WO2022157858A1 - Wavelength conversion apparatus - Google Patents

Wavelength conversion apparatus Download PDF

Info

Publication number
WO2022157858A1
WO2022157858A1 PCT/JP2021/001862 JP2021001862W WO2022157858A1 WO 2022157858 A1 WO2022157858 A1 WO 2022157858A1 JP 2021001862 W JP2021001862 W JP 2021001862W WO 2022157858 A1 WO2022157858 A1 WO 2022157858A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
nonlinear optical
monitor
optical device
Prior art date
Application number
PCT/JP2021/001862
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 柏崎
拓志 風間
晃次 圓佛
修 忠永
飛鳥 井上
信建 小勝負
亮一 笠原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/001862 priority Critical patent/WO2022157858A1/en
Priority to JP2022576273A priority patent/JP7473850B2/en
Publication of WO2022157858A1 publication Critical patent/WO2022157858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to a wavelength conversion device, and more particularly to a wavelength conversion device that includes an optical element having a nonlinear optical effect and is applicable to optical communication systems, optical measurement systems, and the like.
  • Non-linear optical devices and electro-optical devices are being developed.
  • oxide-based compound substrates such as lithium niobate (LiNbO 3 ) are known as promising materials because of their extremely high secondary nonlinear optical constants and electro-optic constants.
  • Periodically poled lithium niobate PPLN is known as an example of an optical device using lithium niobate with high nonlinearity.
  • signal light with wavelength ⁇ 1 and pumping light with wavelength ⁇ 2 are input to a second-order nonlinear medium to generate new converted light with wavelength ⁇ 3.
  • SHG second harmonic generation
  • 1/ ⁇ 3 1/ ⁇ 1 ⁇ 1/ ⁇ 2 Formula (3)
  • a wavelength conversion operation that satisfies is called difference frequency generation (DFG).
  • DFG is considered promising for such a light source in the mid-infrared region because it can use a technologically mature pumping light source of around 1 ⁇ m and signal light in the communication wavelength band.
  • an excitation light source of around 1 ⁇ m is used to generate visible light such as green light by SHG or SFG.
  • Wavelength conversion technology that can generate light is promising.
  • wavelength conversion technology By using wavelength conversion technology using DFG, it is possible to collectively convert light in the 1.55 ⁇ m wavelength band, which is mainly used in optical fiber communication, into another wavelength band. For this reason, it can be applied to optical routing in wavelength division multiplexing, collision avoidance of wavelengths in optical routing, etc., and wavelength converters are considered as one of the key devices for constructing large-capacity communication optical networks.
  • signal distortion compensation can be performed using the fact that the converted light becomes phase conjugate light with respect to the signal light.
  • the signal light is converted to phase conjugate light at approximately the midpoint of the transmission line, the signal distortion caused by the dispersion occurring in the transmission line before conversion and the nonlinear optical effect in the fiber cancel each other out in the transmission line after conversion. propagates as As a result, it is considered as one of the key devices that can reduce dispersion and nonlinear signal distortion.
  • a wavelength conversion element With high wavelength conversion efficiency, it is possible to configure a signal light amplifier called optical parametric amplification by transferring energy from pumping light power to signal light.
  • a phase sensitive amplifier which has amplification characteristics corresponding to the phase relationship between pump light and signal light, is expected as a technology capable of low-noise optical amplification.
  • the degenerate optical parametric amplification process can generate photon pairs with quantum correlation, and can generate non-classical states such as the generation of squeezed light and single photon states with messengers. These lights are expected to be important resources for optical quantum computers and sensing technology using quantum light.
  • Optical waveguide devices are effective in obtaining highly efficient and broadband nonlinear optical effects in PPLN. This is because the wavelength conversion efficiency is proportional to the power density of light propagating through a nonlinear medium, and by forming a waveguide structure, light can be confined within a limited range. Therefore, various waveguides using nonlinear media have been researched and developed. So far, studies have been made using diffusion type waveguides called Ti diffusion waveguides and proton exchange waveguides.
  • ridge-type optical waveguides with features such as high optical damage resistance, long-term reliability, and easy device design have been researched and developed because the bulk characteristics of crystals can be used as they are.
  • a ridge-type optical waveguide can be formed by bonding two substrates with an adhesive, thinning one of the substrates, and performing ridge processing.
  • the method of bonding the substrates together with an adhesive has the problem that the thin film cracks when the temperature changes due to the difference in thermal expansion coefficient between the adhesive and the substrate.
  • the second harmonic light generated in the waveguide deteriorates the adhesive, the waveguide loss increases during operation and the efficiency of wavelength conversion deteriorates.
  • the thickness of the single crystal film becomes uneven due to the nonuniformity of the adhesive layer, and the phase matching wavelength of the wavelength conversion element shifts.
  • direct bonding technology is known as a technology for firmly bonding substrates together without using an adhesive.
  • the direct bonding method is a method in which wafers that have been surface-treated using chemicals are placed on top of each other and bonded by an attractive force between the surfaces. Bonding is performed at room temperature, but since the bonding strength of the wafers at this time is small, heat treatment is performed at a high temperature to improve the bonding strength.
  • direct bonding technology avoids contamination of impurities and absorption of adhesives, etc. in the generation of light in the mid-infrared region by the above-mentioned DFG, for example. It is also promising from the point of view that it can be done.
  • direct bonding technology is expected to be applied not only to nonlinear optical devices but also to high-power optical modulators.
  • Oxide-based compound substrates such as lithium niobate (LiNbO 3 ) have large electro-optic constants in addition to second-order nonlinear optical constants, and are widely used as optical modulators using the electro-optic effect (EO effect).
  • EO effect electro-optic effect
  • optical modulators using Ti-diffused waveguides have been commercially available, it has been difficult to input high-power light of 100 mW or more.
  • the use of direct bonding technology enables watt-class optical input, so it is expected to be applied to the generation of optical modulation signals with high optical intensity and laser processing technology.
  • the direct bonding method requires a heat treatment at a high temperature of about 400° C.
  • the wafers to be bonded are required to have good surface flatness and similar coefficients of thermal expansion.
  • direct bonding of lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ) to which additives such as Mg, Zn, Sc, In, and Fe are added using substrates of the same kind of material formation has been considered.
  • a ridge-type waveguide has a core formed on a base substrate according to a waveguide pattern, and has a step-type refractive index distribution.
  • the core is in contact with air layers on three sides that are not in contact with the base substrate.
  • a ridge waveguide can operate even if the top and sides of the core are air layers (with a refractive index of 1).
  • the core layer is exposed, there is a concern that the characteristics may change with time due to adhesion of airborne dirt and dust.
  • an over-cladding layer that also serves as a protective film may be provided.
  • the periodically poled structure is a structure for performing quasi-phase matching, and by inverting the crystal orientation for each coherence length of the fundamental wave and the wavelength-converted wave and reversing the sign of the nonlinear constant, phase inversion is achieved.
  • This structure compensates for the amount of matching. It has high practical value in that it can perform wide wavelength conversion from the mid-infrared region to the visible region without using a special nonlinear optical crystal.
  • the refractive index of a nonlinear optical material has temperature dependence, and in order to strictly satisfy the quasi-phase matching condition in a second-order nonlinear optical element, it is necessary to keep the temperature of the element constant.
  • a thermometer such as a thermistor or a thermocouple is provided in or near the secondary nonlinear optical element to monitor its resistance value.
  • a mechanism is provided to keep the element at a constant temperature using a temperature controller such as a heater or a Peltier element according to the monitor result.
  • thermometer there was a problem in precisely stabilizing the second-order nonlinear optical element with only the mechanism that controls the temperature controller so that the monitored value of the conventional thermometer is constant. This is because the temperature detector such as thermistor or thermocouple can monitor the average temperature of the entire secondary nonlinear optical element, and not the temperature of the waveguide portion itself that produces the nonlinear optical effect. . Therefore, it may not be possible to strictly operate at the optimum temperature simply by monitoring the temperature of the thermometer.
  • the temperature is controlled so that the secondary nonlinear optical element or a thermometer installed near it is constant.
  • the core of the ridge waveguide receives a slight change in the environmental temperature, resulting in a shift of the optimum operating point.
  • the characteristics of devices that use second-order nonlinear optics are sensitive to the temperature of the element and easily change with the ambient temperature, making it difficult to stably operate at the optimum temperature using conventional methods.
  • the charge amount of the element changes due to the change in the input signal intensity level, and the characteristic change due to the EO effect also poses a problem.
  • the nonlinear optical device depending on how the nonlinear optical device is used, for example, whether it is frequency up-conversion or frequency down-conversion, the difference in signal level in each wavelength band causes characteristic changes. Therefore, it is an issue to make wavelength conversion devices and optical parametric amplification devices using a second-order nonlinear optical element having a periodically poled structure exhibit stable and best characteristics regardless of the surrounding environment and the method of use.
  • An object of the present invention is to provide a wavelength conversion device that performs optical parametric amplification using a wavelength conversion element having high wavelength conversion efficiency. It is to express it by doing.
  • one embodiment of the present invention provides a nonlinear optical device comprising a second-order nonlinear optical element that generates converted light having different wavelengths from one or more fundamental wave lights, and the nonlinear optical device means for inputting monitor light having a wavelength different from the wavelength of the fundamental wave light into the nonlinear optical device; and output from the nonlinear optical device It is characterized by comprising a light detection means for separating monitor light and detecting light intensity, and a control means for controlling the temperature control device based on the light intensity detected by the light detection means.
  • FIG. 1 is a diagram showing the basic configuration of a wavelength conversion device according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing an example of wavelength dependence of wavelength conversion efficiency in second harmonic generation of a nonlinear optical device
  • FIG. 3 is a diagram showing an example of the wavelength dependence of the wavelength conversion efficiency when the temperature of the element changes
  • FIG. 4 is a diagram for explaining error signal extraction in the wavelength conversion device of the first embodiment
  • FIG. 5 is a diagram for explaining selection of the wavelength of monitor light
  • FIG. 6 is a diagram showing the basic configuration of a wavelength conversion device according to a second embodiment of the present invention
  • FIG. 7 is a diagram showing the basic configuration of a wavelength conversion device according to a third embodiment of the present invention
  • FIG. 8 is a diagram for explaining error signal extraction in the wavelength conversion device of the third embodiment
  • FIG. 9 is a diagram showing the configuration of the wavelength conversion device according to the first embodiment
  • FIG. 10 is a diagram illustrating the configuration of a wavelength conversion device according to a second embodiment
  • FIG. 1 shows the basic configuration of the wavelength conversion device according to the first embodiment of the present invention.
  • the wavelength converter 100 includes a nonlinear optical device 101 composed of an optical waveguide type second-order nonlinear optical element, and an optical multiplexer for inputting signal light, excitation light, and monitor light, which are fundamental wave lights, into the nonlinear optical device 101. 102 and an optical demultiplexer 103 for separating double waves of the signal light, excitation light and monitor light output from the nonlinear optical device 101 .
  • a temperature control device that controls the temperature of the elements of the nonlinear optical device 101 is connected to a temperature control signal generation mechanism 104 and controlled by a feedback gain adjuster (PID controller) 105 .
  • the feedback gain adjuster 105 detects the optical intensity of the double wave of the monitor light with the photodetector 106, and performs temperature control so that the conversion efficiency of the nonlinear optical device 101 is maximized.
  • PID controller feedback gain adjuster
  • FIG. 2 shows an example of the wavelength dependence of second harmonic generation in a nonlinear optical device.
  • the phase matching wavelength at which the wavelength conversion efficiency of the nonlinear optical device 101 is maximized is 1544.70 nm when the element temperature is 45°C.
  • the purpose is to adjust the temperature of the nonlinear optical device 101 so that wavelength conversion occurs at the phase-matched wavelength.
  • Fig. 3 shows an example of the wavelength dependence of the wavelength conversion efficiency when the temperature of the element changes. It can be seen that the graph shifts left and right in response to changes in the temperature of the device without appreciably changing the function shape shown in FIG. It is an object of the present invention to suppress this shift amount by a control circuit.
