium ⁇ 1> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ⁇ s or more, more preferably 20 cm 3 /cm 2 ⁇ s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ⁇ s, the pressure loss increases and may not be suitable as a filter medium.
  • the filter substrate ⁇ 1> of the present invention and the porous membrane can be heat-sealed to produce a filter medium for a filter.
  • Bonding can be performed by heat and pressure treatment.
  • the heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender.
  • the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
  • the pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
  • the filter substrate ⁇ 2> of the present invention is a filter substrate for use as a filter material by laminating porous membranes by thermal fusion, (1) the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer; (2) The layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass.
  • NB non-binder fibers
  • B heat-fusible binder fibers
  • Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. It is characterized by being a layer having a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
  • the filter substrate ⁇ 2> When the filter substrate ⁇ 2> has two layers, it has the following structure. Layer (X)/Layer (Y) When the filter substrate ⁇ 2> has three layers, the following structure can be exemplified. Layer (X)/Layer (Y)/Layer (Y) Layer (X)/Layer (Y)/Layer (X) Layer (X) should be exposed on at least one surface. When the layer structure is layer (Y)/layer (X)/layer (Y), the layer (X) does not come into contact with the porous film, so sufficient peel strength cannot be obtained.
  • the filter base material ⁇ 2> is used as a filter medium for a filter by laminating porous membranes by thermal fusion. Layer (X) is a layer in contact with the porous membrane.
  • Non-binder fiber (NB)> In the filter substrate ⁇ 2>, the synthetic fibers described in the filter substrate ⁇ 1> can be used as the non-binder fibers (NB).
  • the blending ratio of the synthetic fibers is preferably 10 to 80% by mass, more preferably 20 to 75% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. , 30 to 70% by mass. If the blending ratio of the synthetic fibers is less than 10% by mass, the thickness of the base material will be too low during the lamination by thermal fusion bonding, resulting in a base material with too high a density. May not be suitable as a filter.
  • the blending ratio of the synthetic fibers is more than 80% by mass, the amount of the heat-fusible binder fibers (B) is small, so the fibers tend to fall off from the base material, and when used as a filter, the dropped fibers flow downstream. Problems may arise that the water may flow out and cause adverse effects.
  • wood pulp can also be used in addition to synthetic fibers as the non-binder fibers (NB).
  • NB non-binder fibers
  • the wood pulp described in the filter substrate ⁇ 1> can be used as the wood pulp.
  • the blending ratio of the wood pulp is not particularly limited, but it is preferably less than 50% by mass, and less than 40% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. More preferably, it is less than 30% by mass, and there is no problem even if it does not contain wood pulp. If the blending ratio of the wood pulp is 50% by mass or more, the wood pulp clogs the pores of the nonwoven fabric, which may cause a problem of increased pressure loss. As a result, the problem of reduced peel strength may occur.
  • the heat-fusible binder fiber (B) can be the heat-fusible binder fiber (B) described in the filter base material ⁇ 1>.
  • the blending ratio of the heat-fusible binder fiber (B) is preferably 20 to 90% by mass, more preferably 25 to 80% by mass, more preferably 30% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. More preferably, it is up to 70% by mass. If the blending ratio of the heat-fusible binder fiber (B) is less than 10% by mass, there may be a problem in that a large amount of fibers fall off due to insufficient components for binding the synthetic fibers. On the other hand, when the blending ratio of the heat-fusible binder fiber (B) is more than 90% by mass, the nonwoven fabric has a small thickness and a high density. The problem is that it is not suitable as a filter.
  • the blending ratio of the heat-fusible binder fiber (B) in the layer (X) is 50% by mass or more, more preferably 60% by mass or more, based on the total fiber components contained in the layer (X). , more preferably 70% by mass or more. Moreover, the compounding ratio of the heat-fusible binder fiber (B) in the layer (X) may be 100% by mass.
  • the blending ratio of the heat-fusible binder fiber (B) in the layer (Y) is less than 50% by mass, more preferably less than 40% by mass, based on the total fiber components contained in the layer (Y). , and more preferably less than 30% by mass. Moreover, the compounding ratio of the heat-fusible binder fiber (B) in the layer (Y) may be 0% by mass.
  • the layer (Y) is a plurality of layers, the layer (Y) may be one or more layers among the plurality of layers, but the layer (Y) may be the outermost layer on the side not in contact with the porous membrane. preferable.
  • the wet heat adhesive binder fiber (b) in addition to the heat-fusible binder fiber (B), can also be used as the binder fiber.
  • the wet heat adhesive binder fiber (b) may be the wet heat adhesive binder fiber (b) described in the filter substrate ⁇ 1>.
  • Fibers used in the present invention include cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp.
  • the filter substrate ⁇ 2> is not particularly limited, but preferably has a total basis weight of 30 g/m 2 to 180 g/m 2 , more preferably 40 g/m 2 to 160 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 180 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
  • the basis weight of layer (X) is 5 g/m 2 to 60 g/m 2 , more preferably 10 g/m 2 to 50 g/m 2 . If the layer (X) has a basis weight of less than 5 g/m 2 , the effect of increasing the adhesive strength with the porous membrane cannot be sufficiently obtained. If the basis weight of the layer (X) is more than 60 g/m 2 , the pressure loss will be high and it will not be suitable for use as a filter.
  • the basis weight of layer (Y) is 25 g/m 2 to 120 g/m 2 , more preferably 30 g/m 2 to 110 g/m 2 . If the basis weight of the layer (Y) is less than 25 g/m 2 , the layer (Y) is not suitable for use as a filter because of its weak strength and breakage when used as a filter. If the basis weight of the layer (Y) is greater than 120 g/m 2 , the pressure loss will be high and it will not be suitable for use as a filter.
  • the density of the filter substrate ⁇ 2> is not particularly limited, but is preferably 0.1 to 0.5 g/cm 3 .
  • the density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , fibers may fall off during the heat-pressing treatment, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
  • Filter substrate ⁇ 2> can be produced by a wet papermaking method.
  • Filter substrate ⁇ 2> is a nonwoven fabric produced by a wet papermaking method. That is, each layer of the filter substrate ⁇ 2> is prepared by dispersing the non-binder fiber (NB) and the heat-fusible binder fiber (B) in water at a predetermined ratio to prepare a slurry, and the resulting slurry is used for papermaking. It can be manufactured by making paper using a machine.
  • Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
  • Filter substrate ⁇ 2> can also be produced using a combination paper machine in which two or more of the same or different papermaking methods selected from these papermaking methods are installed online.
  • a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
  • the filter substrate ⁇ 2> was prepared by laminating wet paper made by each papermaking method, and after forming one layer, a slurry in which fibers were dispersed was applied to the layer.
  • the film can be manufactured by a "casting method" or the like in which the film is cast and laminated.
  • the layer previously formed may be in a wet paper state or in a dry state.
  • two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
  • Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. It is characterized by being a layer with a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
  • the filter substrate and the porous membrane are preferably bonded together by thermal fusion.
  • Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE).
  • the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
  • the thickness of the porous membrane is preferably 1-50 ⁇ m, more preferably 2-30 ⁇ m.
  • the Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010.
  • the filter medium ⁇ 2> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ⁇ s or more, more preferably 20 cm 3 /cm 2 ⁇ s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ⁇ s, the pressure loss increases and may not be suitable as a filter medium.
  • the filter substrate ⁇ 2> of the present invention and the porous membrane are laminated by thermal fusion to produce the filter medium ⁇ 2> for the filter.
  • Bonding can be performed by heat and pressure treatment.
  • the heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender.
  • the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
  • the pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
  • Filter base material ⁇ 3> is a filter base material for use as a filter material by bonding porous membranes by thermal fusion, (1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B); (2) containing a drawn polyester fiber as the non-binder fiber (NB), (3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester, (4) The compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
  • NB non-binder fibers
  • B heat-fusible binder fiber
  • CSP core-sheath type polyester fiber
  • the filter substrate ⁇ 3> of the present invention contains the heat-fusible binder fiber (B), the step of raising the temperature above the melting point or softening temperature of the heat-fusible binder fiber (B) is omitted.
  • the heat-fusible binder fiber (B) is melted or softened and bound, and the mechanical strength of the filter substrate ⁇ 3> can be improved.
  • Filter substrate ⁇ 3> contains drawn polyester fibers as non-binder fibers (NB).
  • the non-binder fibers (NB) are difficult to melt or soften in the drying process and the heat calendering process when manufacturing the filter substrate ⁇ 3>, and can be used as the filter substrate ⁇ 3> while maintaining the shape of the fiber. It is the main fiber that forms the skeleton of By including stretched polyester fibers as non-binder fibers (NB), it is difficult to reduce the thickness during lamination by heat and pressure treatment, and it is difficult to increase the density of the filter substrate ⁇ 3>, resulting in a low pressure loss. effect is obtained.
  • the melting point or softening point of the non-binder fibers (NB) is higher than the melting point or softening point of the heat-fusible binder fibers (B).
  • polyester of the stretched polyester fiber a polyester whose main repeating unit is alkylene terephthalate can be mentioned, but polyethylene terephthalate with high heat resistance is preferable.
  • Wood pulp can also be used as the non-binder fiber (NB).
  • the wood pulp described in the filter substrate ⁇ 1> can be used as the wood pulp.
  • the blending ratio of the non-binder fibers (NB) is preferably 10 to 90% by mass, more preferably 20 to 75% by mass, based on the total fibers contained in the filter substrate ⁇ 3>. More preferably, it is 30 to 70% by mass. If the blending ratio of the non-binder fibers (NB) is less than 10% by mass, the thickness of the base material is too low during lamination by thermal fusion bonding, resulting in a base material with too high a density, resulting in a high pressure loss of the filter medium. too large to be suitable as a filter.
  • the blending ratio of the non-binder fibers (NB) is more than 90% by mass, since the amount of the heat-fusible binder fibers (B) is small, the fibers easily fall off from the base material, and when used as a filter, the fibers fall off. A problem arises in that the fibers flow downstream and adversely affect it.
  • the blending ratio is not particularly limited, but it is 50% by mass based on the total fibers contained in the filter substrate. It is preferably less than 40% by mass, more preferably less than 30% by mass.
  • Non-binder fibers (NB) other than drawn polyester fibers are not essential components, so the blending ratio may be 0% by mass. If the blending ratio of non-binder fibers (NB) other than drawn polyester fibers is 50% by mass or more, the fibers may easily fall off from the filter base material, and when used as a filter, the dropped fibers may flow downstream. Problems may arise that the water may flow out and cause adverse effects.
  • Fibers used in the present invention include cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp.
  • the filter substrate ⁇ 3> contains, as the heat-sealable binder fiber (B), a sheath-core polyester fiber (CSP) whose sheath is made of crystalline copolyester.
  • the dicarboxylic acid component is terephthalic acid
  • the diol component is ethylene glycol and tetramethylene glycol. can be preferably used.
  • the filter substrate ⁇ 3> contains the core-sheath type polyester fiber (CSP)
  • the filter substrate ⁇ 3> is manufactured and then laminated with the porous membrane by heat pressure treatment such as hot calendering. Even after performing, the core of the sheath-core type polyester fiber (CSP) does not melt and maintains the fiber shape, so that the tensile strength of the filter can be increased.
  • CSP core-sheath type polyester fiber
  • crystallization means that when the temperature of the fiber is raised to the temperature of the molten state and then lowered, the temperature is lowered while the fibers are entangled while undergoing molecular motion in the molten state. It has the property of partially aligning and crystallizing at the crystallization temperature while the molecular motion slows down at .
  • a differential scanning calorimeter manufactured by PerkinElmer, device name: DSC8500 was used to heat the core-sheath polyester fiber (CSP) from 0 ° C. at a heating rate of 10 ° C./min. After raising the temperature to exceed the melting point of the sheath, it is continuously cooled to 0 ° C. at a cooling rate of 10 ° C./min, and the presence or absence of an exothermic peak due to crystallization is confirmed. sex. Also, the peak temperature of the exothermic peak is defined as the crystallization temperature.
  • the melting point was measured using a differential scanning calorimeter (manufactured by PerkinElmer, device name: DSC8500), and the temperature was raised from 0°C to 300°C at a heating rate of 10°C/min. is observed and the peak temperature is taken as the melting point.
  • the core of the core-sheath polyester fiber is polyester whose main repeating unit is alkylene terephthalate, preferably polyethylene terephthalate, which has high heat resistance.
  • the cross-sectional shape of the core-sheath type polyester fiber (CSP) is not particularly limited, but a circular shape is preferable.
  • the core/sheath volume ratio is preferably 30/70 to 70/30, more preferably 40/60 to 60/40.
  • the melting point of the crystalline copolyester of the sheath is preferably 130°C or higher, more preferably 140°C or higher, and still more preferably 150°C or higher.
  • the melting point of the crystalline polyester is high, higher adhesive strength can be obtained, and since it has high chemical resistance, it is difficult to deteriorate and shrink even when used under harsh conditions. .
  • the surface of the filter substrate ⁇ 3> tends to form a film, and after bonding the porous membrane and the filter substrate together by heat calendering or the like, the pressure loss increases and the filter can be used as a filter. can be difficult to do.
  • a heat-fusible binder fiber (B) other than the core-sheath type polyester fiber (CSP) can be blended into the filter substrate ⁇ 3> as needed.
  • the heat-fusible binder fiber (B) other than the core-sheath type polyester fiber (CSP) the heat-fusible binder fiber (B) described in the filter substrate ⁇ 1> can be used.
  • wet heat adhesive binder fibers (b) can also be used as binder fibers.
  • the wet heat adhesive binder fiber (b) described in the filter base material ⁇ 1> can be used as the wet heat adhesive binder fiber (b).
  • the blending ratio of the binder fiber is preferably 10 to 90% by mass, preferably 25 to 80% by mass, based on the total fibers contained in the filter substrate ⁇ 3>. and more preferably 30 to 70% by mass. If the blending ratio of the binder fiber (B) is less than 10% by mass, there may be a problem that the amount of the component that stops the non-binder fiber (NB) is insufficient, resulting in a large amount of falling-off fiber. On the other hand, when the blending ratio of the binder fiber (B) is more than 90% by mass, the filter base material has a small thickness and a high density. , the problem that it is not suitable as a filter may occur.
  • CSP core-sheath type polyester fiber
  • the basis weight of the filter substrate ⁇ 3> is not particularly limited, but is preferably 30 g/m 2 to 180 g/m 2 , more preferably 40 g/m 2 to 160 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 180 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
  • the density of the filter substrate ⁇ 3> is not particularly limited, it is preferably 0.1 to 0.5 g/cm 3 .
  • the density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , fibers may fall off during the heat-pressing treatment, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
  • the present invention includes a filter medium ⁇ 3> including the aforementioned filter substrate ⁇ 3> and a porous membrane. That is, the filter material ⁇ 3> is a filter material including a filter substrate and a porous membrane, (1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B); (2) containing a drawn polyester fiber as the non-binder fiber (NB), (3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester, (4) The compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
  • the filter material ⁇ 3> is a filter material including a filter substrate and a porous membrane
  • the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and
  • the filter material ⁇ 3> for a filter is formed by bonding a porous membrane and a base material for a filter together by heat-sealing.
  • Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE).
  • PE polyethylene
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
  • the thickness of the porous membrane is preferably 1-50 ⁇ m, more preferably 2-30 ⁇ m.
  • the Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010.
  • the filter medium ⁇ 3> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ⁇ s or more, more preferably 20 cm 3 /cm 2 ⁇ s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ⁇ s, the pressure loss increases and may not be suitable as a filter medium.
  • the filter substrate ⁇ 3> of the present invention and the porous membrane can be heat-sealed to produce a filter medium for a filter.
  • Bonding can be performed by heat and pressure treatment.
  • the heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender.
  • the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
  • the pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
  • ⁇ Wood pulp non-binder fiber (NB)> ⁇ NBKP Chinook (freeness 680ml CSF)
  • ⁇ Synthetic fiber non-binder fiber (NB)> ⁇ PET fiber (stretched PET fiber, fineness 1.7 decitex, fiber length 5 mm)
  • ⁇ Inorganic fiber non-binder fiber (NB)> ⁇ Glass fiber (fiber diameter 9 ⁇ m, fiber length 6 mm)
  • ⁇ Porous membrane> ⁇ PP porous membrane (polypropylene resin membrane, film thickness 20 ⁇ m) ⁇ Porous PTFE membrane (polytetrafluoroethylene resin membrane, thickness 15 ⁇ m) ⁇ Preparation of base material for filter and filter medium for filter>
  • a pulper so as to have the fiber composition shown in Table 1
  • paper was made with a cylinder paper machine, and then dried with a cylinder dryer to prepare a filter base material composed of a wet-laid nonwoven fabric.
  • the filter base material and the PP porous membrane are heat-pressed with a hot roll at a linear pressure of 20 kgf / cm and a temperature of 160 ° C., and laminated by thermal fusion bonding.
  • Filter media for filters of 1-5 and Comparative Examples 1-1 to 1-3 were produced.
  • a PTFE porous membrane was laminated on the filter base material by heat-pressing with a hot roll at a linear pressure of 20 kgf / cm and a temperature of 160 ° C., and laminated by thermal fusion bonding.
  • 1-10 and filter media for filters of Comparative Examples 1-4 to 1-6 were prepared.
  • Basis weight The basis weight and thickness of the filter substrate were measured according to JIS P 8124:2011 and 8118:2014.
  • Peel strength Peel strength was measured by cutting a filter material of 25 mm in the width direction and 150 mm in the flow direction, using a Tensilon universal testing machine, sandwiching a wet-laid nonwoven fabric and a porous membrane between jigs and pulling them. was judged visually.
  • Table 2 shows the above evaluation results.
  • "-" indicates that evaluation was not possible.
  • the filter substrates of Examples 1-1 to 1-10 are filter substrates to be used as filter media by bonding porous membranes by heat sealing, and the filter media are non-binder fibers. (NB) and a heat-fusible binder fiber (B), wherein the blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass with respect to all fiber components contained in the wet-laid nonwoven fabric. and the blending ratio of non-binder fibers (NB) is 10 to 80% by mass.
  • the filter media obtained by laminating the porous membrane and the filter substrates of Examples 1-1 to 1-10 by thermal fusion bonding exhibited high peel strength.
  • the porous membrane and the filter substrate of Comparative Example 1-1 or Comparative Example 1-4 were not damaged during the heat and pressure treatment, but were bonded together by heat sealing. I could't do it.
  • the filter media of Examples 1-1 to 1-10 are stronger than the filter media obtained by bonding the porous membrane and the filter substrate of Comparative Example 1-2 or Comparative Example 1-5 by thermal fusion bonding. , high Frazier air permeability and life are obtained.
  • Comparative Examples 1-3 and 1-6 since only glass fibers were used as the non-binder fibers (NB), the base material was damaged during the heat and pressure treatment.
  • the PP porous membrane used in Examples 1-1 to 1-5 has a lower heat resistance temperature than the PTFE porous membrane used in Examples 1-6 to 1-10, so softening occurs during heat pressure treatment. and some of the holes were blocked.
  • filter media for filters with more favorable Frazier air permeability could be obtained compared to Examples 1-1 to 1-5.
  • ⁇ Synthetic fiber non-binder fiber (NB)> ⁇ PET fiber (stretched PET fiber, fineness 1.7 decitex, fiber length 5 mm) ⁇ Heat-fusible binder fiber (B)> ⁇ PET-low melting point PET core-sheath fiber (CSP) (core-sheath binder, fineness 2.2 decitex, fiber length 5 mm, sheath melting point 120°C) ⁇ Full-melting PET binder fiber (B) (full-melting binder, fineness 1.2 decitex, fiber length 5 mm, melting point 230°C)
  • ⁇ Wood pulp non-binder fiber (NB)> ⁇ NBKP Chinook (freeness 680ml CSF)
  • The pressure loss was less than 200% with respect to the porous membrane alone.
  • The pressure loss was 200% to 300% with respect to the porous membrane alone.
