WO2022157889A1 - 端末及び無線基地局 - Google Patents

端末及び無線基地局 Download PDF

Info

Publication number
WO2022157889A1
WO2022157889A1 PCT/JP2021/002066 JP2021002066W WO2022157889A1 WO 2022157889 A1 WO2022157889 A1 WO 2022157889A1 JP 2021002066 W JP2021002066 W JP 2021002066W WO 2022157889 A1 WO2022157889 A1 WO 2022157889A1
Authority
WO
WIPO (PCT)
Prior art keywords
time difference
gnb
propagation delay
time
signal
Prior art date
Application number
PCT/JP2021/002066
Other languages
English (en)
French (fr)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022576299A priority Critical patent/JPWO2022157889A1/ja
Priority to PCT/JP2021/002066 priority patent/WO2022157889A1/ja
Priority to CN202180091120.5A priority patent/CN116711361A/zh
Priority to US18/262,281 priority patent/US20240121736A1/en
Publication of WO2022157889A1 publication Critical patent/WO2022157889A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to terminals and radio base stations that support propagation delay compensation.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 In 3GPP Release-17, with regard to support for Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications), more accurate synchronization between wireless base stations (gNB) and terminals (User Equipment, UE) is required. The goal is to achieve this (Non-Patent Document 1).
  • IIoT Industrial Internet of Things
  • URLLC User Equipment
  • Non-Patent Document 2 3GPP should consider not only propagation delay compensation using Timing Advance (TA), but also propagation delay compensation using Round-Trip Time (RTT) between UE and gNB (RTT based delay compensation). has been agreed (Non-Patent Document 2).
  • TA Timing Advance
  • RTT Round-Trip Time
  • the timing at which the UE notifies the gNB of the measured time difference between the transmitted signal and the received signal is an issue.
  • the timing of executing propagation delay compensation using RTT is a problem.
  • the following disclosure is made in view of such circumstances, and aims to provide terminals and radio base stations that can appropriately perform RTT-based propagation delay compensation.
  • control unit 240 that acquires the time difference between the transmission timing of the first signal and the reception timing of the second signal, and indicates the time difference when the time difference exceeds a specified threshold.
  • a terminal UE 200 including a transmission section (time information processing section 230) that transmits time difference information to a radio base station.
  • One aspect of the present disclosure is a receiving unit (time management unit 130) that receives time difference information indicating a first time difference between the transmission timing of the first signal and the reception timing of the second signal in the terminal, and a control unit (control unit 140) that acquires the propagation delay with the terminal based on the first time difference and the second time difference between the reception timing of the first signal and the transmission timing of the second signal; is a radio base station (gNB100) comprising
  • One aspect of the present disclosure is a receiving unit (time information processing unit 230) that receives time difference information indicating a first time difference between the reception timing of the first signal and the transmission timing of the second signal in the radio base station, and the time difference information is received, the control unit ( A terminal (UE 200) including a control unit 240).
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a functional block configuration diagram of the gNB100.
  • FIG. 3 is a functional block configuration diagram of UE200.
  • FIG. 4 is a diagram showing an example of a calculation and reporting sequence of UE Rx-Tx time difference and gNB Rx-Tx time difference using UL-RS and DL-RS.
  • FIG. 5 is a diagram showing an example of a schematic operation sequence of RTT based delay compensation triggered by UE.
  • FIG. 6 is a diagram showing an example of a schematic operation sequence of RTT based delay compensation by gNB trigger.
  • FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20, and a user terminal 200 (User Equipment 200, hereinafter, UE 200) .
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE 200 User Equipment 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100 (hereinafter gNB 100).
  • gNB 100 radio base station 100
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to 5GC30, a core network according to 5G. Note that the NG-RAN 20 and 5GC 30 may simply be expressed as a "network”.
  • UPF35 User Plane Function 35
  • TSN Time Sensitive Network
  • TSC GM 25 TSN grandmaster 25
  • TSC GM25 can provide highly accurate time information (date and time) to IoT device 40 connected to UE200 via NG-RAN20 or the like.
  • IoT device 40 may also be called an end station or the like.
  • TSN can be used as a network for the Industrial Internet of Things (IIoT).
  • IIoT Industrial Internet of Things
  • the TSN may be configured as a network separate from the NG-RAN 20 and 5GC 30, that is, the NR (5G) system, and may be synchronized with the timing generated by an independent clock.
  • the TSN may include networks related to services that require high synchronization accuracy over a wide service area, such as smart grids.
  • the gNB100 is an NR-compliant radio base station and performs NR-compliant radio communication with the UE200.
  • gNB100 and UE200 control radio signals transmitted from multiple antenna elements to generate beams with higher directivity Massive MIMO, multiple component carriers (CC) bundled together (CA), And dual connectivity (DC) in which communication is performed simultaneously between the UE and multiple NG-RAN Nodes, etc., can be supported.
  • Massive MIMO multiple component carriers
  • CA component carriers
  • DC dual connectivity
  • the IoT device 40 may be a TSN, for example, a communication device (terminal) included in the IIoT, and may be synchronized with the timing (time information) within the TSN.
  • the NR (5G) system can be connected to the TSC GM25 and the IoT device 40, providing a mechanism to compensate for propagation delay between the UE200 and the gNB100.
  • the IoT device 40 connected to the UE 200 can operate in synchronization with the TSN time information provided by the TSC GM25.
  • the 5G grandmaster (5G GM) provides the time information used in the system.
  • UPF35, gNB100 and UE200 can operate in synchronization with 5G GM time information.
  • propagation delay between UE 200 and gNB 100 can be compensated.
  • the radio communication system 10 can compensate for propagation delay in radio sections between the UE 200 and the gNB 100 (specifically, Distributed Unit (DU)) to which the UE 200 is connected.
  • Propagation delay compensation adjusts the time information for the NR system or TSN according to the amount of propagation delay in the wireless section, and as a result, each IoT device 40 can operate in synchronization with the time information for TSN.
  • propagation delay compensation may be interpreted as adjusting the time information by subtracting the propagation delay between the UE 200 and the gNB 100 (radio section) from the 5G GM time information, and accurate synchronization within the 5G system.
  • the 5G system can play the role of a TSN bridge, and each TSN IoT device can operate in synchronization with the time for TSN.
  • propagation delay compensation using Timing Advance (TA)
  • TA Timing Advance
  • RTT Round-Trip Time
  • FIG. 2 is a functional block configuration diagram of gNB100.
  • FIG. 3 is a functional block configuration diagram of UE200. Note that FIGS. 2 and 3 only show main functional blocks related to the description of the embodiments, and that the gNB 100 and UE 200 have other functional blocks (eg, power supply units, etc.). . 2 and 3 show the functional block configurations of the gNB 100 and the UE 200, and please refer to FIG. 7 for the hardware configuration.
  • the gNB 100 includes a radio communication section 110, a reference signal processing section 120, a time management section 130 and a control section 140.
  • the radio communication unit 110 transmits and receives radio signals according to NR. Specifically, radio communication section 110 receives an NR-compliant uplink signal (UL signal) and transmits an NR-compliant downlink signal (DL signal).
  • the radio communication unit 110 supports Massive MIMO, CA that bundles and uses multiple CCs, DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes, and the like.
  • the wireless communication unit 110 transmits and receives various physical layer channels.
  • Channels include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical Broadcast Channel (PBCH) etc. may be included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may refer to data transmitted over a data channel.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the reference signal processing unit 120 executes processing related to reference signals.
  • a reference signal may be interpreted as a known pilot signal between the base station and the terminal.
  • reference signal processing section 120 performs processing related to the DL direction, that is, the reference signal (which may be referred to as DL-RS) transmitted by gNB 100 .
  • reference signal processing section 120 performs processing related to the UL direction, that is, the reference signal (which may be referred to as UL-RS) received by gNB 100 .
