JP2019113623A - Characteristic stabilization method for wavelength conversion element - Google Patents

Characteristic stabilization method for wavelength conversion element Download PDF

Info

Publication number
JP2019113623A
JP2019113623A JP2017245288A JP2017245288A JP2019113623A JP 2019113623 A JP2019113623 A JP 2019113623A JP 2017245288 A JP2017245288 A JP 2017245288A JP 2017245288 A JP2017245288 A JP 2017245288A JP 2019113623 A JP2019113623 A JP 2019113623A
Authority
JP
Japan
Prior art keywords
light
wavelength
wavelength conversion
conversion element
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017245288A
Other languages
Japanese (ja)
Inventor
圓佛 晃次
Kouji Enbutsu
晃次 圓佛
忠永 修
Osamu Tadanaga
修 忠永
毅伺 梅木
Takeshi Umeki
毅伺 梅木
拓志 風間
Takushi Kazama
拓志 風間
貴大 柏崎
Takahiro Kashiwazaki
貴大 柏崎
笠原 亮一
Ryoichi Kasahara
亮一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017245288A priority Critical patent/JP2019113623A/en
Publication of JP2019113623A publication Critical patent/JP2019113623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To solve the problems that: a wavelength conversion element utilizing PPLN-WG of conventional technology indirectly generates light of wavelength 520 nm band of sum frequency light of input light and SHG light generated in the element, and a wavelength conversion device using an SHG process has oscillations of 520 nm caused in the element; the PPLN-WG causes variation in refractive index with intense input power and light damage such that wavelength conversion characteristics deteriorate is caused; temperature control means which avoids those increases in size and the wavelength conversion device increases in size to require a larger power consumption; and since a temperature adjustment mechanism is added on a core side, the wavelength conversion element increases in manufacturing cost.SOLUTION: A wavelength conversion element according to the present invention comprises, on a substrate end face including an end face of a waveguide, an AR film characterized in preventing second wavelength conversion light generated from input light and wavelength conversion light from being reflected. Focusing attention on sum frequency light of frequency 3ω generated when SHG light is generated by making communication-wavelength signal light etc., of high input power incident on a PPLN-WG, an AR film which prevents light of a frequency zone 3ω from being reflected to suppress heat generation caused by the sum frequency light is formed on both end faces of a waveguide.SELECTED DRAWING: Figure 8

Description

本発明は、波長変換素子に関する。具体的には、光通信で使用される波長帯域の光を出力する波長変換素子に関する。   The present invention relates to a wavelength conversion element. Specifically, the present invention relates to a wavelength conversion element that outputs light in a wavelength band used in optical communication.

光学材料中の非線形光学効果を用いた波長変換技術や、パラメトリック増幅技術は、様々な応用分野があり、多くの組織、機関で研究開発が活発に行われている。また、光信号を電気信号に一度も変換することなく、光のままで信号処理を行う波長変換技術も、高速大容量の光通信のキー技術となっている。波長変換素子は、光通信分野へ波長変換技術を適用した低雑音増幅やWDM信号の波長帯の一括変換などの検討が活発に行われており、通信用素子として重要視されている。中でも周期分極反転ニオブ酸リチウム導波路(PPLN−WG:Periodically Poled Lithium Niobate - Wave Guide)を用いた波長変換素子は、導波路化によって光パワー密度を大きくすることで光強度の増大を実現し、疑似位相整合技術を使用することで、より高い波長変換効率が実現可能である。PPLN−WGを用いた波長変換素子は、次世代光ファイバ通信分野や量子コンピューティングの分野で重要な役割を担うデバイスとして注目されている。   Wavelength conversion technology using non-linear optical effects in optical materials and parametric amplification technology have various application fields, and research and development are actively conducted in many organizations and organizations. In addition, wavelength conversion technology that performs signal processing in the form of light without converting optical signals into electrical signals is also a key technology for high-speed large-capacity optical communication. The wavelength conversion element is actively considered as low-noise amplification applying wavelength conversion technology to the optical communication field, batch conversion of wavelength band of WDM signal, and the like, and is regarded as important as a communication element. Among them, wavelength conversion elements using periodically poled lithium niobate waveguides (PPLN-WG: Periodically Poled Lithium Niobate-Wave Guide) realize an increase in light intensity by increasing the optical power density by forming a waveguide, Higher wavelength conversion efficiencies can be realized by using a quasi phase matching technique. The wavelength conversion element using PPLN-WG attracts attention as a device which plays an important role in the field of next-generation optical fiber communication and the field of quantum computing.

例えば、低雑音な光増幅が可能な位相感応光増幅器(PSA:Phase Sensitive Amplifier)ではパラメトリック増幅素子または励起光発生素子として使用され、高利得・低雑音な光増幅器が提案されている。また量子コンピューティングの分野においては、PPLN−WGをファイバリング共振器内に挿入しパラメトリック発振素子として使用して、これまでの計算機に比べて極めて超高速・大容量な計算の実証が報告されている。これらの波長変換素子を適用した技術をさらに高性能化するためには、より高い波長変換効率の素子を実現することが重要となっている。   For example, in a phase sensitive optical amplifier (PSA: Phase Sensitive Amplifier) capable of low noise optical amplification, it is used as a parametric amplification element or an excitation light generation element, and a high gain low noise optical amplifier has been proposed. Also, in the field of quantum computing, using PPLN-WG in fiber ring resonators and using it as a parametric oscillator, a demonstration of extremely high-speed and large-capacity calculation has been reported compared to previous computers. There is. In order to further enhance the performance of the technology to which these wavelength conversion elements are applied, it is important to realize an element with higher wavelength conversion efficiency.

T. Inagaki, et al. "A coherent Ising machine for 2000-node optimization problems," Science 354, p. 603-606, 2016年T. Inagaki, et al. "A coherent Ising machine for 2000-node optimization problems," Science 354, p. 603-606, 2016 T. Umeki,et al.,“Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides”,Optics Express,2011年,Vol.19,No. 7,pp.6326-6332T. Umeki, et al., “Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides,” Optics Express, 2011, Vol. 19, No. 7, pp. 6326-6332 K. Enbutsu, et al. "PPLN-Based Low-Noise In-Line Phase Sensitive Amplifier with Highly Sensitive Carrier-Recovery System,” IEICE Transactions on Communications, vol. E99.B (2016年) No. 8 pp.1727-1733K. Enbutsu, et al. “PPLN-Based Low-Noise In-Line Phase Sensitive Amplifier with Highly Sensitive Carrier-Recovery System,” IEICE Transactions on Communications, vol. E 99. B (2016) No. 8 pp. 1727- 1733

特開2015−215501号 公報JP, 2015-215501, A

2次非線形光学効果を用いた波長変換素子は、波長(周波数)変換や光増幅などの様々な作用などを実現できる。例えば、周波数ωの光を入力して2倍の周波数2ωの光を発生したり、入力周波数ω、 ωの2つの光を入力して、それらの和波数ω+ωまたは差周波数ω−ωの周波数の光を発生させたりすることができる。また、励起光として強い光を入射して、入力光を増幅することも可能である。 The wavelength conversion element using the second-order nonlinear optical effect can realize various operations such as wavelength (frequency) conversion and optical amplification. For example, light of frequency ω is input to generate light of double frequency 2ω, or two lights of input frequency ω 1 and ω 2 are input, and their sum wave number ω 1 + ω 2 or difference frequency ω It is possible to generate light of a frequency of 1-? 2 . In addition, it is also possible to amplify the input light by entering strong light as excitation light.