  • x The pressure loss was more than 300% with respect to the porous membrane alone.
  • peeling strength The peeling of the base material is determined by rubbing the end of the filter material for the filter with the porous membrane bonded together 20 times in the vertical direction with a stainless steel rod weighing 5 kg standing upright. It was confirmed.
  • The porous membrane was not peeled off from the filter substrate at all.
  • x The porous membrane was peeled off from the filter substrate.
  • Base material strength JIS Class 8 powder and JIS Class 11 powder were mixed at a ratio of 1:1, diluted with water to a concentration of 0.05% by mass, and used as a test liquid. After wetting the filter material with water, 100 ml of the test liquid was filtered under the conditions of a filtration area of 14 cm 2 and a differential pressure ⁇ P of 320 mmHg with the porous membrane surface of the filter material facing upstream. Checked the condition of the filter media.
  • Damage such as tearing was not observed.
  • x Damage such as tearing was confirmed.
  • Table 3 shows the above evaluation results.
  • the blending ratio of the heat-fusible binder fiber (B) in X) is 50% by mass or more, and the blending ratio of the heat-fusible binder fiber (B) in the layer (Y) on the side not in contact with the porous membrane is 50%.
  • the basis weight of the outermost layer (X) on the side in contact with the porous membrane is 5 g/m 2 or more and 60 g/m 2 or less
  • the basis weight of the layer (Y) on the side not in contact with the porous membrane is
  • the filter substrates of Examples 2-1 to 2-15 which are 25 g/m 2 or more and 120 g/m 2 or less, have low pressure loss, high peel strength, and high substrate strength. I know there is.
  • Comparative Example 2-6 which is a wet-laid nonwoven fabric having a single-layer structure in which the blending ratio of the heat-fusible binder fiber (B) is 50% by mass or more, the blending ratio of the heat-fusible binder fiber (B) is high. Therefore, it is presumed that the pressure loss increased.
  • Comparative Example 2-7 which is a wet-laid nonwoven fabric having a single-layer structure in which the blending ratio of the heat-fusible binder fiber (B) is less than 50% by mass, the blending ratio of the heat-fusible binder fiber (B) is low. Therefore, it is presumed that the peel strength was lowered.
  • a drawn PET fiber 1 was a drawn polyester fiber made of polyethylene terephthalate and having a fineness of 1.7 decitex and a fiber length of 5 mm.
  • a drawn PET fiber 2 was a drawn polyester fiber made of polyethylene terephthalate and having a fineness of 0.6 decitex and a fiber length of 5 mm.
  • Wood pulp NBKP Chinook (freeness 680 ml CSF) was used as wood pulp.
  • the core part is polyethylene terephthalate (melting point: 260°C)
  • the sheath part has a dicarboxylic acid component of terephthalic acid, a diol component of ethylene glycol and tetramethylene glycol, a melting point of 180°C, and a crystallization temperature of 126°C.
  • a core-sheath type polyester fiber (Casven (registered trademark) 8080 manufactured by Unitika Ltd.) having a fineness of 1.2 decitex and a fiber length of 5 mm, which is a crystalline copolyester having a temperature of 100° C., was used as a core-sheath PET fiber 1 .
  • the core part is polyethylene terephthalate (melting point: 260°C), the sheath part has dicarboxylic acid components of terephthalic acid and isophthalic acid, diol components of ethylene glycol and diethylene glycol, and a softening temperature of 75°C.
  • a core-sheath type polyester fiber manufactured by Teijin Ltd. TJ04CN (product number) having a fineness of 2.2 decitex and a fiber length of 5 mm, which is a copolyester, was used as a core-sheath PET fiber 2 .
  • Unstretched polyester fiber (melting point: 260° C.) (TA07N (product number) manufactured by Teijin Limited) made of polyethylene terephthalate containing isophthalic acid as a dicarboxylic acid component and having a fineness of 1.2 decitex and a fiber length of 5 mm was used as unstretched PET fiber 1. did.
  • Wet heat adhesive binder fiber (b) (VPB041 manufactured by Kuraray Co., Ltd.) made of polyvinyl alcohol resin and having a fineness of 0.44 decitex and a fiber length of 3 mm was used as wet heat PVA fiber 1 .
  • Each fiber was put into water so as to have the fiber composition shown in Table 4, and mixed and dispersed for 10 minutes with a vertical pulper to prepare a slurry.
  • the paper was laminated by a paper-making method, dried with a Yankee dryer at a surface temperature of 130° C., and made at a paper-making speed of 20 m/min to obtain a wet-laid nonwoven filter substrate.
  • the fiber blend and target basis weight for the slanted wire and the circular mesh are the same.
  • the residual rate of tensile strength was 80% or more.
  • x The residual rate of tensile strength was less than 80%.
  • The pressure loss was less than 200% with respect to the porous membrane alone.
  • The pressure loss was 200% to 300% with respect to the porous membrane alone.
  • x The pressure loss was more than 300% with respect to the porous membrane alone.
  • the filter substrates of Examples 3-1 to 3-12 exhibited high chemical resistance, and the filter media of Examples 3-1 to 3-12 exhibited low pressure loss.
  • Comparative Example 3-1 in which the blending ratio of core-sheath type polyester fibers (CSP) whose sheath is crystalline copolyester is less than 5%, sufficient chemical resistance was not obtained.
  • CSP core-sheath type polyester fibers
  • Comparative Example 3-5 which does not contain stretched polyester fibers as non-binder fibers (NB), the pressure loss was high.
  • the filter base material of the present invention can be suitably used as a filter material by laminating a porous membrane.
  • the filter material for filters of the present invention can be used for various purposes as a filter material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)

Abstract

The present invention addresses the problem of obtaining: a substrate for a filter in which pressure loss does not readily increase when affixed through thermal fusion, and in which high peel strength is obtained between a porous film and the substrate for a filter; and a filtration material for a filter in which the substrate for a filter is used. The present invention is a substrate for a filter to be used as a filtration material for a filter in which a porous film is affixed by thermal fusion, wherein the substrate for a filter is a wet non-woven fabric including non-binder fibers (NB) and thermally fusible binder fibers (B). The present invention is also a filtration material for a filter in which the aforementioned substrate for a filter is used.

Description

フィルタ用基材及びフィルタ用濾材Filter base material and filter medium
 本発明は、フィルタ用基材及びフィルタ用濾材に関するものである。 The present invention relates to a filter substrate and a filter medium.
 従来から、エアフィルタ用濾材、液体フィルタ用濾材として、多孔質膜が使用されている。多孔質膜の素材としては、ポリテトラフルオロエチレン(PTFE)が挙げられる。
また、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンが挙げられる。特に、これらの多孔質膜は高い捕集効率と低い圧力損失を達成できるため、高い捕集効率が求められるクリーンルーム用フィルタやサイクロン式掃除機用フィルタ等において、エアフィルタ用濾材として使用されている。
 また、高い耐薬品性を備えていることから、水酸化ナトリウム等の強アルカリによる清浄作業などの過酷な条件下に置かれることがある浄水処理用フィルタ、産業廃水、工業用水等の濾過用フィルタにおいて、液体フィルタ用濾材としても広く使用されている。
 しかしながら、非特許文献1にあるように、多孔質膜は機械的強度が低く、寸法安定性にも問題があることから、多孔質膜単体で使用することが難しい。そのため、フィルタ用基材と多孔質膜とを複合化したフィルタ用濾材が必要とされている。しなやかさや気孔率の観点から、フィルタ用基材として不織布が使用されることが多い。
BACKGROUND ART Conventionally, porous membranes have been used as filter media for air filters and filter media for liquid filters. Porous membrane materials include polytetrafluoroethylene (PTFE).
Moreover, polyolefins, such as polyethylene (PE) and polypropylene (PP), are mentioned. In particular, these porous membranes can achieve high collection efficiency and low pressure loss, so they are used as filter media for air filters in clean room filters and cyclone vacuum cleaner filters that require high collection efficiency. .
In addition, due to its high chemical resistance, filters for water purification, industrial wastewater, industrial water, etc., may be subjected to harsh conditions such as cleaning work with strong alkalis such as sodium hydroxide. It is also widely used as a filter medium for liquid filters.
However, as described in Non-Patent Document 1, the porous membrane has low mechanical strength and also has a problem in dimensional stability, so it is difficult to use the porous membrane alone. Therefore, there is a need for a filter material that is a composite of a filter substrate and a porous membrane. Nonwoven fabrics are often used as filter substrates from the viewpoint of flexibility and porosity.
 以下、「フィルタ用基材」を「基材」と略記する場合があり、「フィルタ用濾材」を「濾材」と略記する場合がある。 Hereinafter, "filter base material" may be abbreviated as "base material", and "filter medium" may be abbreviated as "filter medium".
 基材と多孔質膜との複合化は、熱融着による貼り合わせ、接着剤による貼り合わせ等によって行われる。接着剤による貼り合わせは、接着剤が多孔質膜の孔を塞ぐことから、圧力損失の上昇や捕集効率の低下が懸念されるため好ましくない。そのため、熱融着による貼り合わせによって複合化することが好ましい。熱融着による貼り合わせは、熱圧処理によるラミネート加工が施されるが、熱圧処理によって基材が高密度となるため、圧力損失が上昇する場合があった。また、熱圧処理による剥離強度が不十分であることにより、フィルタ使用中に、多孔質膜が基材から剥離する問題が生ずる場合があった。そのため、フィルタ用基材には、熱融着による貼り合わせの際に高密度となり難く、且つ高い剥離強度が求められる。 Combining the base material and the porous membrane is performed by bonding by heat fusion, bonding with an adhesive, or the like. Bonding with an adhesive is not preferable because the adhesive clogs the pores of the porous membrane, which may lead to an increase in pressure loss and a decrease in collection efficiency. Therefore, it is preferable to form a composite by bonding by thermal fusion. Lamination by thermal fusion bonding involves lamination by heat-pressure treatment, and the heat-pressure treatment increases the density of the base material, which may increase the pressure loss. In addition, due to insufficient peel strength due to heat and pressure treatment, the porous membrane may peel off from the substrate during use of the filter. Therefore, the filter base material is required to have a high peel strength, which is difficult to achieve a high density when bonded by thermal fusion bonding.
 また、PTFEは高い耐薬品性を備えているものの、フィルタ用基材も高い耐薬品性を備えていなければ、過酷な条件下で液体フィルタとして使用することは難しい場合がある。例えば強アルカリによる清浄作業が行われた際に、フィルタ用基材が収縮・劣化した場合、再びフィルタとして使用した際に、基材の破損や液体の流出などが発生し、液体用フィルタとして使用することが難しい場合がある。 Also, although PTFE has high chemical resistance, it may be difficult to use it as a liquid filter under severe conditions unless the filter base material also has high chemical resistance. For example, if the base material for a filter shrinks or deteriorates during cleaning work with strong alkali, when it is used again as a filter, damage to the base material or liquid leakage may occur, resulting in use as a filter for liquids. can be difficult to do.
 多孔質膜と複合化させるための基材としては、例えば、ポリオレフィン系樹脂またはポリエステル系樹脂からなり、目付量が40g/m~120g/m、厚みが0.3mm~0.9mm、破裂強さが199kPa~600kPa、突刺強さが8N~24N、気孔率が65%~90%である不織布が開示されている(特許文献1参照)。しかしながら、特許文献1で開示されている基材では、熱融着による貼り合わせの際に基材が高密度となり圧力損失が上昇する懸念や、多孔質膜と基材との剥離強度が十分ではないため、多孔質膜が基材から剥離するなどの問題が発生する懸念があった。また、特許文献1で開示されている濾過膜エレメントでは、PTFE多孔質膜の高い耐薬品性を利用した用途は提案されているものの、PTFE多孔質膜を積層させる不織布の耐薬品性は考慮されておらず、濾過膜エレメントとして使用後の清浄作業の際に不織布が劣化して破損・収縮するなどの問題が発生する懸念があった。 The base material to be combined with the porous membrane is, for example, made of polyolefin-based resin or polyester-based resin, has a weight per unit area of 40 g/m 2 to 120 g/m 2 , a thickness of 0.3 mm to 0.9 mm, and is burstable. A nonwoven fabric having a strength of 199 kPa to 600 kPa, a puncture strength of 8 N to 24 N, and a porosity of 65% to 90% is disclosed (see Patent Document 1). However, with the base material disclosed in Patent Document 1, there is a concern that the base material becomes denser and the pressure loss increases when the base material is attached by thermal fusion bonding, and the peel strength between the porous membrane and the base material is not sufficient. Therefore, there was a concern that problems such as peeling of the porous membrane from the substrate would occur. In addition, in the filtration membrane element disclosed in Patent Document 1, although applications utilizing the high chemical resistance of the PTFE porous membrane have been proposed, the chemical resistance of the nonwoven fabric on which the PTFE porous membrane is laminated has not been considered. There was a concern that the non-woven fabric would deteriorate, break or shrink during cleaning work after use as a filtration membrane element.
 特許文献2では、基材として、ポリエステル/ポリエチレンの芯鞘複合繊維からなるスパンボンド不織布が開示されている(特許文献2参照)。しかしながら、特許文献2の基材においても、熱融着による貼り合わせの際に基材が高密度となり、圧力損失が上昇する懸念や、基材と多孔質膜との剥離強度が十分でなく、多孔質膜が基材から剥離するなどの問題が発生する懸念があった。また、特許文献2の濾材は、エアフィルタ用に使用されることのみを想定されており、液体用フィルタとして使用されることは想定していないことから、液体中で過酷な条件下に置かれた際に、不織布が劣化するなどの問題が発生する懸念があった。 Patent Document 2 discloses a spunbond nonwoven fabric made of core-sheath composite fibers of polyester/polyethylene as a base material (see Patent Document 2). However, even in the base material of Patent Document 2, the base material has a high density during bonding by thermal fusion bonding, and there is a concern that the pressure loss will increase, and the peel strength between the base material and the porous membrane is not sufficient. There was a concern that problems such as the porous membrane peeling off from the substrate would occur. In addition, the filter medium of Patent Document 2 is assumed to be used only for air filters, and is not assumed to be used as a filter for liquids. There was a concern that problems such as deterioration of the nonwoven fabric would occur when it was used.
 このような状況であるため、熱融着による貼り合わせの際に、圧力損失が上昇し難く、且つ、多孔質膜と基材との間で高い剥離強度が得られるフィルタ用基材が求められている。また、耐薬品性に優れ、強アルカリなどの過酷な条件下に置かれた際も劣化し難いフィルタ用基材が求められている。 Under these circumstances, there is a demand for a filter base material that does not easily increase the pressure loss during bonding by thermal fusion bonding and that provides high peel strength between the porous membrane and the base material. ing. In addition, there is a demand for a filter base material that is excellent in chemical resistance and does not easily deteriorate even when placed under severe conditions such as strong alkali.
特開2014-240047号公報JP 2014-240047 A 特開平10-211409号公報JP-A-10-211409
 本発明の課題は、熱融着による貼り合わせの際に、圧力損失が上昇し難く、且つ、多孔質膜とフィルタ用基材との間で高い剥離強度が得られるフィルタ用基材を得ることである。また、本発明の別の課題は、耐薬品性に優れ、強アルカリなどの過酷な条件下で使用した際も劣化し難いフィルタ用基材を得ることである。 An object of the present invention is to obtain a filter base material in which the pressure loss does not easily increase and a high peel strength can be obtained between the porous membrane and the filter base material when they are attached by thermal fusion bonding. is. Another object of the present invention is to obtain a filter base material that is excellent in chemical resistance and is resistant to deterioration even when used under severe conditions such as strong alkali.
 また本発明の課題は、圧力損失し難く、剥離強度を有し、耐薬品性に優れ強アルカリなどの過酷な条件下で使用した際も劣化し難いフィルタ用濾材を提供することにある。 Another object of the present invention is to provide a filter material for filters that is resistant to pressure loss, has peel strength, has excellent chemical resistance, and is resistant to deterioration even when used under severe conditions such as strong alkali.
 上記課題は、下記手段によって、解決することができる。 The above issues can be resolved by the following means.
〔フィルタ用基材<1>〕
1. 多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを含む湿式不織布であり、
(2)前記湿式不織布に含まれる全繊維成分に対して、前記熱融着性バインダー繊維(B)の配合比率が20~90質量%であり、前記非バインダー繊維(NB)の配合比率が10~80質量%であることを特徴とする前記フィルタ用基材。
2. 前記非バインダー繊維(NB)が、合成繊維及び木材パルプからなる群より選ばれる少なくとも一種である請求項1に記載のフィルタ用基材。
3. 前記熱融着性バインダー繊維(B)が、芯鞘繊維である前項1又は2に記載のフィルタ用基材。
4. 坪量が、30~120g/mである前項1~3のいずれか一項に記載のフィルタ用基材。
〔フィルタ用基材<2>〕
5. 多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材は、層(X)及び層(Y)を含む湿式不織布であり、少なくとも一方の最外層が層(X)であり、
(2)層(X)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%以上であり、坪量が5g/m以上60g/m以下の層であり、
(3)層(Y)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%未満であり、坪量が25g/m以上120g/m以下の層であることを特徴とする前記フィルタ用基材。
6. 前記非バインダー繊維(NB)としての合成繊維が、ポリエステル繊維である前項5に記載のフィルタ用基材。
7. 前記熱融着性バインダー繊維(B)が、芯鞘繊維である前項5又は6に記載のフィルタ用基材。
〔フィルタ用基材<3>〕
8. 多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)を含む湿式不織布であり、
(2)前記非バインダー繊維(NB)として、延伸ポリエステル繊維を含有し、
(3)前記熱融着性バインダー繊維(B)として、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有し、
(4)前記芯鞘型ポリエステル繊維(CSP)の配合比率が、前記フィルタ用基材に含まれる全繊維に対して5質量%以上であることを特徴とするフィルタ用基材。
9. 前記芯鞘型ポリエステル繊維(CSP)の鞘部の結晶性の共重合ポリエステルは、
(i)ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステル、
(ii)ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールとε-カプロラクトンである共重合ポリエステル及び
(iii)ジカルボン酸成分がテレフタル酸とイソフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステルからなる群より選ばれる少なくとも一種である前項8に記載のフィルタ用基材。
10. 坪量が、30~180g/mである前項8又は9に記載のフィルタ用基材。
〔フィルタ用濾材〕
11. 前項1~10のいずれか一項に記載のフィルタ用基材及び多孔質膜を含むフィルタ用濾材。
12. 多孔質膜の材質が、ポリテトラフルオロエチレンである前項11に記載のフィルタ用濾材。
[Filter substrate <1>]
1. In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
(1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
(2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. 80% by mass of the filter base material.
2. 2. The filter substrate according to claim 1, wherein said non-binder fibers (NB) are at least one selected from the group consisting of synthetic fibers and wood pulp.
3. 3. The filter substrate according to the preceding item 1 or 2, wherein the heat-fusible binder fiber (B) is a sheath-core fiber.
4. 4. The filter substrate according to any one of 1 to 3 above, which has a basis weight of 30 to 120 g/m 2 .
[Filter substrate <2>]
5. In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
(1) the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer;
(2) The layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass. A layer with a basis weight of 5 g/m 2 or more and 60 g/m 2 or less,
(3) Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. less than 100 g/m 2 and a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
6. 6. The filter substrate according to 5 above, wherein the synthetic fiber as the non-binder fiber (NB) is a polyester fiber.
7. 7. The filter substrate according to 5 or 6 above, wherein the heat-fusible binder fiber (B) is a sheath-core fiber.