  • the DL-RS may include, for example, Positioning Reference Signal (PRS) for position information, Tracking Reference Signal (TRS) for tracking, Demodulation Reference Signal (DMRS), and the like.
  • PRS Positioning Reference Signal
  • TRS Tracking Reference Signal
  • DMRS Demodulation Reference Signal
  • the DL-RS may include RSs in other DL directions.
  • the DL-RS may include SSs forming Synchronization Signal/Physical Broadcast Channel blocks (SS/PBCH).
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel blocks
  • UL-RS may include Sounding Reference Signal (SRS), TRS, DMRS, etc., for example.
  • SRS Sounding Reference Signal
  • TRS TRS
  • DMRS DMRS
  • the UL-RS may include RSs in other UL directions.
  • the UL-RS may include a PRACH (Physical Random Access Channel).
  • the time management unit 130 manages time information used within the wireless communication system 10. Specifically, the time management unit 130 manages TSN time information and NR (5G) system time information.
  • the time management unit 130 can acquire TSN time information from the TSC GM 25 and provide the acquired time information to the UE 200. Also, the time management unit 130 can acquire time information of the NR (5G) system from the 5G GM and provide the acquired time information to the UE 200 .
  • 5G NR
  • the time management unit 130 receives time difference information indicating the time difference (first time difference) between the transmission timing of the reference signal (first signal) in the UE 200 and the reception timing of another reference signal (second signal) in the UE 200. can.
  • the time management unit 130 may constitute a receiving unit.
  • time management section 130 sets the time difference (UE Rx-Tx time difference) between the UL-RS transmission timing (transmission time) in UE 200 and the DL-RS reception timing (reception time) in UE 200. can be received from the UE 200.
  • time difference UE Rx-Tx time difference
  • time management unit 130 may receive the time difference information periodically, or may receive it aperiodically, for example, when a specific event occurs.
  • the time management unit 130 can also transmit information indicating the time difference (gNB Rx-Tx time difference) between the UL-RS reception timing and the DL-RS transmission timing in the gNB 100 to the UE 200.
  • the control unit 140 controls each functional block that configures the gNB100.
  • the control unit 140 performs control related to propagation delay compensation in the section between the UE 200 and the gNB 100.
  • the control unit 140 when the control unit 140 receives the above-described time difference information via the time management unit 130, the transmission timing of the reference signal (first signal) in the UE 200 and the transmission timing of the reference signal (second signal) in the UE 200 ) and the second time difference between the reception timing of the first signal and the transmission timing of the second signal at the gNB 100, the propagation delay with the UE 200 can be obtained.
  • control unit 140 acquires the propagation delay based on the UE Rx-Tx time difference (first time difference) and the gNB Rx-Tx time difference (second time difference).
  • the control unit 140 may acquire the total value of the UE Rx-Tx time difference and the gNB Rx-Tx time difference. The total value may be interpreted as RTT.
  • a predetermined offset value or the like may be added (or subtracted) to the total value of the UE Rx-Tx time difference and the gNB Rx-Tx time difference.
  • Control unit 140 bisects the total value ((UE Rx-Tx time difference + gNB Rx-Tx time difference) / 2) to determine the propagation delay (called propagation time, etc.) in the section between UE 200 and gNB 100. ) may be calculated.
  • the calculation of UE Rx-Tx time difference and gNB Rx-Tx time difference and measurement points (reference points) may follow the provisions of 3GPP TS 38.215 Section 5.1.30 and Section 5.2.3.
  • the control unit 140 may perform propagation delay compensation based on the calculated propagation delay in the section between the UE 200 and the gNB 100. Specifically, control section 140 may adjust the time information for the NR system or TSN according to the amount of propagation delay in the wireless section.
  • UE 200 includes radio communication section 210 , reference signal processing section 220 , time information processing section 230 and control section 240 .
  • the wireless communication unit 210 transmits and receives wireless signals according to NR. Specifically, radio communication section 210 transmits an NR-compliant UL signal and receives an NR-compliant DL signal.
  • the radio communication unit 210 supports Massive MIMO, CA that bundles and uses multiple CCs, DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes, and the like.
  • the wireless communication unit 210 transmits and receives various physical layer channels.
  • Channels include control channels and data channels.
  • the reference signal processing unit 220 executes processing related to reference signals. Specifically, reference signal processing section 220 performs processing related to the UL direction, that is, the reference signal (UL-RS) transmitted by UE 200 . Also, reference signal processing section 120 performs processing related to the DL direction, that is, the reference signal (DL-RS) received by UE 200 . Specific reference signals and the like included in the UL-RS and DL-RS transmitted and received by the UE 200 may be as described above.
  • the time information processing unit 230 executes processing related to time information (5G GM standard) used in the wireless communication system 10 and time information for TSN (TSC GM25 standard).
  • the time information processing unit 230 can provide 5G GM standard time information to each functional block that configures the UE 200.
  • the time information processing unit 230 can acquire TSC GM25 standard time information from the network and provide the acquired time information to the IoT device 40 .
  • the time information processing unit 230 sends time difference information indicating the time difference to the gNB 100.
  • the time information processing section 230 may constitute a transmitting section.
  • the time information processing unit 230 indicates the time difference (first time difference) between the reception timing (t2) of the UL-RS (first signal) and the transmission timing (t3) of the DL-RS (second signal) in the gNB 100. Time difference information may be received.
  • the time information processing section 230 may constitute a receiving section.
  • the time information processing unit 230 can receive time difference information indicating the gNB Rx-Tx time difference.
  • time management unit 130 may receive the time difference information periodically, or may receive it aperiodically, for example, when a specific event occurs.
  • the control unit 240 controls each functional block that configures the UE200.
  • the control unit 240 compensates for propagation delay in the section between the UE 200 and the gNB 100 and controls the time information used within the radio communication system 10 .
  • control unit 240 determines the time difference (UE Rx-Tx time difference) between the UL-RS (first signal) transmission timing (t1) and the DL-RS (second signal) reception timing (t4). can be obtained.
  • the control unit 240 When receiving the information (time difference information) indicating the gNB Rx-Tx time difference, the control unit 240 acquires the propagation delay with the gNB 100 based on the gNB Rx-Tx time difference and the UE Rx-Tx time difference. be able to.
  • the control unit 240 acquires the propagation delay based on the UE Rx-Tx time difference and the gNB Rx-Tx time difference. Specifically, the control unit 240 may acquire the total value of the UE Rx-Tx time difference and the gNB Rx-Tx time difference. The total value may be interpreted as RTT.
  • the control unit 240 may calculate the propagation delay in the section between the UE 200 and the gNB 100 by halving the total value ((UE Rx-Tx time difference + gNB Rx-Tx time difference) / 2).
  • control unit 240 may perform propagation delay compensation based on the calculated propagation delay in the section between the UE 200 and the gNB 100. Specifically, the control unit 240 may adjust the time information for the NR system or TSN according to the amount of propagation delay in the wireless section.
  • RTT based delay compensation can be performed using UE Rx-Tx time difference and gNB Rx-Tx time difference.
  • the UE Rx-Tx time difference may be reported from the UE 200 to the gNB 100 according to the Long Term Evolution Positioning Protocol (LPP) or Radio Resource Control Layer (RRC) protocol.
  • LPP Long Term Evolution Positioning Protocol
  • RRC Radio Resource Control Layer
  • FIG. 4 shows an example of the calculation and reporting sequence of UE Rx-Tx time difference and gNB Rx-Tx time difference using UL-RS and DL-RS.
  • the UE 200 transmits the UL-RS at time t1 (transmission timing), and the UL-RS is received by the gNB 100 at time t2 (reception timing).
  • gNB 100 transmits DL-RS at time t3 (transmission timing), and DL-RS is received by UE 200 at time t4 (reception timing).
  • UL-RS may include PRACH and the like
  • DL-RS may include SS and the like.
  • the DL-RS may be transmitted first and the UL-RS transmitted later.
  • the RTT and propagation delay between UE200 and gNB100 may be expressed as follows.
  • ⁇ Propagation delay ((UE Rx-Tx time difference) + (gNB Rx-Tx time difference))/2
  • the UE Rx-Tx time difference (t4-t1) calculated by UE 200 may be reported to gNB 100 according to any of the following methods.
  • Method 1 The UE 200 periodically reports the UE Rx-Tx time difference.
  • Method 2 UE 200 reports UE Rx-Tx time difference in response to a specific event.
  • the event may be defined as follows, for example.
  • ⁇ Event X When the propagation delay between the UE and the gNB exceeds a predetermined threshold, a measurement report including the measurement result of the UE Rx-Tx time difference is reported to the network.
  • the measurement report may be expressed as follows.
  • ⁇ UE shall consider the entering condition for this event to be satisfied when PD-1 is fulfilled; ⁇ UE shall consider the leaving condition for this event to be satisfied when PD-2 is fulfilled; ⁇ Ms - Hys > Thresh + Offset PD-1 (entering condition) ⁇ Ms + Hys > Thresh + Offset PD-2 (leaving condition)
  • Ms may denote the propagation delay between the UE and the gNB, and Hys may denote the hysteresis parameter for the event.
  • Thresh is the reference threshold for the event and may be specified as PropagationDelayThreshRef by MeasConfig (see 3GPP TS38.331). Offset may indicate an offset value to PropagationDelayThreshRef for obtaining the absolute threshold of the event. Also, the time until the event is triggered (timeToTrigger) may be set.
  • the UE 200 may add a reference system frame number (ReferenceSFN (System Frame Number)) when reporting the UE Rx-Tx time difference.
  • ReferenceSFN System Frame Number
  • FIG. 5 shows an example of a schematic operation sequence of RTT based delay compensation by UE trigger.
  • UE 200 acquires UE Rx-Tx time difference using UL-RS and DL-RS, and reports the acquired UE Rx-Tx time difference to gNB 100 (step 1, 2).
  • the gNB 100 acquires the gNB Rx-Tx time difference using the UL-RS and DL-RS and calculates the propagation delay as described above (steps 3 and 4).
  • the gNB 100 performs propagation delay compensation based on the calculated propagation delay (step 5). Specifically, the gNB 100 may adjust time information for the NR system or TSN according to the amount of propagation delay in the wireless section.
  • UE200 acquires UE Rx-Tx time difference and transmits the acquired UE Rx-Tx time difference to gNB100 when the event described in operation example 1 is satisfied. (may be called a UE event type trigger).
  • gNB100 When gNB100 receives UE Rx-Tx time difference from UE200, it may acquire gNB Rx-Tx time difference.
  • "when received” may be immediately upon reception of the UE Rx-Tx time difference, or may be within a predetermined time after reception.
  • the gNB 100 may calculate the propagation delay and perform propagation delay compensation based on the UE Rx-Tx time difference and the gNB Rx-Tx time difference. Specifically, the gNB 100 may pre-compensate the propagation delay in ReferenceTimeInfo, include the time information after compensation in system information, specifically SIB 9 or DLInformationTransfer, and transmit it to the UE 200.
  • SIB 9 may be broadcast information and DLInformationTransfer may be unicast information.
  • the gNB 100 may transmit the propagation delay together with the ReferenceTimeInfo to the UE 200.
  • UE 200 may perform propagation delay compensation.
  • the above-described UE Rx-Tx time difference from UE 200 may be reported based on UE 200 receiving an explicit instruction (eg, measurement request/report request) from gNB 100.
  • UE 200 may request gNB 100 to transmit gNB Rx-Tx time difference by an explicit instruction.
  • the UE 200 may calculate the propagation delay and perform propagation delay compensation after receiving the gNB Rx-Tx time difference.
  • the UE 200 may periodically acquire the UE Rx-Tx time difference and transmit the acquired UE Rx-Tx time difference to the gNB 100 (UE periodically may be called a trigger).
  • UE200 periodically reports the measurement result of UE Rx-Tx time difference to gNB100.
  • gNB100 receives UE Rx-Tx time difference from UE200, it acquires gNB Rx-Tx time difference and sets propagation delay. can be calculated.
  • the gNB 100 may transmit the calculated propagation delay to the UE 200 using SIB 9 or DL InformationTransfer, and the UE 200 may adjust the time information. Note that the gNB 100 may transmit the propagation delay to the UE 200 only when the propagation delay exceeds a predetermined threshold, or the gNB 100 may pre-compensate for the propagation delay.
  • FIG. 6 shows an example of a schematic operation sequence of RTT based delay compensation by gNB trigger.
  • gNB 100 acquires the gNB Rx-Tx time difference using UL-RS and DL-RS and reports the acquired gNB Rx-Tx time difference to UE 200 (step 1, 2).
  • the UE 200 acquires the UE Rx-Tx time difference using the UL-RS and DL-RS and calculates the propagation delay as described above (steps 3 and 4).
  • the UE 200 performs propagation delay compensation based on the calculated propagation delay (step 5). Specifically, the UE 200 may adjust time information for the NR system or TSN according to the amount of propagation delay in the radio section.
  • the gNB100 measures the gNB Rx-Tx time difference and, if the gNB Rx-Tx time difference exceeds a predetermined threshold, uses SIB 9 or DLInformationTransfer to You may send gNB Rx-Tx time difference to UE200 together. Note that transmission of such gNB Rx-Tx time difference may be interpreted as an implicit propagation delay compensation instruction to UE 200 . Alternatively, the gNB 100 may send an explicit propagation delay compensation instruction to the UE 200.
  • the UE 200 may measure and acquire the UE Rx-Tx time difference in response to receiving the gNB Rx-Tx time difference.
  • UE 200 may calculate propagation delay using gNB Rx-Tx time difference and UE Rx-Tx time difference and perform propagation delay compensation.
  • gNB 100 may periodically transmit gNB Rx-Tx time difference together with ReferenceTimeInfo to UE 200. Transmission of such gNB Rx-Tx time difference may also be interpreted as an implicit propagation delay compensation indication to UE 200 . Alternatively, the gNB 100 may send an explicit propagation delay compensation instruction to the UE 200.
  • the UE 200 may measure and acquire the UE Rx-Tx time difference in response to receiving the gNB Rx-Tx time difference.
  • UE 200 may calculate propagation delay using gNB Rx-Tx time difference and UE Rx-Tx time difference and perform propagation delay compensation.
  • UE 200 may perform propagation delay compensation only when propagation delay exceeds a predetermined threshold.
  • the following functions and effects are obtained.
  • the UE 200 can send information (eg, measurement report) indicating the UE Rx-Tx time difference to the gNB 100.
  • information eg, measurement report
  • UE200 receives the gNB Rx-Tx time difference, it can also obtain the propagation delay with gNB100 based on the gNB Rx-Tx time difference and the UE Rx-Tx time difference.
  • gNB 100 can acquire the propagation delay with UE 200 based on UE Rx-Tx time difference and gNB Rx-Tx time difference.
  • RTT-based delay compensation can be performed appropriately even when high-precision synchronization is required for TSN. This makes it possible to provide highly accurate time information even when TSN is supported.
  • the UE200 may periodically receive the gNB Rx-Tx time difference from the gNB100, and the gNB100 may periodically receive the UE Rx-Tx time difference from the UE200. Therefore, highly accurate propagation delay compensation based on RTT can be easily continued.
  • UE Rx-Tx time difference or gNB Rx-Tx time difference may be sent in response to predetermined events as described above. In this case, timely propagation delay compensation can be easily realized according to need.
  • the UE Rx-Tx time difference reporting, measurement report was used, other methods, for example, higher layer (such as RRC) signaling, or lower layer signaling (such as uplink control information (UCI)) may be used.
  • higher layer such as RRC
  • lower layer signaling such as uplink control information (UCI)
  • methods other than SIB 9 or DLInformationTransfer may be used to report gNB Rx-Tx time difference.
  • the wireless communication system 10 is connected to the TSN, but it does not necessarily have to be a network or application scenario that requires high synchronization accuracy like TSN. .
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • gNB 100 and UE 200 may be configured as computing devices including processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIGS. 2 and 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including interfaces with peripheral devices, a controller, arithmetic units, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information can be performed through physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may also consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • TTI length 1 ms
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 25 TSC GM 30 5GC 35 UPF 40 IoT devices 100 gNB 110 Radio communication unit 120 Reference signal processing unit 130 Time management unit 140 Control unit 200 UE 210 wireless communication unit 220 reference signal processing unit 230 time information processing unit 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、第1信号の送信タイミングと第2信号の受信タイミングとの時間差を取得する。端末は、当該時間差が規定された閾値を超える場合、当該時間差を示す時間差情報を無線基地局に送信する。

Description

端末及び無線基地局
 本開示は、伝搬遅延補償に対応した端末及び無線基地局に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPP Release-17では、Industrial Internet of Things(IIoT)及びURLLC(Ultra-Reliable and Low Latency Communications)のサポートに関して、無線基地局(gNB)と端末(User Equipment, UE)とのさらに高精度な同期を実現することが目標とされている(非特許文献1)。
 このような場合、UEとgNBとの無線区間における伝搬遅延の補償が不可欠となる。3GPPは、Timing Advance(TA)を利用した伝搬遅延補償だけでなく、UEとgNBとの間において、Round-Trip Time(RTT)を利用した伝搬遅延補償(RTT based delay compensation)についても検討することが合意されている(非特許文献2)。
"Enhanced Industrial Internet of Things (IoT) and ultra-reliable and low latency communication (URLLC) support for NR", RP-201310, 3GPP TSG RAN Meeting #88e, 3GPP, 2020年7月 "Summary#1 of email discussion [102-e-NR-IIOT_URLLC_enh-05]", R1-2007068, 3GPP TSG RAN WG1 Meeting #102-e, 3GPP, 2020年8月
 RTTをベースとした伝搬遅延補償の場合、UEが測定した送信信号と受信信号との時間差をgNBに通知するタイミングが問題となる。また、RTTをベースとした伝搬遅延補償の場合、RTTを利用した伝搬遅延補償を実行するタイミングが問題となる。
 つまり、UEとgNBとが連携したRTT関連情報の交換が必要であり、このような連携ができないとRTTをベースとした伝搬遅延補償が難しい問題がある。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、RTTをベースとした伝搬遅延補償を適切に実行し得る端末及び無線基地局の提供を目的とする。
 本開示の一態様は、第1信号の送信タイミングと第2信号の受信タイミングとの時間差を取得する制御部(制御部240)と、前記時間差が規定された閾値を超える場合、前記時間差を示す時間差情報を無線基地局に送信する送信部(時刻情報処理部230)とを備える端末(UE200)である。
 本開示の一態様は、端末における第1信号の送信タイミングと第2信号の受信タイミングとの第1時間差を示す時間差情報を受信する受信部(時刻管理部130)と、前記時間差情報を受信した場合、前記第1時間差と、前記第1信号の受信タイミングと前記第2信号と送信タイミングとの第2時間差とに基づいて、前記端末との伝搬遅延を取得する制御部(制御部140)とを備える無線基地局(gNB100)である。
 本開示の一態様は、無線基地局における第1信号の受信タイミングと第2信号の送信タイミングとの第1時間差を示す時間差情報を受信する受信部(時刻情報処理部230)と、前記時間差情報を受信した場合、前記第1時間差と、前記第1信号の送信タイミングと前記第2信号と受信タイミングとの第2時間差とに基づいて、前記無線基地局との伝搬遅延を取得する制御部(制御部240)とを備える端末(UE200)である。
図1は、無線通信システム10の全体概略構成図である。 図2は、gNB100の機能ブロック構成図である。 図3は、UE200の機能ブロック構成図である。 図4は、UL-RSとDL-RSとを用いたUE Rx-Tx time difference及びgNB Rx-Tx time differenceの算出及び報告シーケンスの例を示す図である。 図5は、UEトリガによるRTT based delay compensationの概略動作シーケンスの例を示す図である。 図6は、gNBトリガによるRTT based delay compensationの概略動作シーケンスの例を示す図である。 図7は、gNB100及びUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及びユーザ端末200(User Equipment 200、以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワークである5GC30と接続される。なお、NG-RAN20及び5GC30は、単に「ネットワーク」と表現されてもよい。
 5GC30には、5Gのシステムアーキテクチャに含まれ、ユーザプレーンの機能を提供するUser Plane Function 35(以下、UPF35)が設けられてよい。UPF35は、Time Sensitive Network(TSN)において用いられる時刻情報を提供するTSNグランドマスタ25(以下、TSC GM25)と特定のインターフェースを介して接続できる。TSC GM25は、高精度の時刻情報(日付及び時刻)をNG-RAN20などを介してUE200に接続されたIoTデバイス40に提供できる。なお、IoTデバイス40は、エンドステーションなどと呼ばれてもよい。
 例えば、TSNは、Industrial Internet of Things(IIoT)用のネットワークとして用い得る。TSNは、NG-RAN20及び5GC30、つまり、NR(5G)システムとは、別個のネットワークとして構成されてよく、独立したクロックが発生するタイミングに同期していてもよい。
 TSNには、スマートグリッドなど、広いサービスエリアにおいて高い同期精度が要求されるサービスに関連するネットワークが含まれてもよい。
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 IoTデバイス40は、TSN、例えば、IIoTに含まれる通信装置(端末)であってもよく、TSN内のタイミング(時刻情報)に同期してよい。
 このように、本実施形態では、NR(5G)システムには、TSC GM25及びIoTデバイス40を接続することができ、UE200とgNB100との間における伝搬遅延を補償するメカニズムが提供される。
 UE200に接続されるIoTデバイス40は、TSC GM25によって提供されるTSNの時刻情報に同期して動作できる。一方、NR(5G)システム内では、5Gグランドマスタ(5G GM)によってシステム内において用いられる時刻情報が提供される。UPF35、gNB100及びUE200は、5G GMの時刻情報に同期して動作できる。
 また、高い同期精度(例えば、1μ秒未満)を達成するため、UE200とgNB100との間における伝搬遅延を補償することができる。具体的には、無線通信システム10では、UE200と、当該UE200が接続されているgNB100(具体的には、Distributed Unit(DU))との無線区間における伝搬遅延を補償することができる。伝搬遅延補償とは、当該無線区間の伝搬遅延量に応じてNRシステムまたはTSN用の時刻情報を調整し、結果的に、IoTデバイス40のそれぞれが、TSN用の時刻情報に同期して動作できることと解釈されてよい。より端的には、UE200とgNB100との間(無線区間)の伝搬遅延をTSN用の時刻情報から差し引いた時刻情報に調整することと解釈されてもよい。
 或いは、伝搬遅延補償とは、UE200とgNB100との間(無線区間)の伝搬遅延を5G GMの時刻情報から差し引いた時刻情報に調整することと解釈されてもよく、5Gシステム内において正確な同期が保てれば,5GシステムがTSN bridgeの役割を果たし、TSN IoTデバイスそれぞれがTSN用の時刻に同期して動作できることと解釈されてもよい。
 また、無線通信システム10では、Timing Advance(TA)を利用した伝搬遅延補償だけでなく、UE200とgNB100との間において、Round-Trip Time(RTT)を利用した伝搬遅延補償(RTT based delay compensation)のメカニズムが導入されてよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。
 図2は、gNB100の機能ブロック構成図である。図3は、UE200の機能ブロック構成図である。なお、図2及び図3では、実施形態の説明に関連する主な機能ブロックのみが示されており、gNB100及びUE200は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図2,3は、gNB100及びUE200の機能的なブロック構成について示しており、ハードウェア構成については、図7を参照されたい。
 (2.1)gNB100
 図2に示すように、gNB100は、無線通信部110、参照信号処理部120、時刻管理部130及び制御部140を備える。
 無線通信部110は、NRに従った無線信号を送受信する。具体的には、無線通信部110は、NRに従った上りリンク信号(UL信号)を受信し、NRに従った下りリンク信号(DL信号)を送信する。無線通信部110は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 また、無線通信部110は、物理レイヤの各種チャネルを送受信する。チャネルには、制御チャネルとデータチャネルとが含まれる。
 制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。
 データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。
 参照信号処理部120は、参照信号に関する処理を実行する。参照信号は、基地局~端末間において既知のパイロット信号と解釈されてもよい。具体的には、参照信号処理部120は、DL方向、つまり、gNB100が送信する参照信号(DL-RSと呼ばれてもよい)に関する処理を実行する。また、参照信号処理部120は、UL方向、つまり、gNB100が受信する参照信号(UL-RSと呼ばれてもよい)に関する処理を実行する。
 DL-RSには、例えば、位置情報用のPositioning Reference Signal(PRS)、トラッキング用のTracking Reference Signal(TRS)、Demodulation Reference Signal(DMRS)などが含まれてよい。なお、DL-RSには、他のDL方向のRSが含まれてもよい。また、本実施形態では、DL-RSには、Synchronization Signal/ Physical Broadcast Channel blocks(SS/PBCH)を構成するSSが含まれてよい。
 UL-RSには、例えば、Sounding Reference Signal(SRS)、TRS、DMRSなどが含まれてよい。なお、UL-RSには、他のUL方向のRSが含まれてもよい。また、本実施形態では、UL-RSには、PRACH(Physical Random Access Channel)が含まれてよい。
 時刻管理部130は、無線通信システム10内において用いられる時刻情報を管理する。具体的には、時刻管理部130は、TSNの時刻情報、及びNR(5G)システムの時刻情報を管理する。
 時刻管理部130は、TSNの時刻情報をTSC GM25から取得し、取得した時刻情報をUE200に提供できる。また、時刻管理部130は、NR(5G)システムの時刻情報を5G GMから取得し、取得した時刻情報をUE200に提供できる。
 また、時刻管理部130は、UE200における参照信号(第1信号)の送信タイミングと、UE200における他の参照信号(第2信号)の受信タイミングとの時間差(第1時間差)を示す時間差情報を受信できる。本実施形態において、時刻管理部130は、受信部を構成してよい。
 具体的には、時刻管理部130は、UE200におけるUL-RSの送信タイミング(送信した時刻)と、UE200におけるDL-RSの受信タイミング(受信した時刻)との時間差(UE Rx-Tx time difference)を示す情報をUE200から受信できる。
 なお、時刻管理部130は、当該時間差情報を周期的に受信してもよいし、非周期的、例えば、特定のイベント(事象)が発生した場合に受信してもよい。
 また、時刻管理部130は、gNB100におけるUL-RSの受信タイミングとDL-RSの送信タイミングとの時間差(gNB Rx-Tx time difference)を示す情報をUE200に送信することもできる。
 制御部140は、gNB100を構成する各機能ブロックを制御する。特に、本実施形態では、制御部140は、UE200とgNB100との区間における伝搬遅延の補償に関する制御を実行する。
 具体的には、制御部140は、時刻管理部130を介して上述した時間差情報を受信した場合、UE200における参照信号(第1信号)の送信タイミングと、UE200における他の参照信号(第2信号)の受信タイミングとの第1時間差と、gNB100における第1信号の受信タイミングと第2信号と送信タイミングとの第2時間差とに基づいて、UE200との伝搬遅延を取得することができる。
 より具体的には、制御部140は、UE Rx-Tx time difference(第1時間差)と、gNB Rx-Tx time difference(第2時間差)とに基づいて伝搬遅延を取得する。制御部140は、UE Rx-Tx time differenceとgNB Rx-Tx time differenceとの合計値を取得してよい。当該合計値は、RTTと解釈されてもよい。
 また、UE Rx-Tx time differenceとgNB Rx-Tx time differenceとの合計値に予め規定されたオフセット値などが加算(または減算)されてもよい。
 制御部140は、当該合計値を二分する((UE Rx-Tx time difference + gNB Rx-Tx time difference) / 2)ことによって、UE200とgNB100との区間の伝搬遅延(伝搬時間などと呼ばれてもよい)を算出してよい。なお、UE Rx-Tx time difference及びgNB Rx-Tx time differenceの算出及び測定点(リファレンスポイント)などは、3GPP TS 38.215 5.1.30章及び5.2.3章の規定に従ってよい。
 制御部140は、算出したUE200とgNB100との区間の伝搬遅延に基づいて伝搬遅延補償を実行してよい。具体的には、制御部140は、当該無線区間の伝搬遅延量に応じて、NRシステムまたはTSN用の時刻情報を調整してよい。
 (2.2)UE200
 図3に示すように、UE200は、無線通信部210、参照信号処理部220、時刻情報処理部230及び制御部240を備える。
 無線通信部210は、NRに従った無線信号を送受信する。具体的には、無線通信部210は、NRに従ったUL信号を送信し、NRに従ったDL信号を受信する。無線通信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 また、無線通信部210は、物理レイヤの各種チャネルを送受信する。チャネルには、制御チャネルとデータチャネルとが含まれる。
 参照信号処理部220は、参照信号に関する処理を実行する。具体的には、参照信号処理部220は、UL方向、つまり、UE200が送信する参照信号(UL-RS)に関する処理を実行する。また、参照信号処理部120は、DL方向、つまり、UE200が受信する参照信号(DL-RS)に関する処理を実行する。UE200が送受信するUL-RS及びDL-RSに含まれる具体的な参照信号などは、上述したとおりでよい。
 時刻情報処理部230は、無線通信システム10内において用いられる時刻情報(5G GM基準)、及びTSN用の時刻情報(TSC GM25基準)に関する処理を実行する。
 具体的には、時刻情報処理部230は、5G GM基準の時刻情報を、UE200を構成する各機能ブロックに提供できる。また、時刻情報処理部230は、TSC GM25基準の時刻情報をネットワークから取得し、取得した当該時刻情報をIoTデバイス40に提供できる。
 時刻情報処理部230は、所定の参照信号の送信タイミングと受信タイミングとの時間差、具体的には、UE Rx-Tx time differenceが規定された閾値を超える場合、当該時間差を示す時間差情報をgNB100に送信してよい。本実施形態において、時刻情報処理部230は、送信部を構成してよい。
 また、時刻情報処理部230は、gNB100におけるUL-RS(第1信号)の受信タイミング(t2)とDL-RS(第2信号)の送信タイミング(t3)との時間差(第1時間差)を示す時間差情報を受信してよい。本実施形態において、時刻情報処理部230は、受信部を構成してよい。
 具体的には、時刻情報処理部230は、gNB Rx-Tx time differenceを示す時間差情報を受信できる。
 なお、時刻管理部130は、当該時間差情報を周期的に受信してもよいし、非周期的、例えば、特定のイベント(事象)が発生した場合に受信してもよい。
 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、UE200とgNB100との区間における伝搬遅延の補償、及び無線通信システム10内において用いられる時刻情報に関する制御を実行する。
 具体的には、制御部240は、UL-RS(第1信号)の送信タイミング(t1)とDL-RS(第2信号)受信タイミング(t4)との時間差(UE Rx-Tx time difference)を取得できる。
 制御部240は、gNB Rx-Tx time differenceを示す情報(時間差情報)を受信した場合、gNB Rx-Tx time differenceと、UE Rx-Tx time differenceとに基づいて、gNB100との伝搬遅延を取得することができる。
 制御部240は、UE Rx-Tx time differenceと、gNB Rx-Tx time differenceとに基づいて伝搬遅延を取得する。具体的には、制御部240は、UE Rx-Tx time differenceとgNB Rx-Tx time differenceとの合計値を取得してよい。当該合計値は、RTTと解釈されてもよい。
 制御部240は、当該合計値を二分する((UE Rx-Tx time difference + gNB Rx-Tx time difference) / 2)ことによって、UE200とgNB100との区間の伝搬遅延を算出してよい。
 また、制御部240は、算出したUE200とgNB100との区間の伝搬遅延に基づいて伝搬遅延補償を実行してよい。具体的には、制御部240は、当該無線区間の伝搬遅延量に応じて、NRシステムまたはTSN用の時刻情報を調整してよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、UE200とgNB100との間におけるRTTを利用した伝搬遅延補償(RTT based delay compensation)に関する動作について説明する。
 (3.1)動作例1
 まず、UL-RSとDL-RSとを用いたUE Rx-Tx time difference及びgNB Rx-Tx time differenceの算出及び報告に関する動作について説明する。
 RTT based delay compensationは、UE Rx-Tx time difference及びgNB Rx-Tx time differenceを用いて実行できる。UE Rx-Tx time differenceは、LPP(Long Term Evolution Positioning Protocol)または無線リソース制御レイヤ(RRC)のプロトコルに従ってUE200からgNB100に報告されてよい。
 図4は、UL-RSとDL-RSとを用いたUE Rx-Tx time difference及びgNB Rx-Tx time differenceの算出及び報告シーケンスの例を示す。
 図4に示すように、UE200は、UL-RSを時刻t1(送信タイミング)に送信し、UL-RSは、時刻t2(受信タイミング)にgNB100によって受信される。
 また、gNB100は、UE200は、DL-RSを時刻t3(送信タイミング)に送信し、DL-RSは、時刻t4(受信タイミング)にUE200によって受信される。
 なお、上述したように、UL-RS及びDL-RSの種類は特に限定されない。UL-RSには、PRACHなどが含まれてもよく、DL-RSには、SSなどが含まれてもよい。また、DL-RSが先に送信され、UL-RSが後に送信されてもよい。
 RTT及びUE200~gNB100間の伝搬遅延(Propagation delay)は、次のように表現されてよい。
  ・RTT = t2-t1 + t4-t3 = t4-t1 + t2-t3
  = (UE Rx-Tx time difference) + (gNB Rx-Tx time difference) 
  ・Propagation delay = ((UE Rx-Tx time difference) + (gNB Rx-Tx time difference))/2 
 UE200が算出したUE Rx-Tx time difference(t4-t1)は、次の何れかの方法に従ってgNB100に報告されてよい。
  ・(方法1):UE200は、周期的にUE Rx-Tx time differenceを報告する。
  ・(方法2):UE200は、特定のイベントに応じてUE Rx-Tx time differenceを報告する。
 この場合、当該イベントは、例えば、次にように定義されてもよい。
  ・Event X:UEとgNBとの間の伝搬遅延が所定の閾値を超える場合、UE Rx-Tx time differenceの測定結果を含む測定報告(Measurement Report)をネットワークに報告する。
 また、測定報告に関しては、次のように表現されてもよい。
  ・UE shall consider the entering condition for this event to be satisfied when PD-1 is fulfilled;
  ・UE shall consider the leaving condition for this event to be satisfied when PD-2 is fulfilled;
  ・Ms - Hys > Thresh + Offset PD-1 (entering condition)
  ・Ms + Hys > Thresh + Offset PD-2 (leaving condition)
 なお、Msは、UEとgNBとの間の伝搬遅延を示し、Hysは、当該イベント用のヒステリシス・パラメータを意味してよい。
 Threshは、当該イベントの参照閾値であり、MeasConfig(3GPP TS38.331参照)によって、PropagationDelayThreshRefとして指定されてよい。Offsetは、当該イベントの絶対閾値を取得するためのPropagationDelayThreshRefへのオフセット値を示してよい。また、イベントがトリガされるまでの時間(timeToTrigger)が設定されてもよい。
 なお、UE200は、UE Rx-Tx time differenceを報告する場合、参照システムフレーム番号(ReferenceSFN (System Frame Number))を付加してもよい。
 (3.2)動作例2
 次に、RTT based delay compensationの動作例について説明する。具体的には、UEトリガによる伝搬遅延補償動作、及びgNBトリガによる伝搬遅延補償動作の例について説明する。
 (3.2.1)UEトリガによる伝搬遅延補償
 図5は、UEトリガによるRTT based delay compensationの概略動作シーケンスの例を示す。図5に示すように、UE200は、上述したように、UL-RS及びDL-RSを用いてUE Rx-Tx time differenceを取得し、取得したUE Rx-Tx time differenceをgNB100に報告する(ステップ1,2)。
 gNB100は、上述したように、UL-RS及びDL-RSを用いてgNB Rx-Tx time differenceを取得し、伝搬遅延を算出する(ステップ3,4)。
 gNB100は、算出した伝搬遅延に基づいて伝搬遅延補償を実行する(ステップ5)。具体的には、gNB100は、当該無線区間の伝搬遅延量に応じて、NRシステムまたはTSN用の時刻情報を調整してよい。
 このようなUEトリガによるRTT based delay compensationの場合、UE200は、動作例1において説明したイベントを満足した場合、UE Rx-Tx time differenceを取得し、取得したUE Rx-Tx time differenceをgNB100に送信してよい(UE event type triggerと呼ばれてもよい)。
 gNB100は、UE200からUE Rx-Tx time differenceを受信した場合、gNB Rx-Tx time differenceを取得してよい。ここで、「受信した場合」とは、UE Rx-Tx time differenceを受信次第、即時でもよいし、受信から所定の時間内でもよい。
 gNB100は、UE Rx-Tx time differenceとgNB Rx-Tx time differenceとに基づいて、伝搬遅延を算出し、伝搬遅延補償を実行してよい。具体的には、gNB100は、ReferenceTimeInfoにおいて、propagation delayをpre-compensateし、補償後の時刻情報をシステム情報、具体的には、SIB 9またはDLInformationTransferに含めてUE200に送信してよい。SIB 9は、ブロードキャストの情報、DLInformationTransferは、ユニキャストの情報であってよい。
 或いは、gNB100は、propagation delayをReferenceTimeInfoと一緒にUE200に送信してもよい。この場合、UE200が伝搬遅延補償を実行してよい。
 また、上述したUE200からのUE Rx-Tx time differenceは、UE200がgNB100から明示的な指示(例えば、measurement request/report request)受信したことに基づいて報告されてもよい。或いは、UE200は、gNB100に明示的な指示によってgNB Rx-Tx time differenceの送信を要求してもよい。この場合、UE200は、gNB Rx-Tx time differenceを受信後、propagation delayを算出し、伝搬遅延補償を実行してよい。
 また、このようなUEトリガによるRTT based delay compensationの場合、UE200は、周期的にUE Rx-Tx time differenceを取得し、取得したUE Rx-Tx time differenceをgNB100に送信してもよい(UE periodically triggerと呼ばれてもよい)。
 UE200は、周期的にUE Rx-Tx time differenceの測定結果をgNB100に報告し、gNB100は、UE200からUE Rx-Tx time differenceを受信した場合、gNB Rx-Tx time differenceを取得し、propagation delayを算出してよい。
 或いは、gNB100は、算出したpropagation delayをSIB 9またはDLInformationTransferを用いてUE200に送信し、UE200が時刻情報を調整してもよい。なお、gNB100は、propagation delayが所定の閾値を超える場合のみ、propagation delayをUE200に送信してよいし、gNB100が当該propagation delayをpre-compensateしてよい。
 (3.2.2)gNBトリガによる伝搬遅延補償
 図6は、gNBトリガによるRTT based delay compensationの概略動作シーケンスの例を示す。図6に示すように、gNB100は、上述したように、UL-RS及びDL-RSを用いてgNB Rx-Tx time differenceを取得し、取得したgNB Rx-Tx time differenceをUE200に報告する(ステップ1,2)。
 UE200は、上述したように、UL-RS及びDL-RSを用いてUE Rx-Tx time differenceを取得し、伝搬遅延を算出する(ステップ3,4)。
 UE200は、算出した伝搬遅延に基づいて伝搬遅延補償を実行する(ステップ5)。具体的には、UE200は、当該無線区間の伝搬遅延量に応じて、NRシステムまたはTSN用の時刻情報を調整してよい。
 このようなgNBトリガによるRTT based delay compensationの場合、gNB100は、gNB Rx-Tx time differenceを測定し、gNB Rx-Tx time differenceが所定の閾値を超えた場合、SIB 9またはDLInformationTransferを用いてReferenceTimeInfoと一緒にgNB Rx-Tx time differenceをUE200に送信してよい。なお、このようなgNB Rx-Tx time differenceの送信は、UE200に対する暗黙的な伝搬遅延補償の指示と解釈されてもよい。或いは、gNB100は、明示的な伝搬遅延補償の指示をUE200に送信してもよい。
 UE200は、gNB Rx-Tx time differenceの受信に応じて、UE Rx-Tx time differenceを測定、取得してもよい。UE200は、gNB Rx-Tx time difference及びUE Rx-Tx time differenceを用いて伝搬遅延を算出し、伝搬遅延補償を実行してもよい。
 また、このようなgNBトリガによるRTT based delay compensationの場合、gNB100は、周期的にReferenceTimeInfoと一緒にgNB Rx-Tx time differenceをUE200に送信してもよい。このようなgNB Rx-Tx time differenceの送信も、UE200に対する暗黙的な伝搬遅延補償の指示と解釈されてもよい。或いは、gNB100は、明示的な伝搬遅延補償の指示をUE200に送信してもよい。
 UE200は、gNB Rx-Tx time differenceの受信に応じて、UE Rx-Tx time differenceを測定、取得してもよい。UE200は、gNB Rx-Tx time difference及びUE Rx-Tx time differenceを用いて伝搬遅延を算出し、伝搬遅延補償を実行してもよい。或いは、UE200は、propagation delayが所定の閾値を超える場合のみ、伝搬遅延補償を実行してもよい。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、UE Rx-Tx time differenceが規定された閾値を超える場合、UE Rx-Tx time differenceを示す情報(例えば、測定報告)をgNB100に送信できる。UE200は、gNB Rx-Tx time differenceを受信した場合、gNB Rx-Tx time differenceと、UE Rx-Tx time differenceとに基づいて、gNB100との伝搬遅延を取得することもできる。
 また、gNB100は、UE Rx-Tx time differenceを受信した場合、UE Rx-Tx time differenceと、gNB Rx-Tx time differenceとに基づいて、UE200との伝搬遅延を取得することができる。
 このため、TSN向けに高精度な同期が要求される場合でも、RTTをベースとした伝搬遅延補償(RTT based delay compensation)を適切に実行し得る。これにより、TSNをサポートする場合でも、高精度な時刻情報を提供できる。
 本実施形態では、UE200は、gNB Rx-Tx time differenceをgNB100から周期的に受信してもよいし、gNB100は、UE Rx-Tx time differenceをUE200から周期的に受信してもよい。このため、RTTをベースとした高精度の伝搬遅延補償を容易に継続できる。一方、UE Rx-Tx time differenceまたはgNB Rx-Tx time differenceは、上述したように所定のイベントに応じて送信されてもよい。この場合には、必要性の応じた適時な伝搬遅延補償を容易に実現し得る。
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、UE Rx-Tx time differenceの報告には、測定報告(Measurement Report)が用いられていたが、他の方法、例えば、上位レイヤ(RRCなど)のシグナリング、または下位レイヤのシグナリング(上りリンク制御情報(UCI)など)が用いられてもよい。
 同様に、gNB Rx-Tx time differenceの報告も、SIB 9またはDLInformationTransfer以外の方法が用いられてもよい。
 さらに、上述した実施形態では、無線通信システム10にTSNに接続されることを前提としていたが、必ずしもTSNのような高い同期精度が要求されるようなネットワーク或いはアプリケーションのシナリオでなくても構わない。
 また、上述した実施形態の説明に用いたブロック構成図(図2,3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、gNB100及びUE200のハードウェア構成の一例を示す図である。図7に示すように、gNB100及びUE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図2,3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 25 TSC GM
 30 5GC
 35 UPF
 40 IoTデバイス
 100 gNB
 110 無線通信部
 120 参照信号処理部
 130 時刻管理部
 140 制御部
 200 UE
 210 無線通信部
 220 参照信号処理部
 230 時刻情報処理部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 

Claims (5)

  1.  第1信号の送信タイミングと第2信号の受信タイミングとの時間差を取得する制御部と、
     前記時間差が規定された閾値を超える場合、前記時間差を示す時間差情報を無線基地局に送信する送信部と
    を備える端末。
  2.  端末における第1信号の送信タイミングと第2信号の受信タイミングとの第1時間差を示す時間差情報を受信する受信部と、
     前記時間差情報を受信した場合、前記第1時間差と、前記第1信号の受信タイミングと前記第2信号と送信タイミングとの第2時間差とに基づいて、前記端末との伝搬遅延を取得する制御部と
    を備える無線基地局。
  3.  前記受信部は、前記時間差情報を周期的に受信する請求項2に記載の無線基地局。
  4.  無線基地局における第1信号の受信タイミングと第2信号の送信タイミングとの第1時間差を示す時間差情報を受信する受信部と、
     前記時間差情報を受信した場合、前記第1時間差と、前記第1信号の送信タイミングと前記第2信号と受信タイミングとの第2時間差とに基づいて、前記無線基地局との伝搬遅延を取得する制御部と
    を備える端末。
  5. 前記受信部は、前記時間差情報を周期的に受信する請求項4に記載の端末。
PCT/JP2021/002066 2021-01-21 2021-01-21 端末及び無線基地局 WO2022157889A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022576299A JPWO2022157889A1 (ja) 2021-01-21 2021-01-21
PCT/JP2021/002066 WO2022157889A1 (ja) 2021-01-21 2021-01-21 端末及び無線基地局
CN202180091120.5A CN116711361A (zh) 2021-01-21 2021-01-21 终端及无线基站
US18/262,281 US20240121736A1 (en) 2021-01-21 2021-01-21 Terminal and radio base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002066 WO2022157889A1 (ja) 2021-01-21 2021-01-21 端末及び無線基地局

Publications (1)

Publication Number Publication Date
WO2022157889A1 true WO2022157889A1 (ja) 2022-07-28

Family

ID=82548552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002066 WO2022157889A1 (ja) 2021-01-21 2021-01-21 端末及び無線基地局

Country Status (4)

Country Link
US (1) US20240121736A1 (ja)
JP (1) JPWO2022157889A1 (ja)
CN (1) CN116711361A (ja)
WO (1) WO2022157889A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354271A (ja) * 1999-06-09 2000-12-19 Matsushita Electric Ind Co Ltd 移動体通信システム及び方法
JP2003533927A (ja) * 2000-05-15 2003-11-11 ノキア コーポレイション Wcdma/utranでの真の往復伝搬遅延及びユーザ装置の位置を算出する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354271A (ja) * 1999-06-09 2000-12-19 Matsushita Electric Ind Co Ltd 移動体通信システム及び方法
JP2003533927A (ja) * 2000-05-15 2003-11-11 ノキア コーポレイション Wcdma/utranでの真の往復伝搬遅延及びユーザ装置の位置を算出する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "Propagation delay compensation enhancements", 3GPP TSG RAN WG1 #104-E R1-2101078, 19 January 2021 (2021-01-19), pages 1 - 3, XP051971348 *
VIVO: "Discussion on propagation delay compensation enhancements", 3GPP DRAFT; R1-2100440, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970362 *

Also Published As

Publication number Publication date
CN116711361A (zh) 2023-09-05
US20240121736A1 (en) 2024-04-11
JPWO2022157889A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
US20210400661A1 (en) Wireless node and wireless communication method
JPWO2020031386A1 (ja) ユーザ端末及び無線通信方法
US20210392601A1 (en) Terminal and communication method
JP7142407B2 (ja) 端末及び通信方法
WO2020144783A1 (ja) 端末及び通信方法
US20220124654A1 (en) Terminal and communication method
WO2021199415A1 (ja) 端末及び通信方法
JP7223026B2 (ja) 端末、基地局、無線通信システム、及び通信方法
JP7170059B2 (ja) 端末、通信方法、及び無線通信システム
CN115176494A (zh) 终端以及通信方法
US20220039010A1 (en) User terminal, radio base station, and radio communication method
JP7275169B2 (ja) 端末及び通信方法
WO2022157889A1 (ja) 端末及び無線基地局
US20230072350A1 (en) Radio communication node
JP7273859B2 (ja) ユーザ装置及び基地局装置
WO2020144785A1 (ja) 端末及び通信方法
US20230370991A1 (en) Radio base station
CN114208327A (zh) 终端以及通信方法
WO2022034669A1 (ja) 端末
WO2022224463A1 (ja) 通信装置、及び基地局
WO2022215121A1 (ja) 端末及び通信方法
JP7273861B2 (ja) 端末、通信方法、及び無線通信システム
WO2022157952A1 (ja) 端末、基地局、および、通信方法
WO2022239244A1 (ja) 無線基地局、端末及び無線通信方法
WO2023276010A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091120.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022576299

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921001

Country of ref document: EP

Kind code of ref document: A1