WO2023218646A1 - Wavelength conversion system - Google Patents

Wavelength conversion system Download PDF

Info

Publication number
WO2023218646A1
WO2023218646A1 PCT/JP2022/020240 JP2022020240W WO2023218646A1 WO 2023218646 A1 WO2023218646 A1 WO 2023218646A1 JP 2022020240 W JP2022020240 W JP 2022020240W WO 2023218646 A1 WO2023218646 A1 WO 2023218646A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
polarization
light
wavelength
conversion means
Prior art date
Application number
PCT/JP2022/020240
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 柏崎
毅伺 梅木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/020240 priority Critical patent/WO2023218646A1/en
Publication of WO2023218646A1 publication Critical patent/WO2023218646A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure

Definitions

  • the present invention relates to a wavelength conversion system, and more particularly, to a wavelength conversion system that is applied to an optical communication system or an optical measurement system and includes an optical element using a nonlinear optical effect.
  • Wavelength conversion technology is used in various application fields such as optical signal wavelength conversion in optical communications, optical processing, medical care, and bioengineering.
  • the wavelength range of light that is subject to wavelength conversion extends from the ultraviolet region to the visible region, the infrared region, and the terahertz region, and even extends to wavelength regions that cannot be directly output by semiconductor lasers. Focusing on the material used for wavelength conversion, lithium niobate (LiNbO 3 :LN), which is a second-order nonlinear material and has a large nonlinear constant, is used.
  • a wavelength conversion device having an optical waveguide with a periodically poled structure (PPLN) using LN is widely used in commercially available light sources because of its high wavelength conversion efficiency.
  • the second-order nonlinear optical effect uses three mechanisms in which light with a wavelength ⁇ 1 and light with a wavelength ⁇ 2 are input to a second-order nonlinear optical material to generate a new wavelength ⁇ 3.
  • a wavelength conversion operation that satisfies equation (1) is called sum frequency generation (SFG).
  • 1/ ⁇ 3 1/ ⁇ 1+1/ ⁇ 2 Formula (1)
  • SHG second harmonic generation
  • ⁇ 3 ⁇ 1/2 Formula (2)
  • a wavelength conversion operation that satisfies equation (3) is called difference frequency generation (DFG).
  • 1/ ⁇ 3 1/ ⁇ 1-1/ ⁇ 2 Formula (3)
  • the wavelength ⁇ 1 used when generating the difference frequency according to equation (3) is called excitation light
  • the wavelength ⁇ 2 is called signal light
  • the wavelength ⁇ 3 is called idler light (converted light).
  • the mid-infrared wavelength range from 2 ⁇ m to 5 ⁇ m there are strong absorption lines such as the reference vibration of various environmental gases, so it is desirable to develop a compact mid-infrared light source for environmental gas measurement equipment. ing.
  • DFG is considered to be promising because it can use a technically mature excitation light source in the vicinity of 1 ⁇ m and a light source for signal light in the communication wavelength band.
  • visible light such as green light can be produced using an excitation light source around 1 ⁇ m using SHG or SFG.
  • a light source that can generate 200 nm is viewed as promising.
  • wavelength conversion technology using DFG By using wavelength conversion technology using DFG, it is possible to convert all the light in the 1.55 ⁇ m wavelength band, which is mainly used in optical fiber communications, into another wavelength band. Therefore, it can be applied to optical routing in wavelength division multiplexing, wavelength collision avoidance in optical routing, etc. Further, in wavelength conversion using a DFG, signal distortion compensation can be performed by using the fact that the idler light becomes phase conjugate light with respect to the signal light. When the signal light is converted to phase conjugate light at approximately the midpoint of the transmission path, the signal distortion caused by the dispersion generated in the transmission path before conversion to phase conjugate light and the nonlinear optical effect in the fiber is converted into phase conjugate light. They propagate so as to cancel each other out in the subsequent transmission path. Therefore, a wavelength conversion device using the above wavelength conversion technology is considered as one of the key devices for constructing a large-capacity communication optical network.
  • optical parametric amplification By using a wavelength conversion element with high wavelength conversion efficiency, it is possible to configure a signal light amplifier called optical parametric amplification by transferring energy from pumping light power to signal light.
  • phase-sensitive amplifiers which have amplification characteristics depending on the phase relationship between pump light and signal light, are expected to be a technology that enables low-noise optical amplification.
  • the degenerate optical parametric amplification process can generate photon pairs with quantum correlation, and can generate non-classical states such as squeezed light generation and single photon states with messengers.
  • an optical waveguide type device In order to obtain a highly efficient and broadband nonlinear optical effect in PPLN, an optical waveguide type device is effective. This is because wavelength conversion efficiency is proportional to the power density of light propagating through a nonlinear optical material, and by forming a waveguide structure, light can be confined within a limited range.
  • diffusion type waveguides called Ti diffusion waveguides and proton exchange waveguides as waveguides using nonlinear optical materials.
  • these waveguides have problems from the viewpoint of optical damage resistance and long-term reliability because impurities are diffused into the crystal during the manufacturing process.
  • diffusive waveguides when high-intensity light is input into the waveguide, the crystal is damaged due to the photorefractive effect, so there is a limit to the optical power that can be input into the waveguide.
  • a ridge-type optical waveguide can be formed by bonding two substrates, making one substrate thin, and then performing ridge processing.
  • the method of bonding them together with an adhesive has a problem in that the thin film cracks when the temperature changes because the adhesive and the substrate have different coefficients of thermal expansion.
  • the adhesive is degraded by the second harmonic light generated in the waveguide, waveguide loss increases during operation, and wavelength conversion efficiency deteriorates.
  • the thickness of the single crystal film becomes non-uniform, resulting in a problem that the phase matching wavelength of the wavelength conversion element shifts.
  • the direct bonding method is a method in which wafers that have been surface-treated using chemicals are stacked on top of each other and bonded using attraction between the surfaces. Bonding is performed at room temperature, but since the bonding strength of the wafers at this time is low, heat treatment at a high temperature is performed to improve the bonding strength.
  • the direct bonding method also has the advantage of avoiding contamination of impurities and absorption of adhesives, etc. when generating light in the mid-infrared region by DFG. It is also viewed as promising.
  • the direct bonding method is expected to be applied not only to nonlinear optical devices but also to high-power optical modulators and the like.
  • the direct bonding method requires heat treatment at a high temperature of about 400° C.
  • the wafers that can be bonded are required not only to have good surface flatness but also to have similar coefficients of thermal expansion.
  • direct bonding methods using similar material substrates such as LN, lithium tantalate (LiTaO 3 :LT), or LN added with additives such as Mg, Zn, Sc, In, and Fe have been investigated.
  • Oxide-based compound substrates such as LN have large electro-optic constants in addition to second-order nonlinear optical constants, and are widely used as optical modulators using electro-optic effects (EO effects).
  • EO effects electro-optic effects
  • Nonlinear optical devices using the direct bonding method can receive optical inputs on the order of watts, so they can be expected to be applied to the generation of high-intensity optical modulation signals, laser processing technology, etc.
  • a ridge-type waveguide has a core formed on a base substrate according to a waveguide pattern, and has a step-type refractive index distribution.
  • the three sides of the core that are not in contact with the base substrate are in contact with an air layer (with a refractive index of 1).
  • an over cladding layer that also serves as a protective film may be provided.
  • the periodic poled structure is a structure for performing quasi-phase matching, and the crystal orientation is reversed for each coherence length of the fundamental wave and the wavelength-converted wave, and the sign of the nonlinear constant is reversed. It is a structure that compensates for the amount. It has high practical value in that it can perform wavelength conversion over a wide range from the mid-infrared region to the visible region without using special nonlinear optical crystals.
  • the refractive index of a nonlinear optical material has temperature dependence, and in order to strictly satisfy the quasi-phase matching condition in a second-order nonlinear optical element, it is necessary to keep the temperature of the optical element constant.
  • a temperature measuring element such as a thermistor or thermocouple is provided at or near the secondary nonlinear optical element, and its resistance value is monitored. Then, depending on the monitoring results, a mechanism is provided to keep the optical element at a constant temperature using a temperature controller such as a heater or a Peltier element.
  • the polarization of the three lights, pumping light, signal light, and idler light is oriented parallel to the polarization direction of the crystal. It was designed with a polarization inversion period that would allow for matching. This is to use the maximum d 33 among the second-order nonlinear optical constants d ij (3x6 matrix elements).
  • Phase matching in which three lights with the same polarization interact efficiently is called Type 0 phase matching.
  • Optical parametric amplification of 30 dB or more has been reported using a PPLN waveguide using Type 0 phase matching. Further, by using a plurality of PPLN waveguide type optical parametric amplifiers in parallel, phase conjugate conversion in an optical communication system has been successfully achieved (see, for example, Non-Patent Document 1).
  • the optical parametric amplifier becomes a device that acts only on one polarized wave. Therefore, when applied to an optical communication system that handles polarization-multiplexed signal light, it is necessary to prepare a plurality of optical parametric amplifiers to support XY polarization. Furthermore, in wavelength conversion, the conversion destination band and polarization resources must be opened in advance, so by using a wavelength demultiplexer, it is necessary to use four PPLN optical parametric amplifiers. Further, in optical parametric amplification, it is necessary to prepare optical fiber amplifiers in order to prepare strong pumping light, so it is necessary to prepare the number of optical fiber amplifiers according to the number of PPLN optical parametric amplifiers. Therefore, the system size tends to be large and the power consumption also tends to be large. A conventional PPLN waveguide type optical parametric amplifier using Type 0 phase matching has a problem in that the system configuration becomes large because wavelength resources cannot be utilized to the maximum.
  • An object of the present invention is to provide a wavelength conversion system that can wavelength-convert polarization-multiplexed incident light all at once without increasing the number of PPLN waveguide type wavelength conversion means.
  • one embodiment of the present invention has a wavelength conversion means made of a nonlinear optical material and having a periodic polarization inversion structure, and has a plurality of wavelength conversion means for each of upper sideband waves and lower sideband waves.
  • a wavelength conversion system that collectively performs wavelength conversion on polarization-multiplexed incident light that includes signal light of