[Filter substrate <3>]
8. In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
(1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
(2) containing a drawn polyester fiber as the non-binder fiber (NB),
(3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester,
(4) A filter base material, wherein the compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
9. The crystalline copolyester of the sheath of the core-sheath type polyester fiber (CSP) is
(i) a copolymer polyester whose dicarboxylic acid component is terephthalic acid and whose diol component is ethylene glycol and tetramethylene glycol;
(ii) a copolymer polyester in which the dicarboxylic acid component is terephthalic acid and the diol component is ethylene glycol, tetramethylene glycol and ε-caprolactone; and (iii) the dicarboxylic acid component is terephthalic acid and isophthalic acid and the diol component is ethylene. 9. The filter substrate according to 8 above, which is at least one selected from the group consisting of copolymerized polyesters of glycol and tetramethylene glycol.
10. 10. The filter base material according to item 8 or 9, which has a basis weight of 30 to 180 g/m 2 .
[Filter material for filter]
11. A filter material for a filter comprising the filter substrate and the porous membrane according to any one of the preceding items 1 to 10.
12. 12. The filter medium for filters according to 11 above, wherein the material of the porous membrane is polytetrafluoroethylene.
 本発明によれば、高捕集効率と低圧力損失を両立し、且つ、多孔質膜とフィルタ用基材との間で高い剥離強度が得られるフィルタ用基材が得られる。
 また、本発明によれば、耐薬品性に優れ、強アルカリなどの過酷な条件下で使用した際も劣化し難いフィルタ用基材が得られる。
According to the present invention, it is possible to obtain a filter substrate that achieves both high collection efficiency and low pressure loss, and provides high peel strength between the porous membrane and the filter substrate.
Moreover, according to the present invention, it is possible to obtain a filter base material which is excellent in chemical resistance and hardly deteriorates even when used under severe conditions such as strong alkali.
 本発明のフィルタ用濾材は、圧力損失し難く、剥離強度を有し、耐薬品性に優れ強アルカリなどの過酷な条件下で使用した際も劣化し難い。 The filter material for filters of the present invention is resistant to pressure loss, has peel strength, has excellent chemical resistance, and is resistant to deterioration even when used under severe conditions such as strong alkali.
 本発明のフィルタ用基材は、多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材であり、フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)を含む湿式不織布である。 The filter base material of the present invention is a filter base material for use as a filter material for a filter by laminating a porous membrane by heat-sealing, and the filter base material is a non-binder fiber (NB) and heat-sealed. It is a wet-laid nonwoven fabric containing adhesive binder fibers (B).
<湿式不織布>
 湿式不織布は、均一な地合いが得られる湿式抄紙法で製造された不織布である。湿式抄紙法では、各繊維を水に分散させスラリーを調成する。スラリーは抄紙機を用いて抄造され、湿式不織布が得られる。
<Wet nonwoven fabric>
A wet-laid nonwoven fabric is a nonwoven fabric produced by a wet-laid papermaking method that provides a uniform texture. In the wet papermaking method, each fiber is dispersed in water to prepare a slurry. The slurry is made into paper using a paper machine to obtain a wet-laid nonwoven fabric.
 抄造の際に配合する薬品として、湿紙状態での断紙対策として湿潤強度剤やヤンキードライヤーからの剥離を安定させるための内添又は外添サイズ剤等が挙げられる。 Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
 湿式抄紙法では、例えば、長網式、円網式、傾斜ワイヤー等の抄紙方式を用いることができる。本発明のフィルタ用基材は、これらの抄紙方式から選択される同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用して製造することもできる。
 均一性に優れたフィルタ用基材を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。
 また、本発明のフィルタ用基材が二層以上の多層構造の場合には、各々の抄紙方式で抄き上げた湿紙を積層する「抄き合わせ法」、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層する「流延法」等で製造することができる。流延法において、繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の層を熱融着させて、多層構造の不織布とすることもできる。
In the wet papermaking method, for example, a fourdrinier method, a cylinder method, an inclined wire method, or the like can be used. The filter substrate of the present invention can also be produced using a combination paper machine in which two or more of the same or different papermaking systems selected from these papermaking systems are installed online.
In order to produce a filter base material excellent in uniformity, it is preferable to use a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
In the case where the filter base material of the present invention has a multi-layered structure of two or more layers, the "paper-making method" in which wet paper sheets made by each paper-making method are laminated, after forming one layer, It can be produced by a "casting method" or the like in which a slurry in which fibers are dispersed is cast and laminated on the layer. In the casting method, when the slurry in which the fibers are dispersed is cast, the layer previously formed may be in a wet paper state or in a dry state. Also, two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
 本発明おいて、熱融着性バインダー繊維(B)の融点又は軟化温度以上に不織布の温度を上げる工程を製造工程に組み入れることで、フィルタ用基材の機械的強度が向上する。 In the present invention, the mechanical strength of the filter substrate is improved by incorporating the step of raising the temperature of the nonwoven fabric to the melting point or softening temperature of the heat-fusible binder fiber (B) or higher in the manufacturing process.
<熱融着>
 本発明のフィルタ用基材と多孔質膜とを熱融着により貼り合わせることによって、フィルタ用濾材となる。貼り合わせは、熱圧処理によって行うことができる。熱圧処理は、熱プレス機を用いたシートの積層加工や、熱カレンダーを用いた巻き取り同士の積層加工により行うことができる。湿式不織布と多孔質膜の十分な剥離強度を得るために、熱圧処理時の温度は、100℃以上であることが好ましく、熱融着性バインダー繊維(B)の融点を上回る温度であることがより好ましく、160℃以上であることがさらに好ましい。
<Heat fusion>
A filter material for a filter is obtained by laminating the base material for a filter of the present invention and a porous membrane by heat-sealing. Bonding can be performed by heat and pressure treatment. The heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender. In order to obtain sufficient peel strength between the wet-laid nonwoven fabric and the porous membrane, the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
<多孔質膜>
 本発明において、多孔質膜は、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート;ポリウレタン;ポリイミド;ポリテトラフルオロエチレン(PTFE)等の多孔質膜を用いることができる。耐熱温度の低い多孔質膜を用いると、熱圧処理を行った際に多孔質膜が軟化し、孔が閉塞してフィルタとして使用するために十分なフラジール通気度を得ることができない恐れがあることから、耐熱性に優れたPTFEを用いることが好ましい。PTFEは耐薬品性にも優れている。
<Porous membrane>
In the present invention, porous membranes such as polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; If a porous membrane with a low heat resistance temperature is used, the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
〔フィルタ用基材<1>〕
 本発明のフィルタ用基材<1>は、多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを含む湿式不織布であり、
(2)前記湿式不織布に含まれる全繊維成分に対して、前記熱融着性バインダー繊維(B)の配合比率が20~90質量%であり、前記非バインダー繊維(NB)の配合比率が10~80質量%であることを特徴とする。
[Filter substrate <1>]
The filter substrate <1> of the present invention is a filter substrate for use as a filter material by laminating porous membranes by thermal fusion,
(1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
(2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. It is characterized by being ~80% by mass.
<非バインダー繊維(NB)>
 非バインダー繊維(NB)とは、熱融着性バインダー繊維(B)の融点又は軟化温度においても、繊維の断面形状が変化しないか、又は断面形状が変化しても、繊維形状は維持するという特徴を有し、主体繊維としての役割を果たす繊維である。なお、一般的に、非バインダー繊維(NB)としての合成繊維の融点又は軟化点は、熱融着性バインダー繊維(B)の融点又は軟化点よりも高いという特徴を有する。
 また、本発明における非バインダー繊維(NB)は、好ましくは有機繊維を含む。ガラス繊維や炭素繊維等の無機繊維は、広義には、非バインダー繊維(NB)に含まれるが、熱融着による貼り合わせの際に砕け、基材の強度が著しく下がることがあり、特に非バインダー繊維(NB)が無機繊維のみである場合、熱圧処理時に基材が破損する場合がある。よって、非バインダー繊維(NB)は、有機繊維を含むことが好ましく、無機繊維を含まないことがより好ましい。
<Non-binder fiber (NB)>
The non-binder fiber (NB) means that the cross-sectional shape of the fiber does not change even at the melting point or softening temperature of the heat-fusible binder fiber (B), or even if the cross-sectional shape changes, the fiber shape is maintained. It is a fiber that has character and serves as the main fiber. In general, the melting point or softening point of the synthetic fiber as the non-binder fiber (NB) is higher than the melting point or softening point of the heat-fusible binder fiber (B).
Also, the non-binder fibers (NB) in the present invention preferably contain organic fibers. Inorganic fibers such as glass fibers and carbon fibers are included in non-binder fibers (NB) in a broad sense. If the binder fibers (NB) are only inorganic fibers, the substrate may be damaged during the heat and pressure treatment. Therefore, the non-binder fibers (NB) preferably contain organic fibers, and more preferably do not contain inorganic fibers.
 非バインダー繊維(NB)の断面形状は円形が好ましい。ただし、T型、Y型、三角等の異形断面を有する繊維も、他の特性を阻害しない範囲内で含有できる。 The cross-sectional shape of the non-binder fibers (NB) is preferably circular. However, fibers having irregular cross-sections such as T-shaped, Y-shaped, and triangular can also be contained within a range that does not impair other characteristics.
 非バインダー繊維(NB)の配合比率は、湿式不織布に含まれる全繊維成分に対して、10~80質量%であり、20~75質量%であることがより好ましく、30~70質量%であることがさらに好ましい。非バインダー繊維(NB)の配合比率が10質量%未満である場合、熱融着による貼り合わせの際に厚みが下がり過ぎて、密度が高過ぎる基材となることから、濾材の圧力損失が高くなり過ぎて、フィルタとして適さない。一方、非バインダー繊維(NB)の配合比率が80質量%超である場合、熱融着性バインダー繊維(B)が少ないため、基材から繊維が脱落しやすく、フィルタとして使用した際に、脱落繊維が下流に流出して悪影響を与えるという問題が発生する。 The blending ratio of the non-binder fibers (NB) is 10 to 80% by mass, more preferably 20 to 75% by mass, and 30 to 70% by mass with respect to the total fiber components contained in the wet-laid nonwoven fabric. is more preferred. If the blending ratio of the non-binder fibers (NB) is less than 10% by mass, the thickness of the base material is too low during lamination by thermal fusion bonding, resulting in a base material with too high a density, resulting in high pressure loss of the filter medium. too large to be suitable as a filter. On the other hand, when the blending ratio of the non-binder fibers (NB) is more than 80% by mass, the amount of the heat-fusible binder fibers (B) is small, so the fibers easily fall off from the base material, and when used as a filter, the fibers fall off. A problem arises in that the fibers flow downstream and adversely affect it.
 非バインダー繊維(NB)は木材パルプを含むことが好ましい。木材パルプとしては、広葉樹晒しクラフトパルプ(略称:LBKP、英文表記:Hardwood Bleached Kraft Pulp)、針葉樹晒しクラフトパルプ(略称:NBKP、英文表記:Softwood Bleached Kraft Pulp)、広葉樹晒しサルファイトパルプ(略称:LBSP、英文表記:Hardwood Bleached Sulfite Pulp)、針葉樹晒しサルファイトパルプ(略称:NBSP、英文表記:Softwood Bleached Sulfite Pulp)、広葉樹未晒クラフトパルプ(略称:LUKP、英文表記:Hardwood Unbleached Kraft Pulp)、針葉樹未晒クラフトパルプ(略称:NUKP、英文表記:Softwood Unbleached Kraft Pulp)等が挙げられる。木材パルプの繊維が細かいと、圧力損失が高くなる傾向があるため、特に限定はされないが、木材パルプの繊維径は大きいほうが好ましい。 The non-binder fibers (NB) preferably contain wood pulp. As wood pulp, bleached hardwood kraft pulp (abbreviation: LBKP, English notation: Hardwood Bleached Kraft Pulp), softwood bleached kraft pulp (abbreviation: NBKP, English notation: Softwood Bleached Kraft Pulp), hardwood bleached sulfite pulp (abbreviation: LBSP) , English name: Hardwood Bleached Sulfite Pulp), Softwood Bleached Sulfite Pulp (abbreviation: NBSP, English name: Softwood Bleached Sulfite Pulp), Hardwood Unbleached Kraft Pulp (abbreviation: LUKP, English name: Hardwood Unbleached Sulfite Pulp) Bleached kraft pulp (abbreviation: NUKP, English notation: Softwood Unbleached Kraft Pulp) and the like. If the fibers of the wood pulp are fine, the pressure loss tends to increase, so although there is no particular limitation, it is preferable that the fiber diameter of the wood pulp is large.
 非バインダー繊維(NB)が木材パルプを含む場合、木材パルプの配合比率は、特に限定されないが、湿式不織布に含まれる全繊維成分に対して、50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましい。木材パルプの配合比率が50質量%以上である場合、木材パルプが基材の孔を塞ぐため、圧力損失が高くなる場合があり、また、木材パルプが多孔質膜との接着を阻害するため、剥離強度が小さくなる場合がある。 When the non-binder fibers (NB) contain wood pulp, the blending ratio of the wood pulp is not particularly limited, but it is preferably less than 50% by mass, preferably 40% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. It is more preferably less than 30% by mass, and even more preferably less than 30% by mass. If the blending ratio of the wood pulp is 50% by mass or more, the wood pulp clogs the pores of the base material, which may increase the pressure loss. Peel strength may be reduced.
 また、非バインダー繊維(NB)として、木綿パルプ、ワラパルプ、竹パルプ、エスパルトパルプ、バガスパルプ、麻パルプを使用することもできる。 Also, as non-binder fibers (NB), cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp can be used.
 非バインダー繊維(NB)は合成繊維を含むことが好ましい。非バインダー繊維(NB)としての合成繊維は、例えば、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維等のポリエステル繊維;ポリプロピレン繊維、ポリエチレン繊維等のポリオレフィン繊維;ポリスチレン又はこれらポリマーの変性ポリマー及びコポリマーからなる繊維;アクリル繊維;ポリアクリロニトリル繊維;ポリビニルアルコール繊維;ポリアミド繊維;ウレタン繊維;ポリフェニレンサルファイド繊維;レーヨン繊維、再生セルロース繊維、溶剤紡糸セルロース繊維等のセルロース繊維;コラーゲン、アルギン酸、キチン質等を溶液にしたものを紡糸した繊維;等が挙げられる。
 非バインダー繊維(NB)としての合成繊維は、上述したように、熱融着性バインダー繊維(B)の融点又は軟化温度においても、繊維の断面形状が変化しないか、又は断面形状が変化しても、繊維形状は維持するという特徴を有する。そのため、合成繊維を配合することにより、熱融着による貼り合わせの際に厚みが下がり難く、基材が高密度になり難いという効果が得られる。
Non-binder fibers (NB) preferably comprise synthetic fibers. Synthetic fibers as non-binder fibers (NB) include, for example, polyester fibers such as polyethylene terephthalate (PET) fibers and polybutylene terephthalate fibers; polyolefin fibers such as polypropylene fibers and polyethylene fibers; polystyrene or modified polymers and copolymers of these polymers. Polyacrylonitrile fiber; Polyvinyl alcohol fiber; Polyamide fiber; Urethane fiber; Polyphenylene sulfide fiber; fiber obtained by spinning the material; and the like.
As described above, the synthetic fiber as the non-binder fiber (NB) does not change its cross-sectional shape even at the melting point or softening temperature of the heat-fusible binder fiber (B), or changes its cross-sectional shape. It also has the feature of maintaining the fiber shape. Therefore, by blending synthetic fibers, it is possible to obtain the effect that the thickness is less likely to decrease during bonding by thermal fusion bonding, and that the base material is less likely to have a high density.
 非バインダー繊維(NB)としての合成繊維の繊度は、0.1~6.0デシテックスが好ましく、より好ましくは0.6~3.3デシテックスである。合成繊維の繊度が0.1デシテックス未満である場合、抄紙性が悪く、地合いが悪くなる傾向があり、コストアップにもなる。一方、合成繊維の繊度が6.0デシテックス超である場合、地合いが悪くなる傾向がある。合成繊維の繊維長は2~20mmが好ましく、より好ましくは3~10mmである。合成繊維の繊維長が2mm未満である場合、湿式抄紙法でワイヤーから繊維が抜け易く、歩留りが低下する場合がある。一方、合成繊維の繊維長が20mmを超えると、湿式抄紙法において、スクリーンで繊維が詰まり、抄紙が困難となる場合がある。また、繊維同士が絡まることで、地合が不均一となる場合がある。 The fineness of synthetic fibers as non-binder fibers (NB) is preferably 0.1 to 6.0 decitex, more preferably 0.6 to 3.3 decitex. If the fineness of the synthetic fiber is less than 0.1 decitex, the papermaking property tends to be poor, the texture tends to be poor, and the cost is increased. On the other hand, when the fineness of the synthetic fiber exceeds 6.0 decitex, the texture tends to be poor. The synthetic fiber preferably has a fiber length of 2 to 20 mm, more preferably 3 to 10 mm. When the fiber length of the synthetic fiber is less than 2 mm, the fiber tends to come off from the wire in the wet papermaking method, and the yield may decrease. On the other hand, if the fiber length of the synthetic fiber exceeds 20 mm, the screen may be clogged with fibers in the wet papermaking method, making papermaking difficult. In addition, the texture may become uneven due to the entanglement of the fibers.
<熱融着性バインダー繊維(B)>
 熱融着性バインダー繊維(B)の繊度は、0.1~6.0デシテックスが好ましく、より好ましくは0.2~3.3デシテックスである。熱融着性バインダー繊維(B)の繊度が0.1デシテックス未満である場合、厚みが小さく、密度が高い不織布となることから、圧力損失が高くなる場合がある。一方、熱融着性バインダー繊維(B)の繊度が6.0デシテックス超である場合、不織布の地合いが悪くなり、フィルタ用基材として適さない場合がある。
 熱融着性バインダー繊維(B)の繊維長は2~20mmが好ましく、より好ましくは3~10mmである。熱融着性バインダー繊維(B)の繊維長が2mm未満である場合、湿式抄紙法でワイヤーから繊維が抜けやすく、歩留まりが低下する場合がある。一方、熱融着性バインダー繊維(B)の繊維長が20mmを超えると、湿式抄紙法においてスクリーンで繊維が詰まり、抄紙が困難となる場合がある。また、繊維同士が絡まることで、地合が不均一となる場合がある。
<Heat-fusible binder fiber (B)>
The fineness of the heat-fusible binder fiber (B) is preferably 0.1 to 6.0 decitex, more preferably 0.2 to 3.3 decitex. When the fineness of the heat-fusible binder fiber (B) is less than 0.1 decitex, the resulting nonwoven fabric has a small thickness and a high density, which may increase the pressure loss. On the other hand, if the heat-fusible binder fiber (B) has a fineness of more than 6.0 decitex, the texture of the nonwoven fabric may be poor and may not be suitable as a filter base material.
The fiber length of the heat-fusible binder fiber (B) is preferably 2-20 mm, more preferably 3-10 mm. When the fiber length of the heat-fusible binder fiber (B) is less than 2 mm, the fiber tends to come off from the wire in the wet papermaking method, and the yield may decrease. On the other hand, if the fiber length of the heat-fusible binder fibers (B) exceeds 20 mm, the fibers may clog the screen in the wet papermaking method, making papermaking difficult. In addition, the texture may become uneven due to the entanglement of the fibers.
 熱融着性バインダー繊維(B)としては、単繊維の他、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)などの複合繊維が挙げられる。
 単繊維としては、ポリエチレン、未延伸ポリエステル、未延伸ポリフェニレンサルファイド等の繊維を挙げることができる。
 複合繊維は、不織布表面に皮膜が形成されない状態で、機械的強度を向上させることができる。
 芯鞘繊維としては、例えばポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル(芯)とポリエチレン(鞘)の組み合わせ等が挙げられる。また、ポリエチレン等の低融点樹脂のみで構成される全融タイプの単繊維は、乾燥工程で皮膜を形成しやすく、圧力損失が高くなる場合があるが、特性を阻害しない範囲であれば使用することができる。本検討においては、芯部分があることから、熱融着による貼り合わせの際に厚みが下がり難い芯鞘繊維が熱融着性バインダー繊維(B)として好ましい。
Examples of heat-fusible binder fibers (B) include single fibers and composite fibers such as core-sheath fibers (core-shell type) and parallel fibers (side-by-side type).