図1は、従来技術のPPLN−WGを用いた波長変換素子の構成を示す図である。図1において、波長変換素子100は、ニオブ酸リチウム(LiNbO)結晶などの基板101に作製された周期分極反転構造を有する導波路コア102を備えている。導波路コア102の基板端には、低損失に光を入出力するため平滑に加工した端面103を有する。 FIG. 1 is a diagram showing the configuration of a wavelength conversion element using PPLN-WG according to the prior art. In FIG. 1, the wavelength conversion element 100 includes a waveguide core 102 having a periodically poled structure, which is fabricated on a substrate 101 such as a lithium niobate (LiNbO 3 ) crystal. At the substrate end of the waveguide core 102, there is an end face 103 which is processed to be smooth in order to input and output light with low loss.

図2は、従来技術のPPLN−WGを用いた波長変換素子を含む波長変換装置の構成を示す図である。図2の波長変換装置200は、図1に示した波長変換素子100を含んでおり、波長変換素子の導波路断面を含む基板端面103上には、戻り光による悪影響を抑制するために入力光および波長変換光の波長帯で反射率を抑制した反射防止(AR:Anti-Reflection)膜204a、204bを形成する。2つの入力光211、212は、合波手段201により合波し波長変換素子に入力される。また、波長変換素子から出力される波長変換光を含んだ出力光は、分波手段202により2つの出力光213、214および波長変換光215に分離される。入力光211と出力光213、入力光212と出力光214は、それぞれ対応関係にある。上述の各入力光の波長関係によって、実現される作用が異なってくる。   FIG. 2 is a view showing the configuration of a wavelength conversion device including a wavelength conversion element using PPLN-WG according to the prior art. The wavelength conversion device 200 of FIG. 2 includes the wavelength conversion element 100 shown in FIG. 1 and, on the substrate end face 103 including the waveguide cross section of the wavelength conversion element, the input light to suppress the adverse effect of the return light. And anti-reflection (AR: Anti-Reflection) film 204a, 204b which suppressed the reflectance in the wavelength range of wavelength conversion light is formed. The two input lights 211 and 212 are combined by the combining means 201 and input to the wavelength conversion element. Further, the output light including the wavelength converted light output from the wavelength conversion element is separated by the demultiplexing means 202 into two output lights 213 and 214 and a wavelength converted light 215. The input light 211 and the output light 213, and the input light 212 and the output light 214 are in correspondence with each other. The functions to be realized differ depending on the wavelength relationship of each input light described above.

図3は、第2高調波光発生過程を用いた波長変換装置の入出力光の関係を示す図である。第2高調波光発生(SHG:Second Harmonic Generation)過程は、波長変換素子において利用される最も基本的な波長変換過程である。図3の波長変換装置300における波長変換素子は図1の波長変換素子100と同様のものであり、導波路の2つの端面上にそれぞれAR膜304a、304bが形成されている。SHG過程を利用する波長変換では、入力光として周波数ωの入力光311が1つのみである点で、図2の波長変換装置の一般構成と相違している。出力の分波手段202からは、周波数ωの出力光213と、周波数2ωの第2高調波214とが出力される。 FIG. 3 is a diagram showing the relationship between input and output light of the wavelength conversion device using the second harmonic light generation process. The second harmonic generation (SHG) process is the most basic wavelength conversion process used in the wavelength conversion element. The wavelength conversion element in the wavelength conversion device 300 of FIG. 3 is the same as the wavelength conversion element 100 of FIG. 1, and AR films 304 a and 304 b are formed on two end faces of the waveguide, respectively. The wavelength conversion using the SHG process is different from the general configuration of the wavelength conversion device of FIG. 2 in that there is only one input light 311 of frequency ω 1 as the input light. From the demultiplexing unit 202 outputs, as the output light 213 of the frequency omega 1, and the second harmonic wave 214 of the frequency 2 [omega 1 is output.

図4は、従来技術の波長変換素子におけるAR膜の特性例を示す図である。入力光として通信波長帯である1550nmの信号光を入力する場合に使用するAR膜の波長−反射率特性を示す。横軸に波長(nm)を示し、縦軸に反射率(%)を示す。図4に示したように、波長変換素子におけるAR膜は、入力光の波長である1550nm帯に加えてその半分の波長775nmの波長帯においても低い反射特性を示す。   FIG. 4 is a view showing an example of the characteristic of the AR film in the wavelength conversion element of the prior art. The wavelength-reflectance characteristic of AR film used when inputting signal light of 1550 nm which is a communication wavelength zone as input light is shown. The horizontal axis indicates the wavelength (nm), and the vertical axis indicates the reflectance (%). As shown in FIG. 4, the AR film in the wavelength conversion element exhibits low reflection characteristics in the wavelength band of 775 nm, which is half the wavelength of the input light, in addition to the 1550 nm band.

図5は、SHG過程を利用した波長変換装置の位相整合曲線を示す図である。入力光の入力パワーが3mWの場合の位相整合曲線を示す。疑似位相整合技術を適用することにより所望の波長(1552.4nm)において高いSHG出力を示している。   FIG. 5 is a diagram showing a phase matching curve of a wavelength converter using the SHG process. The phase matching curve in case the input power of input light is 3 mW is shown. By applying the quasi phase matching technique, high SHG output is shown at the desired wavelength (1552.4 nm).

波長変換素子では、入力光のパワーを大きくしてゆくと、入力光による直接的な波長変換現象と、発生した波長変換光と入力光による間接的な波長変換現象とが同時に発生する。以下簡単のため、間接的な波長変換の過程についてSHG過程を用いて説明する。   In the wavelength conversion element, when the power of the input light is increased, a direct wavelength conversion phenomenon by the input light and an indirect wavelength conversion phenomenon by the generated wavelength-converted light and the input light occur simultaneously. The process of indirect wavelength conversion will be described using the SHG process for the sake of simplicity.

図6は、SHG過程を用いた波長変換動作時の動作を模式的に示した図である。波長変換装置600の構成は、図3で示したSHG過程を用いた波長変換装置300のものと同一であるが、波長変換素子の出力として第3の出力光315が含まれる点で、図3で説明した動作と相違している。図6の波長変換装置600において、周波数ωの入力光311のパワーを大きくしてゆくと、波長変換素子内において発生した周波数2ωのSHG光214と、周波数ωの入力光311とによって、周波数ω+2ω=3ωを持つ和周波光315が間接的に発生する。このような和周波光の発生は、PPLN−WGなどによる導波路化および位相整合技術を適用して、波長変換効率を高めた波長変換素子において、より顕著に生じる。例えばPPLN−WGなどの高効率素子に、入力光311として1550nm帯の通信波長帯の光を用いた場合、入力光311および素子内で発生したSHG光による和周波光として波長520nm帯の光が間接的に発生する。SHG過程を用いた波長変換装置では、図6に示したように和周波光の波長520nm帯の光は内部反射を繰り返して、最悪の場合には素子内において波長520nmで発振が起こってしまう。 FIG. 6 is a diagram schematically showing the operation at the time of wavelength conversion operation using the SHG process. The configuration of the wavelength conversion device 600 is the same as that of the wavelength conversion device 300 using the SHG process shown in FIG. 3, except that the third output light 315 is included as an output of the wavelength conversion element. This is different from the operation described in. In the wavelength converter 600 of FIG. 6, when the power of the input light 311 of frequency ω 1 is increased, the SHG light 214 of frequency 2ω 1 generated in the wavelength conversion element and the input light 311 of frequency ω 1 are generated. The sum frequency light 315 having the frequency ω 1 + 2ω 1 = 3ω 1 is generated indirectly. The generation of such sum frequency light more notably occurs in the wavelength conversion element in which the wavelength conversion efficiency is enhanced by applying the waveguide formation and phase matching technology by PPLN-WG or the like. For example, when light of a communication wavelength band in the 1550 nm band is used as the input light 311 for a high efficiency element such as PPLN-WG, light of a wavelength of 520 nm is used as sum frequency light by the input light 311 and SHG light generated in the element. It occurs indirectly. In the wavelength converter using the SHG process, as shown in FIG. 6, the light of the wavelength 520 nm band of the sum frequency light repeats internal reflection, and in the worst case, oscillation occurs at the wavelength 520 nm in the element.