  • the PDH method (Pound-Drever-Hall method) is generally used to control the system so that its response function always takes the maximum value.
  • a dither signal is generated in the system and a response signal is demodulated by the dither signal to obtain a differentiated function of the response function.
  • this differential function as the error function, it is possible to lock at the point where the differential function becomes zero, that is, the point where the response function takes the maximum value. This utilizes the fact that the differential function becomes a monotonically decreasing or monotonically increasing function near zero.
  • the response signal is the second harmonic generation efficiency for each wavelength.
  • the temperature control device is the only device to which a signal is applied to the system.
  • the response speed of the temperature control device is slower than the signal handled by the wavelength conversion device, and the dither signal itself affects the operation of the system.
  • the wavelength conversion efficiency of second harmonic generation at a wavelength (monitor light wavelength) slightly different from the phase matching wavelength (signal light wavelength) is set to a target value (V off ).
  • V off target value
  • the PID controller 105 controls the temperature control signal generation mechanism 104 to output a heating signal.
  • the error signal (V detect ⁇ V off ) ⁇ 0 the PID controller 105 outputs a cooling signal from the temperature control signal generation mechanism 104. to control.
  • Such a control method utilizes the fact that the conversion efficiency of monitor light is a monotonically decreasing or monotonically increasing function in the vicinity of the target state with respect to temperature changes. Selection of the wavelength of the monitor light will be described with reference to FIG. As shown in FIG. 5(a), when the target value is greater than the maximum value excluding the maximum value, temperature control is possible no matter how low the element temperature is, as long as the wavelength of the signal light is longer than that of the monitor light. is. Conversely, if the wavelength of the signal light is shorter than that of the monitor light, temperature control is possible no matter how high the element temperature is. On the other hand, as shown in FIG. 5(b), when the target value is smaller than the local maximum value excluding the maximum value, the temperature control range becomes narrow. Therefore, the wavelength of the monitor light should be closer to the phase-matched wavelength than the wavelength at which the minimum value is obtained, and should exhibit a wavelength conversion efficiency higher than all other maximum values in the function except for the maximum value. is desirable.
  • the monitor light is arranged near the phase matching wavelength.
  • the wavelength conversion device of this embodiment is applied to a wavelength division multiplexing (WDM) signal used in optical fiber communication
  • the phase-matched wavelength is within the guard band, so the operation of the WDM system is not affected.
  • FIG. 6 shows the basic configuration of the wavelength conversion device according to the second embodiment of the present invention.
  • the monitor light is input to the nonlinear optical device from the direction opposite to the direction of the signal light.
  • the wavelength conversion apparatus 200 inputs a nonlinear optical device 201 comprising an optical waveguide type second-order nonlinear optical element, and signal light, excitation light, and monitor light, which are fundamental wave lights, into the nonlinear optical device 101 . and a circulator 203 for separating the signal light and excitation light output from the nonlinear optical device 201 and inputting the monitor light to the nonlinear optical device 201 .
  • a temperature control device that controls the temperature of the elements of the nonlinear optical device 201 is connected to a temperature control signal generation mechanism 204 and controlled by a feedback gain adjuster (PID controller) 205 .
  • PID controller feedback gain adjuster
  • a feedback gain adjuster 205 detects the light intensity of the converted light of the monitor light with a photodetector 206, and performs temperature control so that the conversion efficiency of the nonlinear optical device 201 is maximized.
  • FIG. 7 shows the basic configuration of the wavelength conversion device according to the third embodiment of the present invention.
  • Wavelength converter 300 includes a nonlinear optical device 301 composed of an optical waveguide type second-order nonlinear optical element, and signal light and excitation light, which are fundamental wave lights, and monitor light 1 and monitor light 2 are input to nonlinear optical device 301 . and an optical demultiplexer 303 for separating the signal light output from the nonlinear optical device 301, the excitation light, the second harmonic of the monitor light 1, and the second harmonic of the monitor light 2. .
  • a temperature control device that controls the temperature of the elements of the nonlinear optical device 301 is connected to a temperature control signal generation mechanism 304 and controlled by a feedback gain adjuster (PID controller) 305 .
  • the feedback gain adjuster 305 detects the light intensity of the converted light of the monitor light 1 and the monitor light 2 by the photodetectors 306 and 307, and performs temperature control so that the conversion efficiency of the nonlinear optical device 301 is maximized.
  • the monitor light may be generated by light from a light source that is completely different from the signal light, or by splitting a part of the signal light or pump light and subjecting it to intensity modulation, as will be described later. You may
  • FIG. 9 shows the configuration of the wavelength conversion device according to the first embodiment.
  • the wavelength conversion device 400 includes a nonlinear optical device 401 having a periodically poled lithium niobate (PPLN) waveguide, a signal light input to the nonlinear optical device 401, and a monitor light from the nonlinear optical device 401. and a circulator 403 for separating the signal light output from the nonlinear optical device 401 and inputting the monitor light from the monitor light source 409 to the nonlinear optical device 401 .
  • the excitation light enters nonlinear optical device 401 along with signal light via dichroic mirror 407 and is separated from the output of nonlinear optical device 401 via dichroic mirror 408 .
  • a Peltier element 411 that is a temperature control device of the nonlinear optical device 401 is connected to a temperature control signal generation mechanism 404 and controlled by a feedback gain adjuster (PID controller) 405 .
  • PID controller feedback gain adjuster
  • a feedback gain adjuster 405 detects the optical intensity of the converted light of the monitor light with a photodetector 406, and performs temperature control so that the conversion efficiency of the nonlinear optical device 401 is maximized.
  • the nonlinear optical device 401 has a periodically poled structure that satisfies quasi-phase matching between an input optical signal and pumping light, and output converted light, and is a wavelength converter and optical parametric amplifier with high wavelength conversion efficiency.
  • the quasi-phase matching condition is satisfied among the three waves of pumping light, signal light and conversion light.
  • a wavelength division multiplexing (WDM) signal composed of optical signals of a plurality of wavelengths is input to the wavelength conversion device 400 as signal light.
  • the WDM signal combined with the excitation light is incident on the PPLN waveguide, and the WDM signal is converted by difference frequency generation.
  • the fundamental wave light wavelength ⁇ 0 (frequency: ⁇ 0) was set to 1545.00 nm
  • the excitation light wavelength ⁇ p (frequency: 2 ⁇ 0) was set to 772.5 nm.
  • the monitor light was input to the nonlinear optical device 401 in the opposite direction to the signal light, and had a wavelength of 1545.10 nm.
  • the monitor light is converted into light with a wavelength of 772.55 nm by second harmonic generation in the PPLN waveguide of the nonlinear optical device 401 and is input to the photodetector 406 via the dichroic mirror 407 and circulator 402 .
  • conversion light is generated by difference frequency generation in the PPLN waveguide.
  • the signal light wavelength ⁇ s (frequency: ⁇ s) is 1540 nm
  • 2 ⁇ 0 ⁇ s generates converted light with a wavelength of 1550 nm.
  • Converted light is generated in a folded form on the wavelength axis with the fundamental light wavelength ⁇ 0 as the center.
  • the efficiency of second-order harmonic generation of a second-order nonlinear optical medium having a uniform periodically poled structure takes the form of the square of the sinc function with respect to incident light in the fundamental waveband.
  • This function has a shape as shown in FIG. 2, and the maxima appearing on the sides are relatively suppressed compared to the maxima at the center where the efficiency is the highest.
  • a wavelength that exists within the peak including the central maximum value in this function and has a higher conversion efficiency than all other maximum values excluding the maximum value should be selected. .
  • the light intensity detected by the photodetector 406 decreases as the temperature increases and increases as the temperature decreases.
  • This change is input to the feedback gain adjuster 405 as an error signal and fed back to the control current of the temperature control signal generating mechanism 404 .
  • the intensity of wavelength-converted light could be stabilized within 0.2 dB over the entire band.
  • the monitor light may be separated from the signal light by using an optical wavelength multiplexer/demultiplexer without using the optical circulator, and the same effect was obtained with this configuration. Furthermore, when an optical wavelength multiplexer/demultiplexer is used, the monitor light may be incident from the same direction as the signal light, and similar effects can be obtained with this configuration.
  • FIG. 10 shows the configuration of the wavelength conversion device according to the second embodiment.
  • the wavelength converter 500 includes a nonlinear optical device 501 having a periodically poled lithium niobate (PPLN) waveguide, and a signal light, monitor light 1 and monitor light 2 input to the nonlinear optical device 501 .
  • an optical demultiplexer 503 for separating the double wave of 1 and the double wave of the monitor light 2 .
  • a Peltier element 511 which is a temperature control device for the nonlinear optical device 501 , is connected to a temperature control signal generation mechanism 504 and controlled by a feedback gain adjuster (PID controller) 505 .
  • the feedback gain adjuster 505 detects the optical intensity of the double wave of the monitor light with the photodetectors 561 and 562, obtains the difference from the differentiator 563, and maximizes the conversion efficiency of the nonlinear optical device 501. , temperature control.
  • a part of the signal light is split by the optical splitter 521, and the spectrum of only the fundamental wave is extracted by the wavelength filter 522.
  • a modulator 523 applies intensity modulation of 10 GHz to the extracted fundamental wave spectrum light to generate two monitor lights with wavelengths separated by about 0.1 nm on both sides of the fundamental wave light wavelength.
  • the fundamental wave light wavelength ⁇ 0 (frequency: ⁇ 0) is 1545.00 nm
  • the excitation light wavelength ⁇ p (frequency: 2 ⁇ 0) is 772.50 nm
  • monitor light 1 is the monitor light with a shorter wavelength than the fundamental wave
  • monitor light 1 is the monitor light with a shorter wavelength than the fundamental wave.
  • monitor light 2 is the monitor light with a shorter wavelength than the fundamental wave.
  • monitor light 2 monitor light 2 .
  • Monitor light 1 and monitor light 2 are input to nonlinear optical device 501 via optical multiplexer 502 .
  • the nonlinear optical device 501 has a periodically poled structure that satisfies quasi-phase matching between an input optical signal and pump light, and output converted light, and is a wavelength converter and optical parametric amplifier with high wavelength conversion efficiency. works as
  • Monitor light 1 and monitor light 2 whose frequency has been doubled are output to the output side of the nonlinear optical device 501, and are received by separate photodetectors 561 and 562, respectively, and a difference signal from a differentiator 563 is fed back. Input to gain adjuster 505 .
  • the light intensity detected by the photodetector 561 decreases as the temperature increases and increases as the temperature decreases.
  • the light intensity detected by the photodetector 562 increases as the temperature increases and decreases as the temperature decreases. Since this difference becomes a monotonic function near the target value, it can be used as an error signal.
  • This error signal is input to the feedback gain adjuster 505 and fed back to the control current of the temperature control signal generating mechanism 504 . As a result, the intensity of wavelength-converted light could be stabilized within 0.2 dB over the entire band.
  • the efficiency of second-order harmonic generation of a second-order nonlinear optical medium having a uniform periodically poled structure is in the form of the square of the sinc function for incident light in the fundamental wave band, and the wavelength of the fundamental wave is The shape is symmetrical with respect to the center.
  • the target state can be stably achieved. If the shape of the function becomes asymmetrical due to manufacturing errors, it is possible to adjust to the optimum point by adding an offset to the error signal.
  • a waveguide that does not have a periodically poled structure may also be used, and if the material has a second-order nonlinear optical coefficient, it does not need to be lithium niobate. good. Also, even when two monitor lights are used, the monitor light may be input to the nonlinear optical device in the opposite direction to the signal light by combining a circulator and a wavelength multiplexer/demultiplexer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention allows the maximum intrinsic performance of a nonlinear optical element to be stably exhibited regardless of surrounding environments and methods of use. Provided is a wavelength conversion apparatus (100) including a nonlinear optical device (101) comprising a secondary nonlinear optical element that generates conversion light of different wavelengths from one or more fundamental wave light; and a temperature control device that controls the temperature of the element of the nonlinear optical device. The wavelength conversion apparatus is provided with: a means (102) that inputs monitor light of a wavelength different from the wavelength of the fundamental wave light to the nonlinear optical device; a light detection means (103, 106) that separates the monitor light outputted from the nonlinear optical device, and detects light intensity; and a control means (104, 105) that controls the temperature control device on the basis of the light intensity detected by the light detection means.