Examples of monofilaments include fibers of polyethylene, unstretched polyester, unstretched polyphenylene sulfide, and the like.
Composite fibers can improve the mechanical strength without forming a film on the surface of the nonwoven fabric.
Core-sheath fibers include, for example, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), polyester (core) and a combination of polyethylene (sheath). In addition, full-melting type single fibers made only of low-melting resin such as polyethylene tend to form a film in the drying process, and pressure loss may increase, but it can be used as long as it does not impair the characteristics. be able to. In this study, since there is a core portion, the heat-fusible binder fiber (B) is preferably a core-sheath fiber that does not easily decrease in thickness during lamination by heat-sealing.
 熱融着性バインダー繊維(B)の配合比率は、湿式不織布に含まれる全繊維成分に対して、20~90質量%であり、25~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。熱融着性バインダー繊維(B)の配合比率が10質量%未満である場合、非バインダー繊維(NB)を止める成分が足りず、脱落繊維が多く発生するという問題が発生する。一方、熱融着性バインダー繊維(B)の配合比率が90質量%超である場合、厚みが小さく、密度が高い不織布となることから、熱融着による貼り合わせの際に厚みが下がることで圧力損失が上がり、フィルタとして適さない。 The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, more preferably 25 to 80% by mass, more preferably 30 to 70% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. % is more preferred. If the blending ratio of the heat-fusible binder fibers (B) is less than 10% by mass, there is a problem that a large amount of fibers fall off due to insufficient components for stopping the non-binder fibers (NB). On the other hand, when the blending ratio of the heat-fusible binder fiber (B) is more than 90% by mass, the non-woven fabric has a small thickness and a high density. Unsuitable as a filter due to increased pressure loss.
 熱融着性バインダー繊維(B)の融点は、180℃未満であることが好ましく、170℃未満であることが好ましく、160℃未満であることがさらに好ましい。熱融着性バインダー繊維(B)の融点が180℃よりも高い場合、熱融着による貼り合わせの際に高い温度をかける必要があり、それにより非バインダー繊維(NB)としての合成繊維が潰れやすくなることで圧力損失が高くなる場合がある。 The melting point of the heat-fusible binder fiber (B) is preferably less than 180°C, preferably less than 170°C, and more preferably less than 160°C. When the melting point of the heat-fusible binder fiber (B) is higher than 180° C., it is necessary to apply a high temperature during lamination by heat-sealing, thereby crushing the synthetic fiber as the non-binder fiber (NB). As it becomes easier, the pressure loss may increase.
<湿熱接着性バインダー繊維(b)>
 熱融着性バインダー繊維(B)に加えて、湿熱接着性バインダー繊維(b)を用いることもできる。湿熱接着性バインダー繊維(b)としては、ポリビニルアルコール(PVA)系繊維のような熱水可溶性の繊維を使用することができる。湿熱接着性バインダー繊維(b)は、常温の水ではほとんど溶解しないで、繊維形態を保っているが、湿式抄紙法のドライヤー面で加熱されると、容易に溶解し始め、その瞬間にタッチロールのような加圧設備で加圧し、その後の脱水乾燥を経ることによって、再凝固し、バインダー効果が得られる。
<Wet heat adhesive binder fiber (b)>
In addition to the heat-fusible binder fibers (B), wet heat adhesive binder fibers (b) can also be used. Hot water-soluble fibers such as polyvinyl alcohol (PVA)-based fibers can be used as the wet heat adhesive binder fibers (b). The wet heat adhesive binder fiber (b) hardly dissolves in water at room temperature and maintains its fiber form, but when heated on the dryer surface of the wet papermaking method, it begins to dissolve easily, and at that moment the touch roll By pressurizing with a pressurizing facility such as the following, followed by dehydration and drying, it is re-solidified and a binder effect is obtained.
 この湿熱接着性バインダー繊維(b)の接着力に及ぼす影響は、水中軟化点から考えることができる。水中軟化点は、湿式抄紙法において、湿紙がドライヤーにより熱を受け、湿熱接着性バインダー繊維(b)が溶解し始めて接着機能を示す温度を大体示している。水中軟化点の低い湿熱接着性バインダー(B)を使用するほど、接着の前提条件である湿熱接着性バインダー繊維(b)の溶解が容易となり、接着効果が大きくなる。しかし、水中軟化点があまりに低くなり過ぎると、ドライヤーへの付着が起こり易いという問題が生じる。
 湿熱接着性バインダー繊維(b)が溶解するためには、その水中軟化点以上に湿紙の温度が高くなる必要があり、従って乾燥温度が高いほど接着効果が大きく、強度は向上する。湿紙の温度が湿熱接着性バインダー繊維(b)の水中軟化点以下では、湿熱接着性バインダー繊維(b)の溶解が起こらず、従って、バインダー効果はまったく失われる。
 ヤンキードライヤーの場合、ドライヤーのスチーム温度は130~160℃程度で、これに接触している湿紙の温度は60~90℃と考えられるから、十分なバインダー効果を得るためには、湿熱接着性バインダー繊維(b)の水中軟化点が65~85℃であることが好ましい。ただし、湿熱接着性バインダー繊維(b)は皮膜を形成することで、基材の孔を塞ぎ、また水分の無い状態で熱圧処理を行っても多孔質膜との接着には寄与しないことから、配合比率は特に限定されないが、湿熱接着性バインダー繊維(b)を用いる場合には、湿式不織布に含まれる全繊維成分に対して、20質量%未満であることが好ましい。また、湿熱接着性バインダー繊維(b)を含有しなくてもなんら問題はない。
The effect of this wet heat adhesive binder fiber (b) on the adhesive strength can be considered from the softening point in water. The softening point in water roughly indicates the temperature at which the wet paper is heated by a drier in the wet papermaking process, and the wet heat adhesive binder fibers (b) begin to melt and exhibit the adhesive function. As the wet heat adhesive binder (B) having a lower softening point in water is used, the wet heat adhesive binder fiber (b), which is a precondition for adhesion, becomes easier to dissolve and the adhesion effect increases. However, if the softening point in water is too low, there arises a problem that adhesion to the drier is likely to occur.
In order for the wet heat adhesive binder fiber (b) to dissolve, the temperature of the wet paper must be higher than its softening point in water. When the temperature of the wet paper is lower than the softening point of the wet heat adhesive binder fiber (b) in water, the wet heat adhesive binder fiber (b) does not dissolve, and therefore the binder effect is completely lost.
In the case of the Yankee dryer, the steam temperature of the dryer is about 130 to 160°C, and the temperature of the wet paper in contact with it is considered to be 60 to 90°C. The binder fiber (b) preferably has a softening point in water of 65 to 85°C. However, since the wet heat adhesive binder fiber (b) forms a film to close the pores of the base material and does not contribute to adhesion to the porous film even if the heat and pressure treatment is performed in the absence of moisture. Although the blending ratio is not particularly limited, when the wet heat adhesive binder fiber (b) is used, it is preferably less than 20% by mass based on the total fiber components contained in the wet nonwoven fabric. Moreover, there is no problem even if the wet heat adhesive binder fiber (b) is not contained.
 また、湿熱接着性バインダー繊維(b)の繊度は特に限定されないが、0.3~5.0デシテックスであることが好ましく、より好ましくは1.0~3.0デシテックスである。繊度が0.3デシテックス未満である場合、抄紙ワイヤーから脱落する場合がある。一方、5.0デシテックスを超えた場合、比表面積が少ないことから、十分な強度が得難いことがある。繊維長は、地合い、分散性の観点を考慮すると、3~6mmが好ましい。 Although the fineness of the wet heat adhesive binder fiber (b) is not particularly limited, it is preferably 0.3 to 5.0 dtex, more preferably 1.0 to 3.0 dtex. If the fineness is less than 0.3 decitex, it may fall off from the papermaking wire. On the other hand, if it exceeds 5.0 decitex, it may be difficult to obtain sufficient strength due to the small specific surface area. The fiber length is preferably 3 to 6 mm in consideration of texture and dispersibility.
<坪量>
 フィルタ用基材<1>は、特に限定されないが、坪量が30~120g/mの範囲であることが好ましい。坪量が30g/mよりも小さくなると、基材の強度が弱く、フィルタとして使用している最中に破損する場合がある。120g/mよりも大きい場合、圧力損失が高くなり、フィルタとして使用するには適さない場合がある。
<Basis weight>
The filter substrate <1> is not particularly limited, but preferably has a basis weight in the range of 30 to 120 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 120 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
<密度>
 フィルタ用基材<1>の密度は、特に限定されないが、0.1~0.5g/cmであることが好ましい。該密度は、湿式抄紙の際の抄紙条件の調整、繊維の種類、繊維の配合比率、坪量や厚みの調整で適宜調整することができる。密度が0.1g/cmよりも小さくなると、熱融着による貼り合わせの際に繊維が脱落してトラブルとなる場合がある。密度が0.5g/cmを超えると、圧力損失が高くなるため、フィルタ用基材として適さない場合がある。
<Density>
Although the density of the filter substrate <1> is not particularly limited, it is preferably 0.1 to 0.5 g/cm 3 . The density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , the fibers may come off during lamination by heat-sealing, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
<フィルタ用基材<1>の製造>
 フィルタ用基材<1>は、湿式抄紙法で製造することが出来る。フィルタ用基材<1>は、湿式抄紙法で製造された不織布である。すなわちフィルタ用基材<1>は、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを所定の割合で水に分散させスラリーを調製し、得られたスラリーを、抄紙機を用いて抄造して製造することが出来る。
<Production of filter substrate <1>>
The filter substrate <1> can be produced by a wet papermaking method. Filter substrate <1> is a nonwoven fabric produced by a wet papermaking method. That is, the filter substrate <1> is prepared by dispersing the non-binder fiber (NB) and the heat-fusible binder fiber (B) in water at a predetermined ratio to prepare a slurry. It can be produced by making paper using
 抄造の際に配合する薬品として、湿紙状態での断紙対策として湿潤強度剤やヤンキードライヤーからの剥離を安定させるための内添又は外添サイズ剤等が挙げられる。 Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
 湿式抄紙法では、例えば、長網式、円網式、傾斜ワイヤー等の抄紙方式を用いることができる。フィルタ用基材<1>は、これらの抄紙方式から選択される同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用して製造することもできる。
 均一性に優れたフィルタ用基材を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。
 また、フィルタ用基材<1>が二層以上の多層構造の場合には、各々の抄紙方式で抄き上げた湿紙を積層する「抄き合わせ法」、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層する「流延法」等で製造することができる。流延法において、繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の層を熱融着させて、多層構造の不織布とすることもできる。
In the wet papermaking method, for example, a fourdrinier method, a cylinder method, an inclined wire method, or the like can be used. Filter substrate <1> can also be produced using a combination paper machine in which two or more of the same or different papermaking methods selected from these papermaking methods are installed online.
In order to produce a filter base material excellent in uniformity, it is preferable to use a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
In the case where the filter substrate <1> has a multi-layered structure of two or more layers, the "paper-making method" in which the wet paper made by each paper-making method is laminated, after forming one layer, It can be produced by a "casting method" or the like in which a slurry in which fibers are dispersed is cast and laminated on the layer. In the casting method, when the slurry in which the fibers are dispersed is cast, the layer previously formed may be in a wet paper state or in a dry state. Also, two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
〔フィルタ用濾材<1>〕
 本発明は、前述のフィルタ用基材<1>と、多孔質膜とを含むフィルタ用濾材<1>を包含する。
 すなわちフィルタ用濾材<1>は、フィルタ用基材及び多孔質膜を含むフィルタ用濾材であって、
(1)前記フィルタ用基材は、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを含む湿式不織布であり、
(2)前記湿式不織布に含まれる全繊維成分に対して、前記熱融着性バインダー繊維(B)の配合比率が20~90質量%であり、前記非バインダー繊維(NB)の配合比率が10~80質量%であることを特徴とする。
 フィルタ用基材と多孔質膜とは、熱融着により貼り合わされていることが好ましい。
 多孔質膜は、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート;ポリウレタン;ポリイミド;ポリテトラフルオロエチレン(PTFE)等の多孔質膜を用いることができる。耐熱温度の低い多孔質膜を用いると、熱圧処理を行った際に多孔質膜が軟化し、孔が閉塞してフィルタとして使用するために十分なフラジール通気度を得ることができない恐れがあることから、耐熱性に優れたPTFEを用いることが好ましい。PTFEは耐薬品性にも優れている。
 多孔質膜の厚さは、好ましくは1~50μm、より好ましくは2~30μmである。
[Filter material for filter <1>]
The present invention includes a filter medium <1> including the aforementioned filter substrate <1> and a porous membrane.
That is, the filter material <1> is a filter material including a filter substrate and a porous membrane,
(1) The filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B),
(2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. It is characterized by being ~80% by mass.
The filter base material and the porous membrane are preferably bonded together by thermal fusion.
Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE). If a porous membrane with a low heat resistance temperature is used, the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
The thickness of the porous membrane is preferably 1-50 μm, more preferably 2-30 μm.
<フラジール通気度>
 低圧力損失を得るために、フィルタ用濾材のフラジール通気度を高くすることが好ましい。フラジール通気度は、JIS L1096:2010に記載のA法(フラジール形法)で規定される通気度である。フィルタ用濾材<1>のフラジール通気度は、10cm/cm・s以上であることが好ましく、より好ましくは20cm/cm・s以上である。10cm/cm・sよりもフラジール通気度が低いと、圧力損失が高くなり、フィルタ用濾材として適さない場合がある。
<Fragile Air Permeability>
In order to obtain a low pressure loss, it is preferable to increase the Frazier air permeability of the filter medium. The Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010. The filter medium <1> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ·s or more, more preferably 20 cm 3 /cm 2 ·s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ·s, the pressure loss increases and may not be suitable as a filter medium.
<フィルタ用濾材<1>の製造>
 本発明のフィルタ用基材<1>と多孔質膜とを、熱融着により貼り合わせフィルタ用濾材を製造することが出来る。
 貼り合わせは、熱圧処理によって行うことができる。熱圧処理は、熱プレス機を用いたシートの積層加工や、熱カレンダーを用いた巻き取り同士の積層加工により行うことができる。湿式不織布と多孔質膜の十分な剥離強度を得るために、熱圧処理時の温度は、100℃以上であることが好ましく、熱融着性バインダー繊維(B)の融点を上回る温度であることがより好ましく、160℃以上であることがさらに好ましい。
 熱圧処理のおける圧力は、好ましくは1~100kgf/cm、より好ましくは2~90kgf/cm、さらに好ましくは3~80kgf/cmである。
<Production of filter material <1> for filter>
The filter substrate <1> of the present invention and the porous membrane can be heat-sealed to produce a filter medium for a filter.
Bonding can be performed by heat and pressure treatment. The heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender. In order to obtain sufficient peel strength between the wet-laid nonwoven fabric and the porous membrane, the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
The pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
〔フィルタ用基材<2>〕
 本発明のフィルタ用基材<2>は、多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材は、層(X)及び層(Y)を含む湿式不織布であり、少なくとも一方の最外層が層(X)であり、
(2)層(X)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%以上であり、坪量が5g/m以上60g/m以下の層であり、
(3)層(Y)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%未満であり、坪量が25g/m以上120g/m以下の層であることを特徴とする。
[Filter substrate <2>]
The filter substrate <2> of the present invention is a filter substrate for use as a filter material by laminating porous membranes by thermal fusion,
(1) the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer;
(2) The layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass. A layer with a basis weight of 5 g/m 2 or more and 60 g/m 2 or less,
(3) Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. It is characterized by being a layer having a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
 フィルタ用基材<2>が二層の場合は以下の構造となる。
   層(X)/層(Y)
 フィルタ用基材<2>が三層の場合は以下の構造を例示できる。
   層(X)/層(Y)/層(Y)
   層(X)/層(Y)/層(X)
 層(X)は、少なくとも一方の表面に露出する必要がある。層の構成が、層(Y)/層(X)/層(Y)の場合、層(X)が多孔質膜に接しないため、十分な剥離強度が得ることができない。
 フィルタ用基材<2>は多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用する。層(X)は、多孔質膜に接する層となる。
When the filter substrate <2> has two layers, it has the following structure.
Layer (X)/Layer (Y)
When the filter substrate <2> has three layers, the following structure can be exemplified.
Layer (X)/Layer (Y)/Layer (Y)
Layer (X)/Layer (Y)/Layer (X)
Layer (X) should be exposed on at least one surface. When the layer structure is layer (Y)/layer (X)/layer (Y), the layer (X) does not come into contact with the porous film, so sufficient peel strength cannot be obtained.
The filter base material <2> is used as a filter medium for a filter by laminating porous membranes by thermal fusion. Layer (X) is a layer in contact with the porous membrane.
<非バインダー繊維(NB)>
 フィルタ用基材<2>において、非バインダー繊維(NB)としての合成繊維は、フィルタ用基材<1>で説明した合成繊維を使用することができる。
<Non-binder fiber (NB)>
In the filter substrate <2>, the synthetic fibers described in the filter substrate <1> can be used as the non-binder fibers (NB).
 フィルタ用基材<2>において、合成繊維の配合比率は、湿式不織布に含まれる全繊維成分に対して、10~80質量%であることが好ましく、20~75質量%であることがより好ましく、30~70質量%であることがさらに好ましい。合成繊維の配合比率が10質量%未満である場合、熱融着による貼り合わせの際に厚みが下がり過ぎて、密度が高過ぎる基材となることから、濾材の圧力損失が高くなりすぎて、フィルタとして適さない場合がある。一方、合成繊維の配合比率が80質量%超である場合、熱融着性バインダー繊維(B)が少ないため、基材から繊維が脱落しやすく、フィルタとして使用した際に、脱落繊維が下流に流出して悪影響を与えるという問題が発生する場合がある。 In the filter substrate <2>, the blending ratio of the synthetic fibers is preferably 10 to 80% by mass, more preferably 20 to 75% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. , 30 to 70% by mass. If the blending ratio of the synthetic fibers is less than 10% by mass, the thickness of the base material will be too low during the lamination by thermal fusion bonding, resulting in a base material with too high a density. May not be suitable as a filter. On the other hand, when the blending ratio of the synthetic fibers is more than 80% by mass, the amount of the heat-fusible binder fibers (B) is small, so the fibers tend to fall off from the base material, and when used as a filter, the dropped fibers flow downstream. Problems may arise that the water may flow out and cause adverse effects.
 本発明において、非バインダー繊維(NB)として、合成繊維の他に、木材パルプを用いることもできる。フィルタ用基材<2>において、木材パルプは、フィルタ用基材<1>で説明した木材パルプを使用することができる。 In the present invention, wood pulp can also be used in addition to synthetic fibers as the non-binder fibers (NB). In the filter substrate <2>, the wood pulp described in the filter substrate <1> can be used as the wood pulp.
 湿式不織布が木材パルプを含有する場合、木材パルプの配合比率は、特に限定されないが、湿式不織布に含まれる全繊維成分に対して、50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、また、木材パルプを含有しなくてもなんら問題はない。木材パルプの配合比率が50質量%以上である場合、木材パルプが不織布の孔を塞ぐため、圧力損失が高くなるという問題が発生する場合があり、また、木材パルプが多孔質膜との接着を阻害するため、剥離強度が小さくなるという問題が発生する場合がある。 When the wet-laid nonwoven fabric contains wood pulp, the blending ratio of the wood pulp is not particularly limited, but it is preferably less than 50% by mass, and less than 40% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. More preferably, it is less than 30% by mass, and there is no problem even if it does not contain wood pulp. If the blending ratio of the wood pulp is 50% by mass or more, the wood pulp clogs the pores of the nonwoven fabric, which may cause a problem of increased pressure loss. As a result, the problem of reduced peel strength may occur.