PPLN−WGでは、強い入力パワーにより屈折率変化を生じ、波長変換特性が劣化する光損傷の問題が生じる。LiNbO(LN)結晶は、比較的弱い可視レーザー光の照射でさえ、光誘起屈折率変化いわゆる光損傷が起こることが知られている。光損傷を避けるため、多くのPPLN−WGではMgO、ZnOを数mol/%ドープしたLNを周期分極反転させて、コアとして用いている。しかしながらMgO、ZnOをドープしたLN結晶は、ドープしないLN結晶に比べ、可視光における光吸収の影響を無視できなくなる。波長変換素子においては、上述の可視光である緑色に対応する波長520nm帯の光を吸収、発熱し、素子内に温度分布が生じてしまう。熱光学を通じて屈折率に空間分布が発生し、所望の波長において位相整合が取れず、位相整合波長がずれてしまう。利用したいSHG光の出力が低下して、波長変換素子の性能が低下する原因となっていた。 In PPLN-WG, a strong input power causes a change in refractive index, causing a problem of optical damage that degrades wavelength conversion characteristics. It is known that LiNbO 3 (LN) crystals cause photoinduced refractive index change, so-called light damage, even with relatively weak visible laser light irradiation. In order to avoid optical damage, in many PPLN-WGs, LN doped with several mol /% of MgO and ZnO is periodically poled and used as a core. However, LN crystals doped with MgO and ZnO can not ignore the influence of light absorption in visible light as compared to LN crystals not doped. In the wavelength conversion element, light of a wavelength of 520 nm band corresponding to the above-mentioned visible light, green color, is absorbed and generated to generate a temperature distribution in the element. Spatial distribution occurs in refractive index through thermal optics, and phase matching can not be achieved at a desired wavelength, and the phase matching wavelength shifts. The output of the SHG light to be used decreases, which causes the performance of the wavelength conversion element to decrease.

図7は、高光入力レベルのために位相整合条件がずれた場合の位相整合特性の例を示した図である。入力光311として波長1550nmで入力パワー1Wの光を入射した場合の位相整合特性を評価した。図5と対比すれば、第2高調波出力レベルは著しく低下し、波長変換素子の変換効率が低下していることは明らかである。この波長520nm帯の緑光の吸収による温度分布発生の問題に対しては、温度分布を均一にするため大型のペルチェ素子等の温度制御手段を用いて波長変換素子に温度分布が生じるのを抑制し、回避する方法がとられてきた。しかしながら、温度制御手段の大型化に伴い、波長変換素子を含む波長変換装置全体が大型化し、装置の消費電力の増大することが避けられなかった。   FIG. 7 is a diagram showing an example of the phase matching characteristic when the phase matching condition is shifted due to the high light input level. The phase matching characteristics were evaluated when light having an input power of 1 W was incident at a wavelength of 1550 nm as the input light 311. In comparison with FIG. 5, it is clear that the second harmonic output level is significantly reduced and the conversion efficiency of the wavelength conversion element is reduced. With regard to the problem of temperature distribution generation due to absorption of green light of wavelength 520 nm band, temperature control means such as a large Peltier element is used to suppress temperature distribution generation in the wavelength conversion element in order to make temperature distribution uniform. A way to avoid it has been taken. However, with the increase in the size of the temperature control means, the size of the entire wavelength conversion device including the wavelength conversion element has been increased, and an increase in the power consumption of the device has been unavoidable.

より効率的に素子の温度を制御する方法として、コア側に温度調節機構を設置して温度分布を均一化する技術も提案されている(特許文献1)。しかしながら、コアを温度調節する方法ではコア上に金属膜を蒸着する必要があり、波長変換素子の製造コストが上昇する問題があった。   As a method of controlling the temperature of the element more efficiently, a technology has been proposed in which a temperature control mechanism is installed on the core side to make the temperature distribution uniform (Patent Document 1). However, in the method of controlling the temperature of the core, it is necessary to deposit a metal film on the core, and there is a problem that the manufacturing cost of the wavelength conversion element is increased.

本発明は、このような問題に鑑みてなされたものであって、波長変換素子の性能低下を防止しながら構成の簡略化、低消費電力化、低コスト化を実現する。   The present invention has been made in view of such problems, and realizes simplification of the configuration, reduction in power consumption, and cost reduction while preventing the performance deterioration of the wavelength conversion element.

本発明は、このような目的を達成するために、請求項1に記載の発明は、2次非線形光学材料を用いた導波路と、前記導波路の端面の上に形成され、入力光、前記入力光により発生する第1の波長変換光、並びに、前記入力光および前記第1の波長変換光により発生する第2の波長変換光の各波長帯において光の反射を抑制する反射防止膜とを備えたことを特徴とする波長変換素子である。   In order to achieve the object of the present invention, the invention according to claim 1 is a waveguide using a second-order nonlinear optical material, and an input light formed on an end face of the waveguide. A first wavelength-converted light generated by input light, and an anti-reflection film that suppresses reflection of light in each wavelength band of the second wavelength-converted light generated by the input light and the first wavelength-converted light; It is a wavelength conversion element characterized by having.

請求項2に記載の発明は、請求項1の波長変換素子であって、前記第2の波長変換光の波長帯は、Oバンド、Eバンド、Sバンド、Cバンド、Lバンドを含む通信波長で使用される信号光の3倍の周波数帯に対応することを特徴とする。   The invention according to claim 2 is the wavelength conversion element according to claim 1, wherein the wavelength band of the second wavelength-converted light includes communication bands including O band, E band, S band, C band, and L band. Corresponding to three times the frequency band of the signal light used in

請求項3に記載の発明は、2次非線形光学材料を用いた導波路と、前記導波路の端面の上に形成され、通信波長帯の入力光、前記入力光に対して差周波数を生成しまたは位相感応増幅するための励起光、並びに、前記入力光および前記励起光により発生し、前記入力光の3倍の周波数帯に属する波長変換光の各波長帯において光の反射を抑制する反射防止膜とを備えたことを特徴とする波長変換素子である。   The invention according to claim 3 is formed on a waveguide using a second-order nonlinear optical material, an end face of the waveguide, and generates a difference frequency with respect to an input light of a communication wavelength band and the input light. Or excitation light for phase sensitive amplification, and reflection prevention for suppressing reflection of light in each wavelength band of wavelength converted light generated by the input light and the excitation light and belonging to a frequency band three times as high as the input light It is a wavelength conversion element characterized by including a film.

請求項4に記載の発明は、請求項1乃至3いずれかの波長変換素子であって、前記2次非線形光学材料を用いた前記導波路は、周期分極反転ニオブ酸リチウム導波路であることを特徴とする。   The invention according to claim 4 is the wavelength conversion element according to any one of claims 1 to 3, wherein the waveguide using the second-order nonlinear optical material is a periodically poled lithium niobate waveguide. It features.

請求項5に記載の発明は、請求項4の波長変換素子であって、前記導波路のコアは、ZnOまたはMgOをドープされていることを特徴とする。   The invention according to claim 5 is the wavelength conversion element according to claim 4, wherein the core of the waveguide is doped with ZnO or MgO.

請求項6に記載の発明は、請求項1乃至5いずれかの波長変換素子であって、前記2次非線形光学材料を用いた前記導波路は、直接接合により作製されたことを特徴とする。   The invention according to claim 6 is the wavelength conversion element according to any one of claims 1 to 5, wherein the waveguide using the second-order nonlinear optical material is manufactured by direct bonding.