  • the wavelength converting means includes a wave separating means and a polarization combining means for combining the outputs from the plurality of wavelength converting means, and the wavelength converting means receives a signal light and a pumping light whose polarization axes are perpendicular to each other, It is characterized in that it is folded back around a central axis having a wavelength twice that of the excitation light by frequency generation, and outputs idler light having a polarization different from that of the signal light before conversion.
  • FIG. 1 is a diagram showing a wavelength conversion system using conventional Type 0 phase matching
  • FIG. 2 is a diagram showing a wavelength conversion system according to the first embodiment of the present invention
  • FIG. 3 is a diagram showing a wavelength conversion system according to a second embodiment of the present invention
  • FIG. 4 is a diagram showing a PPLN waveguide included in the wavelength conversion means
  • FIG. 5 is a diagram showing an example of the wavelength conversion system of the first embodiment.
  • FIG. 1 shows a wavelength conversion system using conventional Type 0 phase matching.
  • This figure shows the configuration of a conventional wavelength conversion system that can collectively perform wavelength conversion on a plurality of polarization-multiplexed signal lights.
  • the structure of the incident light includes a plurality of signal lights in each of the upper and lower band waves, and the upper and lower band waves are arranged around a wavelength twice that of the excitation light.
  • a lower sideband wave is schematically shown on the left and an upper sideband wave is shown on the right side, centering on a wavelength twice that of the excitation light.
  • the incident light is separated into X polarization and Y polarization by the polarization separation means 101, and further separated into four bands, an upper side band and a lower side band, by the wavelength separation means 102X and 102Y.
  • Each sideband signal light is input to wavelength conversion means 103XU, 103XL, 103YU, and 103YL including PPLN waveguides using Type 0 phase matching, and by difference frequency generation, the central axis is twice the wavelength of the excitation light. are converted to their respective folded wavelengths.
  • the excitation light source in the wavelength conversion means is not shown.
  • the wavelength-converted light has the same polarization as the input signal light. Pumping light and signal light are removed from the output of the wavelength conversion means, and idler light is multiplexed by wavelength multiplexing means 104X, 104Y and polarization multiplexing means 105 and output.
  • the conventional wavelength conversion system requires a plurality of optical parametric amplifiers corresponding to XY polarization, and requires a total of four wavelength conversion means. Therefore, in this embodiment, wavelength conversion is performed using half the number of conventional optical parametric amplifiers by using wavelength conversion means including a PPLN waveguide that utilizes Type 2 phase matching.
  • FIG. 2 shows a wavelength conversion system according to a first embodiment of the present invention.
  • a plurality of signal lights are included in each of the upper side band wave and the lower side band wave, and wavelength conversion can be performed on the polarization multiplexed incident light all at once.
  • the configuration of the incident light is the same as that of the conventional example, and is separated into X polarized light and Y polarized light by polarization separation means 201, and is transmitted to wavelength conversion means 203X and 203Y including PPLN waveguides using Type 2 phase matching. It is incident. At this time, as will be described later with reference to FIG.
  • the polarization axis of the incident light is aligned with the eigenaxis of the PPLN waveguide of the wavelength conversion means 203X, 203Y.
  • the characteristic axis of a PPLN waveguide is the direction of polarization, that is, the vertical direction of the ridge-shaped optical waveguide (Y-axis direction in Figure 4) or the direction perpendicular to it (X-axis direction in Figure 4), and the polarization of the incident light Make the axis parallel to one of the eigenaxes. Therefore, it is desirable that the polarization axis of an optical system such as an optical fiber connecting between the polarization separation means 201 and the wavelength conversion means 203X, 203Y is maintained.
  • the polarization axes can be aligned by using polarization maintaining fibers 211X and 211Y. Further, a planar optical circuit that maintains polarization may be used, or a polarization controller may be inserted between the polarization separation means 201 and the wavelength conversion means 203X, 203Y.
  • the excitation light source in the wavelength conversion means is not shown.
  • the wavelength conversion means 203X the lower sideband light of the X polarization is converted into the upper sideband wave of the Y polarization.
  • X-polarized upper sideband light is converted to Y-polarized lower sideband light.
  • the wavelength converting means 203Y the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
  • the optical system between the wavelength conversion means 203X, 203Y and the polarization multiplexing means 205 also desirably maintains its polarization axis.
  • the polarization separation means 201 and the polarization multiplexing means 205 may use an optical fiber type directional coupler, or may be separated by a dielectric multilayer coating. Furthermore, a waveguide type directional coupler may be used using a planar optical circuit.
  • FIG. 3 shows a wavelength conversion system according to a second embodiment of the invention.
  • a plurality of signal lights are included in each of the upper side band wave and the lower side band wave, and wavelength conversion can be performed on the polarization multiplexed incident light all at once.
  • the structure of the incident light is the same as that of the conventional example, and is separated into an upper sideband wave and a lower sideband wave by the wavelength separation means 302, and is incident on wavelength conversion means 303U and 303L including PPLN waveguides using Type 2 phase matching. be done.
  • the polarization of the light incident on the PPLN waveguides of the wavelength conversion means 303U and 303L may be of any type.
  • the excitation light source in the wavelength conversion means is not shown.
  • the X-polarized upper-sideband light is converted into the Y-polarized lower-sideband light.
  • Y-polarized upper-sideband light is converted to X-polarized lower-sideband light.
  • the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
  • the wavelength separation means 302 and wavelength multiplexing means 304 may be of any type as long as they can separate or combine the upper and lower sideband waves based on the center frequency of wavelength conversion.
  • an optical fiber type directional coupler, a grating mirror, or an arrayed waveguide grating (AWG) made of a planar optical circuit can be used.
  • FIG. 4 shows a PPLN waveguide included in the wavelength conversion means.
  • FIG. 4(a) shows a PPLN waveguide using conventional Type 0 phase matching
  • FIG. 4(b) shows a PPLN waveguide using Type 2 phase matching included in the wavelength conversion means 203, 303 described above. shows.
  • a ZnO-doped LN substrate is directly bonded to a base substrate 401 made of LT, and a ridge-shaped PPLN waveguide 402 is formed by processing the LN substrate.
  • a quasi-phase matching condition is satisfied between the three waves of excitation light, signal light, and converted light.
  • the wavelengths of the excitation light, signal light, and converted light are ⁇ p, ⁇ s, and ⁇ c, respectively, and the effective refractive indices in the waveguide are np, ns, and nc, respectively.
  • np/ ⁇ p-ns/ ⁇ s-nc/ ⁇ c 1/ ⁇ (Equation 4) It has a polarization inversion structure with an inversion period ⁇ that satisfies the following.
  • phase matching is performed in such a way that the polarizations of the three lights, the excitation light, the signal light, and the idler light, are parallel to the polarization direction (Y-axis). That is, the signal light and the pumping light are input with the same polarization, and the output idler light is also output with the same polarization.
  • the signal light and pump light are input with orthogonal polarization, and the output idler light is output with orthogonal polarization to the signal light, that is, the same polarization as the pump light. be done.
  • the polarization axis of the incident excitation light is in the same direction as the polarization direction (Y-axis), as the wavelength conversion efficiency is good.
  • the period of polarization inversion is modified, wavelength conversion can be performed even if the polarization axis of the excitation light is orthogonal to the polarization direction (X-axis). It should be parallel to one of the axes.
  • FIG. 5 shows an example of the wavelength conversion system of the first embodiment.
  • the structure of the incident light is the same as that of the conventional example, and is separated into X polarization and Y polarization by polarization separation means 501, and is sent to wavelength conversion means 503X and 503Y including PPLN waveguides using Type 2 phase matching. It is incident. At this time, the polarization axis of the incident light is aligned with the eigenaxis of the PPLN waveguide of the wavelength conversion means 503X, 503Y.
  • the polarization separating means 501 and the wavelength converting means 503X, 503Y are connected using polarization maintaining fibers 511X, 511Y, and the polarization axis of the signal light and the eigenaxis of the PPLN waveguide are connected. Align with the eigenaxis of polarization direction.
  • the wavelength conversion means 503X, 503Y include PPLN waveguides 531X, 531Y using Type 2 phase matching, into which the excitation light from the excitation light sources 532X, 532Y and the signal light from the polarization separation means 501 are input. .
  • the signal light and the excitation light are combined by a combining mirror installed immediately before the PPLN waveguide of the wavelength conversion means 503X, 503Y.
  • the core size of the PPLN waveguide 402 is 8 ⁇ 8 ⁇ m
  • the polarization inversion period of PPLN is approximately 9 ⁇ m
  • the TE mode of the pumping light, the TM mode of the signal light, and the TE mode of the idler light It was confirmed that the three types of light interact.
  • wavelength conversion means 503X In the case of Type 2 phase matching, light with a wavelength that is twice the wavelength of the pumping light as the central axis is generated as idler light with a polarization different from that of the signal light before conversion.
  • the wavelength conversion means 503X the lower sideband light of the X polarization is converted into the upper sideband wave of the Y polarization.
  • X-polarized upper sideband light is converted to Y-polarized lower sideband light.
  • the wavelength conversion means 503Y the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
  • PPLN is used in this embodiment, a nonlinear optical material that does not have a periodically poled structure may be used, and a material having a second-order nonlinear optical constant may be used in addition to LN. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Through the present invention, polarization-multiplexed incident light is wavelength converted collectively without an increase in the number of PPLN waveguide-type wavelength conversion means. Provided is a wavelength conversion system that has wavelength conversion means (203X, 203Y) comprising a nonlinear optical material and having a periodic polarization inversion structure, and that performs wavelength conversion collectively of polarization-multiplexed incident light in which a plurality of signal lights are included in each of an upper band and a lower band, the wavelength conversion system comprising a polarization separation means (201) for separating the incident light for each polarization and causing the separated incident light to be incident on the plurality of wavelength conversion means, and a polarization multiplexing means (205) for multiplexing the output from the plurality of wavelength conversion means, signal light and excitation light having orthogonal polarization axes being incident on the wavelength conversion means and turned back by difference frequency generation with a wavelength that is twice that of the excitation light as a center axis, and idler light having different polarization than the signal light before conversion being outputted.

Description

波長変換システムwavelength conversion system
 本発明は、波長変換システムに関し、より詳細には、光通信システムや光計測システムに適用され、非線形光学効果を用いた光学素子を含む波長変換システムに関する。 The present invention relates to a wavelength conversion system, and more particularly, to a wavelength conversion system that is applied to an optical communication system or an optical measurement system and includes an optical element using a nonlinear optical effect.
 波長変換技術は、光通信における光信号波長変換、光加工、医療、生物工学などの様々な応用分野に利用されている。波長変換の対象となる光の波長域は、紫外域から可視域、赤外域、テラヘルツ域にわたり、半導体レーザでは直接出力できない波長域にまで及ぶ。波長変換に利用される材料に着目すると、二次非線形材料であって、大きな非線形定数を持つニオブ酸リチウム(LiNbO:LN)が用いられている。LNを用いた周期分極反転構造(PPLN)の光導波路を有する波長変換装置は、波長変換効率の高さから市販されている光源に広く使用されている。 Wavelength conversion technology is used in various application fields such as optical signal wavelength conversion in optical communications, optical processing, medical care, and bioengineering. The wavelength range of light that is subject to wavelength conversion extends from the ultraviolet region to the visible region, the infrared region, and the terahertz region, and even extends to wavelength regions that cannot be directly output by semiconductor lasers. Focusing on the material used for wavelength conversion, lithium niobate (LiNbO 3 :LN), which is a second-order nonlinear material and has a large nonlinear constant, is used. A wavelength conversion device having an optical waveguide with a periodically poled structure (PPLN) using LN is widely used in commercially available light sources because of its high wavelength conversion efficiency.
 二次非線形光学効果では、波長λ1の光と波長λ2の光を二次非線形光学材料に入力して新たな波長λ3を発生させる、3つの機構を用いる。第1に、式(1)を満たす波長変換動作を、和周波発生(SFG)と呼ぶ。
1/λ3=1/λ1+1/λ2      式(1)
第2に、λ1=λ2とし、式(1)を変形した式(2)を満たす波長変換動作を、第二次高調波発生(SHG)と呼ぶ。
λ3=λ1/2            式(2)
第3に、式(3)を満たす波長変換動作を、差周波発生(DFG)と呼ぶ。
1/λ3=1/λ1-1/λ2      式(3)
式(3)による差周波発生の時に用いる波長λ1を励起光、波長λ2を信号光、波長λ3をアイドラ光(変換光)とそれぞれ呼ぶ。さらに、非線形光学材料を共振器の中に入れて、波長λ1のみ入力し、式(3)を満たす波長λ2,λ3を発生する光パラメトリック発振器を構成することもできる。
The second-order nonlinear optical effect uses three mechanisms in which light with a wavelength λ1 and light with a wavelength λ2 are input to a second-order nonlinear optical material to generate a new wavelength λ3. First, a wavelength conversion operation that satisfies equation (1) is called sum frequency generation (SFG).
1/λ3=1/λ1+1/λ2 Formula (1)
Second, a wavelength conversion operation that satisfies equation (2), which is a modified version of equation (1), with λ1=λ2 is called second harmonic generation (SHG).
λ3=λ1/2 Formula (2)
Thirdly, a wavelength conversion operation that satisfies equation (3) is called difference frequency generation (DFG).
1/λ3=1/λ1-1/λ2 Formula (3)
The wavelength λ1 used when generating the difference frequency according to equation (3) is called excitation light, the wavelength λ2 is called signal light, and the wavelength λ3 is called idler light (converted light). Furthermore, it is also possible to construct an optical parametric oscillator that generates wavelengths λ2 and λ3 that satisfy equation (3) by placing a nonlinear optical material in a resonator and inputting only the wavelength λ1.
 例えば、2μmから5μmの中赤外の波長域には様々な環境ガスの基準振動などの強い吸収線が存在するため、環境ガスの測定装置には、小型の中赤外光源の開発が望まれている。中赤外域の光源には、技術的に成熟された1μm付近の励起光光源と通信波長帯の信号光用の光源とを用いることのできるDFGが有望だと考えられている。また、0.5μm付近の可視光の波長域には、半導体レーザでは実現の難しい波長域が存在することから、1μm付近の励起光光源を用いて、SHGまたはSFGにより、緑色光などの可視光を発生することができる光源が有望視されている。 For example, in the mid-infrared wavelength range from 2 μm to 5 μm, there are strong absorption lines such as the reference vibration of various environmental gases, so it is desirable to develop a compact mid-infrared light source for environmental gas measurement equipment. ing. As a light source in the mid-infrared region, DFG is considered to be promising because it can use a technically mature excitation light source in the vicinity of 1 μm and a light source for signal light in the communication wavelength band. In addition, since there is a wavelength range of visible light around 0.5 μm that is difficult to realize with semiconductor lasers, visible light such as green light can be produced using an excitation light source around 1 μm using SHG or SFG. A light source that can generate 200 nm is viewed as promising.
 DFGを用いた波長変換技術を用いると、光ファイバ通信で主に用いられている波長1.55μm帯の光を一括して別の波長帯に変換できる。このことから、波長分割多重方式における光のルーティング、光ルーティングにおける波長の衝突回避などに適用することができる。また、DFGを用いた波長変換では、アイドラ光が信号光に対して位相共役光になることを用いて、信号歪補償を行うことができる。伝送路のおよそ中間地点で信号光を位相共役光に変換すると、位相共役光への変換前の伝送路で生じた分散、ファイバ中の非線形光学効果によって生じる信号歪みを、位相共役光への変換後の伝送路中で打消しあうように伝搬する。従って、上記の波長変換技術を用いた波長変換装置は、大容量通信光ネットワークを構築するキーデバイスの一つとして考えられている。 By using wavelength conversion technology using DFG, it is possible to convert all the light in the 1.55 μm wavelength band, which is mainly used in optical fiber communications, into another wavelength band. Therefore, it can be applied to optical routing in wavelength division multiplexing, wavelength collision avoidance in optical routing, etc. Further, in wavelength conversion using a DFG, signal distortion compensation can be performed by using the fact that the idler light becomes phase conjugate light with respect to the signal light. When the signal light is converted to phase conjugate light at approximately the midpoint of the transmission path, the signal distortion caused by the dispersion generated in the transmission path before conversion to phase conjugate light and the nonlinear optical effect in the fiber is converted into phase conjugate light. They propagate so as to cancel each other out in the subsequent transmission path. Therefore, a wavelength conversion device using the above wavelength conversion technology is considered as one of the key devices for constructing a large-capacity communication optical network.
 高い波長変換効率を有する波長変換素子を用いると、励起光パワーから信号光へのエネルギーの移行により、光パラメトリック増幅と呼ばれる信号光の増幅器を構成することができる。特に、励起光と信号光の位相関係に応じた増幅特性を有する位相感応増幅器は、低雑音な光増幅が可能な技術として期待されている。また、縮退光パラメトリック増幅過程は、量子相関を持った光子対を生成可能であり、スクィーズド光生成、伝令付き単一光子状態などの非古典的状態を生成することができる。これらの光増幅技術は、光量子コンピュータ、量子光を用いたセンシング技術等に適用することが期待されている。 By using a wavelength conversion element with high wavelength conversion efficiency, it is possible to configure a signal light amplifier called optical parametric amplification by transferring energy from pumping light power to signal light. In particular, phase-sensitive amplifiers, which have amplification characteristics depending on the phase relationship between pump light and signal light, are expected to be a technology that enables low-noise optical amplification. Furthermore, the degenerate optical parametric amplification process can generate photon pairs with quantum correlation, and can generate non-classical states such as squeezed light generation and single photon states with messengers. These optical amplification technologies are expected to be applied to optical quantum computers, sensing technologies using quantum light, and the like.
 PPLNにおいて高効率かつ広帯域な非線形光学効果を得るためには、光導波路型のデバイスが有効である。これは、波長変換効率が非線形光学材料を伝搬する光のパワー密度に比例するためであり、導波路構造を形成することで限られた範囲に光を閉じ込めることができるからである。これまでに、非線形光学材料を用いた導波路として、Ti拡散導波路、プロトン交換導波路と呼ばれる、拡散型の導波路の検討がなされてきた。しかしながら、これらの導波路は、作製工程において結晶内に不純物を拡散することから、光損傷耐性、長期信頼性の観点から課題があった。拡散型の導波路では、高強度の光を導波路に入射するとフォトリフラクティブ効果による結晶の損傷が発生してしまうため、導波路に入力できる光パワーに制限があった。 In order to obtain a highly efficient and broadband nonlinear optical effect in PPLN, an optical waveguide type device is effective. This is because wavelength conversion efficiency is proportional to the power density of light propagating through a nonlinear optical material, and by forming a waveguide structure, light can be confined within a limited range. Until now, studies have been made on diffusion type waveguides called Ti diffusion waveguides and proton exchange waveguides as waveguides using nonlinear optical materials. However, these waveguides have problems from the viewpoint of optical damage resistance and long-term reliability because impurities are diffused into the crystal during the manufacturing process. In diffusive waveguides, when high-intensity light is input into the waveguide, the crystal is damaged due to the photorefractive effect, so there is a limit to the optical power that can be input into the waveguide.
 近年、結晶のバルクの特性をそのまま利用できることから、高光損傷耐性、長期信頼性、デバイス設計が容易等の特徴を有するリッジ型の光導波路が研究開発されている。2枚の基板を接合し、一方の基板を薄膜化した後、リッジ加工をすることにより、リッジ型の光導波路を形成することができる。2枚の基板の接合において、接着剤により張合わせる方法は、接着材と基板の熱膨張係数が異なるために、温度が変化したときに薄膜に割れが生じるという問題があった。加えて、導波路中で発生する第二高調波光によって接着剤が劣化するために、動作中に導波路損失が増加し、波長変換の効率が劣化するという問題もあった。さらに、接着層の不均一性のために単結晶膜の膜厚が不均一となり、波長変換素子の位相整合波長がずれるという問題もあった。 In recent years, research and development has been carried out on ridge-type optical waveguides, which have features such as high optical damage resistance, long-term reliability, and easy device design because the properties of the bulk of the crystal can be used as is. A ridge-type optical waveguide can be formed by bonding two substrates, making one substrate thin, and then performing ridge processing. When bonding two substrates together, the method of bonding them together with an adhesive has a problem in that the thin film cracks when the temperature changes because the adhesive and the substrate have different coefficients of thermal expansion. In addition, since the adhesive is degraded by the second harmonic light generated in the waveguide, waveguide loss increases during operation, and wavelength conversion efficiency deteriorates. Furthermore, due to the non-uniformity of the adhesive layer, the thickness of the single crystal film becomes non-uniform, resulting in a problem that the phase matching wavelength of the wavelength conversion element shifts.
 一方、接着剤を用いない直接接合技術が知られている。直接接合法は、化学薬品を用いて表面処理を行ったウエハ同士を重ね合わせることにより、表面間引力により接合する方法である。接合は常温で行われるが、このときのウエハの接合強度は小さいため、接合強度を向上させるため高温での熱処理を行う。直接接合法は、高光損傷耐性、長期信頼性、デバイス設計の容易性等の特徴以外にも、例えば、DFGによる中赤外域の光発生において、不純物の混入や接着剤等の吸収を回避できる点からも有望視されている。さらに、直接接合法は、非線形光学デバイスに留まらず、ハイパワーの光変調器等の応用にも期待されている。 On the other hand, direct bonding technology that does not use adhesive is known. The direct bonding method is a method in which wafers that have been surface-treated using chemicals are stacked on top of each other and bonded using attraction between the surfaces. Bonding is performed at room temperature, but since the bonding strength of the wafers at this time is low, heat treatment at a high temperature is performed to improve the bonding strength. In addition to features such as high optical damage resistance, long-term reliability, and ease of device design, the direct bonding method also has the advantage of avoiding contamination of impurities and absorption of adhesives, etc. when generating light in the mid-infrared region by DFG. It is also viewed as promising. Furthermore, the direct bonding method is expected to be applied not only to nonlinear optical devices but also to high-power optical modulators and the like.
 直接接合法においては400℃程度の高温での熱処理を必要とするため、接合できるウエハ間には、表面の平坦性が良いことに加え、熱膨張率が近いことも要求される。このため、LN、タンタル酸リチウム(LiTaO:LT)、またはMg、Zn、Sc、In、Fe等の添加物を付与したLNなどの同種の材料基板による直接接合法が検討されてきた。 Since the direct bonding method requires heat treatment at a high temperature of about 400° C., the wafers that can be bonded are required not only to have good surface flatness but also to have similar coefficients of thermal expansion. For this reason, direct bonding methods using similar material substrates such as LN, lithium tantalate (LiTaO 3 :LT), or LN added with additives such as Mg, Zn, Sc, In, and Fe have been investigated.
 LNなどの酸化物系化合物基板は、2次非線形光学定数に加え、電気光学定数も大きく、電気光学効果(EO効果)を用いた光変調器としても広く使われている。しかしながら、Ti拡散導波路を用いた光変調器が商用されているものの、100mW以上のハイパワーの光入力が困難であった。直接接合法による非線形光学デバイスでは、ワット級の光入力も可能になることから、高光強度の光変調信号の生成、レーザ加工技術等への応用が期待できる。 Oxide-based compound substrates such as LN have large electro-optic constants in addition to second-order nonlinear optical constants, and are widely used as optical modulators using electro-optic effects (EO effects). However, although optical modulators using Ti diffused waveguides have been commercially available, it has been difficult to input high-power light of 100 mW or more. Nonlinear optical devices using the direct bonding method can receive optical inputs on the order of watts, so they can be expected to be applied to the generation of high-intensity optical modulation signals, laser processing technology, etc.
 リッジ型導波路は、ベース基板上に導波路パターンに応じて形成されたコアを有しており、ステップ型の屈折率分布を有する。コアは、ベース基板に接していない3つの側面が空気層(屈折率が1)に接している。しかし、実用上の問題点として、コア層を剥き出しにしていると、空気中に浮遊するゴミやほこりの付着等による特性の経時変化が懸念される。また、光導波路の端面にARコートなどの膜を形成するために必要な耐機械的強度を考慮すると、保護膜を兼ねたオーバークラッド層を設ける場合もある。 A ridge-type waveguide has a core formed on a base substrate according to a waveguide pattern, and has a step-type refractive index distribution. The three sides of the core that are not in contact with the base substrate are in contact with an air layer (with a refractive index of 1). However, as a practical problem, if the core layer is exposed, there is a concern that the characteristics may change over time due to adhesion of airborne dirt or dust. Furthermore, in consideration of the mechanical strength necessary for forming a film such as an AR coat on the end face of the optical waveguide, an over cladding layer that also serves as a protective film may be provided.
 一方、周期分極反転構造は、擬似位相整合を行うための構造であり、基本波と波長変換された波のコヒーレンス長ごとに結晶方位を反転し,非線形定数の符号を逆転することにより位相不整合量を補償していく構造である。特殊な非線形光学結晶を用いずに、中赤外域から可視域まで幅広い波長変換が行えるという点で実用的な価値が高い。一般に非線形光学材料の屈折率は温度依存性を有しており、2次非線形光学素子において擬似位相整合条件を厳密に満たすためには、光学素子の温度を一定に保つ必要がある。通常は、2次非線形光学素子またはその近傍にサーミスタ・熱電対等の測温体を設けて、その抵抗値等をモニタする。そして、モニタ結果によって、ヒータ、ペルチェ素子等の温調器を用いて、光学素子を一定温度に保つ機構を設ける。 On the other hand, the periodic poled structure is a structure for performing quasi-phase matching, and the crystal orientation is reversed for each coherence length of the fundamental wave and the wavelength-converted wave, and the sign of the nonlinear constant is reversed. It is a structure that compensates for the amount. It has high practical value in that it can perform wavelength conversion over a wide range from the mid-infrared region to the visible region without using special nonlinear optical crystals. Generally, the refractive index of a nonlinear optical material has temperature dependence, and in order to strictly satisfy the quasi-phase matching condition in a second-order nonlinear optical element, it is necessary to keep the temperature of the optical element constant. Usually, a temperature measuring element such as a thermistor or thermocouple is provided at or near the secondary nonlinear optical element, and its resistance value is monitored. Then, depending on the monitoring results, a mechanism is provided to keep the optical element at a constant temperature using a temperature controller such as a heater or a Peltier element.
 ここで、PPLNの光導波路を用いる場合、高い変換効率を実現するために、励起光、信号光、アイドラ光の3つの光の偏波が、結晶の分極方向と平行となるような向きで位相整合が取れるような分極反転周期で設計されていた。二次非線形光学定数dij(3x6の行列成分)のうち、最大のd33を利用するためである。3つの光が同じ偏波で効率よく相互作用するような位相整合は、Type0型の位相整合と呼ばれる。Type0型の位相整合を利用したPPLN導波路により、30dB以上の光パラメトリック増幅が報告されている。また、複数のPPLN導波路型の光パラメトリック増幅器を並列で用いることにより、光通信システムにおける位相共役変換に成功している(例えば、非特許文献1参照)。 When using a PPLN optical waveguide, in order to achieve high conversion efficiency, the polarization of the three lights, pumping light, signal light, and idler light, is oriented parallel to the polarization direction of the crystal. It was designed with a polarization inversion period that would allow for matching. This is to use the maximum d 33 among the second-order nonlinear optical constants d ij (3x6 matrix elements). Phase matching in which three lights with the same polarization interact efficiently is called Type 0 phase matching. Optical parametric amplification of 30 dB or more has been reported using a PPLN waveguide using Type 0 phase matching. Further, by using a plurality of PPLN waveguide type optical parametric amplifiers in parallel, phase conjugate conversion in an optical communication system has been successfully achieved (see, for example, Non-Patent Document 1).
 しかしながら、Type0型の位相整合を用いる手法では、光パラメトリック増幅器は、1つの偏波に対してのみ作用するデバイスとなる。従って、偏波多重された信号光を扱う光通信システムへの適用の際には、XY偏波に対応するために複数の光パラメトリック増幅器を準備する必要がある。さらに、波長変換では変換先の帯域および偏波リソースをあらかじめ開けておかなければならないため、波長分離器を用いることにより、4つのPPLN光パラメトリック増幅器を用いる必要がある。また、光パラメトリック増幅では強い励起光を準備するために、光ファイバ増幅器を準備する必要があるため、PPLN光パラメトリック増幅器の台数に従った数の光ファイバ増幅器を準備する必要がある。従って、システム規模が大きく、消費電力も大きくなりがちである。従来のType0型の位相整合を利用したPPLN導波路型の光パラメトリック増幅器では、波長リソースを最大限に活用できないがゆえにシステム構成も大きくなってしまうという問題があった。 However, in the method using Type 0 phase matching, the optical parametric amplifier becomes a device that acts only on one polarized wave. Therefore, when applied to an optical communication system that handles polarization-multiplexed signal light, it is necessary to prepare a plurality of optical parametric amplifiers to support XY polarization. Furthermore, in wavelength conversion, the conversion destination band and polarization resources must be opened in advance, so by using a wavelength demultiplexer, it is necessary to use four PPLN optical parametric amplifiers. Further, in optical parametric amplification, it is necessary to prepare optical fiber amplifiers in order to prepare strong pumping light, so it is necessary to prepare the number of optical fiber amplifiers according to the number of PPLN optical parametric amplifiers. Therefore, the system size tends to be large and the power consumption also tends to be large. A conventional PPLN waveguide type optical parametric amplifier using Type 0 phase matching has a problem in that the system configuration becomes large because wavelength resources cannot be utilized to the maximum.
 本発明の目的は、PPLN導波路型の波長変換手段の数を増やすことなく、偏波多重された入射光を一括して波長変換することができる波長変換システムを提供することにある。 An object of the present invention is to provide a wavelength conversion system that can wavelength-convert polarization-multiplexed incident light all at once without increasing the number of PPLN waveguide type wavelength conversion means.
 本発明は、このような目的を達成するために、一実施態様は、非線形光学材料からなり、周期的な分極反転構造を有する波長変換手段を有し、上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、偏波多重された入射光を一括して波長変換を行う波長変換システムであって、前記入射光を偏波ごとに分離して、複数の波長変換手段に入射させる偏波分離手段と、前記複数の波長変換手段からの出力を合波する偏波合波手段とを備え、前記波長変換手段は、偏波軸が直交する信号光と励起光とが入射され、差周波発生により前記励起光の2倍の波長を中心軸として折り返され、変換前の前記信号光とは異なる偏波のアイドラ光を出力することを特徴とする。 In order to achieve such an object, one embodiment of the present invention has a wavelength conversion means made of a nonlinear optical material and having a periodic polarization inversion structure, and has a plurality of wavelength conversion means for each of upper sideband waves and lower sideband waves. A wavelength conversion system that collectively performs wavelength conversion on polarization-multiplexed incident light that includes signal light of The wavelength converting means includes a wave separating means and a polarization combining means for combining the outputs from the plurality of wavelength converting means, and the wavelength converting means receives a signal light and a pumping light whose polarization axes are perpendicular to each other, It is characterized in that it is folded back around a central axis having a wavelength twice that of the excitation light by frequency generation, and outputs idler light having a polarization different from that of the signal light before conversion.
図1は、従来のType0型の位相整合を用いる波長変換システムを示す図、FIG. 1 is a diagram showing a wavelength conversion system using conventional Type 0 phase matching, 図2は、本発明の第1の実施形態にかかる波長変換システムを示す図、FIG. 2 is a diagram showing a wavelength conversion system according to the first embodiment of the present invention, 図3は、本発明の第2の実施形態にかかる波長変換システムを示す図、FIG. 3 is a diagram showing a wavelength conversion system according to a second embodiment of the present invention, 図4は、波長変換手段に含まれるPPLN導波路を示す図、FIG. 4 is a diagram showing a PPLN waveguide included in the wavelength conversion means, 図5は、第1の実施形態の波長変換システムの一実施例を示す図である。FIG. 5 is a diagram showing an example of the wavelength conversion system of the first embodiment.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1に、従来のType0型の位相整合を用いる波長変換システムを示す。偏波多重された複数の信号光を一括して波長変換を行うことができる、従来の波長変換システムの構成を示している。入射光の構成は、上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、励起光の2倍の波長を中心に、上側帯波と下側帯波とが配置されている。図1では、模式的に、励起光の2倍の波長を中心に左側に下側帯波、右側に上側帯波を示している。 FIG. 1 shows a wavelength conversion system using conventional Type 0 phase matching. This figure shows the configuration of a conventional wavelength conversion system that can collectively perform wavelength conversion on a plurality of polarization-multiplexed signal lights. The structure of the incident light includes a plurality of signal lights in each of the upper and lower band waves, and the upper and lower band waves are arranged around a wavelength twice that of the excitation light. In FIG. 1, a lower sideband wave is schematically shown on the left and an upper sideband wave is shown on the right side, centering on a wavelength twice that of the excitation light.
 入射光は、偏波分離手段101によりX偏波とY偏波とに分離され、さらに波長分離手段102X,102Yにより上側帯波と下側帯波の4つの帯域に分離される。各々の側帯波の信号光は、Type0型の位相整合を利用したPPLN導波路を含む波長変換手段103XU,103XL,103YU,103YLに入射され、差周波発生により励起光の2倍の波長を中心軸として、それぞれ折り返した波長に変換される。図1では、波長変換手段における励起光光源は図示を省略している。波長変換された光は、入射された信号光と同じ偏波を有する。波長変換手段の出力から励起光、信号光が取り除かれ、アイドラ光が、波長合波手段104X,104Yおよび偏波合波手段105により合波されて出力される。 The incident light is separated into X polarization and Y polarization by the polarization separation means 101, and further separated into four bands, an upper side band and a lower side band, by the wavelength separation means 102X and 102Y. Each sideband signal light is input to wavelength conversion means 103XU, 103XL, 103YU, and 103YL including PPLN waveguides using Type 0 phase matching, and by difference frequency generation, the central axis is twice the wavelength of the excitation light. are converted to their respective folded wavelengths. In FIG. 1, the excitation light source in the wavelength conversion means is not shown. The wavelength-converted light has the same polarization as the input signal light. Pumping light and signal light are removed from the output of the wavelength conversion means, and idler light is multiplexed by wavelength multiplexing means 104X, 104Y and polarization multiplexing means 105 and output.
 上述したように、従来の波長変換システムでは、XY偏波に対応する複数の光パラメトリック増幅器が必要となり、合計4つの波長変換手段を必要とする。そこで、本実施形態では、Type2型の位相整合を利用したPPLN導波路を含む波長変換手段を用いることにより、従来の半数の光パラメトリック増幅器により波長変換を行う。 As described above, the conventional wavelength conversion system requires a plurality of optical parametric amplifiers corresponding to XY polarization, and requires a total of four wavelength conversion means. Therefore, in this embodiment, wavelength conversion is performed using half the number of conventional optical parametric amplifiers by using wavelength conversion means including a PPLN waveguide that utilizes Type 2 phase matching.
  [第1の実施形態]
 図2に、本発明の第1の実施形態にかかる波長変換システムを示す。上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、偏波多重された入射光を一括して波長変換を行うことができる。入射光の構成は、従来例と同じであり、偏波分離手段201によりX偏波とY偏波とに分離され、Type2型の位相整合を用いるPPLN導波路を含む波長変換手段203X,203Yに入射される。このとき、図4を参照して後述するように、入射光の偏波軸と波長変換手段203X,203YのPPLN導波路の固有軸とを合わせる。PPLN導波路の固有軸は、分極の向き、すなわちリッジ型の光導波路の鉛直方向(図4のY軸方向)、またはその直角方向(図4のX軸方向)であり、入射光の偏波軸を、固有軸のいずれかと並行になるようにする。従って、偏波分離手段201と波長変換手段203X,203Yの間を結ぶ光ファイバ等の光学系は、その偏波軸が保持されることが望ましい。具体的には、偏波保持ファイバ211X,211Yを用いることにより偏波軸を合わせることができる。また、偏波が保持される平面光回路を用いてもよいし、偏波分離手段201と波長変換手段203X,203Yの間に偏波コントローラを挿入した構成としてもよい。
[First embodiment]
FIG. 2 shows a wavelength conversion system according to a first embodiment of the present invention. A plurality of signal lights are included in each of the upper side band wave and the lower side band wave, and wavelength conversion can be performed on the polarization multiplexed incident light all at once. The configuration of the incident light is the same as that of the conventional example, and is separated into X polarized light and Y polarized light by polarization separation means 201, and is transmitted to wavelength conversion means 203X and 203Y including PPLN waveguides using Type 2 phase matching. It is incident. At this time, as will be described later with reference to FIG. 4, the polarization axis of the incident light is aligned with the eigenaxis of the PPLN waveguide of the wavelength conversion means 203X, 203Y. The characteristic axis of a PPLN waveguide is the direction of polarization, that is, the vertical direction of the ridge-shaped optical waveguide (Y-axis direction in Figure 4) or the direction perpendicular to it (X-axis direction in Figure 4), and the polarization of the incident light Make the axis parallel to one of the eigenaxes. Therefore, it is desirable that the polarization axis of an optical system such as an optical fiber connecting between the polarization separation means 201 and the wavelength conversion means 203X, 203Y is maintained. Specifically, the polarization axes can be aligned by using polarization maintaining fibers 211X and 211Y. Further, a planar optical circuit that maintains polarization may be used, or a polarization controller may be inserted between the polarization separation means 201 and the wavelength conversion means 203X, 203Y.
 Type2型の位相整合の場合は、差周波発生により励起光の2倍の波長を中心軸として折り返された波長の光は、変換前の信号光とは異なる偏波のアイドラ光として発生する。図2では、波長変換手段における励起光光源は図示を省略している。波長変換手段203Xでは、X偏波の下側帯波の光は、Y偏波の上側帯波に変換される。同様にX偏波の上側帯波の光は、Y偏波の下側帯波に変換される。同様に波長変換手段203Yにおいても、信号光の偏波と直交する偏波のアイドラ光に変換される。 In the case of Type 2 phase matching, light with a wavelength that is folded back around a center axis that is twice the wavelength of the excitation light due to difference frequency generation is generated as idler light with a polarization different from that of the signal light before conversion. In FIG. 2, the excitation light source in the wavelength conversion means is not shown. In the wavelength conversion means 203X, the lower sideband light of the X polarization is converted into the upper sideband wave of the Y polarization. Similarly, X-polarized upper sideband light is converted to Y-polarized lower sideband light. Similarly, in the wavelength converting means 203Y, the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
 波長変換手段203X,203Yの出力から励起光、信号光が取り除かれ、アイドラ光が、偏波合波手段205により合波されて出力される。なお、波長変換手段203X,203Yと偏波合波手段205の間の光学系も、その偏波軸が保持されることが望ましい。 Pumping light and signal light are removed from the outputs of the wavelength conversion means 203X and 203Y, and idler light is multiplexed by the polarization multiplexing means 205 and output. Note that the optical system between the wavelength conversion means 203X, 203Y and the polarization multiplexing means 205 also desirably maintains its polarization axis.
 偏波分離手段201と偏波合波手段205とは、光ファイバ型方向性結合器を用いてもよいし、誘電体多層膜コートによって分離してもよい。また、平面光回路を用いて導波路型方向性結合器を用いてもよい。 The polarization separation means 201 and the polarization multiplexing means 205 may use an optical fiber type directional coupler, or may be separated by a dielectric multilayer coating. Furthermore, a waveguide type directional coupler may be used using a planar optical circuit.
  [第2の実施形態]
 図3に、本発明の第2の実施形態にかかる波長変換システムを示す。上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、偏波多重された入射光を一括して波長変換を行うことができる。入射光の構成は、従来例と同じであり、波長分離手段302により上側帯波と下側帯波とに分離され、Type2型の位相整合を用いるPPLN導波路を含む波長変換手段303U,303Lに入射される。第1の実施形態とは異なり、波長変換手段303U,303LのPPLN導波路に入射する光の偏波はどのようなものであってもよい。
[Second embodiment]
FIG. 3 shows a wavelength conversion system according to a second embodiment of the invention. A plurality of signal lights are included in each of the upper side band wave and the lower side band wave, and wavelength conversion can be performed on the polarization multiplexed incident light all at once. The structure of the incident light is the same as that of the conventional example, and is separated into an upper sideband wave and a lower sideband wave by the wavelength separation means 302, and is incident on wavelength conversion means 303U and 303L including PPLN waveguides using Type 2 phase matching. be done. Unlike the first embodiment, the polarization of the light incident on the PPLN waveguides of the wavelength conversion means 303U and 303L may be of any type.
 Type2型の位相整合の場合は、差周波発生により励起光の2倍の波長を中心軸として折り返された波長の光は、変換前の信号光とは異なる偏波のアイドラ光として発生する。図3では、波長変換手段における励起光光源は図示を省略している。波長変換手段303Uでは、X偏波の上側帯波の光は、Y偏波の下側帯波に変換される。同様にY偏波の上側帯波の光は、X偏波の下側帯波に変換される。同様に波長変換手段303Lにおいても、信号光の偏波と直交する偏波のアイドラ光に変換される。 In the case of Type 2 phase matching, light with a wavelength that is folded back around a center axis that is twice the wavelength of the excitation light due to difference frequency generation is generated as idler light with a polarization different from that of the signal light before conversion. In FIG. 3, the excitation light source in the wavelength conversion means is not shown. In the wavelength conversion means 303U, the X-polarized upper-sideband light is converted into the Y-polarized lower-sideband light. Similarly, Y-polarized upper-sideband light is converted to X-polarized lower-sideband light. Similarly, in the wavelength converting means 303L, the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
 波長変換手段の出力から励起光、信号光が取り除かれ、アイドラ光が、波長合波手段304により合波されて出力される。 Pumping light and signal light are removed from the output of the wavelength conversion means, and idler light is multiplexed by the wavelength multiplexing means 304 and output.
 波長分離手段302、波長合波手段304としては、波長変換の中心周波数を基準として、上側帯波と下側帯波を切り分ける、または合波させることができれば、どのような形式であってもよい。例えば、光ファイバ型方向性結合器、グレーティングミラー、平面光回路によるアレイ導波路格子(AWG)を用いることができる。 The wavelength separation means 302 and wavelength multiplexing means 304 may be of any type as long as they can separate or combine the upper and lower sideband waves based on the center frequency of wavelength conversion. For example, an optical fiber type directional coupler, a grating mirror, or an arrayed waveguide grating (AWG) made of a planar optical circuit can be used.
  [PPLN導波路]
 図4に、波長変換手段に含まれるPPLN導波路を示す。図4(a)は、従来のType0型の位相整合を用いるPPLN導波路であり、図4(b)は、上述した波長変換手段203,303に含まれるType2型の位相整合を用いるPPLN導波路を示す。それぞれ、LTからなるベース基板401に、ZnOを添加したLN基板を直接接合し、LN基板を加工してリッジ型のPPLN導波路402を形成している。
[PPLN waveguide]
FIG. 4 shows a PPLN waveguide included in the wavelength conversion means. FIG. 4(a) shows a PPLN waveguide using conventional Type 0 phase matching, and FIG. 4(b) shows a PPLN waveguide using Type 2 phase matching included in the wavelength conversion means 203, 303 described above. shows. In each case, a ZnO-doped LN substrate is directly bonded to a base substrate 401 made of LT, and a ridge-shaped PPLN waveguide 402 is formed by processing the LN substrate.
 PLN導波路中では、励起光、信号光および変換光の3波の間で擬似位相整合条件が満たされている。励起光、信号光および変換光の波長を、それぞれλp、λs、λcとし、導波路中の実効屈折率を、それぞれnp、ns、ncとして、
  np/λp-ns/λs-nc/λc=1/Λ (式4)
を満たす反転周期Λの分極反転構造を有する。
In the PLN waveguide, a quasi-phase matching condition is satisfied between the three waves of excitation light, signal light, and converted light. The wavelengths of the excitation light, signal light, and converted light are λp, λs, and λc, respectively, and the effective refractive indices in the waveguide are np, ns, and nc, respectively.
np/λp-ns/λs-nc/λc=1/Λ (Equation 4)
It has a polarization inversion structure with an inversion period Λ that satisfies the following.
 Type0型の位相整合の場合、励起光、信号光、アイドラ光の3つの光の偏波が、分極方向(Y軸)と平行となるような向きで位相整合を取る。すなわち、信号光と励起光とは同じ偏波で入力され、出力されるアイドラ光も同じ偏波で出力される。一方、Type2の型位相整合の場合、信号光と励起光とは、直交する偏波で入力され、出力されるアイドラ光は、信号光と直交する偏波、すなわち励起光と同じ偏波で出力される。 In the case of Type 0 phase matching, phase matching is performed in such a way that the polarizations of the three lights, the excitation light, the signal light, and the idler light, are parallel to the polarization direction (Y-axis). That is, the signal light and the pumping light are input with the same polarization, and the output idler light is also output with the same polarization. On the other hand, in the case of Type 2 phase matching, the signal light and pump light are input with orthogonal polarization, and the output idler light is output with orthogonal polarization to the signal light, that is, the same polarization as the pump light. be done.
 このとき、図4(b)に示したように、入射する励起光の偏波軸が、分極方向(Y軸)と同じ向きとなるように位相整合を取ると、波長変換効率が良く望ましい。ただし、分極反転の周期を工夫すれば、励起光の偏波軸が分極方向と直交(X軸)していても、波長変換動作を行うことができるので、励起光の偏波軸を、固有軸のいずれかと並行になるようにすればよい。 At this time, as shown in FIG. 4(b), it is preferable to perform phase matching so that the polarization axis of the incident excitation light is in the same direction as the polarization direction (Y-axis), as the wavelength conversion efficiency is good. However, if the period of polarization inversion is modified, wavelength conversion can be performed even if the polarization axis of the excitation light is orthogonal to the polarization direction (X-axis). It should be parallel to one of the axes.
  [実施例]
 図5に、第1の実施形態の波長変換システムの一実施例を示す。入射光の構成は、従来例と同じであり、偏波分離手段501によりX偏波とY偏波とに分離され、Type2型の位相整合を用いるPPLN導波路を含む波長変換手段503X,503Yに入射される。このとき、入射光の偏波軸と波長変換手段503X,503YのPPLN導波路の固有軸とを合わせる。具体的には、偏波分離手段501と波長変換手段503X,503Yの間を、偏波保持ファイバ511X,511Yを用いて接続し、信号光の偏波軸と、PPLN導波路の固有軸のうち分極方向の固有軸とを合わせる。
[Example]
FIG. 5 shows an example of the wavelength conversion system of the first embodiment. The structure of the incident light is the same as that of the conventional example, and is separated into X polarization and Y polarization by polarization separation means 501, and is sent to wavelength conversion means 503X and 503Y including PPLN waveguides using Type 2 phase matching. It is incident. At this time, the polarization axis of the incident light is aligned with the eigenaxis of the PPLN waveguide of the wavelength conversion means 503X, 503Y. Specifically, the polarization separating means 501 and the wavelength converting means 503X, 503Y are connected using polarization maintaining fibers 511X, 511Y, and the polarization axis of the signal light and the eigenaxis of the PPLN waveguide are connected. Align with the eigenaxis of polarization direction.
 波長変換手段503X,503Yは、励起光光源532X,532Yからの励起光と、偏波分離手段501からの信号光とが入力される、Type2型の位相整合を用いるPPLN導波路531X,531Yを含む。信号光と励起光とは、波長変換手段503X,503YのPPLN導波路の直前に設置された合波ミラーによって合波される。図4(b)に示したように、PPLN導波路402のコアサイズを8×8μm、PPLNの分極反転周期を約9μmとし、励起光のTEモード、信号光のTMモード、アイドラ光のTEモードの3つの光が相互作用することを確認した。 The wavelength conversion means 503X, 503Y include PPLN waveguides 531X, 531Y using Type 2 phase matching, into which the excitation light from the excitation light sources 532X, 532Y and the signal light from the polarization separation means 501 are input. . The signal light and the excitation light are combined by a combining mirror installed immediately before the PPLN waveguide of the wavelength conversion means 503X, 503Y. As shown in FIG. 4(b), the core size of the PPLN waveguide 402 is 8×8 μm, the polarization inversion period of PPLN is approximately 9 μm, and the TE mode of the pumping light, the TM mode of the signal light, and the TE mode of the idler light. It was confirmed that the three types of light interact.
 Type2型の位相整合の場合は、励起光の2倍の波長を中心軸として折り返された波長の光は、変換前の信号光とは異なる偏波のアイドラ光として発生する。波長変換手段503Xでは、X偏波の下側帯波の光は、Y偏波の上側帯波に変換される。同様にX偏波の上側帯波の光は、Y偏波の下側帯波に変換される。同様に波長変換手段503Yにおいても、信号光の偏波と直交する偏波のアイドラ光に変換される。 In the case of Type 2 phase matching, light with a wavelength that is twice the wavelength of the pumping light as the central axis is generated as idler light with a polarization different from that of the signal light before conversion. In the wavelength conversion means 503X, the lower sideband light of the X polarization is converted into the upper sideband wave of the Y polarization. Similarly, X-polarized upper sideband light is converted to Y-polarized lower sideband light. Similarly, in the wavelength conversion means 503Y, the signal light is converted into idler light having a polarization orthogonal to the polarization of the signal light.
 波長変換手段503X,503Yの出力から励起光、信号光が取り除かれ、アイドラ光が、偏波合波手段505により合波されて出力される。波長変換手段503X,503Yにおける差周波発生により、所望の波長変換がなされたことを確認した。なお、波長変換手段503X,503Yと偏波合波手段505との間も、偏波保持ファイバ512X,512Yを用いて、偏波軸と固有軸とを合わせている。 Pumping light and signal light are removed from the outputs of the wavelength conversion means 503X and 503Y, and the idler light is multiplexed by the polarization multiplexing means 505 and output. It was confirmed that the desired wavelength conversion was performed by generating a difference frequency in the wavelength conversion means 503X and 503Y. Note that polarization maintaining fibers 512X, 512Y are also used between the wavelength converting means 503X, 503Y and the polarization multiplexing means 505 to align the polarization axis and the eigenaxis.
 本実施形態ではPPLNを用いたが,周期分極反転構造を有していない非線形光学材料を用いてもよく、LNの他に、二次非線形光学定数を有している材料を適用してもよい。 Although PPLN is used in this embodiment, a nonlinear optical material that does not have a periodically poled structure may be used, and a material having a second-order nonlinear optical constant may be used in addition to LN. .

Claims (4)

  1.  非線形光学材料からなり、周期的な分極反転構造を有する波長変換手段を有し、上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、偏波多重された入射光を一括して波長変換を行う波長変換システムであって、
     前記入射光を偏波ごとに分離して、複数の波長変換手段に入射させる偏波分離手段と、
     前記複数の波長変換手段からの出力を合波する偏波合波手段とを備え、
     前記波長変換手段は、偏波軸が直交する信号光と励起光とが入射され、差周波発生により前記励起光の2倍の波長を中心軸として折り返され、変換前の前記信号光とは異なる偏波のアイドラ光を出力することを特徴とする波長変換システム。
    It is made of a nonlinear optical material and has a wavelength conversion means with a periodic polarization inversion structure. The upper sideband wave and the lower sideband wave each contain a plurality of signal lights, and the polarization-multiplexed incident light is collectively converted into wavelengths. A wavelength conversion system that performs conversion,
    polarization separation means that separates the incident light into polarized waves and causes the separated light to enter a plurality of wavelength conversion means;
    and polarization multiplexing means for multiplexing outputs from the plurality of wavelength conversion means,
    The wavelength conversion means receives a signal light and a pump light whose polarization axes are perpendicular to each other, and is folded back around a central axis having a wavelength twice that of the pump light by difference frequency generation, which is different from the signal light before conversion. A wavelength conversion system characterized by outputting polarized idler light.
  2.  前記偏波分離手段と前記複数の波長変換手段の間、および前記複数の波長変換手段と前記偏波合波手段の間が、偏波保持ファイバで接続されていることを特徴とする請求項1に記載の波長変換システム。 Claim 1, wherein the polarization separating means and the plurality of wavelength converting means and between the plurality of wavelength converting means and the polarization multiplexing means are connected by polarization maintaining fibers. The wavelength conversion system described in .
  3.  前記波長変換手段の分極方向と、前記励起光の偏波軸とが同じ向きであることを特徴とする請求項2に記載の波長変換システム。 The wavelength conversion system according to claim 2, wherein the polarization direction of the wavelength conversion means and the polarization axis of the excitation light are in the same direction.
  4.  非線形光学材料からなり、周期的な分極反転構造を有する波長変換手段を有し、上側帯波と下側帯波にそれぞれ複数の信号光が含まれ、偏波多重された入射光を一括して波長変換を行う波長変換システムであって、
     前記入射光の上側帯波と下側帯波とを分離して、複数の波長変換手段に入射させる波長分離手段と、
     前記複数の波長変換手段からの出力を合波する波長合波手段とを備え、
     前記波長変換手段は、偏波軸が直交する信号光と励起光とが入射され、差周波発生により前記励起光の2倍の波長を中心軸として折り返され、変換前の前記信号光とは異なる偏波のアイドラ光を出力することを特徴とする波長変換システム。
    It is made of a nonlinear optical material and has a wavelength conversion means with a periodic polarization inversion structure. The upper sideband wave and the lower sideband wave each contain a plurality of signal lights, and the polarization-multiplexed incident light is collectively converted into wavelengths. A wavelength conversion system that performs conversion,
    wavelength separation means that separates an upper band wave and a lower side band wave of the incident light and causes them to enter a plurality of wavelength conversion means;
    and wavelength multiplexing means for multiplexing outputs from the plurality of wavelength conversion means,
    The wavelength conversion means receives a signal light and a pump light whose polarization axes are perpendicular to each other, and is folded back around a central axis having a wavelength twice that of the pump light by difference frequency generation, which is different from the signal light before conversion. A wavelength conversion system characterized by outputting polarized idler light.
PCT/JP2022/020240 2022-05-13 2022-05-13 Wavelength conversion system WO2023218646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020240 WO2023218646A1 (en) 2022-05-13 2022-05-13 Wavelength conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020240 WO2023218646A1 (en) 2022-05-13 2022-05-13 Wavelength conversion system

Publications (1)

Publication Number Publication Date
WO2023218646A1 true WO2023218646A1 (en) 2023-11-16

Family

ID=88730140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020240 WO2023218646A1 (en) 2022-05-13 2022-05-13 Wavelength conversion system

Country Status (1)

Country Link
WO (1) WO2023218646A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933962A (en) * 1995-07-25 1997-02-07 Oki Electric Ind Co Ltd Wavelength conversion device and wavelength conversion method
JP2000241841A (en) * 1999-02-18 2000-09-08 Oki Electric Ind Co Ltd Wavelength converting device
US20020171913A1 (en) * 2000-11-16 2002-11-21 Lightbit Corporation Method and apparatus for acheiving
JP2016218173A (en) * 2015-05-18 2016-12-22 日本電信電話株式会社 Phase conjugate light converter and optical transmission system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933962A (en) * 1995-07-25 1997-02-07 Oki Electric Ind Co Ltd Wavelength conversion device and wavelength conversion method
JP2000241841A (en) * 1999-02-18 2000-09-08 Oki Electric Ind Co Ltd Wavelength converting device
US20020171913A1 (en) * 2000-11-16 2002-11-21 Lightbit Corporation Method and apparatus for acheiving
JP2016218173A (en) * 2015-05-18 2016-12-22 日本電信電話株式会社 Phase conjugate light converter and optical transmission system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UMEKI TAKESHI; KOBAYASHI TAKAYUKI; SANO AKIHIDE; IKUTA TAKUYA; ABE MASASHI; KAZAMA TAKUSHI; ENBUTSU KOJI; KASAHARA RYOICHI; MIYAMO: "Nonlinearity mitigation of PDM-16QAM signal using multiple CSI-OPCs in ultra-long haul transmission without excess penalty", 2019 24TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND 2019 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING AND COMPUTING (PSC), THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS (IEICE), 7 July 2019 (2019-07-07), pages 1 - 3, XP033608011, DOI: 10.23919/PS.2019.8818012 *

Similar Documents

Publication Publication Date Title
JP7087928B2 (en) Wavelength converter
Cai et al. Acousto-optical modulation of thin film lithium niobate waveguide devices
JP6204064B2 (en) Optical amplifier
EP1714317A1 (en) Ferroelectric thin films and devices comprising thin ferroelectric films
US20050191055A1 (en) Arrayed wavelength converter
JP2017219749A (en) Optical amplifier device
JP2014222331A (en) Wavelength conversion element
JP6871137B2 (en) Hybrid optical circuit
JP7160194B2 (en) Wavelength conversion element
JP2011064895A (en) Wavelength conversion device and wavelength conversion apparatus
JP3272250B2 (en) Wavelength converter
WO2023218646A1 (en) Wavelength conversion system
JP5814183B2 (en) Wavelength conversion device
JP6907917B2 (en) Wavelength converter
JP2014211539A (en) Wavelength conversion element
Kishimoto et al. Parallel periodically poled LiNbO3 waveguides module for polarization diversity wavelength conversion and amplification
WO2022157858A1 (en) Wavelength conversion apparatus
WO2022254640A1 (en) Wavelength conversion device
US7034990B2 (en) Wavelength conversion element and method for using same
JP6670209B2 (en) Hybrid optical circuit
WO2022249234A1 (en) Wavelength conversion device and method for manufacturing wavelength conversion device
CN113612108B (en) Frequency converter based on chamfer nonlinear crystal ridge waveguide and preparation method thereof
JP3575434B2 (en) Optical parametric circuit
JP6836477B2 (en) Planar optical waveguide device
WO2022219687A1 (en) Wavelength conversion optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941723

Country of ref document: EP

Kind code of ref document: A1