<熱融着性バインダー繊維(B)>
 フィルタ用基材<2>において、熱融着性バインダー繊維(B)は、フィルタ用基材<1>で説明した熱融着性バインダー繊維(B)を使用することができる。
<Heat-fusible binder fiber (B)>
In the filter base material <2>, the heat-fusible binder fiber (B) can be the heat-fusible binder fiber (B) described in the filter base material <1>.
 熱融着性バインダー繊維(B)の配合比率は、湿式不織布に含まれる全繊維成分に対して、20~90質量%であることが好ましく、25~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。熱融着性バインダー繊維(B)の配合比率が10質量%未満である場合、合成繊維を止める成分が足りず、脱落繊維が多く発生するという問題が発生する場合がある。一方、熱融着性バインダー繊維(B)の配合比率が90質量%超である場合、厚みが小さく、密度が高い不織布となることから、熱圧処理の際に厚みが下がることで圧力損失が上がり、フィルタとして適さないという問題が発生する場合がある。 The blending ratio of the heat-fusible binder fiber (B) is preferably 20 to 90% by mass, more preferably 25 to 80% by mass, more preferably 30% by mass, based on the total fiber components contained in the wet-laid nonwoven fabric. More preferably, it is up to 70% by mass. If the blending ratio of the heat-fusible binder fiber (B) is less than 10% by mass, there may be a problem in that a large amount of fibers fall off due to insufficient components for binding the synthetic fibers. On the other hand, when the blending ratio of the heat-fusible binder fiber (B) is more than 90% by mass, the nonwoven fabric has a small thickness and a high density. The problem is that it is not suitable as a filter.
 層(X)における熱融着性バインダー繊維(B)の配合比率は、層(X)に含まれる全繊維成分に対して、50質量%以上であるが、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。また、層(X)における熱融着性バインダー繊維(B)の配合比率は、100質量%であっても良い。 The blending ratio of the heat-fusible binder fiber (B) in the layer (X) is 50% by mass or more, more preferably 60% by mass or more, based on the total fiber components contained in the layer (X). , more preferably 70% by mass or more. Moreover, the compounding ratio of the heat-fusible binder fiber (B) in the layer (X) may be 100% by mass.
 層(Y)における熱融着性バインダー繊維(B)の配合比率は、層(Y)に含まれる全繊維成分に対して、50質量%未満であるが、より好ましくは40質量%未満であり、さらに好ましくは30質量%未満である。また、層(Y)における熱融着性バインダー繊維(B)の配合比率は、0質量%であっても良い。層(Y)が複数層である場合、層(Y)は、複数層の中の1層以上であれば良いが、層(Y)が多孔質膜に接しない側の最外層であることが好ましい。 The blending ratio of the heat-fusible binder fiber (B) in the layer (Y) is less than 50% by mass, more preferably less than 40% by mass, based on the total fiber components contained in the layer (Y). , and more preferably less than 30% by mass. Moreover, the compounding ratio of the heat-fusible binder fiber (B) in the layer (Y) may be 0% by mass. When the layer (Y) is a plurality of layers, the layer (Y) may be one or more layers among the plurality of layers, but the layer (Y) may be the outermost layer on the side not in contact with the porous membrane. preferable.
 本発明において、バインダー繊維として、熱融着性バインダー繊維(B)に加えて、湿熱接着性バインダー繊維(b)を用いることもできる。フィルタ用基材<2>において、湿熱接着性バインダー繊維(b)は、フィルタ用基材<1>で説明した湿熱接着性バインダー繊維(b)を使用することができる。 In the present invention, in addition to the heat-fusible binder fiber (B), the wet heat adhesive binder fiber (b) can also be used as the binder fiber. In the filter substrate <2>, the wet heat adhesive binder fiber (b) may be the wet heat adhesive binder fiber (b) described in the filter substrate <1>.
 また、本発明に用いられるその他の繊維としては、木綿パルプ、ワラパルプ、竹パルプ、エスパルトパルプ、バガスパルプ、麻パルプが挙げられる。 Other fibers used in the present invention include cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp.
<坪量>
 フィルタ用基材<2>は、特に限定されないが、全体の坪量が30g/m~180g/mであることが好ましく、40g/m~160g/mであることがより好ましい。坪量が30g/mよりも小さくなると、基材の強度が弱く、フィルタとして使用している最中に破損する場合がある。180g/mよりも大きい場合、圧力損失が高くなり、フィルタとして使用するには適さない場合がある。
<Basis Weight>
The filter substrate <2> is not particularly limited, but preferably has a total basis weight of 30 g/m 2 to 180 g/m 2 , more preferably 40 g/m 2 to 160 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 180 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
 層(X)の坪量は5g/m~60g/mであり、10g/m~50g/mであることがより好ましい。層(X)の坪量が5g/mよりも小さい場合、多孔質膜との接着強度を上げるという効果が十分に得られない。層(X)の坪量が60g/mよりも大きい場合、圧力損失が高くなり、フィルタとして使用するには適さない。 The basis weight of layer (X) is 5 g/m 2 to 60 g/m 2 , more preferably 10 g/m 2 to 50 g/m 2 . If the layer (X) has a basis weight of less than 5 g/m 2 , the effect of increasing the adhesive strength with the porous membrane cannot be sufficiently obtained. If the basis weight of the layer (X) is more than 60 g/m 2 , the pressure loss will be high and it will not be suitable for use as a filter.
 層(Y)の坪量は25g/m~120g/mであり、30g/m~110g/mであることがより好ましい。層(Y)の坪量が25g/mよりも小さい場合、強度が弱いため、フィルタとして使用した際に破損が起こり、フィルタとして使用するには適さない。層(Y)の層の坪量が120g/mよりも大きい場合、圧力損失が高くなり、フィルタとして使用するには適さない。 The basis weight of layer (Y) is 25 g/m 2 to 120 g/m 2 , more preferably 30 g/m 2 to 110 g/m 2 . If the basis weight of the layer (Y) is less than 25 g/m 2 , the layer (Y) is not suitable for use as a filter because of its weak strength and breakage when used as a filter. If the basis weight of the layer (Y) is greater than 120 g/m 2 , the pressure loss will be high and it will not be suitable for use as a filter.
<密度>
 フィルタ用基材<2>の密度は、特に限定されないが、0.1~0.5g/cmであることが好ましい。該密度は、湿式抄紙の際の抄紙条件の調整、繊維の種類、繊維の配合比率、坪量や厚みの調整で適宜調整することができる。密度が0.1g/cmよりも小さくなると、熱圧処理の際に脱落繊維が発生してトラブルとなる場合がある。密度が0.5g/cmを超えると、圧力損失が高くなるため、フィルタ用基材として適さない場合がある。
<Density>
The density of the filter substrate <2> is not particularly limited, but is preferably 0.1 to 0.5 g/cm 3 . The density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , fibers may fall off during the heat-pressing treatment, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
<フィルタ用基材<2>の製造>
 フィルタ用基材<2>は、湿式抄紙法で製造することが出来る。フィルタ用基材<2>は、湿式抄紙法で製造された不織布である。すなわちフィルタ用基材<2>の各層は、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを所定の割合で水に分散させスラリーを調製し、得られたスラリーを、抄紙機を用いて抄造して製造することが出来る。
<Production of filter substrate <2>>
Filter substrate <2> can be produced by a wet papermaking method. Filter substrate <2> is a nonwoven fabric produced by a wet papermaking method. That is, each layer of the filter substrate <2> is prepared by dispersing the non-binder fiber (NB) and the heat-fusible binder fiber (B) in water at a predetermined ratio to prepare a slurry, and the resulting slurry is used for papermaking. It can be manufactured by making paper using a machine.
 抄造の際に配合する薬品として、湿紙状態での断紙対策として湿潤強度剤やヤンキードライヤーからの剥離を安定させるための内添又は外添サイズ剤等が挙げられる。 Chemicals added during papermaking include wet strength agents to prevent paper breakage in wet paper conditions, and internal or external sizing agents to stabilize peeling from the Yankee dryer.
 湿式抄紙法では、例えば、長網式、円網式、傾斜ワイヤー等の抄紙方式を用いることができる。フィルタ用基材<2>は、これらの抄紙方式から選択される同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用して製造することもできる。
 均一性に優れたフィルタ用基材を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。
 また、フィルタ用基材<2>は、各々の抄紙方式で抄き上げた湿紙を積層する「抄き合わせ法」、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層する「流延法」等で製造することができる。流延法において、繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の層を熱融着させて、多層構造の不織布とすることもできる。
In the wet papermaking method, for example, a fourdrinier method, a cylinder method, an inclined wire method, or the like can be used. Filter substrate <2> can also be produced using a combination paper machine in which two or more of the same or different papermaking methods selected from these papermaking methods are installed online.
In order to produce a filter base material excellent in uniformity, it is preferable to use a papermaking method such as a Fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire.
In addition, the filter substrate <2> was prepared by laminating wet paper made by each papermaking method, and after forming one layer, a slurry in which fibers were dispersed was applied to the layer. It can be manufactured by a "casting method" or the like in which the film is cast and laminated. In the casting method, when the slurry in which the fibers are dispersed is cast, the layer previously formed may be in a wet paper state or in a dry state. Also, two or more layers can be heat-sealed to form a multi-layered nonwoven fabric.
〔フィルタ用濾材<2>〕
 本発明は、前述のフィルタ用基材<2>と、多孔質膜とを含むフィルタ用濾材<2>を包含する。
 すなわち、フィルタ用濾材<2>は、フィルタ用基材及び多孔質膜を含むフィルタ用濾材であって、
(1)前記フィルタ用基材は、層(X)及び層(Y)を含む湿式不織布であり、少なくとも一方の最外層が層(X)であり、
(2)層(X)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%以上であり、坪量が5g/m以上60g/m以下の層であり、
(3)層(Y)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%未満であり、坪量が25g/m以上120g/m以下の層であることを特徴とする.
 フィルタ用基材と多孔質膜とは、熱融着により貼り合わせられていることが好ましい。
 多孔質膜は、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート;ポリウレタン;ポリイミド;ポリテトラフルオロエチレン(PTFE)等の多孔質膜を用いることができる。耐熱温度の低い多孔質膜を用いると、熱圧処理を行った際に多孔質膜が軟化し、孔が閉塞してフィルタとして使用するために十分なフラジール通気度を得ることができない恐れがあることから、耐熱性に優れたPTFEを用いることが好ましい。PTFEは耐薬品性にも優れている。
 多孔質膜の厚さは、好ましくは1~50μm、より好ましくは2~30μmである。
[Filter material for filter <2>]
The present invention includes a filter material <2> for a filter, which includes the aforementioned base material for a filter <2> and a porous membrane.
That is, the filter material <2> is a filter material including a filter substrate and a porous membrane,
(1) the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer;
(2) The layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass. A layer with a basis weight of 5 g/m 2 or more and 60 g/m 2 or less,
(3) Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. It is characterized by being a layer with a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
The filter substrate and the porous membrane are preferably bonded together by thermal fusion.
Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE). If a porous membrane with a low heat resistance temperature is used, the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
The thickness of the porous membrane is preferably 1-50 μm, more preferably 2-30 μm.
<フラジール通気度>
 低圧力損失を得るために、フィルタ用濾材のフラジール通気度を高くすることが好ましい。フラジール通気度は、JIS L1096:2010に記載のA法(フラジール形法)で規定される通気度である。フィルタ用濾材<2>のフラジール通気度は、10cm/cm・s以上であることが好ましく、より好ましくは20cm/cm・s以上である。10cm/cm・sよりもフラジール通気度が低いと、圧力損失が高くなり、フィルタ用濾材として適さない場合がある。
<Fragile Air Permeability>
In order to obtain a low pressure loss, it is preferable to increase the Frazier air permeability of the filter medium. The Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010. The filter medium <2> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ·s or more, more preferably 20 cm 3 /cm 2 ·s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ·s, the pressure loss increases and may not be suitable as a filter medium.
<フィルタ用濾材<2>の製造>
 本発明のフィルタ用基材<2>と多孔質膜とを、熱融着により貼り合わせフィルタ用濾材<2>を製造することが出来る。
 貼り合わせは、熱圧処理によって行うことができる。熱圧処理は、熱プレス機を用いたシートの積層加工や、熱カレンダーを用いた巻き取り同士の積層加工により行うことができる。湿式不織布と多孔質膜の十分な剥離強度を得るために、熱圧処理時の温度は、100℃以上であることが好ましく、熱融着性バインダー繊維(B)の融点を上回る温度であることがより好ましく、160℃以上であることがさらに好ましい。
 熱圧処理のおける圧力は、好ましくは1~100kgf/cm、より好ましくは2~90kgf/cm、さらに好ましくは3~80kgf/cmである。
<Production of filter material <2> for filter>
The filter substrate <2> of the present invention and the porous membrane are laminated by thermal fusion to produce the filter medium <2> for the filter.
Bonding can be performed by heat and pressure treatment. The heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender. In order to obtain sufficient peel strength between the wet-laid nonwoven fabric and the porous membrane, the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
The pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
〔フィルタ用基材<3>〕
 フィルタ用基材<3>は、多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
(1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを含む湿式不織布であり、
(2)前記非バインダー繊維(NB)として、延伸ポリエステル繊維を含有し、
(3)前記熱融着性バインダー繊維(B)として、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有し、
(4)前記芯鞘型ポリエステル繊維(CSP)の配合比率が、前記フィルタ用基材に含まれる全繊維に対して5質量%以上であることを特徴とする。
 本発明のフィルタ用基材<3>は、熱融着性バインダー繊維(B)を含有しているため、熱融着性バインダー繊維(B)の融点又は軟化温度以上に温度を上げる工程をフィルタ用基材<3>の製造工程に組み入れることで、熱融着性バインダー繊維(B)が溶融又は軟化して結着し、フィルタ用基材<3>の機械的強度を向上させることができる。
[Filter substrate <3>]
Filter base material <3> is a filter base material for use as a filter material by bonding porous membranes by thermal fusion,
(1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
(2) containing a drawn polyester fiber as the non-binder fiber (NB),
(3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester,
(4) The compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
Since the filter substrate <3> of the present invention contains the heat-fusible binder fiber (B), the step of raising the temperature above the melting point or softening temperature of the heat-fusible binder fiber (B) is omitted. By incorporating it into the manufacturing process of the filter substrate <3>, the heat-fusible binder fiber (B) is melted or softened and bound, and the mechanical strength of the filter substrate <3> can be improved. .
<非バインダー繊維(NB)>
 フィルタ用基材<3>は、非バインダー繊維(NB)として延伸ポリエステル繊維を含有する。
 非バインダー繊維(NB)は、フィルタ用基材<3>を製造する際の乾燥工程や熱カレンダー処理工程で溶融又は軟化し難く、繊維としての形状を保ったままで、フィルタ用基材<3>の骨格を形成する主体繊維である。
 非バインダー繊維(NB)として延伸ポリエステル繊維を含有させることにより、熱圧処理による貼り合わせの際に厚みが下がり難く、フィルタ用基材<3>が高密度になり難く、圧力損失が低くなるという効果が得られる。なお、一般的に、非バインダー繊維(NB)の融点又は軟化点は、熱融着性バインダー繊維(B)の融点又は軟化点よりも高いという特徴を有する。
<Non-binder fiber (NB)>
Filter substrate <3> contains drawn polyester fibers as non-binder fibers (NB).
The non-binder fibers (NB) are difficult to melt or soften in the drying process and the heat calendering process when manufacturing the filter substrate <3>, and can be used as the filter substrate <3> while maintaining the shape of the fiber. It is the main fiber that forms the skeleton of
By including stretched polyester fibers as non-binder fibers (NB), it is difficult to reduce the thickness during lamination by heat and pressure treatment, and it is difficult to increase the density of the filter substrate <3>, resulting in a low pressure loss. effect is obtained. In general, the melting point or softening point of the non-binder fibers (NB) is higher than the melting point or softening point of the heat-fusible binder fibers (B).
 延伸ポリエステル繊維のポリエステルとしては、主たる繰り返し単位がアルキレンテレフタレートであるポリエステルが挙げられるが、耐熱性の高いポリエチレンテレフタレートであることが好ましい。 As the polyester of the stretched polyester fiber, a polyester whose main repeating unit is alkylene terephthalate can be mentioned, but polyethylene terephthalate with high heat resistance is preferable.
 必要に応じて、非バインダー繊維(NB)として、延伸ポリエステル繊維以外の合成繊維も使用することができる。合成繊維としては、フィルタ用基材<1>で説明した合成繊維を使用することができる。 If necessary, synthetic fibers other than stretched polyester fibers can also be used as non-binder fibers (NB). As the synthetic fiber, the synthetic fiber described in the filter substrate <1> can be used.
 非バインダー繊維(NB)として、木材パルプを用いることもできる。フィルタ用基材<3>において、木材パルプは、フィルタ用基材<1>で説明した木材パルプを使用することができる。 Wood pulp can also be used as the non-binder fiber (NB). In the filter substrate <3>, the wood pulp described in the filter substrate <1> can be used as the wood pulp.
 非バインダー繊維(NB)の配合比率は、フィルタ用基材<3>に含まれる全繊維に対して、10~90質量%であることが好ましく、20~75質量%であることがより好ましく、30~70質量%であることがさらに好ましい。非バインダー繊維(NB)の配合比率が10質量%未満である場合、熱融着による貼り合わせの際に厚みが下がり過ぎて、密度が高過ぎる基材となることから、濾材の圧力損失が高くなり過ぎて、フィルタとして適さない。一方、非バインダー繊維(NB)の配合比率が90質量%超である場合、熱融着性バインダー繊維(B)が少ないため、基材から繊維が脱落しやすく、フィルタとして使用した際に、脱落繊維が下流に流出して悪影響を与えるという問題が発生する。 The blending ratio of the non-binder fibers (NB) is preferably 10 to 90% by mass, more preferably 20 to 75% by mass, based on the total fibers contained in the filter substrate <3>. More preferably, it is 30 to 70% by mass. If the blending ratio of the non-binder fibers (NB) is less than 10% by mass, the thickness of the base material is too low during lamination by thermal fusion bonding, resulting in a base material with too high a density, resulting in a high pressure loss of the filter medium. too large to be suitable as a filter. On the other hand, when the blending ratio of the non-binder fibers (NB) is more than 90% by mass, since the amount of the heat-fusible binder fibers (B) is small, the fibers easily fall off from the base material, and when used as a filter, the fibers fall off. A problem arises in that the fibers flow downstream and adversely affect it.
 フィルタ用基材<3>が延伸ポリエステル繊維以外の非バインダー繊維(NB)を含有する場合、その配合比率は、特に限定されないが、フィルタ用基材に含まれる全繊維に対して、50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましい。延伸ポリエステル繊維以外の非バインダー繊維(NB)は必須成分でないことから、その配合比率は0質量%であっても良い。延伸ポリエステル繊維以外の非バインダー繊維(NB)の配合比率が50質量%以上である場合、フィルタ用基材から繊維が脱落しやすくなる場合があり、フィルタとして使用した際に、脱落繊維が下流に流出して悪影響を与えるという問題が発生する場合がある。 When the filter substrate <3> contains a non-binder fiber (NB) other than the drawn polyester fiber, the blending ratio is not particularly limited, but it is 50% by mass based on the total fibers contained in the filter substrate. It is preferably less than 40% by mass, more preferably less than 30% by mass. Non-binder fibers (NB) other than drawn polyester fibers are not essential components, so the blending ratio may be 0% by mass. If the blending ratio of non-binder fibers (NB) other than drawn polyester fibers is 50% by mass or more, the fibers may easily fall off from the filter base material, and when used as a filter, the dropped fibers may flow downstream. Problems may arise that the water may flow out and cause adverse effects.