以上説明したように本発明により、波長変換素子および波長変換装置の構成の簡略化、低消費電力化、低コスト化を実現する。   As described above, according to the present invention, simplification of the configuration of the wavelength conversion element and the wavelength conversion device, reduction in power consumption and cost reduction are realized.

図1は従来技術のPPLN−WG波長変換素子構成を示した図である。FIG. 1 is a view showing the configuration of a prior art PPLN-WG wavelength conversion element. 図2はPPLN−WG波長変換素子を含む波長変換装置を示した図である。FIG. 2 is a view showing a wavelength converter including a PPLN-WG wavelength conversion element. 図3は第2高調波光発生過程を用いた装置の入出力関係を示した図である。FIG. 3 is a diagram showing an input / output relationship of a device using a second harmonic light generation process. 図4は従来技術の波長変換素子におけるAR膜の特性例を示した図である。FIG. 4 is a view showing an example of the characteristic of the AR film in the wavelength conversion element of the prior art. 図5はSHG過程を用いた波長変換装置の位相整合曲線を示した図である。FIG. 5 is a diagram showing a phase matching curve of a wavelength conversion device using an SHG process. 図6はSHG過程を用いた波長変換時の動作を模式的に示した図である。FIG. 6 is a diagram schematically showing the operation at the time of wavelength conversion using the SHG process. 図7は高光入力で位相整合条件がずれた位相整合特性を示した図である。FIG. 7 is a diagram showing a phase matching characteristic in which the phase matching condition is shifted with high light input. 図8は本発明の第1の実施形態の波長変換素子の構成を示した図である。FIG. 8 is a diagram showing the configuration of the wavelength conversion element according to the first embodiment of the present invention. 図9は第1の実施形態波長変換素子のAR膜反射特性を示した図である。FIG. 9 is a view showing AR film reflection characteristics of the wavelength conversion element according to the first embodiment. 図10は第1の実施形態のSHG光の位相整合特性を示した図である。FIG. 10 is a diagram showing the phase matching characteristic of the SHG light of the first embodiment. 図11は第2の実施形態の波長変換素子の構成を示した図である。FIG. 11 is a view showing the configuration of the wavelength conversion element of the second embodiment. 図12は第3の実施形態の波長変換素子の構成を示した図である。FIG. 12 is a diagram showing the configuration of the wavelength conversion element of the third embodiment. 図13は第4の実施形態の波長変換素子の構成を示した図である。FIG. 13 is a diagram showing the configuration of the wavelength conversion element of the fourth embodiment.

本発明の波長変換素子は、導波路の端面を含む基板端面上に、入力光および波長変換光から生じる第2の波長変換光に対して、反射を防止する特性を持つAR膜を備える。図2でも示したように従来技術の光学素子の入出力端面には、波長変換素子への入力信号光などの、使用される光周波数帯の反射戻り光による悪影響を抑制するため、誘電体多層膜などで形成されるAR膜を施されている。例えば、波長変換に用いるPPLN−WGにおいてSHG過程を使用する場合、入力される信号光の周波数(基本波周波数)ωおよびSHG光の周波数2ωの2つの周波数帯に対するAR膜を形成していた。発明者らは、高い入力パワーの通信波長の信号光などをPPLN−WGに入射してSHG光を発生させる際に生じる和周波光の周波数3ωの光に着目した。周波数3ωの光に起因する発熱を抑制するため3ωの周波数帯の光に対しても反射を防止する特性を持つAR膜を導波路の端面に施すことにより、PPLN−WG内で生じる発振や発熱が抑制され、波長変換効率の低下を避けられることを見出した。   The wavelength conversion element of the present invention includes an AR film having a characteristic of preventing reflection of the second wavelength-converted light generated from the input light and the wavelength-converted light on the substrate end surface including the end surface of the waveguide. As also shown in FIG. 2, on the input / output end face of the optical element of the prior art, in order to suppress the adverse effect of the reflected return light of the used optical frequency band such as the input signal light to the wavelength conversion element, An AR film formed of a film or the like is applied. For example, when the SHG process is used in PPLN-WG used for wavelength conversion, an AR film is formed for two frequency bands: the frequency (fundamental wave frequency) ω of input signal light and the frequency 2ω of SHG light. The inventors paid attention to light of frequency 3ω of sum frequency light generated when SHG light is generated by causing signal light of a communication wavelength of high input power and the like to be incident on PPLN-WG. By applying an AR film having the characteristic of preventing reflection of light in the 3ω frequency band to suppress heat generation due to light of the 3ω frequency on the end face of the waveguide, oscillation or heat generation generated in PPLN-WG It has been found that the reduction of the wavelength conversion efficiency can be avoided.

AR膜に新たに反射を防止する特性を付与する上述の3ωの周波数帯の光は、概ね光通信に使用される周波数帯域の3倍の周波数に対応している(波長では1/3となる)。したがって、Oバンド、Eバンド、Sバンド、Cバンド、Lバンドを含む通信波長で使用される信号光周波数の3倍の周波数帯に対応する。以下の説明では、Cバンド(1550nm帯)の信号光およびその3倍波の緑光の反射を防止する例について説明するが、本発明はCバンドの信号光の構成だけに限定されない。   The light in the above-mentioned 3ω frequency band, which gives the AR film a characteristic of preventing reflection, corresponds roughly to a frequency three times the frequency band used for optical communication (1⁄3 in wavelength) ). Therefore, it corresponds to a frequency band three times the signal light frequency used in the communication wavelength including the O band, the E band, the S band, the C band, and the L band. In the following description, although an example of preventing reflection of C-band (1550 nm band) signal light and its third harmonic green light is described, the present invention is not limited to the configuration of C-band signal light.

従来技術で検討されてきた大型の温度制御装置を使用したり、コア側に温度調節機構を設置したりするような煩雑で高コストな温度制御技術の適用なしに、従来技術で使用されている誘電体多層膜の設計を変更するだけの簡便な方法で、和周波光が間接的に発生することによる波長変換効率低下の問題を解決できる。   It is used in the prior art without the application of complicated and expensive temperature control technology such as using the large temperature control device considered in the prior art or installing the temperature control mechanism on the core side The problem of wavelength conversion efficiency reduction due to the indirect generation of sum frequency light can be solved by a simple method of merely changing the design of the dielectric multilayer film.

以下、図面および詳細な実施例とともに、本発明の光変変換素子およびこれを使用した様々な構成・機能の波長変換装置について説明する。   The light conversion element of the present invention and wavelength conversion devices of various configurations and functions using the same will be described below with reference to the drawings and detailed embodiments.

[第1の実施形態]
以下に示す本発明の各実施形態では、波長変換素子としては直接接合リッジ型PPLN−WGを用いる。直接接合法は、まず初めに化学薬品を用いて表面処理を行ったウエハ同士を重ね合わせることで、表面間引力により接合する方法である。接合は常温で行われるが、このときのウエハの接合強度は小さいため、接合強度を向上させるため高温での熱処理を行う。接着剤等を用いずに基板同士を強固に接合することのできる直接接合の技術は、高い光損傷耐性、長期の信頼性、デバイス設計の容易さ等の特徴を持つ。加えて、例えば差周波数生成(DFG:Differential Frequency Generation)機構による中赤外域の光発生において、不純物の混入や接着剤等の吸収を回避できる点からも有望視されている。
First Embodiment
In each embodiment of the present invention described below, a direct junction ridge type PPLN-WG is used as a wavelength conversion element. The direct bonding method is a method of bonding by surface-to-surface attractive force by first superimposing wafers subjected to surface treatment using chemicals. Bonding is performed at normal temperature, but since the bonding strength of the wafer at this time is small, heat treatment at high temperature is performed to improve the bonding strength. The technique of direct bonding which can firmly bond the substrates together without using an adhesive or the like has features such as high resistance to optical damage, long-term reliability, and ease of device design. In addition, for example, in light generation in the mid-infrared region by a differential frequency generation (DFG) mechanism, it is considered promising from the viewpoint of being able to avoid mixing of impurities and absorption of an adhesive or the like.