Description

波長変換装置Wavelength converter
 本発明は、波長変換装置に関し、より詳細には、非線形光学効果を有する光学素子を含み、光通信システム、光計測システム等に適用可能な波長変換装置に関する。 The present invention relates to a wavelength conversion device, and more particularly to a wavelength conversion device that includes an optical element having a nonlinear optical effect and is applicable to optical communication systems, optical measurement systems, and the like.
 光通信における光信号波長変換、光変調、光計測、光加工、医療、生物工学などの応用のため、紫外域-可視域-赤外域-テラヘルツ域にわたるコヒーレント光の発生と変調が可能な、多くの非線形光学デバイス及び電気光学デバイスの開発が進められている。 For applications such as optical signal wavelength conversion in optical communication, optical modulation, optical measurement, optical processing, medical treatment, biotechnology, etc., it is possible to generate and modulate coherent light over the ultraviolet, visible, infrared, and terahertz regions. Non-linear optical devices and electro-optical devices are being developed.
 このような光学デバイスに用いられる非線形光学媒質および電気光学媒質としては、種々の材料が研究開発されている。このうち、ニオブ酸リチウム(LiNbO)などの酸化物系化合物基板は、2次非線形光学定数・電気光学定数が非常に高く有望な材料として知られている。ニオブ酸リチウムの高い非線形性を用いた光デバイスの一例として、周期的に分極反転されたニオブ酸リチウム(PPLN)が知られている。 Various materials have been researched and developed as nonlinear optical media and electrooptic media used in such optical devices. Among them, oxide-based compound substrates such as lithium niobate (LiNbO 3 ) are known as promising materials because of their extremely high secondary nonlinear optical constants and electro-optic constants. Periodically poled lithium niobate (PPLN) is known as an example of an optical device using lithium niobate with high nonlinearity.
 二次非線形光学効果では、波長λ1の信号光と波長λ2の励起光を二次非線形媒質に入力して新たな波長λ3の変換光を発生させる。第1に、
  1/λ3=1/λ1+1/λ2    式(1)
を満たす波長変換動作を、和周波発生(SFG)と呼ぶ。第2に、λ1=λ2とし、
  λ3=λ1/2            式(2)
を満たす波長変換動作を、第二次高調波発生(SHG)と呼ぶ。第3に、
  1/λ3=1/λ1-1/λ2    式(3)
を満たす波長変換動作を、差周波発生(DFG)と呼ぶ。このような波長変換動作により、1または複数の基本波光から、波長の異なる変換光を発生させる。
In the second-order nonlinear optical effect, signal light with wavelength λ1 and pumping light with wavelength λ2 are input to a second-order nonlinear medium to generate new converted light with wavelength λ3. First,
1/λ3=1/λ1+1/λ2 Formula (1)
A wavelength conversion operation that satisfies is called sum frequency generation (SFG). Second, let λ1=λ2 and
λ3=λ1/2 Formula (2)
A wavelength conversion operation that satisfies is called second harmonic generation (SHG). Third,
1/λ3=1/λ1−1/λ2 Formula (3)
A wavelength conversion operation that satisfies is called difference frequency generation (DFG). By such a wavelength conversion operation, converted light having different wavelengths is generated from one or a plurality of fundamental wave lights.
 例えば、2~5μmの中赤外の波長域には、様々な環境ガスの基準振動などの強い吸収線が存在するため、小型の中赤外光源の開発が望まれている。このような中赤外域の光源には、技術的に成熟された1μm付近の励起光源と通信波長帯の信号光とを用いることのできるDFGが有望だと考えられている。 For example, in the mid-infrared wavelength region of 2 to 5 μm, there are strong absorption lines such as the normal vibration of various environmental gases, so the development of a compact mid-infrared light source is desired. DFG is considered promising for such a light source in the mid-infrared region because it can use a technologically mature pumping light source of around 1 μm and signal light in the communication wavelength band.
 また、0.5μm付近の可視光の波長域には、半導体レーザでは実現の難しい波長域が存在することから、1μm付近の励起光源を用いて、SHGやSFGにより、緑色光などの可視光の発生を行うことのできる波長変換技術が有望視されている。 In addition, since there is a wavelength region of visible light around 0.5 μm that is difficult to achieve with a semiconductor laser, an excitation light source of around 1 μm is used to generate visible light such as green light by SHG or SFG. Wavelength conversion technology that can generate light is promising.
 DFGを用いた波長変換技術を用いると、光ファイバ通信で主に用いられている波長1.55μm帯の光を、一括して別の波長帯に変換することができる。このことから、波長分割多重方式における光のルーティング、光ルーティングにおける波長の衝突回避などへ適用が可能であり、波長変換装置は、大容量通信光ネットワークを構築するキーデバイスの一つとして考えられている。 By using wavelength conversion technology using DFG, it is possible to collectively convert light in the 1.55 μm wavelength band, which is mainly used in optical fiber communication, into another wavelength band. For this reason, it can be applied to optical routing in wavelength division multiplexing, collision avoidance of wavelengths in optical routing, etc., and wavelength converters are considered as one of the key devices for constructing large-capacity communication optical networks. there is
 また、DFGを用いた波長変換では、その変換光が信号光に対して位相共役光になることを用いて、信号歪補償を行うことができる。伝送路のおよそ中間地点において、信号光を位相共役光に変換すると、変換前の伝送路で生じた分散やファイバ中の非線形光学効果によって生じる信号歪みを、変換後の伝送路中で打消しあうように伝搬する。これにより、分散や非線形信号歪みを低減することができるキーデバイスの一つとして考えられている。 Also, in wavelength conversion using DFG, signal distortion compensation can be performed using the fact that the converted light becomes phase conjugate light with respect to the signal light. When the signal light is converted to phase conjugate light at approximately the midpoint of the transmission line, the signal distortion caused by the dispersion occurring in the transmission line before conversion and the nonlinear optical effect in the fiber cancel each other out in the transmission line after conversion. propagates as As a result, it is considered as one of the key devices that can reduce dispersion and nonlinear signal distortion.
 高い波長変換効率を有する波長変換素子を用いると、励起光パワーから信号光へのエネルギーの移行により光パラメトリック増幅と呼ばれる、信号光の増幅器を構成することができる。特に、励起光と信号光の位相関係に応じた増幅特性を有する位相感応増幅器は、低雑音な光増幅が可能な技術として期待されている。 By using a wavelength conversion element with high wavelength conversion efficiency, it is possible to configure a signal light amplifier called optical parametric amplification by transferring energy from pumping light power to signal light. In particular, a phase sensitive amplifier, which has amplification characteristics corresponding to the phase relationship between pump light and signal light, is expected as a technology capable of low-noise optical amplification.
 また、縮退光パラメトリック増幅過程は、量子相関を持った光子対を生成することができ、スクィーズド光の生成、伝令付き単一光子状態などの非古典的状態を生成することができる。これらの光は、光量子コンピュータや量子光を用いたセンシング技術等の重要リソースとして期待されている。 In addition, the degenerate optical parametric amplification process can generate photon pairs with quantum correlation, and can generate non-classical states such as the generation of squeezed light and single photon states with messengers. These lights are expected to be important resources for optical quantum computers and sensing technology using quantum light.
 PPLNにおいて高効率かつ広帯域な非線形光学効果を得るためには、光導波路型のデバイスが有効である。これは波長変換効率が非線形媒質を伝搬する光のパワー密度に比例するためであり、導波路構造を形成することにより、限られた範囲に光を閉じ込めることができるからである。このため非線形媒質を用いた種々の導波路が研究開発されている。これまでには、Ti拡散導波路、プロトン交換導波路と呼ばれる、拡散型の導波路を用いて検討がなされてきた。 Optical waveguide devices are effective in obtaining highly efficient and broadband nonlinear optical effects in PPLN. This is because the wavelength conversion efficiency is proportional to the power density of light propagating through a nonlinear medium, and by forming a waveguide structure, light can be confined within a limited range. Therefore, various waveguides using nonlinear media have been researched and developed. So far, studies have been made using diffusion type waveguides called Ti diffusion waveguides and proton exchange waveguides.
 しかしながら、これらの導波路は、作製過程において結晶内に不純物を拡散することから、光損傷耐性や長期信頼性の観点から課題があった。拡散型の導波路では、高強度の光を導波路に入射するとフォトリフラクティブ効果による結晶の損傷が発生してしまうため、導波路に入力できる光パワーに制限があった。 However, these waveguides have problems in terms of optical damage resistance and long-term reliability because impurities diffuse into the crystal during the fabrication process. In diffusion type waveguides, the optical power that can be input to the waveguide is limited because the crystal is damaged due to the photorefractive effect when high-intensity light is incident on the waveguide.
 近年、結晶のバルクの特性をそのまま利用できることから、高光損傷耐性、長期信頼性、デバイス設計が容易等の特徴を持つリッジ型の光導波路が研究開発されている。リッジ型の導波路を作製する方法としては、2枚の基板を接着剤により接合し、一方の基板を薄膜化した後、リッジ加工をすることによりリッジ型の光導波路を形成することができる。 In recent years, ridge-type optical waveguides with features such as high optical damage resistance, long-term reliability, and easy device design have been researched and developed because the bulk characteristics of crystals can be used as they are. As a method for producing a ridge-type waveguide, a ridge-type optical waveguide can be formed by bonding two substrates with an adhesive, thinning one of the substrates, and performing ridge processing.
 しかしながら、基板同士を接着剤により張合わせる方法は、接着剤と基板の熱膨張係数が異なるために、温度が変化したときに薄膜に割れが生じるという問題があった。加えて、導波路中で発生する第二高調波光によって接着剤が劣化するために、動作中に導波路損失が増加し、波長変換の効率が劣化するという問題もあった。さらにまた、接着層の不均一性のために単結晶膜の膜厚が不均一となり、波長変換素子の位相整合波長がずれるという問題もあった。 However, the method of bonding the substrates together with an adhesive has the problem that the thin film cracks when the temperature changes due to the difference in thermal expansion coefficient between the adhesive and the substrate. In addition, since the second harmonic light generated in the waveguide deteriorates the adhesive, the waveguide loss increases during operation and the efficiency of wavelength conversion deteriorates. Furthermore, there is also a problem that the thickness of the single crystal film becomes uneven due to the nonuniformity of the adhesive layer, and the phase matching wavelength of the wavelength conversion element shifts.
 そこで、接着剤を用いずに、基板同士を強固に接合する技術として、直接接合技術が知られている。直接接合法は、化学薬品を用いて表面処理を行ったウエハ同士を重ね合わせることにより、表面間引力により接合する方法である。接合は常温で行われるが、このときのウエハの接合強度は小さいため、接合強度を向上させるために高温での熱処理を行う。直接接合技術は、高光損傷耐性、長期信頼性、デバイス設計の容易性等の特徴以外にも、例えば、上述したDFGによる中赤外域の光発生において、不純物の混入や接着剤等の吸収を回避できる点からも有望視されている。 Therefore, direct bonding technology is known as a technology for firmly bonding substrates together without using an adhesive. The direct bonding method is a method in which wafers that have been surface-treated using chemicals are placed on top of each other and bonded by an attractive force between the surfaces. Bonding is performed at room temperature, but since the bonding strength of the wafers at this time is small, heat treatment is performed at a high temperature to improve the bonding strength. In addition to its features such as high optical damage resistance, long-term reliability, and ease of device design, direct bonding technology avoids contamination of impurities and absorption of adhesives, etc. in the generation of light in the mid-infrared region by the above-mentioned DFG, for example. It is also promising from the point of view that it can be done.
 また、直接接合技術は、非線形光学デバイスに留まらず、ハイパワーの光変調器への応用にも期待されている。ニオブ酸リチウム(LiNbO)などの酸化物系化合物基板は2次非線形光学定数に加え、電気光学定数も大きく、電気光学効果(EO効果)を用いた光変調器としても広く使われている。しかしながら、Ti拡散導波路を用いた光変調器が商用されてきたが、100mW以上のハイパワーの光を入力することが困難であった。直接接合技術を用いると、ワット級の光入力も可能になることから、高光強度の光変調信号の生成やレーザ加工技術等への応用が期待できる。 Moreover, direct bonding technology is expected to be applied not only to nonlinear optical devices but also to high-power optical modulators. Oxide-based compound substrates such as lithium niobate (LiNbO 3 ) have large electro-optic constants in addition to second-order nonlinear optical constants, and are widely used as optical modulators using the electro-optic effect (EO effect). However, although optical modulators using Ti-diffused waveguides have been commercially available, it has been difficult to input high-power light of 100 mW or more. The use of direct bonding technology enables watt-class optical input, so it is expected to be applied to the generation of optical modulation signals with high optical intensity and laser processing technology.
 直接接合法においては400℃程度の高温での熱処理を必要とするために、接合できるウエハ間には表面の平坦性が良いことに加え、熱膨張率が近いことも要求される。このため、ニオブ酸リチウム(LiNbO)とタンタル酸リチウム(LiTaO)、Mg、Zn、Sc、In、Fe等の添加物を付与したニオブ酸リチウム(LiNbO)同士の同種材料基板による直接接合形成が検討されてきた。 Since the direct bonding method requires a heat treatment at a high temperature of about 400° C., the wafers to be bonded are required to have good surface flatness and similar coefficients of thermal expansion. For this reason, direct bonding of lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ) to which additives such as Mg, Zn, Sc, In, and Fe are added using substrates of the same kind of material formation has been considered.
 リッジ型導波路は、ベース基板上に導波路パターンに応じて形成されたコアを有しており、ステップ型の屈折率分布を有する。コアは、ベース基板に接していない3つの側面が空気層に接している。リッジ型導波路は、コアの上部および側部が空気層(屈折率が1)であっても、動作することができる。しかし、実用上の問題点として、コア層を剥き出しにしていると、空気中に浮遊するゴミやほこりの付着等による特性の経時変化が懸念される。また、光導波路の端面にARコートなどの膜を形成するために必要な耐機械的強度を考慮すると、保護膜を兼ねたオーバークラッド層を設ける場合もある。 A ridge-type waveguide has a core formed on a base substrate according to a waveguide pattern, and has a step-type refractive index distribution. The core is in contact with air layers on three sides that are not in contact with the base substrate. A ridge waveguide can operate even if the top and sides of the core are air layers (with a refractive index of 1). However, as a practical problem, if the core layer is exposed, there is a concern that the characteristics may change with time due to adhesion of airborne dirt and dust. Moreover, in consideration of the mechanical resistance required for forming a film such as an AR coat on the end face of the optical waveguide, an over-cladding layer that also serves as a protective film may be provided.
 一方、周期分極反転構造は、擬似位相整合を行うための構造であり、基本波と波長変換された波のコヒーレンス長ごとに結晶方位を反転し、非線形定数の符号を逆転することにより、位相不整合量を補償していく構造である。特殊な非線形光学結晶を用いずに、中赤外域から可視域まで幅広い波長変換が行えるという点で実用的な価値は高い。 On the other hand, the periodically poled structure is a structure for performing quasi-phase matching, and by inverting the crystal orientation for each coherence length of the fundamental wave and the wavelength-converted wave and reversing the sign of the nonlinear constant, phase inversion is achieved. This structure compensates for the amount of matching. It has high practical value in that it can perform wide wavelength conversion from the mid-infrared region to the visible region without using a special nonlinear optical crystal.
 一般的に、非線形光学材料の屈折率は温度依存性を有しており、2次非線形光学素子において擬似位相整合条件を厳密に満たすためには、素子の温度を一定に保つ必要がある。通常は、2次非線形光学素子またはその近傍にサーミスタ・熱電対等の測温体を設けその抵抗値等をモニタする。そのモニタ結果に応じて、ヒータやペルチエ素子等の温調器を用いて素子を一定温度に保つ機構を設けている。 In general, the refractive index of a nonlinear optical material has temperature dependence, and in order to strictly satisfy the quasi-phase matching condition in a second-order nonlinear optical element, it is necessary to keep the temperature of the element constant. Normally, a thermometer such as a thermistor or a thermocouple is provided in or near the secondary nonlinear optical element to monitor its resistance value. A mechanism is provided to keep the element at a constant temperature using a temperature controller such as a heater or a Peltier element according to the monitor result.
 しかしながら、従来の測温体のモニタ値が一定となるように、温調器を制御する機構のみでは、2次非線形光学素子を精密に安定させるには課題があった。サーミスタや熱電対等の測温体でモニタできるのは、2次非線形光学素子全体の平均的な温度であり、非線形光学効果をもたらす導波路部分そのものの温度をモニタしているわけではないためである。従って、測温体の温度をモニタしているだけでは、最適温度で動作させることは厳密にはできない場合があった。 However, there was a problem in precisely stabilizing the second-order nonlinear optical element with only the mechanism that controls the temperature controller so that the monitored value of the conventional thermometer is constant. This is because the temperature detector such as thermistor or thermocouple can monitor the average temperature of the entire secondary nonlinear optical element, and not the temperature of the waveguide portion itself that produces the nonlinear optical effect. . Therefore, it may not be possible to strictly operate at the optimum temperature simply by monitoring the temperature of the thermometer.
 例えば、2次非線形光学素子またはその近傍に設置した測温体が一定となるよう温度制御を行うとする。リッジ型導波路においては、素子表面に位置する光が伝搬するコアは、ベース基板に接していない3つの側面が空気層に接している。従って、素子の環境温度(外気温度)が変化した場合、リッジ型導波路のコアは、環境温度の変化をわずかながら受け最適動作点がシフトしてしまう。 For example, assume that the temperature is controlled so that the secondary nonlinear optical element or a thermometer installed near it is constant. In the ridge waveguide, three side surfaces of the core, which is located on the surface of the device and which propagates light, are in contact with the air layer, but are not in contact with the base substrate. Therefore, when the environmental temperature of the device (outside air temperature) changes, the core of the ridge waveguide receives a slight change in the environmental temperature, resulting in a shift of the optimum operating point.
 また、高い変換効率または、高利得な光パラメトリック増幅を得るために、強い励起光を導波路に入射する場合、導波路内に入射された励起光の光吸収による発熱が生じる。この発熱は、導波路部分の局所的な発熱であり、素子またはその近傍に設置した測温体をモニタしているだけではその局所的な発熱による最適動作点のシフトを正しく検出することは困難であった。 In addition, in order to obtain high conversion efficiency or high-gain optical parametric amplification, when strong pumping light is incident on the waveguide, heat is generated due to optical absorption of the pumping light that has entered the waveguide. This heat generation is local heat generation in the waveguide part, and it is difficult to correctly detect the shift of the optimum operating point due to the local heat generation only by monitoring the temperature detector installed in the element or its vicinity. Met.
 さらに、発熱量や発熱の空間分布は使用法によっても異なるため、使用法を変えるたびに最適動作点を探す必要がある。具体的には、周波数下方変換を用いて基本波から倍波を生成する場合、周波数上方変換を用いて光通信向けの位相共役変換をする場合、周波数上方変換を用いて光通信用むけの位相感応増幅をする場合、周波数上方変換を用いて伝令付き単一光子状態のもととなる2光子もつれ状態を生成する場合、周波数上方変換を利用して真空スクィーズ度状を生成する場合、それぞれの場合において用いる励起光強度や信号光強度のレベルが異なる。これにより発熱量、発熱の空間的分布が異なり、最適動作点における動作の実現は困難であった。 Furthermore, since the amount of heat generated and the spatial distribution of heat generation differ depending on the method of use, it is necessary to search for the optimum operating point each time the method of use is changed. Specifically, when frequency down-conversion is used to generate harmonics from the fundamental wave, when frequency up-conversion is used to perform phase conjugate conversion for optical communication, and when frequency up-conversion is used to generate phase conjugate for optical communication, In the case of sensitive amplification, in the case of using frequency up-conversion to generate a two-photon entanglement state that is the basis of a messenger single-photon state, in the case of using frequency up-conversion to generate a vacuum squeezed state, each The levels of excitation light intensity and signal light intensity used in each case are different. As a result, the amount of heat generated and the spatial distribution of heat generation differ, making it difficult to achieve operation at the optimum operating point.
 この問題を解決するために、基本波光を利用して温度調整を行う技術も去られているが(例えば、特許文献1参照)、適応できる場面が限られており、差周波発生など基本波光を用いない使用法において適用することはできない。 In order to solve this problem, a technique for adjusting the temperature using the fundamental wave light has also been abandoned (see, for example, Patent Document 1), but the situation where it can be applied is limited, and the fundamental wave light such as difference frequency generation is used. It cannot be applied in usages that do not use it.
 以上述べたように、二次非線形光学を利用するデバイスの特性は、素子の温度に敏感であり、周囲の環境温度により容易に変化し、従来手法では安定的に最適温度で動作させることは難しいという問題があった。また、入力する信号強度レベルの変化により素子の帯電量が変化し、EO効果に起因した特性の変化も問題となる。さらに非線形光学デバイスの使用方法、例えば周波数上方変換か、または周波数下方変換かによっても各波長帯の信号レベルの差異から、特性変化が引き起こされる。したがって、周期分極反転構造を有する2次非線形光学素子を用いた波長変換デバイスおよび光パラメトリック増幅デバイスを、周囲の環境や使用方法によらず、安定かつ最良の特性を発現させることが課題である。 As described above, the characteristics of devices that use second-order nonlinear optics are sensitive to the temperature of the element and easily change with the ambient temperature, making it difficult to stably operate at the optimum temperature using conventional methods. There was a problem. In addition, the charge amount of the element changes due to the change in the input signal intensity level, and the characteristic change due to the EO effect also poses a problem. Furthermore, depending on how the nonlinear optical device is used, for example, whether it is frequency up-conversion or frequency down-conversion, the difference in signal level in each wavelength band causes characteristic changes. Therefore, it is an issue to make wavelength conversion devices and optical parametric amplification devices using a second-order nonlinear optical element having a periodically poled structure exhibit stable and best characteristics regardless of the surrounding environment and the method of use.
特開2015-225127号公報JP 2015-225127 A
 本発明の目的は、高い波長変換効率を有する波長変換素子を用い、光パラメトリック増幅を行う波長変換装置において、非線形光学素子本来の最大限の性能を、周囲の環境や使用方法によらず、安定して発現させることにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion device that performs optical parametric amplification using a wavelength conversion element having high wavelength conversion efficiency. It is to express it by doing.
 本発明は、このような目的を達成するために、一実施態様は、1または複数の基本波光から波長の異なる変換光を発生させる二次非線形光学素子からなる非線形光学デバイスと、前記非線形光学デバイスの素子の温度を制御する温度制御デバイスとを含む波長変換装置において、前記基本波光の波長とは異なる波長のモニタ光を、前記非線形光学デバイスに入力する手段と、前記非線形光学デバイスから出力されたモニタ光を分離して、光強度を検出する光検出手段と、前記光検出手段で検出された前記光強度に基づいて前記温度制御デバイスを制御する制御手段とを備えたことを特徴とする。 In order to achieve these objects, one embodiment of the present invention provides a nonlinear optical device comprising a second-order nonlinear optical element that generates converted light having different wavelengths from one or more fundamental wave lights, and the nonlinear optical device means for inputting monitor light having a wavelength different from the wavelength of the fundamental wave light into the nonlinear optical device; and output from the nonlinear optical device It is characterized by comprising a light detection means for separating monitor light and detecting light intensity, and a control means for controlling the temperature control device based on the light intensity detected by the light detection means.
図1は、本発明の第1の実施形態に係る波長変換装置の基本構成を示す図、FIG. 1 is a diagram showing the basic configuration of a wavelength conversion device according to a first embodiment of the present invention; 図2は、非線形光学デバイスの第二次高調波発生における波長変換効率の波長依存性の一例を示す図、FIG. 2 is a diagram showing an example of wavelength dependence of wavelength conversion efficiency in second harmonic generation of a nonlinear optical device; 図3は、素子の温度等が変化したときの波長変換効率の波長依存性の一例を示す図、FIG. 3 is a diagram showing an example of the wavelength dependence of the wavelength conversion efficiency when the temperature of the element changes; 図4は、第1の実施形態の波長変換装置における誤差信号の抽出を説明するための図、FIG. 4 is a diagram for explaining error signal extraction in the wavelength conversion device of the first embodiment; 図5は、モニタ光の波長の選択について説明するための図、FIG. 5 is a diagram for explaining selection of the wavelength of monitor light; 図6は、本発明の第2の実施形態に係る波長変換装置の基本構成を示す図、FIG. 6 is a diagram showing the basic configuration of a wavelength conversion device according to a second embodiment of the present invention; 図7は、本発明の第3の実施形態に係る波長変換装置の基本構成を示す図、FIG. 7 is a diagram showing the basic configuration of a wavelength conversion device according to a third embodiment of the present invention; 図8は、第3の実施形態の波長変換装置における誤差信号の抽出を説明するための図、FIG. 8 is a diagram for explaining error signal extraction in the wavelength conversion device of the third embodiment; 図9は、実施例1に係る波長変換装置の構成を示す図、FIG. 9 is a diagram showing the configuration of the wavelength conversion device according to the first embodiment; 図10は、実施例2に係る波長変換装置の構成を示す図である。FIG. 10 is a diagram illustrating the configuration of a wavelength conversion device according to a second embodiment;
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、高い波長変換効率を有する波長変換素子を用い、光パラメトリック増幅を行う波長変換装置を例に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, a wavelength conversion device that performs optical parametric amplification using a wavelength conversion element having high wavelength conversion efficiency will be described as an example.
  [基本概念]
 図1に、本発明の第1の実施形態に係る波長変換装置の基本構成を示す。波長変換装置100は、光導波路型の2次非線形光学素子からなる非線形光学デバイス101と、基本波光である信号光および励起光とモニタ光とを、非線形光学デバイス101に入力するための光合波器102と、非線形光学デバイス101から出力された信号光、励起光およびモニタ光の2倍波を分離するための光分波器103とを備える。非線形光学デバイス101の素子の温度を制御する温度制御デバイスには、温調信号生成機構104が接続され、帰還利得調整器(PID制御コントローラ)105によって制御されている。帰還利得調整器105は、光検出器106によりモニタ光の2倍波の光強度を検出し、非線形光学デバイス101の変換効率が最も高くなるように、温度制御を行う。
[Basic concept]
FIG. 1 shows the basic configuration of the wavelength conversion device according to the first embodiment of the present invention. The wavelength converter 100 includes a nonlinear optical device 101 composed of an optical waveguide type second-order nonlinear optical element, and an optical multiplexer for inputting signal light, excitation light, and monitor light, which are fundamental wave lights, into the nonlinear optical device 101. 102 and an optical demultiplexer 103 for separating double waves of the signal light, excitation light and monitor light output from the nonlinear optical device 101 . A temperature control device that controls the temperature of the elements of the nonlinear optical device 101 is connected to a temperature control signal generation mechanism 104 and controlled by a feedback gain adjuster (PID controller) 105 . The feedback gain adjuster 105 detects the optical intensity of the double wave of the monitor light with the photodetector 106, and performs temperature control so that the conversion efficiency of the nonlinear optical device 101 is maximized.
 図2に、非線形光学デバイスの第二次高調波発生の波長依存性の一例を示す。素子の温度45℃のときを示し、非線形光学デバイス101の波長変換効率が最大となる位相整合波長は1544.70nmである。位相整合波長において波長変換が行われるように、非線形光学デバイス101の温度調整を行うことが目的となる。 FIG. 2 shows an example of the wavelength dependence of second harmonic generation in a nonlinear optical device. The phase matching wavelength at which the wavelength conversion efficiency of the nonlinear optical device 101 is maximized is 1544.70 nm when the element temperature is 45°C. The purpose is to adjust the temperature of the nonlinear optical device 101 so that wavelength conversion occurs at the phase-matched wavelength.
 図3に、素子の温度等が変化したときの波長変換効率の波長依存性の一例を示す。素子の温度変化に応じて、グラフは、図2に示した関数形状をあまり変化させずに左右にシフトしているのが分かる。このシフト量を、制御回路により抑制することが本発明の目的である。  Fig. 3 shows an example of the wavelength dependence of the wavelength conversion efficiency when the temperature of the element changes. It can be seen that the graph shifts left and right in response to changes in the temperature of the device without appreciably changing the function shape shown in FIG. It is an object of the present invention to suppress this shift amount by a control circuit.
 あるシステムが存在して、その応答関数が常に最大値をとるように制御するにはPDH法(Pound-Drever-Hall法)が一般的に用いられる。PDH法は、システム内にディザ信号を生成し、応答信号をディザ信号により復調することで、応答関数を微分した関数を獲得する。この微分関数を誤差関数として用いることにより、微分関数がゼロになるポイント、すなわち応答関数が最大値をとるポイントでロックをすることができる。これはゼロを通る付近では、微分関数が単調減少もしくは単調増加関数になることを利用している。 The PDH method (Pound-Drever-Hall method) is generally used to control the system so that its response function always takes the maximum value. In the PDH method, a dither signal is generated in the system and a response signal is demodulated by the dither signal to obtain a differentiated function of the response function. By using this differential function as the error function, it is possible to lock at the point where the differential function becomes zero, that is, the point where the response function takes the maximum value. This utilizes the fact that the differential function becomes a monotonically decreasing or monotonically increasing function near zero.
 本実施形態の波長変換装置においては、応答信号は各波長に対する第二次高調波発生効率となる。PDH法を用いる場合、波長変換装置にディザ信号を加える必要があるが、本実施形態においては、温度制御デバイスのみがシステムに信号を与えられるデバイスとなる。温度制御デバイスの応答速度は、波長変換装置で扱う信号よりも遅く、ディザ信号自体がシステムの動作に影響を及ぼしてしまう。 In the wavelength conversion device of this embodiment, the response signal is the second harmonic generation efficiency for each wavelength. When using the PDH method, it is necessary to apply a dither signal to the wavelength conversion device, but in this embodiment the temperature control device is the only device to which a signal is applied to the system. The response speed of the temperature control device is slower than the signal handled by the wavelength conversion device, and the dither signal itself affects the operation of the system.
 そこで、本実施形態では、目的とする状態である位相整合波長からわずかに異なる波長の光を非線形光学デバイス内に入射し、その応答から誤差信号を抽出する。図4を参照して、本実施形態の波長変換装置における誤差信号の抽出を説明する。図4(a)に示すように、目標状態として、位相整合波長(信号光波長)からわずかに異なる波長(モニタ光波長)における第二次高調波発生の波長変換効率を目標値(Voff)とする。素子の温度が低い時、図4(b)に示すように、目標値(Voff)とモニタ光の2倍波の光強度(Vdetect)との差分である誤差信号(Vdetect-Voff)>0となって、PID制御コントローラ105は温調信号生成機構104から加熱信号が出力されるように制御する。素子の温度が高い時、図4(c)に示すように、誤差信号(Vdetect-Voff)<0となって、PID制御コントローラ105は温調信号生成機構104から冷却信号が出力されるように制御する。 Therefore, in this embodiment, light having a wavelength slightly different from the phase-matched wavelength of the desired state is made incident on the nonlinear optical device, and an error signal is extracted from the response. Extraction of the error signal in the wavelength conversion device of this embodiment will be described with reference to FIG. As shown in FIG. 4A, as a target state, the wavelength conversion efficiency of second harmonic generation at a wavelength (monitor light wavelength) slightly different from the phase matching wavelength (signal light wavelength) is set to a target value (V off ). and When the temperature of the element is low, as shown in FIG. 4B , an error signal (V detect −V off )>0, the PID controller 105 controls the temperature control signal generation mechanism 104 to output a heating signal. When the temperature of the element is high, as shown in FIG. 4(c), the error signal (V detect −V off )<0, and the PID controller 105 outputs a cooling signal from the temperature control signal generation mechanism 104. to control.
 このような制御方法は、モニタ光の変換効率が、温度変化に対して目標状態付近で単調減少もしくは単調増加関数であることを利用している。図5を参照して、モニタ光の波長の選択について説明する。図5(a)に示すように、目標値が最大値を除く極大値よりも大きい場合、モニタ光よりも信号光の波長が長波であれば、素子温度がどれだけ低くても温度制御が可能である。逆に、モニタ光よりも信号光の波長が短波であれば、素子温度がどれだけ高くても温度制御が可能である。一方、図5(b)に示すように、目標値が最大値を除く極大値よりも小さい場合、温度制御が可能な範囲は狭くなる。従って、モニタ光の波長は、極小値となる波長よりも位相整合波長に近く、また、関数内において最大値を除く他のすべての極大値よりも高い波長変換効率が発揮される波長であることが望ましい。 Such a control method utilizes the fact that the conversion efficiency of monitor light is a monotonically decreasing or monotonically increasing function in the vicinity of the target state with respect to temperature changes. Selection of the wavelength of the monitor light will be described with reference to FIG. As shown in FIG. 5(a), when the target value is greater than the maximum value excluding the maximum value, temperature control is possible no matter how low the element temperature is, as long as the wavelength of the signal light is longer than that of the monitor light. is. Conversely, if the wavelength of the signal light is shorter than that of the monitor light, temperature control is possible no matter how high the element temperature is. On the other hand, as shown in FIG. 5(b), when the target value is smaller than the local maximum value excluding the maximum value, the temperature control range becomes narrow. Therefore, the wavelength of the monitor light should be closer to the phase-matched wavelength than the wavelength at which the minimum value is obtained, and should exhibit a wavelength conversion efficiency higher than all other maximum values in the function except for the maximum value. is desirable.
 本実施形態によれば、モニタ光は位相整合波長の付近に配置される。光ファイバ通信で用いられている波長分割多重(WDM)信号に、本実施形態の波長変換装置を適用すると、位相整合波長は、ガードバンド内となるために、WDMシステムの動作には影響を及ぼさないことが利点である。 According to this embodiment, the monitor light is arranged near the phase matching wavelength. When the wavelength conversion device of this embodiment is applied to a wavelength division multiplexing (WDM) signal used in optical fiber communication, the phase-matched wavelength is within the guard band, so the operation of the WDM system is not affected. The advantage is that there is no
 図6に、本発明の第2の実施形態に係る波長変換装置の基本構成を示す。モニタ光を、信号光とは逆方向から非線形光学デバイスに入力する構成である。波長変換装置200は、光導波路型の2次非線形光学素子からなる非線形光学デバイス201と、基本波光である信号光および励起光とモニタ光とを、非線形光学デバイス101に入力し、非線形光学デバイス201からのモニタ光を分離するサーキュレータ202と、非線形光学デバイス201から出力された信号光、励起光を分離し、モニタ光を非線形光学デバイス201に入力するサーキュレータ203とを備える。非線形光学デバイス201の素子の温度を制御する温度制御デバイスには、温調信号生成機構204が接続され、帰還利得調整器(PID制御コントローラ)205によって制御されている。帰還利得調整器205は、光検出器206によりモニタ光の変換光の光強度を検出し、非線形光学デバイス201の変換効率が最も高くなるように、温度制御を行う。 FIG. 6 shows the basic configuration of the wavelength conversion device according to the second embodiment of the present invention. In this configuration, the monitor light is input to the nonlinear optical device from the direction opposite to the direction of the signal light. The wavelength conversion apparatus 200 inputs a nonlinear optical device 201 comprising an optical waveguide type second-order nonlinear optical element, and signal light, excitation light, and monitor light, which are fundamental wave lights, into the nonlinear optical device 101 . and a circulator 203 for separating the signal light and excitation light output from the nonlinear optical device 201 and inputting the monitor light to the nonlinear optical device 201 . A temperature control device that controls the temperature of the elements of the nonlinear optical device 201 is connected to a temperature control signal generation mechanism 204 and controlled by a feedback gain adjuster (PID controller) 205 . A feedback gain adjuster 205 detects the light intensity of the converted light of the monitor light with a photodetector 206, and performs temperature control so that the conversion efficiency of the nonlinear optical device 201 is maximized.
 図7に、本発明の第3の実施形態に係る波長変換装置の基本構成を示す。第二次高調波発生の応答関数の左右対称性を利用して、位相整合波長の両脇に生成される二つの光をモニタ光として利用する構成である。波長変換装置300は、光導波路型の2次非線形光学素子からなる非線形光学デバイス301と、非線形光学デバイス301に基本波光である信号光および励起光と、モニタ光1およびモニタ光2とを入力するための光合波器302と、非線形光学デバイス301から出力された信号光、励起光、モニタ光1の2倍波およびモニタ光2の2倍波を分離するための光分波器303とを備える。非線形光学デバイス301の素子の温度を制御する温度制御デバイスには、温調信号生成機構304が接続され、帰還利得調整器(PID制御コントローラ)305によって制御されている。帰還利得調整器305は、光検出器306,307によりモニタ光1およびモニタ光2の変換光の光強度を検出し、非線形光学デバイス301の変換効率が最も高くなるように、温度制御を行う。 FIG. 7 shows the basic configuration of the wavelength conversion device according to the third embodiment of the present invention. This is a configuration in which two lights generated on both sides of a phase-matched wavelength are used as monitor lights by utilizing left-right symmetry of the response function of second harmonic generation. Wavelength converter 300 includes a nonlinear optical device 301 composed of an optical waveguide type second-order nonlinear optical element, and signal light and excitation light, which are fundamental wave lights, and monitor light 1 and monitor light 2 are input to nonlinear optical device 301 . and an optical demultiplexer 303 for separating the signal light output from the nonlinear optical device 301, the excitation light, the second harmonic of the monitor light 1, and the second harmonic of the monitor light 2. . A temperature control device that controls the temperature of the elements of the nonlinear optical device 301 is connected to a temperature control signal generation mechanism 304 and controlled by a feedback gain adjuster (PID controller) 305 . The feedback gain adjuster 305 detects the light intensity of the converted light of the monitor light 1 and the monitor light 2 by the photodetectors 306 and 307, and performs temperature control so that the conversion efficiency of the nonlinear optical device 301 is maximized.
 図8を参照して、第3の実施形態の波長変換装置における誤差信号の抽出を説明する。図8(a)に示すように、第二次高調波発生の波長変換効率の応答関数が左右対称であることから、位相整合波長を挟んだ2つの波長(モニタ光波長1、モニタ光波長2)を選択する。2つの波長は、位相整合波長(信号光波長)からわずかに異なる波長であって、波長変換効率が同じ値であり、この値を目標値(Vdetect1,Vdetect2)とする。素子の温度が低い時、図8(b)に示すように、両者の差分である誤差信号(Vdetect1-Vdetect2)>0となって、PID制御コントローラ305は温調信号生成機構304から加熱信号が出力されるように制御する。素子の温度が高い時、図8(c)に示すように、誤差信号(Vdetect1-Vdetect2)<0となって、PID制御コントローラ305は温調信号生成機構304から冷却信号が出力されるように制御する。 Extraction of the error signal in the wavelength converter of the third embodiment will be described with reference to FIG. As shown in FIG. 8A, since the response function of the wavelength conversion efficiency of second harmonic generation is symmetrical, two wavelengths (monitor light wavelength 1, monitor light wavelength 2 ). The two wavelengths are wavelengths slightly different from the phase matching wavelength (signal light wavelength) and have the same value of wavelength conversion efficiency, and these values are set as target values (V detect1 , V detect2 ). When the temperature of the element is low, as shown in FIG. 8B, the error signal (V detect1 −V detect2 ), which is the difference between the two, becomes >0, and the PID controller 305 causes the temperature control signal generation mechanism 304 to heat. Control so that the signal is output. When the temperature of the element is high, as shown in FIG. 8(c), the error signal (V detect1 −V detect2 )<0, and the PID controller 305 outputs a cooling signal from the temperature control signal generation mechanism 304. to control.
 このような制御方法は、第二次高調波発生の波長変換効率の応答関数が、位相整合波長を中心に左右対称であることさえ分かっていれば目標値を知っている必要はない。 With such a control method, it is not necessary to know the target value as long as it is known that the response function of the wavelength conversion efficiency of second harmonic generation is bilaterally symmetrical about the phase matching wavelength.
 なお、モニタ光の生成は、信号光とは全く別の光源からの光であってもよいし、後述するように、信号光または励起光の一部を分岐し、強度変調をかけることによって生成してもよい。 The monitor light may be generated by light from a light source that is completely different from the signal light, or by splitting a part of the signal light or pump light and subjecting it to intensity modulation, as will be described later. You may
 図9に、実施例1に係る波長変換装置の構成を示す。波長変換装置400は、周期的に分極反転されたニオブ酸リチウム(PPLN)の導波路を有する非線形光学デバイス401と、非線形光学デバイス401に信号光を入力し、非線形光学デバイス401からのモニタ光を分離するサーキュレータ402と、非線形光学デバイス401から出力された信号光を分離し、モニタ光光源409からのモニタ光を非線形光学デバイス401に入力するサーキュレータ403とを備える。励起光は、ダイクロイックミラー407を介して、信号光とともに非線形光学デバイス401に入力し、非線形光学デバイス401の出力からダイクロイックミラー408を介して分離する。非線形光学デバイス401の温度制御デバイスであるペルチエ素子411には、温調信号生成機構404が接続され、帰還利得調整器(PID制御コントローラ)405によって制御されている。帰還利得調整器405は、光検出器406によりモニタ光の変換光の光強度を検出し、非線形光学デバイス401の変換効率が最も高くなるように、温度制御を行う。 FIG. 9 shows the configuration of the wavelength conversion device according to the first embodiment. The wavelength conversion device 400 includes a nonlinear optical device 401 having a periodically poled lithium niobate (PPLN) waveguide, a signal light input to the nonlinear optical device 401, and a monitor light from the nonlinear optical device 401. and a circulator 403 for separating the signal light output from the nonlinear optical device 401 and inputting the monitor light from the monitor light source 409 to the nonlinear optical device 401 . The excitation light enters nonlinear optical device 401 along with signal light via dichroic mirror 407 and is separated from the output of nonlinear optical device 401 via dichroic mirror 408 . A Peltier element 411 that is a temperature control device of the nonlinear optical device 401 is connected to a temperature control signal generation mechanism 404 and controlled by a feedback gain adjuster (PID controller) 405 . A feedback gain adjuster 405 detects the optical intensity of the converted light of the monitor light with a photodetector 406, and performs temperature control so that the conversion efficiency of the nonlinear optical device 401 is maximized.
 非線形光学デバイス401は、入力される光信号と励起光、および出力される変換光の間で擬似位相整合を満たす周期分極反転構造を有し、高い波長変換効率を有する波長変換器および光パラメトリック増幅器として動作する。PPLN導波路中では励起光、信号光および変換光の3波の間で擬似位相整合条件が満たされている。つまり、励起光、信号光および変換光の導波路中の実効屈折率をそれぞれnp、ns、ncとすると、
 np/λp-ns/λs-nc/λc=1/Λ (式4)
を満たす反転周期Λの分極反転構造を有する。
The nonlinear optical device 401 has a periodically poled structure that satisfies quasi-phase matching between an input optical signal and pumping light, and output converted light, and is a wavelength converter and optical parametric amplifier with high wavelength conversion efficiency. works as In the PPLN waveguide, the quasi-phase matching condition is satisfied among the three waves of pumping light, signal light and conversion light. In other words, if the effective refractive indices in the waveguides of the excitation light, signal light, and converted light are respectively np, ns, and nc, then
np/λp−ns/λs−nc/λc=1/Λ (Formula 4)
It has a polarization-inverted structure with an inversion period Λ that satisfies
 波長変換装置400には、信号光として複数波長の光信号かせらなる波長分割多重(WDM)信号が入力される。非線形光学デバイス401において、励起光が合波されたWDM信号は、PPLN導波路に入射され、差周波発生によりWDM信号の変換が生成される。 A wavelength division multiplexing (WDM) signal composed of optical signals of a plurality of wavelengths is input to the wavelength conversion device 400 as signal light. In the nonlinear optical device 401, the WDM signal combined with the excitation light is incident on the PPLN waveguide, and the WDM signal is converted by difference frequency generation.
 ここで、基本波光波長λ0(周波数:ω0)を1545.00nm、励起光波長λp(周波数:2ω0)を772.5nmとした。モニタ光は、信号光とは逆向きに非線形光学デバイス401に入力し、波長は1545.10nmとした。モニタ光は、非線形光学デバイス401のPPLN導波路内で第二次高調波発生により波長772.55nmの光に変換され、ダイクロイックミラー407、サーキュレータ402を介して光検出器406に入力される。 Here, the fundamental wave light wavelength λ0 (frequency: ω0) was set to 1545.00 nm, and the excitation light wavelength λp (frequency: 2ω0) was set to 772.5 nm. The monitor light was input to the nonlinear optical device 401 in the opposite direction to the signal light, and had a wavelength of 1545.10 nm. The monitor light is converted into light with a wavelength of 772.55 nm by second harmonic generation in the PPLN waveguide of the nonlinear optical device 401 and is input to the photodetector 406 via the dichroic mirror 407 and circulator 402 .
 非線形光学デバイス401に励起光および信号光を入力することにより、PPLN導波路中の差周波発生により、変換光が生成される。例えば、信号光波長λs(周波数:ωs)を1540nmとすれば、2ω0-ωsにより、波長1550nmの変換光が生成される。基本波光波長λ0を中心として波長軸上で折り返した形で変換光が生成される。 By inputting excitation light and signal light into the nonlinear optical device 401, conversion light is generated by difference frequency generation in the PPLN waveguide. For example, if the signal light wavelength λs (frequency: ωs) is 1540 nm, 2ω0−ωs generates converted light with a wavelength of 1550 nm. Converted light is generated in a folded form on the wavelength axis with the fundamental light wavelength λ0 as the center.
 実施例1では、モニタ光として信号光から僅かに波長のずれた光を用いる。一般に均一な周期分極反転構造を有する二次非線形光学媒体の第二次高調波発生の効率は、入射する基本波帯の光に対してsinc関数の二乗の関数の形になる。この関数は、図2に示したような形状となり、最も効率が高くなる中心の最大値に比べ、サイドに現れる極大値は比較的抑制される。モニタ光の波長を決定する基準としては、この関数内において中央の最大値を含むピーク内に存在し、かつ最大値を除く他のすべての極大値よりも高い変換効率の波長を選択すればよい。 In the first embodiment, light whose wavelength is slightly shifted from the signal light is used as monitor light. In general, the efficiency of second-order harmonic generation of a second-order nonlinear optical medium having a uniform periodically poled structure takes the form of the square of the sinc function with respect to incident light in the fundamental waveband. This function has a shape as shown in FIG. 2, and the maxima appearing on the sides are relatively suppressed compared to the maxima at the center where the efficiency is the highest. As a criterion for determining the wavelength of the monitor light, a wavelength that exists within the peak including the central maximum value in this function and has a higher conversion efficiency than all other maximum values excluding the maximum value should be selected. .
 光検出器406で検出される光強度は、目標値付近においては、温度が高くなると減少し、温度が低くなると増加する。この変化分を誤差信号として帰還利得調整器405に入力し、温調信号生成機構404の制御電流にフィードバックを行った。これにより、全帯域に渡り波長変換光の強度が0.2dB以内で安定させることができた。 In the vicinity of the target value, the light intensity detected by the photodetector 406 decreases as the temperature increases and increases as the temperature decreases. This change is input to the feedback gain adjuster 405 as an error signal and fed back to the control current of the temperature control signal generating mechanism 404 . As a result, the intensity of wavelength-converted light could be stabilized within 0.2 dB over the entire band.
 なお、光サーキュレータを用いずに光波長合分波器を用いてモニタ光を信号光から分離してもよく、この構成でも同様の効果が得られた。さらに、光波長合分波器を用いる場合は、信号光と同方向からモニタ光を入射してもよく、この構成でも同様の効果が得られた。 Note that the monitor light may be separated from the signal light by using an optical wavelength multiplexer/demultiplexer without using the optical circulator, and the same effect was obtained with this configuration. Furthermore, when an optical wavelength multiplexer/demultiplexer is used, the monitor light may be incident from the same direction as the signal light, and similar effects can be obtained with this configuration.
 図10に、実施例2に係る波長変換装置の構成を示す。波長変換装置500は、周期的に分極反転されたニオブ酸リチウム(PPLN)の導波路を有する非線形光学デバイス501と、非線形光学デバイス501に信号光、モニタ光1およびモニタ光2を入力するための光合波器502と、さらに励起光を合波して非線形光学デバイス501に入力するダイクロイックミラー507と、非線形光学デバイス301から出力された信号光を分離するダイクロイックミラー508と、さらに励起光、モニタ光1の2倍波およびモニタ光2の2倍波を分離するための光分波器503とを備える。非線形光学デバイス501の温度制御デバイスであるペルチエ素子511には、温調信号生成機構504が接続され、帰還利得調整器(PID制御コントローラ)505によって制御されている。帰還利得調整器505は、光検出器561,562によりモニタ光の2倍波の光強度を検出し、その差分を差分器563から得て、非線形光学デバイス501の変換効率が最も高くなるように、温度制御を行う。 FIG. 10 shows the configuration of the wavelength conversion device according to the second embodiment. The wavelength converter 500 includes a nonlinear optical device 501 having a periodically poled lithium niobate (PPLN) waveguide, and a signal light, monitor light 1 and monitor light 2 input to the nonlinear optical device 501 . An optical multiplexer 502, a dichroic mirror 507 that multiplexes the excitation light and inputs it to the nonlinear optical device 501, a dichroic mirror 508 that separates the signal light output from the nonlinear optical device 301, and further excitation light and monitor light. and an optical demultiplexer 503 for separating the double wave of 1 and the double wave of the monitor light 2 . A Peltier element 511 , which is a temperature control device for the nonlinear optical device 501 , is connected to a temperature control signal generation mechanism 504 and controlled by a feedback gain adjuster (PID controller) 505 . The feedback gain adjuster 505 detects the optical intensity of the double wave of the monitor light with the photodetectors 561 and 562, obtains the difference from the differentiator 563, and maximizes the conversion efficiency of the nonlinear optical device 501. , temperature control.
 信号光の一部を光分岐器521により分岐して、波長フィルタ522により基本波のみのスペクトルを抽出する。変調器523により、抽出した基本波スペクトルの光に、10GHzの強度変調を施し、基本波光波長の両サイドに約0.1nm離れた波長の2つのモニタ光を生成する。ここで、基本波光波長λ0(周波数:ω0)を1545.00nm、励起光波長λp(周波数:2ω0)を772.50nmとし、基本波より波長の短いモニタ光をモニタ光1、基本波より波長の長いモニタ光をモニタ光2とする。モニタ光1およびモニタ光2は、光合波器502を介して、非線形光学デバイス501に入力される。 A part of the signal light is split by the optical splitter 521, and the spectrum of only the fundamental wave is extracted by the wavelength filter 522. A modulator 523 applies intensity modulation of 10 GHz to the extracted fundamental wave spectrum light to generate two monitor lights with wavelengths separated by about 0.1 nm on both sides of the fundamental wave light wavelength. Here, the fundamental wave light wavelength λ0 (frequency: ω0) is 1545.00 nm, the excitation light wavelength λp (frequency: 2ω0) is 772.50 nm, monitor light 1 is the monitor light with a shorter wavelength than the fundamental wave, and monitor light 1 is the monitor light with a shorter wavelength than the fundamental wave. The long monitor light is referred to as monitor light 2 . Monitor light 1 and monitor light 2 are input to nonlinear optical device 501 via optical multiplexer 502 .
 非線形光学デバイス501は、入力される光信号と励起光、および出力される変換光の間で擬似位相整合を満たす周期分極反転構造を有し、高い波長変換効率を有する波長変換器および光パラメトリック増幅器として動作する。 The nonlinear optical device 501 has a periodically poled structure that satisfies quasi-phase matching between an input optical signal and pump light, and output converted light, and is a wavelength converter and optical parametric amplifier with high wavelength conversion efficiency. works as
 非線形光学デバイス501の出力側には、2倍の周波数に変換されたモニタ光1およびモニタ光2が出力され、それぞれ別々の光検出器561,562により受光し、差分器563による差分信号を帰還利得調整器505に入力する。光検出器561で検出される光強度は、目標値付近においては、温度が高くなると減少し、温度が低くなると増加する。光検出器562で検出される光強度は、目標値付近においては、温度が高くなると増加し、温度が低くなると減少する。この差分は、目標値付近では単調関数となるので誤差信号として用いることができる。この誤差信号として帰還利得調整器505に入力し、温調信号生成機構504の制御電流にフィードバックを行った。これにより、全帯域に渡り波長変換光の強度が0.2dB以内で安定させることができた。 Monitor light 1 and monitor light 2 whose frequency has been doubled are output to the output side of the nonlinear optical device 501, and are received by separate photodetectors 561 and 562, respectively, and a difference signal from a differentiator 563 is fed back. Input to gain adjuster 505 . In the vicinity of the target value, the light intensity detected by the photodetector 561 decreases as the temperature increases and increases as the temperature decreases. In the vicinity of the target value, the light intensity detected by the photodetector 562 increases as the temperature increases and decreases as the temperature decreases. Since this difference becomes a monotonic function near the target value, it can be used as an error signal. This error signal is input to the feedback gain adjuster 505 and fed back to the control current of the temperature control signal generating mechanism 504 . As a result, the intensity of wavelength-converted light could be stabilized within 0.2 dB over the entire band.
 一般に均一な周期分極反転構造を有する二次非線形光学媒体の第二次高調波発生の効率は、入射する基本波帯の光に対してsinc関数の二乗の関数の形になり、基本波光波長を中心にして対照的な形状となる。光検出器561の出力と、光検出器562の出力とが等しくなるように、すなわち差分がゼロとなるように制御信号を生み出すことにより、目標状態を安定的に実現することができる。なお、作製誤差により、関数の形が非対称になった場合は、誤差信号にオフセットを加えることにより、最適点に調整することが可能となる。 In general, the efficiency of second-order harmonic generation of a second-order nonlinear optical medium having a uniform periodically poled structure is in the form of the square of the sinc function for incident light in the fundamental wave band, and the wavelength of the fundamental wave is The shape is symmetrical with respect to the center. By generating a control signal such that the output of the photodetector 561 and the output of the photodetector 562 are equal, that is, the difference is zero, the target state can be stably achieved. If the shape of the function becomes asymmetrical due to manufacturing errors, it is possible to adjust to the optimum point by adding an offset to the error signal.
 なお、本実施形態ではPPLN導波路を用いたが、周期分極反転構造を有していない導波路でもよく、その材質も二次非線形光学係数を有していれば、ニオブ酸リチウムでなくてもよい。また、2つのモニタ光を使用する場合であっても、サーキュレータ、波長合分波器を組み合わせることにより、信号光と逆方向に非線形光学デバイスにモニタ光を入力してもよい。 Although a PPLN waveguide is used in this embodiment, a waveguide that does not have a periodically poled structure may also be used, and if the material has a second-order nonlinear optical coefficient, it does not need to be lithium niobate. good. Also, even when two monitor lights are used, the monitor light may be input to the nonlinear optical device in the opposite direction to the signal light by combining a circulator and a wavelength multiplexer/demultiplexer.

Claims (7)

  1.  1または複数の基本波光から波長の異なる変換光を発生させる2次非線形光学素子からなる非線形光学デバイスと、前記非線形光学デバイスの素子の温度を制御する温度制御デバイスとを含む波長変換装置において、
     前記基本波光の波長とは異なる波長のモニタ光を、前記非線形光学デバイスに入力する手段と、
     前記非線形光学デバイスから出力されたモニタ光を分離して、光強度を検出する光検出手段と、
     前記光検出手段で検出された前記光強度に基づいて前記温度制御デバイスを制御する制御手段と
     を備えたことを特徴とする波長変換装置。
    A wavelength conversion apparatus comprising a nonlinear optical device comprising a second-order nonlinear optical element that generates converted light having different wavelengths from one or more fundamental light beams, and a temperature control device that controls the temperature of the elements of the nonlinear optical device,
    means for inputting monitor light having a wavelength different from the wavelength of the fundamental wave light into the nonlinear optical device;
    a photodetector for separating the monitor light output from the nonlinear optical device and detecting the light intensity;
    and control means for controlling the temperature control device based on the light intensity detected by the light detection means.
  2.  前記モニタ光の波長は、前記二次非線形光学素子が前記基本波光に対して最も効率よく第二次高調波を発生する目標状態において、第二次高調波発生の変換効率を前記基本波光の波長の関数としたとき、前記モニタ光の波長から前記基本波光の波長の間において前記関数が単調関数となるように設定されていることを特徴とする請求項1に記載の波長変換装置。 The wavelength of the monitor light is set so that the second-order nonlinear optical element generates the second-order harmonic most efficiently with respect to the fundamental-wave light, and the conversion efficiency of second-order harmonic generation is the wavelength of the fundamental-wave light. 2. The wavelength conversion device according to claim 1, wherein the function is set to be a monotonic function between the wavelength of the monitor light and the wavelength of the fundamental wave light.
  3.  前記モニタ光の波長は、前記関数内において最大値を除く他のすべての極大値よりも高い変換効率の波長となるように設定されていることを特徴とする請求項2に記載の波長変換装置。 3. The wavelength converter according to claim 2, wherein the wavelength of said monitor light is set to be a wavelength with a higher conversion efficiency than all other maximum values within said function except for the maximum value. .
  4.  前記モニタ光は、第1のモニタ光波長と第2のモニタ光波長の2つのモニタ光であり、
     前記第1のモニタ光波長と前記第2のモニタ光波長とは、前記関数内において最大値を挟んで変換効率が同じ値となるように設定され、
     前記制御手段は、前記2つのモニタ光の光強度の差分に基づいて前記温度制御デバイスを制御することを特徴とする請求項2に記載の波長変換装置。
    the monitor light is two monitor lights of a first monitor light wavelength and a second monitor light wavelength;
    the first monitor light wavelength and the second monitor light wavelength are set so that the conversion efficiencies are the same across the maximum value in the function;
    3. The wavelength conversion apparatus according to claim 2, wherein said control means controls said temperature control device based on a difference in light intensity of said two monitor lights.
  5.  前記モニタ光は、前記基本波光の一部を分岐し、強度変調を施して生成されることを特徴とする請求項1ないし4のいずれか1項に記載の波長変換装置。 The wavelength conversion device according to any one of claims 1 to 4, wherein the monitor light is generated by branching a part of the fundamental wave light and performing intensity modulation.
  6.  前記モニタ光は、前記非線形光学デバイスに入力される前記基本波光とは逆方向から前記非線形光学デバイスに入力されることを特徴とする請求項1ないし5のいずれか1項に記載の波長変換装置。 6. The wavelength conversion apparatus according to claim 1, wherein the monitor light is input to the nonlinear optical device from a direction opposite to that of the fundamental wave light input to the nonlinear optical device. .
  7.  前記非線形光学デバイスは、周期的に分極反転されたニオブ酸リチウム(PPLN)の導波路を有することを特徴とする請求項1ないし6のいずれか1項に記載の波長変換装置。 The wavelength converter according to any one of claims 1 to 6, wherein the nonlinear optical device has a periodically poled lithium niobate (PPLN) waveguide.
PCT/JP2021/001862 2021-01-20 2021-01-20 Wavelength conversion apparatus WO2022157858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/001862 WO2022157858A1 (en) 2021-01-20 2021-01-20 Wavelength conversion apparatus
JP2022576273A JP7473850B2 (en) 2021-01-20 2021-01-20 Wavelength conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001862 WO2022157858A1 (en) 2021-01-20 2021-01-20 Wavelength conversion apparatus

Publications (1)

Publication Number Publication Date
WO2022157858A1 true WO2022157858A1 (en) 2022-07-28

Family

ID=82548569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001862 WO2022157858A1 (en) 2021-01-20 2021-01-20 Wavelength conversion apparatus

Country Status (2)

Country Link
JP (1) JP7473850B2 (en)
WO (1) WO2022157858A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231128A (en) * 1999-02-10 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical element, nonlinear optical device using the same and production of nonlinear optical element
JP2006113489A (en) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion apparatus
EP2466372A1 (en) * 2010-12-16 2012-06-20 Fedor V. Karpushko Laser system comprising a nonlinear device having a dual resonant resonator and method of operating the same
JP2015025825A (en) * 2011-11-14 2015-02-05 富士電機株式会社 Light source device, and wavelength conversion method
JP2015225127A (en) * 2014-05-26 2015-12-14 日本電信電話株式会社 Wavelength conversion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083854A1 (en) 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Coherent light source and control method thereof, and display unit and laser display using them
US7796324B2 (en) 2006-10-10 2010-09-14 Panasonic Corporation Wavelength converting apparatus and image displaying apparatus
WO2010004749A1 (en) 2008-07-09 2010-01-14 パナソニック株式会社 Wavelength conversion laser light source, and projection display device, liquid crystal display device, and laser light source provided with same
JP2012042630A (en) 2010-08-18 2012-03-01 Panasonic Corp Light source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231128A (en) * 1999-02-10 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Nonlinear optical element, nonlinear optical device using the same and production of nonlinear optical element
JP2006113489A (en) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion apparatus
EP2466372A1 (en) * 2010-12-16 2012-06-20 Fedor V. Karpushko Laser system comprising a nonlinear device having a dual resonant resonator and method of operating the same
JP2015025825A (en) * 2011-11-14 2015-02-05 富士電機株式会社 Light source device, and wavelength conversion method
JP2015225127A (en) * 2014-05-26 2015-12-14 日本電信電話株式会社 Wavelength conversion device

Also Published As

Publication number Publication date
JP7473850B2 (en) 2024-04-24
JPWO2022157858A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7087928B2 (en) Wavelength converter
Honardoost et al. Rejuvenating a versatile photonic material: thin‐film lithium niobate
Umeki et al. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide
US6867903B2 (en) Optical parametric circuit
JP6204064B2 (en) Optical amplifier
JP3129028B2 (en) Short wavelength laser light source
US6762876B2 (en) Optical converter with a designated output wavelength
JP7160194B2 (en) Wavelength conversion element
WO2022157858A1 (en) Wavelength conversion apparatus
Chen et al. Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides
JP5814183B2 (en) Wavelength conversion device
JP2014211539A (en) Wavelength conversion element
JP2019113623A (en) Characteristic stabilization method for wavelength conversion element
WO2023218646A1 (en) Wavelength conversion system
Kishimoto et al. Parallel periodically poled LiNbO3 waveguides module for polarization diversity wavelength conversion and amplification
JP6774372B2 (en) Optical element
WO2022219687A1 (en) Wavelength conversion optical element
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
CN114967276B (en) Low-noise on-chip parametric optical amplification device
WO2022249234A1 (en) Wavelength conversion device and method for manufacturing wavelength conversion device
WO2023037560A1 (en) Wavelength converter and method for controlling same
JP6401107B2 (en) Optical amplifier
US9078052B2 (en) Method and device for converting an input light signal into an output light signal
JP2004109916A (en) Wavelength conversion apparatus for optical communication
Kazama et al. Single-chip parametric frequency up/down converter using parallel PPLN waveguides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920972

Country of ref document: EP

Kind code of ref document: A1