 非バインダー繊維(NB)として、フィルタ用基材<3>が木材パルプを含有する場合、木材パルプの配合比率は、特に限定されないが、フィルタ用基材に含まれる全繊維に対して、50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、また、木材パルプを含有しなくてもなんら問題はない。木材パルプの配合比率が50質量%以上である場合、木材パルプがフィルタ用基材の孔を塞ぐため、圧力損失が高くなるという問題が発生する場合があり、また、木材パルプが多孔質膜との接着を阻害するため、剥離強度が小さくなるという問題が発生する場合がある。 When the filter substrate <3> contains wood pulp as the non-binder fiber (NB), the blending ratio of the wood pulp is not particularly limited. %, more preferably less than 40% by mass, even more preferably less than 30% by mass, and there is no problem even if it does not contain wood pulp. If the blending ratio of the wood pulp is 50% by mass or more, the wood pulp clogs the pores of the filter base material, which may cause a problem of increased pressure loss. In some cases, the problem of reduced peel strength may occur because the adhesion of the adhesive is inhibited.
 また、本発明に用いられるその他の繊維としては、木綿パルプ、ワラパルプ、竹パルプ、エスパルトパルプ、バガスパルプ、麻パルプが挙げられる。 Other fibers used in the present invention include cotton pulp, straw pulp, bamboo pulp, esparto pulp, bagasse pulp, and hemp pulp.
<熱融着バインダー繊維(B)>
 フィルタ用基材<3>は、熱融着バインダー繊維(B)として、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有する。
 鞘部の結晶性の共重合ポリエステルとしては、ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステル、ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールとε-カプロラクトンである共重合ポリエステル、ジカルボン酸成分がテレフタル酸とイソフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステルが好適に使用できる。
<Heat-fusible binder fiber (B)>
The filter substrate <3> contains, as the heat-sealable binder fiber (B), a sheath-core polyester fiber (CSP) whose sheath is made of crystalline copolyester.
As the crystalline copolyester for the sheath, the dicarboxylic acid component is terephthalic acid, and the diol component is ethylene glycol and tetramethylene glycol. can be preferably used.
 フィルタ用基材<3>が、芯鞘型ポリエステル繊維(CSP)を含有することにより、フィルタ用基材<3>の製造及びその後に熱カレンダー等による熱圧処理によって多孔質膜との貼り合わせを行った後でも、芯鞘型ポリエステル繊維(CSP)の芯部が溶融せずに、繊維形状を維持することから、フィルタの引張強度を高めることができる。 Since the filter substrate <3> contains the core-sheath type polyester fiber (CSP), the filter substrate <3> is manufactured and then laminated with the porous membrane by heat pressure treatment such as hot calendering. Even after performing, the core of the sheath-core type polyester fiber (CSP) does not melt and maintains the fiber shape, so that the tensile strength of the filter can be increased.
 本発明において、「結晶性」とは、繊維の温度を溶解状態の温度まで高めた後に、温度を下げていった場合、溶融状態では分子運動しながら絡み合っているが、温度を下げていくことで分子運動がゆっくり収まりながら、結晶化温度にて部分的に整列し、結晶化する特性を有することをいう。 In the present invention, "crystallinity" means that when the temperature of the fiber is raised to the temperature of the molten state and then lowered, the temperature is lowered while the fibers are entangled while undergoing molecular motion in the molten state. It has the property of partially aligning and crystallizing at the crystallization temperature while the molecular motion slows down at .
 結晶性の有無を確認する方法としては、示差走査熱量計(パーキンエルマー社製、装置名:DSC8500)を用いて、昇温速度10℃/分で、0℃から芯鞘型ポリエステル繊維(CSP)の鞘部の融点を超えるまで昇温した後に、連続して冷却速度10℃/分で、0℃まで冷却し、結晶化による発熱ピークの有無を確認し、発熱ピークが観察された場合、結晶性であると判断する。また、発熱ピークのピーク温度を結晶化温度とする。 As a method for confirming the presence or absence of crystallinity, a differential scanning calorimeter (manufactured by PerkinElmer, device name: DSC8500) was used to heat the core-sheath polyester fiber (CSP) from 0 ° C. at a heating rate of 10 ° C./min. After raising the temperature to exceed the melting point of the sheath, it is continuously cooled to 0 ° C. at a cooling rate of 10 ° C./min, and the presence or absence of an exothermic peak due to crystallization is confirmed. sex. Also, the peak temperature of the exothermic peak is defined as the crystallization temperature.
 融点の測定は、示差走査熱量計(パーキンエルマー社製、装置名:DSC8500)を用いて、昇温速度10℃/分で、0℃から300℃まで昇温させた際の結晶融解による吸熱ピークを観察し、そのピーク温度を融点とする。 The melting point was measured using a differential scanning calorimeter (manufactured by PerkinElmer, device name: DSC8500), and the temperature was raised from 0°C to 300°C at a heating rate of 10°C/min. is observed and the peak temperature is taken as the melting point.
 芯鞘型ポリエステル繊維(CSP)の芯部は、主たる繰り返し単位がアルキレンテレフタレートであるポリエステルであり、耐熱性の高いポリエチレンテレフタレートであることが好ましい。 The core of the core-sheath polyester fiber (CSP) is polyester whose main repeating unit is alkylene terephthalate, preferably polyethylene terephthalate, which has high heat resistance.
 芯鞘型ポリエステル繊維(CSP)の断面形状は特に限定しないが、円形が好ましい。また、芯部と鞘部の比率は、芯/鞘体積比で30/70~70/30が好ましく、40/60~60/40がより好ましい。 The cross-sectional shape of the core-sheath type polyester fiber (CSP) is not particularly limited, but a circular shape is preferable. In addition, the core/sheath volume ratio is preferably 30/70 to 70/30, more preferably 40/60 to 60/40.
 鞘部の結晶性の共重合ポリエステルの融点は、好ましくは130℃以上であり、より好ましくは140℃以上であり、さらに好ましくは150℃以上である。結晶性ポリエステルの融点が高い場合、より高い接着強度が得られ、また、高い耐薬品性を持つことから、過酷な条件下で使用しても、劣化し難く、収縮し難いという効果が得られる。 The melting point of the crystalline copolyester of the sheath is preferably 130°C or higher, more preferably 140°C or higher, and still more preferably 150°C or higher. When the melting point of the crystalline polyester is high, higher adhesive strength can be obtained, and since it has high chemical resistance, it is difficult to deteriorate and shrink even when used under harsh conditions. .
 芯鞘型ポリエステル繊維(CSP)の配合比率は、フィルタ用基材<3>に含まれる全繊維に対して、5質量%以上であり、10質量%以上であることがより好ましい。また、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることがさらに好ましく、55質量%以下であることが特に好ましく、50質量%以下であっても良い。芯鞘型ポリエステル繊維(CSP)の配合比率が5質量%未満の場合、フィルタ用基材<3>の耐薬品性を上げるという効果が充分に得られない。一方、70質量%を超えると、フィルタ用基材<3>の表面が皮膜化しやすく、熱カレンダー処理などで多孔質膜とフィルタ用基材を貼り合わせた後、圧力損失が上がり、フィルタとして使用することが難しい場合がある。 The blending ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more, more preferably 10% by mass or more, relative to the total fibers contained in the filter substrate <3>. Further, it is preferably 70% by mass or less, more preferably 65% by mass or less, even more preferably 60% by mass or less, particularly preferably 55% by mass or less, and 50% by mass or less. It can be. If the blending ratio of the core-sheath type polyester fiber (CSP) is less than 5% by mass, the effect of increasing the chemical resistance of the filter substrate <3> cannot be sufficiently obtained. On the other hand, if it exceeds 70% by mass, the surface of the filter substrate <3> tends to form a film, and after bonding the porous membrane and the filter substrate together by heat calendering or the like, the pressure loss increases and the filter can be used as a filter. can be difficult to do.
<他の熱融着性バインダー繊維(B)>
 フィルタ用基材<3>には、芯鞘型ポリエステル繊維(CSP)以外の熱融着性バインダー繊維(B)を必要に応じて配合することができる。
<Other heat-fusible binder fibers (B)>
A heat-fusible binder fiber (B) other than the core-sheath type polyester fiber (CSP) can be blended into the filter substrate <3> as needed.
 芯鞘型ポリエステル繊維(CSP)以外の熱融着性バインダー繊維(B)としては、フィルタ用基材<1>で説明した熱融着性バインダー繊維(B)を使用することができる。 As the heat-fusible binder fiber (B) other than the core-sheath type polyester fiber (CSP), the heat-fusible binder fiber (B) described in the filter substrate <1> can be used.
 本発明において、バインダー繊維として、芯鞘型ポリエステル繊維(CSP)に加えて、湿熱接着性バインダー繊維(b)を用いることもできる。フィルタ用基材<3>において、湿熱接着性バインダー繊維(b)は、フィルタ用基材<1>で説明した湿熱接着性バインダー繊維(b)を使用することができる。 In the present invention, in addition to core-sheath type polyester fibers (CSP), wet heat adhesive binder fibers (b) can also be used as binder fibers. In the filter base material <3>, the wet heat adhesive binder fiber (b) described in the filter base material <1> can be used as the wet heat adhesive binder fiber (b).
 芯鞘型ポリエステル繊維(CSP)を含め、バインダー繊維の配合比率は、フィルタ用基材<3>に含まれる全繊維に対して、10~90質量%であることが好ましく、25~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。バインダー繊維(B)の配合比率が10質量%未満である場合、非バインダー繊維(NB)を止める成分が足りず、脱落繊維が多くなるという問題が発生する場合がある。一方、バインダー繊維(B)の配合比率が90質量%超である場合、厚みが小さく、密度が高いフィルタ用基材となることから、熱圧処理の際に厚みが下がることで圧力損失が上がり、フィルタとして適さないという問題が発生する場合がある。 The blending ratio of the binder fiber, including the core-sheath type polyester fiber (CSP), is preferably 10 to 90% by mass, preferably 25 to 80% by mass, based on the total fibers contained in the filter substrate <3>. and more preferably 30 to 70% by mass. If the blending ratio of the binder fiber (B) is less than 10% by mass, there may be a problem that the amount of the component that stops the non-binder fiber (NB) is insufficient, resulting in a large amount of falling-off fiber. On the other hand, when the blending ratio of the binder fiber (B) is more than 90% by mass, the filter base material has a small thickness and a high density. , the problem that it is not suitable as a filter may occur.
<坪量>
 フィルタ用基材<3>の坪量は、特に限定されないが、30g/m~180g/mであることが好ましく、40g/m~160g/mであることがより好ましい。坪量が30g/mよりも小さくなると、基材の強度が弱く、フィルタとして使用している最中に破損する場合がある。180g/mよりも大きい場合、圧力損失が高くなり、フィルタとして使用するには適さない場合がある。
<Basis Weight>
The basis weight of the filter substrate <3> is not particularly limited, but is preferably 30 g/m 2 to 180 g/m 2 , more preferably 40 g/m 2 to 160 g/m 2 . If the grammage is less than 30 g/m 2 , the strength of the base material is weak and may break during use as a filter. If it is greater than 180 g/m 2 , the pressure loss will be high and may not be suitable for use as a filter.
<密度>
 フィルタ用基材<3>の密度は、特に限定されないが、0.1~0.5g/cmであることが好ましい。該密度は、湿式抄紙の際の抄紙条件の調整、繊維の種類、繊維の配合比率、坪量や厚みの調整で適宜調整することができる。密度が0.1g/cmよりも小さくなると、熱圧処理の際に脱落繊維が発生してトラブルとなる場合がある。密度が0.5g/cmを超えると、圧力損失が高くなるため、フィルタ用基材として適さない場合がある。
<Density>
Although the density of the filter substrate <3> is not particularly limited, it is preferably 0.1 to 0.5 g/cm 3 . The density can be appropriately adjusted by adjusting the papermaking conditions during wet papermaking, the type of fiber, the blending ratio of fiber, basis weight and thickness. If the density is less than 0.1 g/cm 3 , fibers may fall off during the heat-pressing treatment, causing trouble. If the density exceeds 0.5 g/cm 3 , the pressure loss increases, and it may not be suitable as a base material for filters.
〔フィルタ用濾材<3>〕
 本発明は、前述のフィルタ用基材<3>と、多孔質膜とを含むフィルタ用濾材<3>を包含する。
 すなわち、フィルタ用濾材<3>は、フィルタ用基材及び多孔質膜を含むフィルタ用濾材であって、
(1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)を含む湿式不織布であり、
(2)前記非バインダー繊維(NB)として、延伸ポリエステル繊維を含有し、
(3)前記熱融着性バインダー繊維(B)として、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有し、
(4)前記芯鞘型ポリエステル繊維(CSP)の配合比率が、前記フィルタ用基材に含まれる全繊維に対して5質量%以上であることを特徴とする。
 フィルタ用濾材<3>は、多孔質膜とフィルタ用基材とを熱融着により貼り合わされていることが好ましい。
 多孔質膜は、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート;ポリウレタン;ポリイミド;ポリテトラフルオロエチレン(PTFE)等の多孔質膜を用いることができる。耐熱温度の低い多孔質膜を用いると、熱圧処理を行った際に多孔質膜が軟化し、孔が閉塞してフィルタとして使用するために十分なフラジール通気度を得ることができない恐れがあることから、耐熱性に優れたPTFEを用いることが好ましい。PTFEは耐薬品性にも優れている。
 多孔質膜の厚さは、好ましくは1~50μm、より好ましくは2~30μmである。
[Filter material for filter <3>]
The present invention includes a filter medium <3> including the aforementioned filter substrate <3> and a porous membrane.
That is, the filter material <3> is a filter material including a filter substrate and a porous membrane,
(1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
(2) containing a drawn polyester fiber as the non-binder fiber (NB),
(3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester,
(4) The compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
It is preferable that the filter material <3> for a filter is formed by bonding a porous membrane and a base material for a filter together by heat-sealing.
Polyolefins such as polyethylene (PE) and polypropylene (PP); polyethylene terephthalate; polyurethane; polyimide; and polytetrafluoroethylene (PTFE). If a porous membrane with a low heat resistance temperature is used, the porous membrane may soften during heat and pressure treatment, clogging the pores and failing to obtain sufficient Frazier air permeability for use as a filter. Therefore, it is preferable to use PTFE, which has excellent heat resistance. PTFE also has excellent chemical resistance.
The thickness of the porous membrane is preferably 1-50 μm, more preferably 2-30 μm.
<フラジール通気度>
 低圧力損失を得るために、フィルタ用濾材<3>のフラジール通気度を高くすることが好ましい。フラジール通気度は、JIS L1096:2010に記載のA法(フラジール形法)で規定される通気度である。フィルタ用濾材<3>のフラジール通気度は、10cm/cm・s以上であることが好ましく、より好ましくは20cm/cm・s以上である。10cm/cm・sよりもフラジール通気度が低いと、圧力損失が高くなり、フィルタ用濾材として適さない場合がある。
<Fragile Air Permeability>
In order to obtain a low pressure loss, it is preferable to increase the Frazier air permeability of the filter medium <3> for filter. The Frazier air permeability is the air permeability specified by the A method (Frazier type method) described in JIS L1096:2010. The filter medium <3> for filter preferably has a Frazier air permeability of 10 cm 3 /cm 2 ·s or more, more preferably 20 cm 3 /cm 2 ·s or more. If the Frazier air permeability is lower than 10 cm 3 /cm 2 ·s, the pressure loss increases and may not be suitable as a filter medium.
<フィルタ用濾材<3>の製造>
 本発明のフィルタ用基材<3>と多孔質膜とを、熱融着により貼り合わせフィルタ用濾材を製造することが出来る。
 貼り合わせは、熱圧処理によって行うことができる。熱圧処理は、熱プレス機を用いたシートの積層加工や、熱カレンダーを用いた巻き取り同士の積層加工により行うことができる。湿式不織布と多孔質膜の十分な剥離強度を得るために、熱圧処理時の温度は、100℃以上であることが好ましく、熱融着性バインダー繊維(B)の融点を上回る温度であることがより好ましく、160℃以上であることがさらに好ましい。
 熱圧処理のおける圧力は、好ましくは1~100kgf/cm、より好ましくは2~90kgf/cm、さらに好ましくは3~80kgf/cmである。
<Production of Filter Material <3> for Filter>
The filter substrate <3> of the present invention and the porous membrane can be heat-sealed to produce a filter medium for a filter.
Bonding can be performed by heat and pressure treatment. The heat-pressing treatment can be performed by stacking sheets using a hot press or by stacking wound sheets using a hot calender. In order to obtain sufficient peel strength between the wet-laid nonwoven fabric and the porous membrane, the temperature during the heat-pressing treatment is preferably 100° C. or higher, and is higher than the melting point of the heat-fusible binder fiber (B). is more preferable, and 160° C. or higher is even more preferable.
The pressure in the heat pressure treatment is preferably 1 to 100 kgf/cm, more preferably 2 to 90 kgf/cm, still more preferably 3 to 80 kgf/cm.
〔実施例1-1~1-10、比較例1-1~1-6〕
フィルタ用基材<1>、フィルタ用濾材<1>
 以下、実施例に記載される部及び比率は質量を基準とする。
<熱融着性バインダー繊維(B)>
・芯鞘バインダー(PET-低融点PET芯鞘繊維、繊度2.2デシテックス、繊維長5mm、鞘部の融点120℃)
[Examples 1-1 to 1-10, Comparative Examples 1-1 to 1-6]
Base material for filter <1>, filter medium for filter <1>
The parts and ratios described in the examples below are based on mass.
<Heat-fusible binder fiber (B)>
・Core-sheath binder (PET-low melting point PET core-sheath fiber, fineness 2.2 decitex, fiber length 5 mm, sheath melting point 120°C)
<木材パルプ:非バインダー繊維(NB)>
・NBKPチヌーク(濾水度680mlCSF)
<Wood pulp: non-binder fiber (NB)>
・NBKP Chinook (freeness 680ml CSF)
<合成繊維:非バインダー繊維(NB)>
・PET繊維(延伸PET繊維、繊度1.7デシテックス、繊維長5mm)
<Synthetic fiber: non-binder fiber (NB)>
・PET fiber (stretched PET fiber, fineness 1.7 decitex, fiber length 5 mm)
<無機繊維:非バインダー繊維(NB)>
・ガラス繊維(繊維径9μm、繊維長6mm)
<Inorganic fiber: non-binder fiber (NB)>
・Glass fiber (fiber diameter 9 μm, fiber length 6 mm)
<多孔質膜>
・PP多孔質膜(ポリプロピレン樹脂膜、膜厚20μm)
・PTFE多孔質膜(ポリテトラフルオロエチレン樹脂膜、膜厚15μm)
<フィルタ用基材及びフィルタ用濾材の作製>
 表1記載の繊維配合になるように、各繊維をパルパーで分散し、円網抄紙機で抄紙後、シリンダードライヤーにて乾燥し、湿式不織布からなるフィルタ用基材を作製した。
 フィルタ用基材とPP多孔質膜を、熱ロールにより線圧20kgf/cm、温度160℃で熱圧処理することによって、熱融着による貼り合わせを行って積層して、実施例1-1~1-5及び比較例1-1~1-3のフィルタ用濾材を作製した。
 また、フィルタ用基材にPTFE多孔質膜を熱ロールにより線圧20kgf/cm、温度160℃で熱圧処理することによって、熱融着による貼り合わせを行って積層して、実施例1-6~1-10及び比較例1-4~1-6のフィルタ用濾材をそれぞれ作製した。
<Porous membrane>
・PP porous membrane (polypropylene resin membrane, film thickness 20 μm)
・Porous PTFE membrane (polytetrafluoroethylene resin membrane, thickness 15 μm)
<Preparation of base material for filter and filter medium for filter>
Each fiber was dispersed with a pulper so as to have the fiber composition shown in Table 1, paper was made with a cylinder paper machine, and then dried with a cylinder dryer to prepare a filter base material composed of a wet-laid nonwoven fabric.
The filter base material and the PP porous membrane are heat-pressed with a hot roll at a linear pressure of 20 kgf / cm and a temperature of 160 ° C., and laminated by thermal fusion bonding. Filter media for filters of 1-5 and Comparative Examples 1-1 to 1-3 were produced.