図8は、本発明の第1の実施形態の波長変換素子の構成を示す図である。図8の波長変換素子を含む波長変換装置800は、波長変換素子によりPSAに必要な励起光を発生させるよう動作させ、波長1550nm(ω)の基本波光である入力光312からSHG光を発生する。PSA動作に必要な波長775nmの励起光を生成するため、PPLN−WG102への通信波長帯の光である波長1550nm(ω)で入力パワー2Wの基本波光312を入力する。基本波光312は、PPLN−WG102内においてSHG光(2ω)を生成し、分波手段202からは、残留基本波光213(ω)およびSHG光214(2ω)が出力される。本発明の波長変換素子では、高効率かつ安定してSHG光を発生させるため、101基板の入出力端面にAR膜804a、804bを形成した。 FIG. 8 is a diagram showing the configuration of the wavelength conversion element according to the first embodiment of the present invention. The wavelength conversion device 800 including the wavelength conversion element of FIG. 8 is operated to generate excitation light necessary for the PSA by the wavelength conversion element, and generates SHG light from the input light 312 which is fundamental light of wavelength 1550 nm (ω 1 ). Do. In order to generate excitation light of wavelength 775 nm necessary for PSA operation, fundamental wave light 312 of input power 2 W at wavelength 1550 nm (ω 1 ) which is light of communication wavelength band to PPLN-WG 102 is input. The fundamental wave light 312 generates SHG light (2ω 1 ) in the PPLN-WG 102, and the demultiplexing means 202 outputs residual fundamental wave light 213 (ω 1 ) and SHG light 214 (2ω 1 ). In the wavelength conversion element of the present invention, AR films 804 a and 804 b are formed on the input and output end faces of the 101 substrate in order to generate SHG light efficiently and stably.

図9は、第1の実施形態の波長変換素子のAR膜の反射特性を示す図である。図8におけるAR膜804a、804bは、入力基本波光の1550nmおよびSHG光の775nmに加えて、入力光およびSHG光の和周波光の波長517nm近傍においても低い反射特性を有している。すなわち、導波路の端面の上に形成され、入力光(基本波光312)により発生する第1の波長変換光(SHG光214)、並びに、入力光および前記第1の波長変換光により発生する第2の波長変換光(和周波光)の各波長帯において光の反射を抑制するAR膜を備える。AR膜804a、804bを備えることによって、PPLN−WG102内において、入力光312(ω)および第1の波長変換光であるSHG光(2ω)から、さらに和周波光である波長3ωを持つ第2の波長変換光が発生しても、分波手段202から出力光315として波長変換素子の外部に出力される。したがって、2Wもの高いパワーの基本波光を入力し高出力な波長変換光を生成する本実施形態の構成でも、緑色に対応する波長517nm(3ω)近傍の光のレベルは著しく低下し、2次非線形光学材料によるPPLN−WG102における吸収も生じない。波長517nm(3ω)近傍の光による発熱が生じないため。波長変換素子の温度分布の変化も生じない。 FIG. 9 is a view showing the reflection characteristic of the AR film of the wavelength conversion element of the first embodiment. In addition to 1550 nm of input fundamental wave light and 775 nm of SHG light, AR films 804 a and 804 b in FIG. 8 have low reflection characteristics also near the wavelength 517 nm of sum frequency light of input light and SHG light. That is, the first wavelength-converted light (SHG light 214) generated on the end face of the waveguide and generated by the input light (fundamental light 312), and the light generated by the input light and the first wavelength-converted light An AR film is provided to suppress the reflection of light in each wavelength band of the two wavelength converted lights (sum frequency light). By providing the AR films 804a and 804b, in the PPLN-WG 102, from the SHG light (2ω 1 ) as the input light 312 (ω 1 ) and the first wavelength converted light, the wavelength 3ω 1 as the sum frequency light is further added. Even when the second wavelength-converted light is generated, it is output from the demultiplexing means 202 as the output light 315 to the outside of the wavelength conversion element. Therefore, even in the configuration of the present embodiment that inputs fundamental wave light with a power as high as 2 W and generates wavelength-converted light with high output, the level of light near the wavelength 517 nm (3ω 1 ) corresponding to green drops significantly, Also, no absorption occurs in the PPLN-WG 102 by the nonlinear optical material. There is no heat generation due to light near the wavelength 517 nm (3ω 1 ). There is no change in the temperature distribution of the wavelength conversion element.

図10は、第1の実施形態の波長変換素子におけるSHG光の位相整合特性を示す図である。導波路の端面上に、図9で示したような3つの波長帯で低い反射特性を有するAR膜804a、804bを形成することにより、PPLN−WG102内での517nmの残留成分が低減され、従来技術で必要だった温度制御手段、温度調節機構なしで、高いSHG出力を安定して生成できた。すなわち、従来技術の波長変換素子の外部の温度制御手段やコアに作製された温度調節機構が無くても、AR膜804a、804bを備えるだけで、従来技術を越える高いレベルのSHG出力を得られた。具体的には、従来技術の温度制御手段、温度調節機構付きの波長変換素子では、150mW程度のSHG出力に留まっていたのに対し、本発明では、500mWのSHG出力が得られた。   FIG. 10 is a diagram showing phase matching characteristics of SHG light in the wavelength conversion element of the first embodiment. By forming AR films 804a and 804b having low reflection characteristics in the three wavelength bands as shown in FIG. 9 on the end face of the waveguide, the residual component of 517 nm in PPLN-WG102 is reduced, and the related art A high SHG output can be stably generated without the temperature control means and temperature control mechanism required by the technology. That is, even if there is no external temperature control means of the wavelength conversion element of the prior art or the temperature control mechanism fabricated in the core, high levels of SHG output over the prior art can be obtained only by providing the AR films 804a and 804b. The Specifically, the temperature control means of the prior art and the wavelength conversion element with a temperature control mechanism have been limited to about 150 mW SHG output, whereas the present invention obtained 500 mW SHG output.

[第2の実施形態]
本発明の波長変換素子は、波長変換素子を用いる様々な形態・機能の波長変換装置に対して利用できる。以下、第1の実施形態とは異なる波長変換素子の利用形態の例について説明する。第2の実施形態では、PSAでの光パラメトリック増幅(OPA:Optical Parametric Amplifier)部に適用した例を示す。
Second Embodiment
The wavelength conversion element of the present invention can be used for wavelength conversion devices of various forms and functions using the wavelength conversion element. Hereinafter, an example of usage of a wavelength conversion element different from the first embodiment will be described. The second embodiment shows an example applied to an optical parametric amplification (OPA) section in PSA.

図11は、本発明の第2の実施形態の波長変換素子の構成を示す図である。本発明の波長変換素子を利用した波長変換装置は、PPLN−WG102を用いたPSAにおけるパラメトリック増幅部1100にAR膜を適用した例である。パラメトリック増幅部1100では、波長変換素子で波長1552nmの信号光をパラメトリック相互作用により低雑音に増幅するよう動作する。合波手段201への入力光1111として、通信波長帯の波長1550nmで入力パワー15dBmの信号光と、波長776nmの励起光1112を入力する。波長変換素子のPPLN−WG102にて、パラメトリック増幅により信号光1111を低雑音に増幅した。   FIG. 11 is a diagram showing the configuration of the wavelength conversion element according to the second embodiment of the present invention. The wavelength conversion device using the wavelength conversion element of the present invention is an example in which an AR film is applied to the parametric amplification unit 1100 in PSA using PPLN-WG102. In the parametric amplification unit 1100, the wavelength conversion element operates to amplify signal light with a wavelength of 1552 nm to low noise by parametric interaction. As an input light 1111 to the beam combining means 201, signal light with an input power of 15 dBm at a wavelength of 1550 nm in the communication wavelength band and excitation light 1112 with a wavelength of 776 nm are inputted. In the wavelength conversion element PPLN-WG 102, the signal light 1111 was amplified to low noise by parametric amplification.