In addition, a PTFE porous membrane was laminated on the filter base material by heat-pressing with a hot roll at a linear pressure of 20 kgf / cm and a temperature of 160 ° C., and laminated by thermal fusion bonding. 1-10 and filter media for filters of Comparative Examples 1-4 to 1-6 were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価方法>
 実施例1-1~1-10、比較例1-1~1-6で作製したフィルタ用基材及びフィルタ用濾材に対して、下記の方法で測定及び評価を行った。
<Evaluation method>
The filter substrates and filter media produced in Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-6 were measured and evaluated by the following methods.
1)坪量
 JIS P 8124:2011及び8118:2014に準じ、フィルタ用基材の坪量及び厚さを測定した。
1) Basis weight The basis weight and thickness of the filter substrate were measured according to JIS P 8124:2011 and 8118:2014.
2)捕集効率(単位:%)
 JIS第8種粉体とJIS第11種粉体を1:1の比率で混合し、濃度0.05質量%になるように水に希釈したものを試験用液体として用い、フィルタ用濾材を水で湿潤した後、試験用液体100mlをフィルタ用濾材の多孔質膜面を上流側にセットして濾過面積14cm、差圧△P=320mmHgでの条件で濾過し、濾過前後液の0.3~1.0μm粒子数をリオン社製の液中微粒子計数器(商品名:KL-01)で測定し、捕集効率を算出した。
2) Collection efficiency (unit: %)
JIS Class 8 powder and JIS Class 11 powder were mixed at a ratio of 1:1 and diluted with water to a concentration of 0.05% by mass. After wetting with , 100 ml of the test liquid was filtered under the conditions of a filtration area of 14 cm 2 and a differential pressure ΔP = 320 mmHg with the porous membrane surface of the filter material for the filter set on the upstream side. The number of particles up to 1.0 μm was measured with a liquid particle counter manufactured by Rion (trade name: KL-01), and the collection efficiency was calculated.
3)フラジール通気度
 フィルタ用濾材をフィルタとして使用したときの低圧力損失を得るために必要な通気度は、JIS L1096:2010に記載のA法(フラジール形法)にて、フラジール通気度を測定した。
3) Frazier air permeability The air permeability required to obtain a low pressure loss when the filter material for the filter is used as a filter is measured by the A method (Frazier type method) described in JIS L1096:2010. did.
4)ライフ試験
 上記2)の試験用液体を用いてフィルタ用濾材の補修効率を繰り返し評価し、3)の方法で測定したフラジール通気度が10cm/cm・sを下回るまでの繰り返し評価回数で、ライフ(寿命)を評価した。
4) Life test Repeatedly evaluate the repair efficiency of the filter material using the test liquid of 2) above, and repeat the evaluation until the Frazier air permeability measured by the method of 3) falls below 10 cm 3 /cm 2 s. and evaluated the life.
5)剥離強度
 剥離強度はフィルタ用濾材を巾方向25mm流れ方向150mmにカットし、テンシロン万能試験機を用い、湿式不織布と多孔質膜をそれぞれ治具に挟み、引っ張った時の様子を以下のとおりに目視判定した。
5) Peel strength Peel strength was measured by cutting a filter material of 25 mm in the width direction and 150 mm in the flow direction, using a Tensilon universal testing machine, sandwiching a wet-laid nonwoven fabric and a porous membrane between jigs and pulling them. was judged visually.
○ :多孔質膜が基材より剥がれることは全くなかった。
△ :強い力がかけることで、多孔質膜が基材より剥がれる様子が見られた
× :△よりも小さい力をかけることで、多孔質膜が基材より容易に剥がれる様子が見られた。
- :評価不能
◯: The porous membrane was not peeled off from the substrate at all.
Δ: The porous film was seen to be peeled off from the substrate by applying a strong force. ×: By applying a force smaller than Δ, the porous film was easily peeled off from the substrate.
- : Unable to evaluate
6)熱圧処理時の強度
 熱圧処理時のフィルタ用基材の様子を確認して評価を行った。
6) Strength during heat and pressure treatment Evaluation was performed by confirming the state of the filter base material during heat and pressure treatment.
〇:熱圧処理時にフィルタ用基材の破れ等の破損は確認されなかった
×:熱圧処理時にフィルタ用基材に破れ等の破損が確認された。
◯: No breakage such as breakage of the filter base material was observed during the heat-pressure treatment. ×: Breakage such as breakage was found in the filter base material during the heat-pressure treatment.
 上記評価結果を表2に示す。表2において、「-」は評価不能であったことを示している。 Table 2 shows the above evaluation results. In Table 2, "-" indicates that evaluation was not possible.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1-1~1-10のフィルタ用基材は、多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材であり、フィルタ用濾材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)を含む湿式不織布であり、湿式不織布に含まれる全繊維成分に対して、熱融着性バインダー繊維(B)の配合比率が20~90質量%であり、非バインダー繊維(NB)の配合比率が10~80質量%であるフィルタ用基材である。
 多孔質膜と実施例1-1~1-10のフィルタ用基材を各々熱融着により貼り合わせたフィルタ用濾材は、高い剥離強度が得られた。これに対し、多孔質膜と比較例1-1又は比較例1-4のフィルタ用基材は、熱圧処理時にフィルタ用基材に破損は確認されなかったものの、熱融着によって貼り合わせることができなかった。
The filter substrates of Examples 1-1 to 1-10 are filter substrates to be used as filter media by bonding porous membranes by heat sealing, and the filter media are non-binder fibers. (NB) and a heat-fusible binder fiber (B), wherein the blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass with respect to all fiber components contained in the wet-laid nonwoven fabric. and the blending ratio of non-binder fibers (NB) is 10 to 80% by mass.
The filter media obtained by laminating the porous membrane and the filter substrates of Examples 1-1 to 1-10 by thermal fusion bonding exhibited high peel strength. On the other hand, the porous membrane and the filter substrate of Comparative Example 1-1 or Comparative Example 1-4 were not damaged during the heat and pressure treatment, but were bonded together by heat sealing. I couldn't do it.
 また、実施例1-1~1-10のフィルタ用濾材は、多孔質膜と比較例1-2又は比較例1-5のフィルタ用基材を熱融着により貼り合わせたフィルタ用濾材よりも、高いフラジール通気度及びライフが得られていることが分かる。また、比較例1-3及び比較例1-6では、非バインダー繊維(NB)としてガラス繊維のみを用いているため、熱圧処理時に基材が破損した。 In addition, the filter media of Examples 1-1 to 1-10 are stronger than the filter media obtained by bonding the porous membrane and the filter substrate of Comparative Example 1-2 or Comparative Example 1-5 by thermal fusion bonding. , high Frazier air permeability and life are obtained. In addition, in Comparative Examples 1-3 and 1-6, since only glass fibers were used as the non-binder fibers (NB), the base material was damaged during the heat and pressure treatment.
 実施例1-1~1-5に使用したPP多孔質膜は、実施例1-6~1-10に使用したPTFE多孔質膜に比べ、耐熱温度が低いため、熱圧処理時に軟化が発生し、孔の一部が閉塞された。実施例1-6~1-10の方が、実施例1-1~1-5に比べ、より好ましいフラジール通気度のフィルタ用濾材を得ることができた。 The PP porous membrane used in Examples 1-1 to 1-5 has a lower heat resistance temperature than the PTFE porous membrane used in Examples 1-6 to 1-10, so softening occurs during heat pressure treatment. and some of the holes were blocked. In Examples 1-6 to 1-10, filter media for filters with more favorable Frazier air permeability could be obtained compared to Examples 1-1 to 1-5.
〔実施例2-1~2-15、比較例2-1~2-5〕
フィルタ用基材<2>、フィルタ用濾材<2>
 以下、実施例に記載される部及び比率は質量を基準とする。
[Examples 2-1 to 2-15, Comparative Examples 2-1 to 2-5]
Base material for filter <2>, filter medium for filter <2>
The parts and ratios described in the examples below are based on mass.
<合成繊維:非バインダー繊維(NB)>
・PET繊維(延伸PET繊維、繊度1.7デシテックス、繊維長5mm)
<熱融着性バインダー繊維(B)>
・PET-低融点PET芯鞘繊維(CSP)(芯鞘バインダー、繊度2.2デシテックス、繊維長5mm、鞘部の融点120℃)
・全融PETバインダー繊維(B)(全融バインダー、繊度1.2デシテックス、繊維長5mm、融点230℃)
<Synthetic fiber: non-binder fiber (NB)>
・PET fiber (stretched PET fiber, fineness 1.7 decitex, fiber length 5 mm)
<Heat-fusible binder fiber (B)>
・PET-low melting point PET core-sheath fiber (CSP) (core-sheath binder, fineness 2.2 decitex, fiber length 5 mm, sheath melting point 120°C)
・Full-melting PET binder fiber (B) (full-melting binder, fineness 1.2 decitex, fiber length 5 mm, melting point 230°C)
<木材パルプ:非バインダー繊維(NB)>
・NBKPチヌーク(濾水度680mlCSF)
<Wood pulp: non-binder fiber (NB)>
・NBKP Chinook (freeness 680ml CSF)
<フィルタ用基材(湿式不織布)の作製>
 表3記載の繊維配合になるように、各繊維を水に投入して、縦型パルパーで10分間混合分散してスラリーを調成した後、湿紙を傾斜ワイヤー方式で湿式抄紙した層(層(X)、多孔質膜に接する側の最外層)と、表3記載の繊維配合になるように、各繊維を水に投入して、縦型パルパーで10分間混合分散してスラリーを調成した後、湿紙を円網方式で湿式抄紙した層(層(Y)、多孔質膜に接しない層)とを積層して、表面温度130℃のヤンキードライヤーで乾燥し、抄紙速度20m/minで、二層構成の湿式不織布を得た。
<Preparation of base material for filter (wet nonwoven fabric)>
Each fiber was put into water so that the fiber composition shown in Table 3 was obtained, and mixed and dispersed for 10 minutes with a vertical pulper to prepare a slurry. (X), the outermost layer on the side in contact with the porous membrane), and each fiber is put into water so that the fiber blend is as shown in Table 3, and mixed and dispersed for 10 minutes with a vertical pulper to prepare a slurry. After that, a layer (layer (Y), a layer not in contact with the porous membrane) obtained by wet papermaking by a cylinder method is laminated, dried with a Yankee dryer at a surface temperature of 130 ° C., and a papermaking speed of 20 m / min. Thus, a wet-laid nonwoven fabric having a two-layer structure was obtained.
〔比較例2-6及び2-7〕
 表3記載の繊維配合になるように、各繊維を水に投入して、縦型パルパーで10分間混合分散してスラリーを調成した後、湿紙を傾斜ワイヤー方式で湿式抄紙して、単層構造の湿式不織布を得た。
[Comparative Examples 2-6 and 2-7]
Each fiber was put into water so as to have the fiber composition shown in Table 3, and mixed and dispersed for 10 minutes with a vertical pulper to prepare a slurry. A layered wet-laid nonwoven fabric was obtained.
<フィルタ用濾材の作製>
 実施例2-1~2-15のフィルタ用基材と比較例2-1~2-7のフィルタ用基材にPTFE多孔質膜を120℃の熱ロールにより熱圧処理を行い、貼り合わせを行って、フィルタ用濾材を得た。
<Preparation of filter material for filter>
The filter substrates of Examples 2-1 to 2-15 and the filter substrates of Comparative Examples 2-1 to 2-7 were subjected to heat and pressure treatment with hot rolls at 120° C. to bond the PTFE porous membranes together. to obtain a filter medium.
<評価方法>
 実施例2-1~2-15及び比較例2-1~2-7で作製したフィルタ用基材及びフィルタ用濾材は、下記の方法で評価を行った。
1)圧力損失
 圧力損失はJIS B9908-2:2019に従って行い、以下の評価を行った。なお、熱融着による貼り合わせの際に基材が高密度となると、圧力損失が高くなる。
<Evaluation method>
The filter substrates and filter media produced in Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2-7 were evaluated by the following methods.
1) Pressure Loss Pressure loss was measured in accordance with JIS B9908-2:2019 and evaluated as follows. It should be noted that pressure loss increases when the base material has a high density during bonding by thermal fusion.
 ○:圧力損失は多孔質膜単体に対して200%未満であった。
 △:圧力損失は多孔質膜単体に対して200%~300%であった。
 ×:圧力損失は多孔質膜単体に対して300%超であった。
◯: The pressure loss was less than 200% with respect to the porous membrane alone.
Δ: The pressure loss was 200% to 300% with respect to the porous membrane alone.
x: The pressure loss was more than 300% with respect to the porous membrane alone.
2)剥離強度
 基材剥離は、多孔質膜を貼り合わせたフィルタ用濾材の端部を、重さ5kgのステンレスの棒を立てた状態で縦方向に20回こすり、多孔質膜の剥離の状態を確認した。
2) Peeling strength The peeling of the base material is determined by rubbing the end of the filter material for the filter with the porous membrane bonded together 20 times in the vertical direction with a stainless steel rod weighing 5 kg standing upright. It was confirmed.
 ○:多孔質膜がフィルタ用基材より剥がれることは全くなかった。
 ×:多孔質膜がフィルタ用基材より剥がれた。
◯: The porous membrane was not peeled off from the filter substrate at all.
x: The porous membrane was peeled off from the filter substrate.
3)基材強度
 JIS第8種粉体とJIS第11種粉体を1:1の比率で混合し、濃度0.05質量%になるように水に希釈したものを試験用液体として用い、フィルタ用濾材を水で湿潤した後、試験用液体100mlをフィルタ用濾材の多孔質膜面を上流側にセットして濾過面積14cm、差圧△P=320mmHgでの条件で濾過した後のフィルタ用濾材の状態を確認した。
3) Base material strength JIS Class 8 powder and JIS Class 11 powder were mixed at a ratio of 1:1, diluted with water to a concentration of 0.05% by mass, and used as a test liquid. After wetting the filter material with water, 100 ml of the test liquid was filtered under the conditions of a filtration area of 14 cm 2 and a differential pressure ΔP of 320 mmHg with the porous membrane surface of the filter material facing upstream. Checked the condition of the filter media.
 ○:破れ等の破損は確認されなかった。
 ×:破れ等の破損が確認された。
◯: Damage such as tearing was not observed.
x: Damage such as tearing was confirmed.
 上記評価結果を表3に示す。 Table 3 shows the above evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 二以上の層からなる湿式不織布であり、少なくとも一層が非バインダー繊維(NB)としての合成繊維と熱融着性バインダー繊維(B)を含む層であり、多孔質膜に接する側の最外層(X)における熱融着性バインダー繊維(B)の配合比率が50質量%以上であり、多孔質膜に接しない側の層(Y)における熱融着性バインダー繊維(B)の配合比率が50質量%未満であり、多孔質膜と接する側の最外層(X)の坪量が5g/m以上60g/m以下であり、多孔質と接しない側の層(Y)の坪量が25g/m以上120g/m以下であるフィルタ用基材である実施例2-1~2-15のフィルタ用基材は、低い圧力損失、高い剥離強度及び高い基材強度が得られていることが分かる。 It is a wet-laid nonwoven fabric consisting of two or more layers, at least one layer is a layer containing synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the outermost layer on the side in contact with the porous membrane ( The blending ratio of the heat-fusible binder fiber (B) in X) is 50% by mass or more, and the blending ratio of the heat-fusible binder fiber (B) in the layer (Y) on the side not in contact with the porous membrane is 50%. % by mass, the basis weight of the outermost layer (X) on the side in contact with the porous membrane is 5 g/m 2 or more and 60 g/m 2 or less, and the basis weight of the layer (Y) on the side not in contact with the porous membrane is The filter substrates of Examples 2-1 to 2-15, which are 25 g/m 2 or more and 120 g/m 2 or less, have low pressure loss, high peel strength, and high substrate strength. I know there is.
 多孔質膜に接する側の最外層(X)における熱融着性バインダー繊維(B)の配合比率が50質量%未満である比較例2-1では、多孔質膜に接着する熱融着性バインダー繊維(B)が少なかった結果、十分な剥離強度が得られなかったと推測される。 In Comparative Example 2-1, in which the blending ratio of the heat-fusible binder fibers (B) in the outermost layer (X) on the side in contact with the porous membrane is less than 50% by mass, the heat-fusible binder that adheres to the porous membrane It is presumed that sufficient peel strength was not obtained as a result of the small amount of fiber (B).
 多孔質膜と接する側の最外層(X)の坪量が5g/m未満である比較例2-2では、多孔質膜に接着する熱融着性バインダー繊維(B)が少なかった結果、十分な基材強度が得られなかったと推測される。 In Comparative Example 2-2, in which the basis weight of the outermost layer (X) on the side in contact with the porous membrane was less than 5 g/m 2 , the amount of heat-fusible binder fibers (B) adhering to the porous membrane was small. It is presumed that sufficient base material strength was not obtained.
 多孔質膜と接する側の最外層(X)の坪量が60g/m超である比較例2-3では、熱融着性バインダー繊維(B)の配合比率が多い、多孔質膜と接する側の最外層(X)の坪量が大きく、高密度となった結果、圧力損失が上がったものと推測される。 In Comparative Example 2-3, in which the basis weight of the outermost layer (X) on the side in contact with the porous membrane is more than 60 g/m It is presumed that the basis weight of the outermost layer (X) on the side was large and the pressure loss increased as a result of the high density.
 多孔質膜に接しない側の層(Y)の熱融着性バインダー繊維(B)の配合比率が50質量%以上である比較例2-4では、熱融着性バインダー繊維(B)の配合比率が多い、多孔質膜に接しない側の層(Y)が高密度となった結果、圧力損失が上がったものと推測される。 In Comparative Example 2-4, in which the blending ratio of the heat-fusible binder fiber (B) in the layer (Y) on the side not in contact with the porous membrane is 50% by mass or more, the blending ratio of the heat-fusible binder fiber (B) It is presumed that the pressure loss increased as a result of the high density of the layer (Y) on the side not in contact with the porous membrane, which has a large ratio.
 多孔質膜に接しない側の層(Y)の坪量が25g/m未満である比較例2-5では、フィルタ用基材の坪量が低く、基材の強度が弱くなった結果、フィルタとして使用中に破損したものと推測される。 In Comparative Example 2-5, in which the basis weight of the layer (Y) on the side not in contact with the porous membrane was less than 25 g/m 2 , the basis weight of the filter base material was low, and the strength of the base material was weakened. It is presumed that it was damaged during use as a filter.
 熱融着性バインダー繊維(B)の配合比率が50質量%以上の層のみの単層構造の湿式不織布である比較例2-6では、熱融着性バインダー繊維(B)の配合比率が高いため、圧力損失が高くなったものと推測される。 In Comparative Example 2-6, which is a wet-laid nonwoven fabric having a single-layer structure in which the blending ratio of the heat-fusible binder fiber (B) is 50% by mass or more, the blending ratio of the heat-fusible binder fiber (B) is high. Therefore, it is presumed that the pressure loss increased.
 熱融着性バインダー繊維(B)の配合比率が50質量%未満の層のみの単層構造の湿式不織布である比較例2-7では、熱融着性バインダー繊維(B)の配合比率が低いため、剥離強度が低くなったものと推測される。 In Comparative Example 2-7, which is a wet-laid nonwoven fabric having a single-layer structure in which the blending ratio of the heat-fusible binder fiber (B) is less than 50% by mass, the blending ratio of the heat-fusible binder fiber (B) is low. Therefore, it is presumed that the peel strength was lowered.
〔実施例3-1~3-12、比較例3-1~3-5〕
フィルタ用基材<3>、フィルタ用濾材<3>
 以下、実施例に記載される部及び比率は質量を基準とする。
[Examples 3-1 to 3-12, Comparative Examples 3-1 to 3-5]
Base material for filter <3>, filter medium for filter <3>
The parts and ratios described in the examples below are based on mass.