位相感応増幅器で高い増幅利得を得るには、高いレベルの励起光1112をPPLN−WG102に入力する必要がある。このとき、図6でも説明したように、信号光1111の増幅作用に加えて波長変換素子内では信号光1111(ω)および励起光1112(ω)の和周波光(ω+ω)が生じる。そのため、波長1552nmおよび776nmの光の他に、517nmの緑光が発生して、波長変換素子内で発振・発熱が生じる。本実施形態のパラメトリック増幅部1100では、パラメトリック増幅に使用するPPLN−WG102の入出力端に、信号光1111、励起光1112およびこれらの和周波光に対して低い反射特性を有するAR膜1104a、1104bを形成した。すなわち、通信波長帯の入力光(信号光1111)、入力光に対して差周波数を生成しまたは位相感応増幅するための励起光(励起光1112)、並びに、前記入力光および前記励起光により発生し、前記入力光の3倍の周波数帯に属する波長変換光(出力光1115に対応)の各波長帯において光の反射を抑制するAR膜を備えた。 In order to obtain high amplification gain with the phase sensitive amplifier, it is necessary to input high level excitation light 1112 to PPLN-WG102. At this time, as described in FIG. 6, in addition to the amplification action of the signal light 1111, the sum frequency light (ω 1 + ω 2 ) of the signal light 1111 (ω 1 ) and the excitation light 1112 (ω 2 ) in the wavelength conversion element Will occur. Therefore, green light of 517 nm is generated in addition to the light of wavelengths 1552 nm and 776 nm, and oscillation and heat generation occur in the wavelength conversion element. In the parametric amplification unit 1100 of the present embodiment, AR films 1104 a and 1104 b having low reflection characteristics for the signal light 1111, the excitation light 1112, and their sum frequency light at the input / output end of PPLN-WG 102 used for parametric amplification. Formed. That is, input light in the communication wavelength band (signal light 1111), excitation light (excitation light 1112) for generating a difference frequency with respect to the input light or performing phase sensitive amplification, and generated by the input light and the excitation light And an AR film for suppressing the reflection of light in each wavelength band of the wavelength-converted light (corresponding to the output light 1115) belonging to a frequency band three times the input light.

分波手段202からは、増幅された信号光として出力光1113、および、励起光として出力光1114が出力される。さらに、AR膜1104a、1104bを備えたことによって、PPLN−WG102内で発生した517nmの緑光は、波長変換素子内に留まることなく出力光1115として外部に出力される。AR膜1104a、1104bを形成したことにより、従来技術で必要だった温度制御手段、温度調節機構なしで、1Wの励起光1112を入力し利得25dBの高いPSA利得を安定して実現可能であった。   The demultiplexing means 202 outputs an output light 1113 as amplified signal light and an output light 1114 as excitation light. Furthermore, by providing the AR films 1104a and 1104b, the 517 nm green light generated in the PPLN-WG 102 is output to the outside as the output light 1115 without staying in the wavelength conversion element. By forming the AR films 1104a and 1104b, it was possible to stably realize a high PSA gain of 25 dB by inputting 1 W of excitation light 1112 without the temperature control means and temperature adjustment mechanism required in the prior art. .

[第3の実施形態]
図12は、本発明の第3の実施形態の波長変換素子の構成を示す図である。本発明の波長変換素子を利用した波長変換装置は、PPLN−WG102を用いてBPSK信号を低雑音に中継増幅するインライン型PSA(非特許文献3)において、搬送波抽出部1200にAR膜を適用した例である。インライン型PSAの搬送波抽出部1200は、合波手段201への入力光としてPPLN−WG102へ、波長1536nmの信号光1211(ω)の一部と、波長1534nmの局部発振光(以下、局発光)1212(ω)とを入力し、波長1538nmの搬送波を抽出する。より詳細には、1つのPPLN−WG102内で生じるSHG機構および差周波数生成(DFG)機構のカスケード波長変換動作により、BPSK変調信号1211から波長1538nmの搬送波1213を抽出する。
Third Embodiment
FIG. 12 is a diagram showing the configuration of the wavelength conversion element according to the third embodiment of the present invention. The wavelength conversion device using the wavelength conversion element of the present invention applies the AR film to the carrier extraction unit 1200 in the in-line type PSA (Non-Patent Document 3) that relays and amplifies BPSK signals to low noise using PPLN-WG102. It is an example. The carrier extraction unit 1200 of the inline type PSA sends PPLN-WG 102 as input light to the multiplexing means 201, a part of the signal light 1211 (ω 1 ) of wavelength 1536 nm and local oscillation light of wavelength 1534 nm (hereinafter referred to as local light And 1212 (ω 2 ) to extract a carrier wave of wavelength 1538 nm. More specifically, carrier wave 1213 of wavelength 1538 nm is extracted from BPSK modulated signal 1211 by cascade wavelength conversion operation of SHG mechanism and difference frequency generation (DFG) mechanism generated in one PPLN-WG 102.

搬送波抽出部1200で搬送波の抽出感度を高めるには、高いレベルの局発光1212を入力することが必要となり、10dBmの光を入力する。この場合SHG・DFGカスケード波長変換で生じる局発光のSHG光および信号光の差周波光1214の他に、局発光のSHG光および信号光の和周波光1215(2ω+ω)や、局発光およびSHG光の和周波光1215(3ω)が発生してしまう。そのため、波長1536nmおよび776nmの他に、512nmの緑光が発生し、波長変換素子内において発振・発熱する。 In order to increase the carrier extraction sensitivity in the carrier extraction unit 1200, it is necessary to input high-level local light 1212 and light of 10 dBm is input. In this case, in addition to local light SHG light and signal light differential frequency light 1214 generated by SHG / DFG cascade wavelength conversion, sum frequency light 1215 (2ω 2 + ω 1 ) of local light SHG light and signal light, local light And sum frequency light 1215 (3ω 2 ) of SHG light is generated. Therefore, in addition to the wavelengths 1536 nm and 776 nm, green light of 512 nm is generated and oscillates and generates heat in the wavelength conversion element.

本実施形態の波長変換装置である搬送波抽出部1200では、パラメトリック増幅に使用するPPLN−WG102の入出力端に、波長1536nmおよび767nmに加え、512nmの波長帯に対して低い反射特性を有するAR膜1204a、1204bを形成した。すなわち、導波路の端面の上に形成され、第1の入力光(信号光1211)、第2の入力光(局発光1212)により発生する第1の波長変換光(SHG光)、並びに、前記第1の入力光および前記第1の波長変換光により発生する第2の波長変換光(和周波光1215)の各波長帯において光の反射を抑制するAR膜を備えた。このAR膜によって、PPLN−WG102内で発生した512nmの緑光は、波長変換素子内に留まることなく出力光1215として外部に出力される。これによって、従来技術で必要だった温度制御手段、温度調節機構なしで、高感度かつ安定してBPSK信号の搬送波を抽出できた。   In the carrier wave extraction unit 1200 which is the wavelength conversion device of the present embodiment, an AR film having low reflection characteristics for the wavelength band of 512 nm in addition to the wavelengths 1536 nm and 767 nm at the input / output terminal of PPLN-WG 102 used for parametric amplification. 1204a and 1204b were formed. That is, the first wavelength-converted light (SHG light) formed on the end face of the waveguide and generated by the first input light (signal light 1211), the second input light (local light 1212), and The AR film is provided to suppress the reflection of light in each wavelength band of the first wavelength-converted light (sum frequency light 1215) generated by the first input light and the first wavelength-converted light. By this AR film, the green light of 512 nm generated in the PPLN-WG 102 is output to the outside as the output light 1215 without staying in the wavelength conversion element. As a result, the carrier of the BPSK signal can be extracted with high sensitivity and stability without the temperature control means and temperature control mechanism required in the prior art.

[第4の実施形態]
図13は、本発明の第4の実施形態の波長変換素子の構成を示す図である。本発明の波長変換素子を利用した波長変換装置は、PPLN−WG102を用いたBPSK信号を低雑音に中継増幅するインライン型PSAにおける励起光生成部1300に、AR膜を適用した例である。インライン型PSAの励起光生成部1300では、合波手段201への入力として、BPSK信号から抽出した波長1538nmの搬送波光1311(ω)および波長1534nmの局発光1312(ω)の和周波光(波長1536nm)を発生しパラメトリック増幅部へエネルギーを供給する。
Fourth Embodiment
FIG. 13 is a diagram showing the configuration of the wavelength conversion element according to the fourth embodiment of the present invention. The wavelength conversion device using the wavelength conversion element of the present invention is an example in which an AR film is applied to the excitation light generation unit 1300 in an in-line type PSA that relays and amplifies a BPSK signal using PPLN-WG 102 to low noise. In the excitation light generation unit 1300 of the in-line PSA, the sum frequency light of carrier light 1311 (ω 1 ) of wavelength 1538 nm and local light 1312 (ω 2 ) of wavelength 1534 nm extracted from the BPSK signal as input to the multiplexing means 201 It generates (wavelength 1536 nm) and supplies energy to the parametric amplification unit.

この和周波光を発生するには、抽出した搬送波光および局発光のいずれも、高いレベルでPPLN−WG102へ入力する必要がある。このため、励起光生成部1300では波長1536nmの和周波光の他に、搬送波の3倍波、局発光の3倍波、さらに搬送波のSHG光および局発光の和周波光、搬送波および局発光のSHG光の和周波光である波長512nm帯の光1316まで発生する。   In order to generate this sum frequency light, it is necessary to input both of the extracted carrier light and local light to the PPLN-WG 102 at a high level. For this reason, in the excitation light generation unit 1300, in addition to the sum frequency light of wavelength 1536 nm, the third harmonic of the carrier wave, the third harmonic of the local light, further the SHG light of the carrier and the sum frequency light of the local light, the carrier and the local light It generates up to light 1316 in the wavelength 512 nm band, which is the sum frequency light of SHG light.

本実施形態の波長変換装置である励起光生成部1300では、パラメトリック増幅に使用するPPLN−WG102の入出力端に、波長1536nmおよび767nmに加え、512nmの波長帯で低い反射率を有するAR膜1304a、1304bを形成した。すなわち、導波路の端面の上に形成され、第1の入力光(搬送波光1311)、第2の入力光(局発光)により発生する第1の波長変換光(SHG光)、並びに、前記第1の入力光および前記第1の波長変換光により発生する第2の波長変換光(和周波光)の各波長帯において光の反射を抑制するAR膜を備えた。このAR膜によって、PPLN−WG102内で発生した512nmの緑光は、波長変換素子内に留まることなく出力光1316として波長変換素子の外部に出力される。これによって、PPLN−WG102において発生する搬送波のSHG光および局発光の和周波光、搬送波および局発光のSHG光の和周波光である波長512nm帯の光による素子の発熱を抑制する。励起光生成部1300においてAR膜1304a、1304bを備えることで、従来技術で必要だった温度制御手段、温度調節機構なしで、高い和周波変換を実現し、中継増幅利得して16dBの高利得化を実現できた。   In the excitation light generation unit 1300 which is the wavelength conversion device of the present embodiment, an AR film 1304 a having a low reflectance in the wavelength band of 512 nm in addition to the wavelengths 1536 nm and 767 nm at the input / output end of PPLN-WG 102 used for parametric amplification. , 1304b. That is, the first wavelength-converted light (SHG light) formed on the end face of the waveguide and generated by the first input light (carrier light 1311), the second input light (local light), and the first wavelength light The AR film is provided to suppress the reflection of light in each wavelength band of the second wavelength-converted light (sum frequency light) generated by the first input light and the first wavelength-converted light. With this AR film, the green light of 512 nm generated in the PPLN-WG 102 is output to the outside of the wavelength conversion element as the output light 1316 without staying in the wavelength conversion element. This suppresses the heat generation of the element by the light of the wavelength 512 nm band which is the sum frequency light of the SHG light of the carrier wave and the sum frequency light of the local light, the carrier wave and the SHG light of the local light generated in PPLN-WG102. By providing the AR films 1304a and 1304b in the excitation light generation unit 1300, high sum frequency conversion is realized without the temperature control means and temperature adjustment mechanism required in the prior art, and relay amplification gain is increased by 16 dB. Was realized.

以上詳細に説明したように本発明の波長変換素子により、従来技術で用いられていたAR膜(誘電体多層膜)の設計を変更するだけで、大型の温度制御装置を使用したり、コア側に温度調節機構を設置したりするなど煩雑で高コストな温度制御技術の適用なしに、和周波光が間接的に発生して波長変換素子性能が低下する問題を回避できる。温度制御装置、温度調節機構を省略できるため、波長変換素子や波長変換装置の簡略化、低コスト化を実現できる。   As described above in detail, it is possible to use a large-sized temperature control device by changing the design of the AR film (dielectric multilayer film) used in the prior art by the wavelength conversion element of the present invention. It is possible to avoid the problem that the sum frequency light is indirectly generated and the performance of the wavelength conversion element is degraded without applying a complicated and expensive temperature control technology such as installing a temperature control mechanism. Since the temperature control device and the temperature control mechanism can be omitted, simplification and cost reduction of the wavelength conversion element and the wavelength conversion device can be realized.

本発明は、一般的に通信システムに利用することができる。特に、光通信システムの光通信装置に利用することができる。   The invention is generally applicable to communication systems. In particular, it can be used for an optical communication device of an optical communication system.

100 波長変換素子
101 基板
102 導波路コア(PPLN−WG)
103 端面
104a、104b、804a、804b、1104a、1104b、1204a、1204b、1304a、1304b 反射防止膜
200、300、600、800、1100、1200、1300 波長変換装置
201 波長合波手段
202 波長分波手段
100 wavelength conversion element 101 substrate 102 waveguide core (PPLN-WG)
103 End faces 104a, 104b, 804a, 804b, 1104a, 1104b, 1204a, 1204b, 1304a, 1304b Antireflection films 200, 300, 600, 800, 1100, 1200, 1300 Wavelength conversion device 201 Wavelength combining means 202 Wavelength demultiplexing means

Claims (6)

2次非線形光学材料を用いた導波路と、
前記導波路の端面の上に形成され、
第1の入力光、
第2の入力光により発生する第1の波長変換光、並びに、
前記第1の入力光および前記第1の波長変換光により発生する第2の波長変換光
の各波長帯において光の反射を抑制する反射防止膜と
を備えたことを特徴とする波長変換素子。
A waveguide using a second-order nonlinear optical material,
Formed on the end face of the waveguide,
First input light,
First wavelength-converted light generated by the second input light, and
What is claimed is: 1. A wavelength conversion element comprising: an antireflective film for suppressing light reflection in each wavelength band of the first wavelength-converted light generated by the first input light and the first wavelength-converted light.
前記第2の波長変換光の波長帯は、Oバンド、Eバンド、Sバンド、Cバンド、Lバンドを含む通信波長で使用される信号光の3倍の周波数帯に対応することを特徴とする請求項1に記載の波長変換素子。   The wavelength band of the second wavelength-converted light corresponds to three times the frequency band of the signal light used in the communication wavelength including O band, E band, S band, C band, and L band. The wavelength conversion element according to claim 1. 2次非線形光学材料を用いた導波路と、
前記導波路の端面の上に形成され、
通信波長帯の入力光、
前記入力光に対して差周波数を生成しまたは位相感応増幅するための励起光、並びに、
前記入力光および前記励起光により発生し、前記入力光の3倍の周波数帯に属する波長変換光
の各波長帯において光の反射を抑制する反射防止膜と
を備えたことを特徴とする波長変換素子。
A waveguide using a second-order nonlinear optical material,
Formed on the end face of the waveguide,
Input light in the telecommunication wavelength band,
Excitation light for generating a difference frequency or phase sensitive amplification for the input light;
And a reflection preventing film for suppressing the reflection of light in each wavelength band of wavelength converted light which is generated by the input light and the excitation light and belongs to a frequency band three times as high as the input light. element.
前記2次非線形光学材料を用いた前記導波路は、周期分極反転ニオブ酸リチウム導波路であることを特徴とする請求項1乃至3いずれかに記載の波長変換素子。   The wavelength conversion element according to any one of claims 1 to 3, wherein the waveguide using the second-order nonlinear optical material is a periodically poled lithium niobate waveguide. 前記導波路のコアは、ZnOまたはMgOをドープされていることを特徴とする請求項4に記載の波長変換素子。   The wavelength conversion element according to claim 4, wherein the core of the waveguide is doped with ZnO or MgO. 前記2次非線形光学材料を用いた前記導波路は、直接接合により作製されたことを特徴とする請求項1乃至5いずれかに記載の波長変換素子。   The wavelength conversion element according to any one of claims 1 to 5, wherein the waveguide using the second-order nonlinear optical material is manufactured by direct bonding.
JP2017245288A 2017-12-21 2017-12-21 Characteristic stabilization method for wavelength conversion element Pending JP2019113623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245288A JP2019113623A (en) 2017-12-21 2017-12-21 Characteristic stabilization method for wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245288A JP2019113623A (en) 2017-12-21 2017-12-21 Characteristic stabilization method for wavelength conversion element

Publications (1)

Publication Number Publication Date
JP2019113623A true JP2019113623A (en) 2019-07-11

Family

ID=67222498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245288A Pending JP2019113623A (en) 2017-12-21 2017-12-21 Characteristic stabilization method for wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2019113623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366091B2 (en) 2020-02-11 2022-06-21 Saudi Arabian Oil Company High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for oil/brine interface analysis with reservoir conditions and dynamic compositions
US11640099B2 (en) 2020-02-11 2023-05-02 Saudi Arabian Oil Company High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for liquid/liquid interface analysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759619A (en) * 1995-12-29 1998-06-02 Lg Electronics Inc. Method of manufacturing second harmonic generation device
CN1719325A (en) * 2004-07-07 2006-01-11 中国科学院半导体研究所 A kind of gain blocked semiconductor optical amplifier and method for making
JP2008170582A (en) * 2007-01-10 2008-07-24 Ricoh Co Ltd Nonlinear optical crystal, laser apparatus, light source device, optical scanner, image forming apparatus, display device, and analyzing device
JP2012118465A (en) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and wavelength conversion system
JP2013044764A (en) * 2011-08-22 2013-03-04 Nikon Corp Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device
JP2014228639A (en) * 2013-05-21 2014-12-08 日本電信電話株式会社 Optical amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759619A (en) * 1995-12-29 1998-06-02 Lg Electronics Inc. Method of manufacturing second harmonic generation device
CN1719325A (en) * 2004-07-07 2006-01-11 中国科学院半导体研究所 A kind of gain blocked semiconductor optical amplifier and method for making
JP2008170582A (en) * 2007-01-10 2008-07-24 Ricoh Co Ltd Nonlinear optical crystal, laser apparatus, light source device, optical scanner, image forming apparatus, display device, and analyzing device
JP2012118465A (en) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and wavelength conversion system
JP2013044764A (en) * 2011-08-22 2013-03-04 Nikon Corp Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device
JP2014228639A (en) * 2013-05-21 2014-12-08 日本電信電話株式会社 Optical amplifier

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
T. INAGAKI, ET AL.: " "A coherent Ising machine for 2000-node optimization problems"", SCIENCE, vol. 354, JPN6021001798, 4 November 2016 (2016-11-04), pages 603 - 606, ISSN: 0004430319 *
T. UMEKI,ET AL.: ""Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides"", OPTICS EXPRESS, vol. 19, no. 7, JPN6021001799, 28 March 2011 (2011-03-28), pages 6326 - 6332, ISSN: 0004430320 *
山田 毅、他: "擬似位相整合Zn:LiNbO3導波路によるワット級580nm光の発生", 第69回応用物理学会学術講演会講演予稿集, vol. 3, JPN6021001796, 2 September 2008 (2008-09-02), pages 1054, ISSN: 0004430317 *
山田毅、他: "QPM−Zn:LN導波路デバイスの連続波長変換特性", 第56回応用物理学関係連合講演会講演予稿集, vol. 3, JPN6021001797, 30 March 2009 (2009-03-30), pages 1213, ISSN: 0004430318 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366091B2 (en) 2020-02-11 2022-06-21 Saudi Arabian Oil Company High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for oil/brine interface analysis with reservoir conditions and dynamic compositions
US11640099B2 (en) 2020-02-11 2023-05-02 Saudi Arabian Oil Company High temperature high pressure (HTHP) cell in sum frequency generation (SFG) spectroscopy for liquid/liquid interface analysis

Similar Documents

Publication Publication Date Title
US7480434B2 (en) Low loss terahertz waveguides, and terahertz generation with nonlinear optical systems
Umeki et al. Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides
Kou et al. High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO 3 quasi-phase-matched adhered ridge waveguide
JP7087928B2 (en) Wavelength converter
US20060109542A1 (en) Optical waveguide device, optical waveguide laser using the same and optical apparatus having same
Wu et al. Net optical parametric gain in a submicron silicon core fiber pumped in the telecom band
Takida et al. Injection-seeded backward terahertz-wave parametric oscillator
KR100471378B1 (en) Logic device including saturable absorption
Wagner et al. Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides
US20090103576A1 (en) System and Method of Providing Second Harmonic Generation (SHG) Light in a Single Pass
JP2019113623A (en) Characteristic stabilization method for wavelength conversion element
JP2014095780A (en) Optical amplifier
US11815785B2 (en) Wavelength conversion optical element
Feng et al. A bond-free PPLN thin film ridge waveguide
JP5814183B2 (en) Wavelength conversion device
JP2015161827A (en) Optical amplification device
Kishimoto et al. Periodically poled linbo3 ridge waveguide with 21.9 db phase-sensitive gain by optical parametric amplification
JP7473850B2 (en) Wavelength conversion device
Kazama et al. Single-chip parametric frequency up/down converter using parallel PPLN waveguides
Mbonde et al. Octave-Spanning Supercontinuum Generation in a Thin Si3N4 Waveguide Coated with Highly Nonlinear TeO2
JP6836477B2 (en) Planar optical waveguide device
Yan et al. Simultaneous $\chi^{(2)} $-$\chi^{(2)} $ and $\chi^{(2)} $-$\chi^{(3)} $ nonlinear processes generation in thin film lithium tantalate microcavity
Al-Mahmoud et al. Design of Silicon-Based Quantum Squeezer
Yu et al. Enhanced visible light generation in an active microcavity via third-harmonic conversion beyond the non-depletion approximation
Yamaoka et al. 256-Gbit/s PAM-4 directly modulated membrane lasers on SiC substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210720