<非バインダー繊維(NB)>
・延伸PET繊維1
 ポリエチレンテレフタレートからなる、繊度1.7デシテックス、繊維長5mmの延伸ポリエステル繊維を延伸PET繊維1とした。
<Non-binder fiber (NB)>
・Stretched PET fiber 1
A drawn PET fiber 1 was a drawn polyester fiber made of polyethylene terephthalate and having a fineness of 1.7 decitex and a fiber length of 5 mm.
・延伸PET繊維2
 ポリエチレンテレフタレートからなる、繊度0.6デシテックス、繊維長5mmの延伸ポリエステル繊維を延伸PET繊維2とした。
・Stretched PET fiber 2
A drawn PET fiber 2 was a drawn polyester fiber made of polyethylene terephthalate and having a fineness of 0.6 decitex and a fiber length of 5 mm.
・木材パルプ
 木材パルプとしてNBKPチヌーク(濾水度680mlCSF)を用いた。
- Wood pulp NBKP Chinook (freeness 680 ml CSF) was used as wood pulp.
<バインダー繊維(B)>
・芯鞘PET繊維1
 芯部がポリエチレンテレフタレート(融点:260℃)であり、鞘部はジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールであり、融点が180℃であり、結晶化温度が126℃である結晶性の共重合ポリエステルである、繊度1.2デシテックス、繊維長5mmの芯鞘型ポリエステル繊維(ユニチカ社製キャスベン(登録商標)8080)を、芯鞘PET繊維1とした。
<Binder fiber (B)>
・Sheath and core PET fiber 1
The core part is polyethylene terephthalate (melting point: 260°C), the sheath part has a dicarboxylic acid component of terephthalic acid, a diol component of ethylene glycol and tetramethylene glycol, a melting point of 180°C, and a crystallization temperature of 126°C. A core-sheath type polyester fiber (Casven (registered trademark) 8080 manufactured by Unitika Ltd.) having a fineness of 1.2 decitex and a fiber length of 5 mm, which is a crystalline copolyester having a temperature of 100° C., was used as a core-sheath PET fiber 1 .
・芯鞘PET繊維2
 芯部がポリエチレンテレフタレート(融点:260℃)であり、鞘部はジカルボン酸成分がテレフタル酸とイソフタル酸であり、ジオール成分がエチレングリコールとジエチレングリコールであり、軟化温度が75℃である非結晶性の共重合ポリエステルである、繊度2.2デシテックス、繊維長5mmの芯鞘型ポリエステル繊維(帝人社製TJ04CN(製品番号))を、芯鞘PET繊維2とした。
・Sheath and core PET fiber 2
The core part is polyethylene terephthalate (melting point: 260°C), the sheath part has dicarboxylic acid components of terephthalic acid and isophthalic acid, diol components of ethylene glycol and diethylene glycol, and a softening temperature of 75°C. A core-sheath type polyester fiber (manufactured by Teijin Ltd. TJ04CN (product number)) having a fineness of 2.2 decitex and a fiber length of 5 mm, which is a copolyester, was used as a core-sheath PET fiber 2 .
・未延伸PET繊維1
 ジカルボン酸成分としてイソフタル酸を含むポリエチレンテレフタレートからなる、繊度1.2デシテックス、繊維長5mmの未延伸ポリエステル繊維(融点:260℃)(帝人社製TA07N(製品番号))を未延伸PET繊維1とした。
・Unstretched PET fiber 1
Unstretched polyester fiber (melting point: 260° C.) (TA07N (product number) manufactured by Teijin Limited) made of polyethylene terephthalate containing isophthalic acid as a dicarboxylic acid component and having a fineness of 1.2 decitex and a fiber length of 5 mm was used as unstretched PET fiber 1. did.
・湿熱PVA繊維1
 ポリビニルアルコール系樹脂からなる、繊度0.44デシテックス、繊維長3mmの湿熱接着性バインダー繊維(b)(クラレ社製、VPB041)を、湿熱PVA繊維1とした。
・Wet heat PVA fiber 1
Wet heat adhesive binder fiber (b) (VPB041 manufactured by Kuraray Co., Ltd.) made of polyvinyl alcohol resin and having a fineness of 0.44 decitex and a fiber length of 3 mm was used as wet heat PVA fiber 1 .
<フィルタ用基材の作製>
 表4記載の繊維配合になるように、各繊維を水に投入して、縦型パルパーで10分間混合分散してスラリーを調成した後、湿紙を傾斜ワイヤー/円網方式で製造した湿紙を抄き合わせ法により積層して、表面温度130℃のヤンキードライヤーで乾燥し、抄紙速度20m/minで、湿式不織布であるフィルタ用基材を得た。傾斜ワイヤーと円網の繊維配合と目標坪量は同じである。
<Production of base material for filter>
Each fiber was put into water so as to have the fiber composition shown in Table 4, and mixed and dispersed for 10 minutes with a vertical pulper to prepare a slurry. The paper was laminated by a paper-making method, dried with a Yankee dryer at a surface temperature of 130° C., and made at a paper-making speed of 20 m/min to obtain a wet-laid nonwoven filter substrate. The fiber blend and target basis weight for the slanted wire and the circular mesh are the same.
<フィルタ用濾材の作製>
 実施例3-1~3-12及び比較例3-1~3-5のフィルタ用基材とPTFE多孔質膜を積層し、120℃の熱ロールにより熱圧処理を行い、熱融着による貼り合わせを行って、フィルタ用濾材を得た。
<Preparation of filter material for filter>
The filter substrates of Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-5 and the PTFE porous membranes were laminated, subjected to heat pressure treatment with hot rolls at 120 ° C., and pasted by heat fusion. A combination was performed to obtain a filter medium for a filter.
<評価方法>
 実施例3-1~3-12及び比較例3-1~3-5で作製したフィルタ用基材及びフィルタ用濾材は、下記の方法で評価を行った。
<Evaluation method>
The filter substrates and filter media produced in Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-5 were evaluated by the following methods.
1)耐薬品性
 フィルタ用基材から、巻き取りの流れ方向250mm、幅方向50mmの試料を20枚切り取り、JIS P 8113:2006に準じて、卓上型材料試験機(装置名:STA-1150、(株)オリエンテック製)を用いて、引張強度を測定し、10枚分の平均値(初期値)を得た。残りの10枚の試料を、10質量%の水酸化ナトリウム溶液中に、温度80℃にて1週間浸漬した。水洗・乾燥後、引張強度を測定し、10枚分の平均値(浸漬後)を得た。平均値(浸漬後)/平均値(初期値)×100を引張強度の残存率(%)とし、耐アルカリ性の指標とした。
1) Chemical resistance From the base material for the filter, cut out 20 samples of 250 mm in the winding flow direction and 50 mm in the width direction, and according to JIS P 8113: 2006, a desktop material testing machine (device name: STA-1150, (manufactured by Orientec Co., Ltd.), the tensile strength was measured, and the average value (initial value) for 10 sheets was obtained. The remaining 10 samples were immersed in a 10% by weight sodium hydroxide solution at a temperature of 80° C. for 1 week. After washing with water and drying, the tensile strength was measured to obtain an average value (after immersion) for 10 sheets. The average value (after immersion)/average value (initial value)×100 was defined as the percentage of residual tensile strength (%), which was used as an index of alkali resistance.
○:引張強度の残存率が80%以上であった。
×:引張強度の残存率が80%未満であった。
Good: The residual rate of tensile strength was 80% or more.
x: The residual rate of tensile strength was less than 80%.
2)圧力損失
 フィルタ用濾材の圧力損失の測定は、JIS B 9908-2:2019に従って行
い、以下の評価を行った。なお、熱融着による貼り合わせの際に、フィルタ用基材が高密
度となると、圧力損失が高くなる。
2) Pressure loss The pressure loss of the filter material for filters was measured in accordance with JIS B 9908-2:2019, and the following evaluations were made. It should be noted that pressure loss increases when the filter base material has a high density during bonding by thermal fusion bonding.
○:圧力損失は、多孔質膜単体に対して200%未満であった。
△:圧力損失は、多孔質膜単体に対して200%~300%であった。
×:圧力損失は、多孔質膜単体に対して300%超であった。
○: The pressure loss was less than 200% with respect to the porous membrane alone.
Δ: The pressure loss was 200% to 300% with respect to the porous membrane alone.
x: The pressure loss was more than 300% with respect to the porous membrane alone.
 上記評価結果を表4に示す。 Table 4 shows the above evaluation results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例3-1~3-12のフィルタ用基材は高い耐薬品性を示し、また、実施例3-1~3-12のフィルタ用濾材は、低い圧力損失を示した。 The filter substrates of Examples 3-1 to 3-12 exhibited high chemical resistance, and the filter media of Examples 3-1 to 3-12 exhibited low pressure loss.
 これに対し、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)の配合率が5%未満である比較例3-1では、十分な耐薬品性が得られなかった。 On the other hand, in Comparative Example 3-1, in which the blending ratio of core-sheath type polyester fibers (CSP) whose sheath is crystalline copolyester is less than 5%, sufficient chemical resistance was not obtained.
 また、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有していない比較例3-2~3-4では、十分な耐薬品性が得られなかった。 In addition, in Comparative Examples 3-2 to 3-4, in which the sheath did not contain a core-sheath type polyester fiber (CSP), which is a crystalline copolyester, sufficient chemical resistance was not obtained.
 非バインダー繊維(NB)として、延伸ポリエステル繊維を含有していない比較例3-5では、圧力損失が高くなった。 In Comparative Example 3-5, which does not contain stretched polyester fibers as non-binder fibers (NB), the pressure loss was high.
 本発明のフィルタ用基材は、多孔質膜を貼り合わせてフィルタ用濾材として好適に使用できる。本発明のフィルタ用濾材は、濾材として種々の用途に用いることができる。 The filter base material of the present invention can be suitably used as a filter material by laminating a porous membrane. The filter material for filters of the present invention can be used for various purposes as a filter material.

Claims (12)

  1.  多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
    (1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)とを含む湿式不織布であり、
    (2)前記湿式不織布に含まれる全繊維成分に対して、前記熱融着性バインダー繊維(B)の配合比率が20~90質量%であり、前記非バインダー繊維(NB)の配合比率が10~80質量%であることを特徴とする前記フィルタ用基材。
    In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
    (1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
    (2) The blending ratio of the heat-fusible binder fiber (B) is 20 to 90% by mass, and the blending ratio of the non-binder fiber (NB) is 10, based on the total fiber components contained in the wet-laid nonwoven fabric. 80% by mass of the filter base material.
  2.  前記非バインダー繊維(NB)が、合成繊維及び木材パルプからなる群より選ばれる少なくとも一種である請求項1に記載のフィルタ用基材。 The filter substrate according to claim 1, wherein the non-binder fibers (NB) are at least one selected from the group consisting of synthetic fibers and wood pulp.
  3.  前記熱融着性バインダー繊維(B)が、芯鞘繊維である請求項1又は2に記載のフィルタ用基材。 The filter substrate according to claim 1 or 2, wherein the heat-fusible binder fibers (B) are core-sheath fibers.
  4.  坪量が、30~120g/mである請求項1~3のいずれか一項に記載のフィルタ用基材。 The filter base material according to any one of claims 1 to 3, which has a basis weight of 30 to 120 g/m 2 .
  5.  多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
    (1)前記フィルタ用基材は、層(X)及び層(Y)を含む湿式不織布であり、少なくとも一方の最外層が層(X)であり、
    (2)層(X)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%以上であり、坪量が5g/m以上60g/m以下の層であり、
    (3)層(Y)は、非バインダー繊維(NB)としての合成繊維と、熱融着性バインダー繊維(B)とを含み、熱融着性バインダー繊維(B)の配合比率が50質量%未満であり、坪量が25g/m以上120g/m以下の層であることを特徴とする前記フィルタ用基材。
    In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
    (1) the filter base material is a wet-laid nonwoven fabric comprising a layer (X) and a layer (Y), at least one of which is the layer (X) as the outermost layer;
    (2) The layer (X) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of the heat-fusible binder fibers (B) is 50% by mass. A layer with a basis weight of 5 g/m 2 or more and 60 g/m 2 or less,
    (3) Layer (Y) contains synthetic fibers as non-binder fibers (NB) and heat-fusible binder fibers (B), and the blending ratio of heat-fusible binder fibers (B) is 50% by mass. less than 100 g/m 2 and a basis weight of 25 g/m 2 or more and 120 g/m 2 or less.
  6.  前記非バインダー繊維(NB)としての合成繊維が、ポリエステル繊維である請求項5に記載のフィルタ用基材。 The filter substrate according to claim 5, wherein the synthetic fibers as the non-binder fibers (NB) are polyester fibers.
  7.  前記熱融着性バインダー繊維(B)が、芯鞘繊維である請求項5又は6に記載のフィルタ用基材。 The filter substrate according to claim 5 or 6, wherein the heat-fusible binder fibers (B) are core-sheath fibers.
  8.  多孔質膜を熱融着により貼り合わせてフィルタ用濾材として使用するためのフィルタ用基材において、
    (1)前記フィルタ用基材が、非バインダー繊維(NB)と熱融着性バインダー繊維(B)を含む湿式不織布であり、
    (2)前記非バインダー繊維(NB)として、延伸ポリエステル繊維を含有し、
    (3)前記熱融着性バインダー繊維(B)として、鞘部が結晶性の共重合ポリエステルである芯鞘型ポリエステル繊維(CSP)を含有し、
    (4)前記芯鞘型ポリエステル繊維(CSP)の配合比率が、前記フィルタ用基材に含まれる全繊維に対して5質量%以上であることを特徴とするフィルタ用基材。
    In a filter base material for use as a filter material for a filter by laminating a porous membrane by thermal fusion,
    (1) the filter substrate is a wet-laid nonwoven fabric containing non-binder fibers (NB) and heat-fusible binder fibers (B);
    (2) containing a drawn polyester fiber as the non-binder fiber (NB),
    (3) The heat-fusible binder fiber (B) contains a core-sheath type polyester fiber (CSP) whose sheath is a crystalline copolyester,
    (4) A filter base material, wherein the compounding ratio of the core-sheath type polyester fiber (CSP) is 5% by mass or more with respect to the total fibers contained in the filter base material.
  9.  前記芯鞘型ポリエステル繊維(CSP)の鞘部の結晶性の共重合ポリエステルは、
    (i)ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステル、
    (ii)ジカルボン酸成分がテレフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールとε-カプロラクトンである共重合ポリエステル及び
    (iii)ジカルボン酸成分がテレフタル酸とイソフタル酸であり、ジオール成分がエチレングリコールとテトラメチレングリコールである共重合ポリエステルからなる群より選ばれる少なくとも一種である請求項8に記載のフィルタ用基材。
    The crystalline copolyester of the sheath of the core-sheath type polyester fiber (CSP) is
    (i) a copolymer polyester whose dicarboxylic acid component is terephthalic acid and whose diol component is ethylene glycol and tetramethylene glycol;
    (ii) a copolymer polyester in which the dicarboxylic acid component is terephthalic acid and the diol component is ethylene glycol, tetramethylene glycol and ε-caprolactone; and (iii) the dicarboxylic acid component is terephthalic acid and isophthalic acid and the diol component is ethylene. 9. The filter substrate according to claim 8, which is at least one selected from the group consisting of copolymerized polyesters of glycol and tetramethylene glycol.
  10.  坪量が、30~180g/mである請求項8又は9に記載のフィルタ用基材。 10. The filter substrate according to claim 8, which has a basis weight of 30 to 180 g/m 2 .
  11.  請求項1~10のいずれか一項に記載のフィルタ用基材及び多孔質膜を含むフィルタ用濾材。 A filter material for a filter comprising the filter substrate and the porous membrane according to any one of claims 1 to 10.
  12.  多孔質膜の材質が、ポリテトラフルオロエチレンである請求項11に記載のフィルタ用濾材。
     
    12. The filter material for a filter according to claim 11, wherein the material of the porous membrane is polytetrafluoroethylene.
PCT/JP2022/001331 2021-01-21 2022-01-17 Substrate for filter, and filtration material for filter WO2022158412A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-007819 2021-01-21
JP2021007819A JP2024033025A (en) 2021-01-21 2021-01-21 Base material for filter
JP2021-007820 2021-01-21
JP2021007820A JP2024033026A (en) 2021-01-21 2021-01-21 Substrate for filter
JP2021055856A JP2024033028A (en) 2021-03-29 2021-03-29 Base material for filter
JP2021-055856 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022158412A1 true WO2022158412A1 (en) 2022-07-28

Family

ID=82548957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001331 WO2022158412A1 (en) 2021-01-21 2022-01-17 Substrate for filter, and filtration material for filter

Country Status (1)

Country Link
WO (1) WO2022158412A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151238A (en) * 2013-02-05 2014-08-25 Hokuetsu Kishu Paper Co Ltd Nonwoven fabric for semipermeable membrane support
JP2017121606A (en) * 2016-01-07 2017-07-13 三菱製紙株式会社 Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2017144420A (en) * 2015-09-09 2017-08-24 三菱製紙株式会社 Semi-permeable membrane support for membrane separation activated sludge treatment, membrane filter and module
JP2020049482A (en) * 2018-06-29 2020-04-02 三菱製紙株式会社 Semipermeable membrane substrate for membrane separation activated sludge treatment
JP2020058999A (en) * 2018-10-12 2020-04-16 株式会社クボタ Membrane element and membrane separation equipment
CN111663246A (en) * 2020-06-11 2020-09-15 前沿新材料研究院(深圳)有限公司 Mould non-woven fabrics and organic water treatment membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151238A (en) * 2013-02-05 2014-08-25 Hokuetsu Kishu Paper Co Ltd Nonwoven fabric for semipermeable membrane support
JP2017144420A (en) * 2015-09-09 2017-08-24 三菱製紙株式会社 Semi-permeable membrane support for membrane separation activated sludge treatment, membrane filter and module
JP2017121606A (en) * 2016-01-07 2017-07-13 三菱製紙株式会社 Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2020049482A (en) * 2018-06-29 2020-04-02 三菱製紙株式会社 Semipermeable membrane substrate for membrane separation activated sludge treatment
JP2020058999A (en) * 2018-10-12 2020-04-16 株式会社クボタ Membrane element and membrane separation equipment
CN111663246A (en) * 2020-06-11 2020-09-15 前沿新材料研究院(深圳)有限公司 Mould non-woven fabrics and organic water treatment membrane

Similar Documents

Publication Publication Date Title
JP5425388B2 (en) Air filter and air filter for vacuum cleaner using this air filter
JP5096726B2 (en) Composite filter media
JP6138812B2 (en) Filter material
JPWO2011046066A1 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP7371056B2 (en) semipermeable membrane support
JP2009178915A (en) Sheet-shaped object
WO2004082930A1 (en) Nonwoven polyester fabric with high resistance to water pressure
JP2006283272A (en) Dehydration cloth
JP2013180236A (en) Nonwoven fabric for semipermeable membrane support and method of manufacturing the same
JP2013144283A (en) Nonwoven fabric for semipermeable membrane support
JP2013052324A (en) Composite filter medium and method for manufacturing the same
JP5913070B2 (en) Nonwoven fabric for semipermeable membrane support and method for producing the same
WO2022158412A1 (en) Substrate for filter, and filtration material for filter
US20210213378A1 (en) High burst strength wet-laid nonwoven filtration media and process for producing same
JP4671883B2 (en) Composite fiber sheet for food liquid extraction
JPH0671122A (en) Filter cloth and preparation of the same
JP2024504480A (en) Filter media and processes for their production
JP2015061717A (en) Pleat adhesion preventing nonwoven fabric
JP2024033028A (en) Base material for filter
JP5893971B2 (en) Method for producing semipermeable membrane support
JP2009240893A (en) Sheet-like object
JP2024033026A (en) Substrate for filter
JP2023120047A (en) Filter medium for liquid filter
JP2024033025A (en) Base material for filter
JP2016137459A (en) Nonwoven fabric for filter, and filter medium for filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP