WO2022156797A1 - 基于协同优化的应急备降场选择方法 - Google Patents

基于协同优化的应急备降场选择方法 Download PDF

Info

Publication number
WO2022156797A1
WO2022156797A1 PCT/CN2022/073449 CN2022073449W WO2022156797A1 WO 2022156797 A1 WO2022156797 A1 WO 2022156797A1 CN 2022073449 W CN2022073449 W CN 2022073449W WO 2022156797 A1 WO2022156797 A1 WO 2022156797A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
alternate
airport
time
flights
Prior art date
Application number
PCT/CN2022/073449
Other languages
English (en)
French (fr)
Inventor
赵向领
任强
闫凤良
Original Assignee
中国民航大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民航大学 filed Critical 中国民航大学
Publication of WO2022156797A1 publication Critical patent/WO2022156797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Definitions

  • the invention belongs to the technical field of flight operation scheduling, and in particular relates to a diversion and alternate selection problem faced when the destination airport of the flight is closed due to uncertain factors in the flight operation process.
  • the invention overcomes the shortcomings of existing research and establishes a linear programming model for the centralized alternate problem based on the idea of "collaborative decision-making", which is used to coordinate the allocation of flights that need emergency alternates temporarily closed at the target airport and transferred to appropriate
  • the alternate airport minimizes the total flight diversion and alternate time, and has the characteristics of flexible centralized optimization and allocation, which satisfies the airline's expectations for the alternate airport to the greatest extent.
  • the present invention analyzes and combines the relevant actual situation from the perspective of the airline's operation, and comprehensively considers the remaining flight time available for the flight, the expectation of the alternate airport, the alternate capacity of the airport, the acceptable aircraft category, and the allocation of the alternate airport.
  • the design constraints of factors such as flight arrival time slot, aircraft cruising speed, route wind, air traffic congestion, etc., the following technical solutions are proposed:
  • the emergency alternate site selection method based on collaborative optimization includes the following steps:
  • Each affected flight determines the remaining amount of aircraft fuel and obtains the available remaining flight time
  • the integer programming model of the flight alternate in the step (5) is specifically:
  • Each flight is allocated to one time slot of one airport at most, and each time slot can only be allocated to one flight at most, expressed as:
  • min represents the minimum value
  • is the weighting coefficient
  • i is the flight index
  • N is the total number of flights that need to be alternated
  • a is the index of available alternates
  • M is the available alternates.
  • Quantity s represents the optional alternate time slot provided by the airport
  • S a represents the number of time slots available for alternate flights at airport a in the future
  • ST as represents the time of the s-th time slot at airport a
  • BT represents the target airport
  • T i is the remaining flight time obtained by flight i according to the remaining fuel
  • x ias is a decision variable.
  • x ias takes the value of 1, and in other cases The value is 0, P ia represents the expected value of the airline choosing a as the alternate airport for flight i, BM is a value much larger than T i , D ia is the distance from flight i to the alternate airport a, and V i is flight i.
  • the selected cruise speed Wind ia is the average wind speed during the flight from flight i to the alternate airport a, ⁇ ia is the correction factor, C i is the aircraft type code classification of flight i, and C a is the maximum weight that can be accepted by airport a aircraft type code.
  • the invention can provide a better reference for the recovery of the air transport network, and provide effective decision support for centralized flight diversion management.
  • the model involved in the invention takes into account the flight that the destination airport is closed in case of emergency. By minimizing the diversion time and meeting the airline's expectation of the alternate airport to the greatest extent, it reduces the flight time to a certain extent. The company's backup cost.
  • the time required in the model solution process is less than one second, which can meet the decision-making process of emergency situations.
  • the method of the present invention combines the goal of saving the total time for diversion and alternate landings and the airline's expectation of the alternate airport, always has the function of flexible central control and optimization, can also meet the requirements of the airline, and reflects the CDM concept.
  • Figure 1 is a schematic diagram of the problem description.
  • Figure 2 is a comparison of required flight time and available remaining flight time.
  • the number "1-50" in the outermost circle in the figure represents the flight index number, and the number "0-180" in the radius of the concentric circles represents the flight time. The larger the radius, the longer the flight time.
  • Figure 3 shows the number of flights in different time windows. Including diversion alternate time (ST as -BT), route flight time (Crusing time) and air holding time (Holding time), among which diversion alternate time includes route flight time and air holding time.
  • Figure 4 shows the alternate expected values and the maximum and minimum expected values for different flights.
  • the number "1-50" in the outermost circle in the figure represents the flight index number, and the number "0-1" in the radius of the concentric circles represents the flight's expected value for different alternates.
  • Figure 5 shows the expected number of alternates to meet different flights.
  • each flight has an expected sequence for the 8 alternates, and the sequence is "1" to indicate the maximum expected alternate.
  • "8" represents the minimum expected alternate.
  • the data in the fan chart such as "1, 23, 46%" means that 23 flights are allocated to their respective maximum expected alternates, and these 23 flights account for the total flight volume 46%, that is, 46% of the flights can be diverted to their maximum expected diversion.
  • Figure 6 is a comparison chart of the shortest diversion alternate time method and the diversion alternate time of this strategy (the case of 50 flights).
  • Figure 7 is a comparison chart of the expected value of the alternate landing field between the method with the shortest diversion time and this strategy (50 flight cases).
  • Figure 8 shows the average expected alternate value and the average diversion alternate time under different weight coefficients ⁇ .
  • Figure 9 shows the execution time of the algorithm (51 test calculation times are counted, in seconds).
  • the flight plan must be submitted to the air traffic control unit before the flight runs.
  • the airline dispatcher selects an appropriate alternate airport for the flight to deal with the situation that the destination airport cannot land.
  • the flight will operate according to the flight plan and can land normally at the destination airport.
  • all flights to the destination must be diverted to the alternate airport as the destination airport.
  • N flight sets need to be allocated to M (M ⁇ N) alternate airports, as shown in Figure 1.
  • the flight plan information of all affected flights is collected as soon as possible, so as to determine the number of affected flights, the number of available alternate airports, and the expected alternate airports for each flight.
  • the time slots available for alternate landings and the airport capacity are determined through coordination and communication, and the landing time is allocated for the flight.
  • the control unit will issue an alternate plan according to the allocation results, and each flight will go to the corresponding alternate site for alternate landing according to the alternate plan.
  • the first step is to establish decision variables
  • i the flight index
  • N the total number of flights that need to be diverted
  • a indicates the index of available alternate yards
  • M represents the number of available alternate airports
  • s represents the optional alternate time slot provided by the airport
  • S a represents the number of time slots available for alternate flights at airport a in the future.
  • the second step is to establish the objective function
  • Equation (2) indicates that the total diversion time is minimized.
  • BT represents the moment when the target airport is suddenly closed, that is, the moment when all the flights that need to be diverted begin to perform the diversion.
  • ST represents the time of the s-th time slot of a airport.
  • Equation (3) expresses the general expectation of maximizing an airline's operational flexibility.
  • P ia is the expectation that the airline chooses airport a as the alternate airport for flight i, 0 ⁇ P ia ⁇ 1, and the larger the value of P ia , the more the airline hopes to transfer to this airport for alternate landing.
  • the two objective functions are weighted by the weighting coefficient ⁇ (0 ⁇ 1) to obtain formula (4).
  • Min represents the operation to find the minimum value.
  • T i is the remaining flight time obtained by flight i according to the remaining fuel; It is used to ensure that the order of magnitude in the two objective functions is the same; Represents the penalty function if flight i does not choose any alternate airport alternates. If flight i is assigned to an alternate airport, the value of this function is 0, and in other cases, its value is BM, which is a value much larger than T i .
  • the penalty function can enable the model to solve the flight alternate situation in emergency situations, that is, if the diverted flight cannot comply with the constraints given below, the model can still provide an alternate plan;
  • Each flight is allocated to at most one time slot of an airport, and each time slot can only be allocated to at most one flight, namely inequality constraints (5) and (6).
  • the required diversion time is from the diversion point to the alternate airport a and circling and waiting at the airport to land at the allocated time slot s.
  • the time slot s must be less than the remaining flight time Ti of the flight, ie inequality (7).
  • the time slot allocated by the alternate airport a for flight i is later than the time when the aircraft flies over the airport, otherwise, the time slot needs to be allocated again after the aircraft flies over the airport. That is, the flight time of flight i from the diversion point to the alternate airport a should be earlier than the allocated time slot s of the airport a, as shown in formula (8).
  • D ia is the distance from flight i to the alternate airport a
  • V i is the selected cruise speed
  • Wind ia represents the average wind speed during the flight from flight i to airport a, which can be predicted using the high-altitude wind temperature map;
  • ⁇ ia is a correction factor, which is used to consider factors such as outside air temperature, unpredictable wind direction changes, navigation errors, air traffic congestion and other factors that may cause flight delays, where 1 ⁇ ij ⁇ 1.1;
  • the total number of flights to alternate airport a should not exceed its acceptable total number of flights, ie capacity Q a .
  • the aircraft types can be divided into 6 categories, namely ⁇ A, B, C, D, E, F ⁇ . Usually, the 6 categories are getting bigger and bigger from left to right. If the airport is suitable for heavy aircraft operation, it can also accept smaller weight aircraft. For example, if the airport can accept the largest D-type aircraft, the acceptable type For ⁇ A, B, C, D ⁇ four categories. For ease of comparison, this set of reference codes can be mapped to a set of numbers ⁇ 1, 2, 3, 4, 5, 6 ⁇ .
  • C i is the classification code C i ⁇ ⁇ 1, 2, 3, 4, 5, 6 ⁇ for flight i.
  • C a is the aircraft type code with the heaviest weight acceptable to airport a, C a ⁇ ⁇ 1, 2, 3, 4, 5, 6 ⁇ ; therefore, if flight i decides to divert to airport a, it must satisfy C i ⁇ C a , ie inequality (10).
  • the file name read is: 3d_50_8_20_3DJun 26 2019 results.txt
  • the number of slots per alternate field is: 20
  • the test showed that the average diversion time of 50 flights was 59.36 minutes, of which the flight time and waiting time were 53.53 and 5.83 minutes respectively.
  • FIG. 2 is a comparison of the time required for each flight and the available remaining flight time Ti in the allocation results. It can be seen from Fig. 2 that T i are all over 120 minutes, and the allocated flight time is almost all less than 120 minutes (only flights 24 and 40 exceed), and most of them are less than 60 minutes.
  • the final reserve fuel for the flight to wait in the air at the alternate airport should be able to guarantee the flight waiting for 30 minutes.
  • the waiting time is all less than 30 minutes, and 80% of the flight waiting time is less than 10 minutes. Therefore, the requirements of regulations are met, and the air waiting time and fuel consumption can be saved.
  • Figure 4 shows the expected value of the flight alternate airport, and the maximum expected value and the minimum expected value of the flight corresponding to the alternate airport in the allocation result.
  • the average value of 50 flights in the test is 0.888, and it can be seen from Figure 4 that the expected value of the alternate airport allocated by most flights is close to the maximum expected value.
  • Figure 5 shows the ranking of flight expectations to all alternate airports. There are 23 flights allocated to the first expected alternate airport, accounting for 46% of the total flight volume (“1, 23, 46%” in the figure); the number of flights allocated to the top three expected alternate airports is 39, accounting for 78% of the total flight volume ("1, 23, 46%", “2, 9, 18%", “3, 7, 14%” in the figure), so most flights can get the expected alternate airport.
  • the expected value average increased from 0.524 to 0.704, an increase of 34.35% (as shown in the boxplot in Figure 7), with 18 flights with increased expectations.
  • the two target weighting coefficients ⁇ are changed from 0 to 1 with a step size of 0.02, and the corresponding relationship between the total diversion time and the expected value can be obtained, as shown in Figure 8.
  • Figure 9 counts the time required for the model to run. A total of 51 tests have been carried out here. The average test consumption time is 0.456 seconds, and the standard deviation is 0.024, which can meet the decision-making time requirements in the diversion decision.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

基于协同优化的应急备降场选择方法,从航空公司的运营角度分析并结合相关的实际情况,综合考虑航班可用的剩余飞行时间、对备降机场的期望、机场的备降容量、可接受的飞机类别、以及备降机场分配的航班到达时隙、飞机的巡航速度、航路风、空中交通拥堵等因素设计约束条件,基于"协同决策"的思想,建立了集中备降问题的线性规划模型,用于协调分配在目标机场临时关闭需要紧急备降的航班,将其转移到适当的备降机场,最大程度地减少了飞行的总改航备降时间,并且具有进行灵活的集中优化分配特点,最大程度地满足了航空公司对备降机场的期望。

Description

基于协同优化的应急备降场选择方法
本发明要求于2021年1月25日向中国专利局提交的申请号为202110098879.8、发明名称为“基于协同优化的应急备降场选择方法”中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于航班运行调度技术领域,具体涉及一种航班运行过程中因不确定因素导致航班目的机场关闭时所面临的改航备降选择问题。
背景技术
随着民航业的飞速发展,主要枢纽机场在高峰时段运营的航班数量比以往任何时候都要多,并且其运行容量长期处于饱和的边缘。受极端天气、机场外来物入侵、恐怖活动威胁等因素的影响,机场的正常运行会被中断,甚至导致暂时关闭,大量受影响航班必须立即改航到备降机场。大范围的航班备降不仅干扰相应备降机场的正常运行,甚至可能妨碍整个空中交通网络的运行。因此,在枢纽机场突然停运时,如何处理使飞行中的航班改航到适当的备降机场是一项非常关键的工作。
现阶段的研究中主要有三种与机场临时关闭有关的类型:
(1)针对不同机场关闭的影响分析,学者们提供了一种可将航班改航至不受干扰的枢纽机场的策略,以用于分析对转机旅客的影响;其目标是合理安排乘坐受影响离港航班旅客,并且最大程度地减少前往备降机场的旅客旅行时间和中转航班的等待时间。由于其处理过程中忽略不计航班备降对空中交通流的分布、管制指挥的负荷等方面的影响,因此理想化程度较高。
(2)备降航班航线确定方法,该方法为航班分配了到达备降机场的时间,其目标是尽量减少等待和改航的时间,并且综合考虑了分流时间窗、剩余燃油 限制和机场容量的限制。在合理假设改航机场和运力的情况下,可以实现航班在不达到燃油临界状态的情况下快速进行备降。该方法虽然可以减少航班的总备降飞行时间,但是航空公司失去了飞行计划中的期望备降机场,并且需要更多的时间和成本从改航备降中恢复。
(3)当正常航班时刻表因目的地机场关闭而中断时,需要关注的问题是如何快速恢复航空公司和机场运行。现有研究中处理效果较好的是“替代对”航班时刻重新安排方法,该方法揭示了机场网络中“替代对”的存在并提供了一种识别方法。一般来说替代对是一对机场,如果其中一个关闭,则另一个可以承担其部分交通负荷,类似于特殊的备降机场。该研究中尽管重新划分了航班时刻,并提出了替代对方法,但是研究范围是战略性的,忽略了航班备降的局地影响。
发明内容
该发明克服现有研究的不足,基于“协同决策”的思想,建立了集中备降问题的线性规划模型,用于协调分配在目标机场临时关闭需要紧急备降的航班,将其转移到适当的备降机场,最大程度地减少了飞行的总改航备降时间,并且具有进行灵活的集中优化分配特点,最大程度地满足了航空公司对备降机场的期望。
本发明从航空公司的运营角度分析并结合相关的实际情况,综合考虑航班可用的剩余飞行时间、对备降机场的期望、机场的备降容量、可接受的飞机类别、以及备降机场分配的航班到达时隙、飞机的巡航速度、航路风、空中交通拥堵等因素设计约束条件,提出了如下的技术方案:
基于协同优化的应急备降场选择方法,包含如下的步骤:
(1)在目的机场关闭后,第一时间收集所有受目的机场关闭影响航班的飞行计划信息,确定受影响航班数目、可用备降机场的数目以及各个航班的期望备降机场;
(2)确定受影响航班的实时位置、速度、航路风速,受影响航班的飞机类 别;
(3)各受影响航班各自确定剩余飞机油量,得到可用剩余飞行时间;
(4)根据飞行计划中涉及到的备降机场,确定各备降机场可用于备降的时隙以及机场容量,为受影响航班分配降落时间;
(5)以最大程度减小总改航备降时间和满足航空公司对备降机场的期望为目标,建立航班备降的整数规划模型;
(6)求解所述航班备降的整数规划模型,获得航班备降分配结果;
(7)根据分配结果发布备降方案,各受影响航班根据所述备降方案前往相应的备降场机场备降。
所述步骤(5)中的航班备降的整数规划模型,具体为:
一个目标函数:
Figure PCTCN2022073449-appb-000001
六个约束条件:
(21)每个航班最多分配给一个机场的一个时隙,并且每个时隙最多只能分配一个航班,表示为:
Figure PCTCN2022073449-appb-000002
Figure PCTCN2022073449-appb-000003
(22)备降分配的时隙s时间必须小于航班剩余飞行时间T i,表示为:
Figure PCTCN2022073449-appb-000004
(23)航班i从改航点到备降机场a的航路飞行时间应早于机场a的分配的时隙s,表示为:
Figure PCTCN2022073449-appb-000005
(24)飞往备降机场a的航班总数不应超过其可接受的航班总量,即容量Q a,表示为:
Figure PCTCN2022073449-appb-000006
(25)机场的飞机类别限制,表示为:
Figure PCTCN2022073449-appb-000007
其中,min表示求取最小值,β为加权系数,0≤β≤1,i表示航班索引,N表示需要备降的总航班量,a表示可用备降场索引,M表示可用的备降机场数量,s表示机场提供的可选备降时隙,S a表示a机场未来一段时间内可用于备降航班的时隙量,ST as表示a机场第s个时隙的时刻,BT表示目标机场突然关闭的时刻,T i为航班i根据剩余燃油获得的剩余飞行时间,x ias为决策变量,当航班i分配的是备降机场a的s时隙时,x ias取值为1,其余情况取值为0,P ia表示航空公司选择a作为航班i的备降机场的期望值,BM是一个远大于T i的数值,D ia为航班i到备降机场a的距离,V i为航班i所选的巡航速度,Wind ia表示航班i到备降机场a的飞行过程的平均风速,λ ia为校正因子,C i是航班i的机型代码分类,C a是机场a可以接受的重量最大的飞机机型代码。
本发明与现有技术相比的优点在于:
(1)在空中交通流量管理系统中集成该优化方法,当主要枢纽机场突然停运时进行工作,然后向航空公司签派员、飞行员,空中交通管制员和机场管理者提供最佳的改航解决方案。
(2)该发明可以为航空运输网络的恢复提供较好的参考,并为集中式航班改航管理提供有效的决策支持。
(3)发明涉及的模型考虑了目的机场在紧急情况下关闭的航班,通过最大程度地减少了改航备降时间并且最大程度地满足航空公司对备降机场的期望,一定程度上降低了航空公司的备降成本。
(4)模型中涉及的约束有:剩余飞行时间与降落时隙,备降机场容量,风和空中交通延误的影响,机场可接受飞机类型等,符合实际运行中多数需求。
(5)在模型求解过程中所需时间少于一秒,可以满足紧急情况的决策过程。
(6)本发明的方法结合了节省改航备降总时间的目标和航空公司对备降机场的期望,始终具有灵活进行中心控制和优化的功能,还可以满足航空公司的要求,并且反映了CDM理念。
附图说明
图1为问题描述示意图。
图2为所需飞行时间与可用剩余飞行时间对比图。图中最外圆的数字“1-50”表示航班索引号,同心圆半径的数值“0-180”表示飞行时间,半径越大表示飞行时间越长。
图3为不同时间窗内的航班数量。包括改航备降时间(ST as-BT)、航路飞行时间(Crusing time)和空中等待时间(Holding time),其中改航备降时间包括航路飞行时间和空中等待时间。
图4为不同航班分配的备降场期望值以及最大、最小期望值。图中最外圆的数字“1-50”表示航班索引号,同心圆半径的数值“0-1”表示航班对不同备降场的期望值。
图5为满足不同航班备降场期望数量。针对8个备降场案例,根据每个航班对各备降场期望程度的不同,每个航班对8个备降场有一个期望顺序,顺序为“1”表示最大期望备降场,以此类推,“8”表示最小期望备降场。在本案例图5的求解结果中,扇形图中的数据,如“1,23,46%”表示有23个航班被分配给了各自的最大期望备降场,这23个航班占总航班量的46%,即46%航班可以备降其最大期望备降场。)
图6为改航备降时间最短方法与本策略的改航备降时间对比图(50架航班案例)。
图7为改航备降时间最短方法与本策略的备降场期望值对比图(50架航班案例)。
图8为不同权重系数β情况下平均期备降望值与平均改航备降时间。
图9为算法执行时间(统计了51次测试计算时间,单位为秒)。
具体实施方式
航班运行前必须向空管单位提交飞行计划,在飞行计划中航空公司签派员为航班选择适当的备降机场用以处理目的机场无法降落的情况。正常情况下航班会按照飞行计划内容运行,可以在目的机场正常降落。但是,当目的地机场紧急关闭后,飞往目的地的所有航班都必须改航,并以备降机场为目的机场。在一些实际的约束下,需要将N个航班集合分配到M个(M<N)备降机场,如图1所示。
根据发明内容,按照以下步骤进行备降机场分配与选择
(1)目的机场关闭后第一时间收集所有受影响航班的飞行计划信息,从而确定受影响航班数目、可用备降机场的数目、各个航班的期望备降机场。
(2)根据现有空管自动化设备确定飞机的实时位置参数、速度大小、航路风速,受影响飞机类别。
(3)飞行员报告剩余飞机油量从而得到各个受影响航班可用剩余飞行时间,该时间的大小很大程度上影响备降机场的分配。
(4)根据飞行计划中涉及到的备降机场,通过协调沟通确定其可用于备降的时隙以及机场容量,为航班分配降落时间。
(5)以最大程度减小总改航备降时间和满足航空公司对备降机场的期望为目标,建立航班备降的整数规划模型;
(6)把(1)-(4)中搜集的航班和备降场信息作为模型参数数据,利用(5)中建立的整数规划模型,采用通用的整数规划模型求解软件(如CPLEX求解器),对模型进行求解,获得航班备降分配结果;
(7)管制单位根据分配结果发布备降方案,各航班根据备降方案前往相应的备降场备降。
其中(5)中的详细模型如下:
第一步,建立决策变量
Figure PCTCN2022073449-appb-000008
其中:
i表示航班索引;
N表示需要备降的总航班量;
a表示可用备降场索引;
M表示可用备降的机场数量;
s表示机场提供的可选备降时隙;
S a表示a机场未来一段时间内可用于备降航班的时隙量。
第二步,建立目标函数
目标1:
Figure PCTCN2022073449-appb-000009
目标2:
Figure PCTCN2022073449-appb-000010
其中min表示对决策变量为x ias的函数式求最小值,max表示对决策变量为x ias的函数式求最大值。公式(2)表示使总改航备降时间最小。BT表示目标机场突然关闭的时刻,即所有需要备降的航班开始执行备降的时刻。ST as表示a机场第s个时隙的时刻。因此,如果航班i选择了a机场并在该机场第s个时刻备降,即x ias=1,则航班飞向该机场,在该机场上空等待,并在ST as时刻着落,需要的时间为ST as-BT,其中包含航路飞行时间和空中等待时间。公式(3)表示最大程度提高航空公司运营灵活性的总体期望。P ia是航空公司选择机场a作为航班i的备降机场的期望值,0≤P ia≤1,且P ia值越大,航空公司越希望转移到该机场备降。
第三步,将两个目标函数通过加权系数β(0≤β≤1)进行加权,从而得到公式(4)。
Figure PCTCN2022073449-appb-000011
Min表示求取最小值运算。
该公式用于确保总改航备降时间最小,同时保障航空公司选择备降场的总期望最大。其中,T i为航班i根据剩余燃油获得的剩余飞行时间;
Figure PCTCN2022073449-appb-000012
用于保证两个目标函数中的数量级相同;
Figure PCTCN2022073449-appb-000013
表示如果航班i不选择任何备降机场备降的惩罚函数。若航班i分配到某一备降机场则该函数值为0,其他情况下其值为BM,BM是一个远大于T i的数值。该惩罚函数可以使模型能够解决紧急情况下的航班备降情况,即,改航航班如果无法遵循下述给定的约束,该模型仍可以给出备降方案;
第四步,建立数学约束
(1)每个航班最多分配给一个机场的一个时隙,并且每个时隙最多只能分配一个航班,即不等式约束(5)和(6)。
Figure PCTCN2022073449-appb-000014
Figure PCTCN2022073449-appb-000015
(2)时隙窗口约束
由于航班i的油箱中的剩余燃油是有限的,所需改航备降时间为从改航点到备降机场a并在机场盘旋等待到分配的时隙s时刻降落,因此,备降分配的时隙s时间必须小于航班剩余飞行时间T i,即不等式(7)。
Figure PCTCN2022073449-appb-000016
同时,备降场a为航班i分配的时隙要晚于飞机飞到该机场上空的时间,否则,飞机飞到该机场上空后需要再次分配时隙。即航班i从改航点到备降机场a的航路飞行时间应早于机场a的分配的时隙s,如式(8)。
Figure PCTCN2022073449-appb-000017
其中
D ia为航班i到备降场a的距离;
V i为所选的巡航速度;
Wind ia表示航班i到机场a的飞行过程的平均风速,可以使用高空风温图预测;
λ ia为校正因子,用于考虑外部空气温度,不可预测的风向变化,导航误差,空中交通拥堵等可能会导致航班延误的因素,其中1≤λ ij≤1.1;
(3)备降机场的容量限制
飞往备降机场a的航班总数不应超过其可接受的航班总量,即容量Q a
Figure PCTCN2022073449-appb-000018
(4)机场的飞机类别限制
按照机场运行保障可以把飞机机型分为6类,即{A,B,C,D,E,F}。通常该6类从左到右体积和重量越来越大,如果机场适合重型飞机运行,则也可以接受较小重量的飞机,例如该机场如果最大可接收D型机,则可接受的机型为{A,B,C,D}四类。为便于比较,可以将这一组参考代码映射到一组数字{1、2、3、4、5、6}。C i是航班i的分类代码C i∈{1、2、3、4、5、6}。C a是机场a可以接受的重量最大的飞机机型代码,C a∈{1、2、3、4、5、6};因此,如果航班i决定备降到机场a,则必须满足C i≤C a,即不等式(10)。
Figure PCTCN2022073449-appb-000019
实施例
假设有50个航班需要改航至8个备降机场,具体案例参数如下。
===测试文件信息如下:===
读取的文件名为:3d_50_8_20_3DJun 26 2019结果.txt
需要备降的航班数量:50
可选备降场数量:8
每个备降场的时隙数量为:20
航班 速度(kts) 可用飞行时间(mins) 机型
航班0:377 164 3
航班1:476 134 6
航班2:395 123 4
航班3:433 167 6
航班4:411 162 2
航班5:455 153 5
航班6:408 163 6
航班7:434 136 4
航班8:442 143 2
航班9:441 151 4
航班10:430 159 5
航班11:350 130 3
航班12:458 141 5
航班13:418 148 6
航班14:435 162 6
航班15:407 173 4
航班16:365 142 5
航班17:470 135 3
航班18:435 129 6
航班19:352 167 3
航班20:380 180 6
航班21:487 176 6
航班22:366 130 3
航班23:366 174 6
航班24:448 136 3
航班25:462 129 5
航班26:353 151 5
航班27:417 136 3
航班28:397 179 3
航班29:470 178 4
航班30:372 124 5
航班31:451 134 5
航班32:498 141 4
航班33:418 125 5
航班34:403 121 5
航班35:466 176 3
航班36:367 173 6
航班37:454 150 5
航班38:446 159 5
航班39:358 168 6
航班40:495 160 4
航班41:359 167 2
航班42:379 128 2
航班43:446 146 5
航班44:493 159 3
航班45:461 146 6
航班46:407 163 6
航班47:397 145 4
航班48:402 159 6
航班49:400 127 3
备降场 机场容量 机场最大限制机型 可用备降时刻
备降场0:15 4 35 36 45 49 55 59 60 69 74 79 80 88 92 0 105 106 114 120 121 125
备降场1:12 4 30 35 43 46 54 60 64 67 74 75 0 90 94 95 101 110 114 118 124 129
备降场2:15 5 31 0 45 47 0 56 0 70 74 78 80 88 92 97 102 107 0 115 121 130
备降场3:11 5 30 0 42 48 53 58 62 68 0 80 0 86 93 97 0 106 115 120 125 130
备降场4:10 4 35 40 44 46 55 0 62 0 71 0 85 88 93 96 101 108 113 120 122 127
备降场5:14 6 31 37 43 49 55 55 0 67 72 79 81 86 95 99 101 108 111 115 123 128
备降场6:13 4 35 0 40 48 53 58 0 68 72 77 80 86 95 96 0 109 112 116 124 126
备降场7:10 5 35 40 42 50 50 57 60 67 0 76 80 86 93 0 0 107 110 119 125 130
i-a 备降期望 备降距离(nm) 航路风(kts)航路系数
[0][0]:0.3 389 -18 1.08
[0][1]:0.3 396 -5 1.01
[0][2]:0.5 130 -24 1.09
[0][3]:0.8 273 -5 1.02
[0][4]:0.6 656 -25 1.05
[0][5]:0.6 326 -12 1.01
[0][6]:0.2 429 -22 1.08
[0][7]:0.3 177 -25 1.07
[1][0]:0.3 346 22 1.07
[1][1]:0.2 707 25 1.09
[1][2]:0.9 508 -10 1.02
[1][3]:0.2 787 16 1.1
[1][4]:0.2 652 -17 1.03
[1][5]:0.3 392 7 1.03
[1][6]:0.2 429 21 1.07
[1][7]:0.2 774 -14 1.03
[2][0]:0 227 24 1.02
[2][1]:0.8 756 -13 1.08
[2][2]:0 595 -13 1.01
[2][3]:0.5 509 29 1.03
[2][4]:0.6 246 9 1.02
[2][5]:0.8 624 -16 1.02
[2][6]:0.7 455 -17 1.08
[2][7]:0.1 609 2 1.01
[3][0]:0.4 659 -16 1.06
[3][1]:0.2 653 -17 1.06
[3][2]:0.1 211 26 1.07
[3][3]:0.3 186 -24 1.09
[3][4]:0.7 659 -29 1.04
[3][5]:0.8 415 3 1
[3][6]:0.6 698 -21 1.09
[3][7]:0.7 415 -25 1.03
[4][0]:0 712 7 1.04
[4][1]:0.9 382 -7 1.01
[4][2]:0.1 438 -30 1.05
[4][3]:0.5 735 23 1.05
[4][4]:0.5 397 4 1.03
[4][5]:0.1 758 6 1.09
[4][6]:0.1 634 21 1.05
[4][7]:0.9 279 -9 1.07
[5][0]:0.7 413 -4 1.07
[5][1]:0.5 207 12 1.06
[5][2]:0.5 615 28 1.03
[5][3]:0.4 485 23 1.09
[5][4]:0.9 411 27 1.07
[5][5]:0.2 121 -19 1.03
[5][6]:0.4 243 5 1.04
[5][7]:0.2 513 28 1.09
[6][0]:0.8 227 17 1.08
[6][1]:0.4 173 -12 1.01
[6][2]:0.2 352 25 1.02
[6][3]:0.2 333 -16 1.08
[6][4]:1 691 18 1.07
[6][5]:0.6 199 -3 1.01
[6][6]:0.5 272 -11 1.1
[6][7]:0.9 138 2 1.01
[7][0]:0.4 642 -20 1.03
[7][1]:0.8 483 -18 1.08
[7][2]:0.6 183 5 1.08
[7][3]:0.4 314 1 1
[7][4]:0.6 474 29 1.05
[7][5]:0.4 115 15 1.01
[7][6]:0.7 619 -19 1.09
[7][7]:0.5 459 -29 1.07
[8][0]:0.8 217 -29 1.05
[8][1]:0.6 354 16 1.07
[8][2]:0.9 642 -10 1.07
[8][3]:0.1 301 24 1.02
[8][4]:0.8 469 -11 1.03
[8][5]:0.5 242 -24 1.02
[8][6]:0 382 29 1.06
[8][7]:0.4 362 -18 1.06
[9][0]:1 637 1 1.07
[9][1]:0.1 562 -9 1.02
[9][2]:0.6 496 -27 1.05
[9][3]:0.9 258 -25 1.05
[9][4]:0.7 449 -1 1.06
[9][5]:0.6 140 14 1.05
[9][6]:0.4 500 -1 1.09
[9][7]:0.9 472 24 1.05
[10][0]:0.1 387 -15 1.06
[10][1]:0.8 369 -24 1.04
[10][2]:0.3 492 -17 1.02
[10][3]:0.5 696 27 1.03
[10][4]:0.7 502 -16 1.08
[10][5]:0.5 272 -11 1.02
[10][6]:0.2 400 -16 1.09
[10][7]:0 478 -17 1.01
[11][0]:1 552 6 1.05
[11][1]:0 430 -4 1.02
[11][2]:0.3 177 6 1.1
[11][3]:0.8 242 -11 1.03
[11][4]:0.8 202 -13 1.03
[11][5]:0.9 706 26 1.04
[11][6]:0.8 552 5 1.08
[11][7]:0.3 587 1 1.02
[12][0]:0.3 136 27 1.04
[12][1]:0.7 319 19 1.01
[12][2]:0.2 442 22 1.01
[12][3]:0.3 307 13 1.06
[12][4]:0.1 600 28 1.04
[12][5]:0.5 280 -22 1.05
[12][6]:1 691 23 1.09
[12][7]:0.7 347 -29 1.06
[13][0]:0.1 293 24 1.04
[13][1]:0.8 268 -19 1.01
[13][2]:0.8 188 -14 1.02
[13][3]:0.6 426 -30 1.08
[13][4]:0.3 196 17 1.1
[13][5]:0.8 586 -21 1.07
[13][6]:0.6 361 21 1.05
[13][7]:0.6 692 29 1.02
[14][0]:0.3 770 -21 1.07
[14][1]:0.4 793 -28 1.03
[14][2]:0.5 108 15 1
[14][3]:0.8 568 -9 1.08
[14][4]:0.2 786 -17 1.05
[14][5]:0.9 615 24 1.03
[14][6]:0.2 595 28 1.04
[14][7]:0.4 685 -19 1.01
[15][0]:0.8 694 -5 1.01
[15][1]:0.3 152 10 1.06
[15][2]:0.1 741 5 1.1
[15][3]:0.6 327 -29 1.07
[15][4]:0.4 726 -10 1.08
[15][5]:0 205 -11 1.02
[15][6]:0.2 670 18 1.02
[15][7]:0.8 720 15 1.09
[16][0]:0.1 100 -13 1.03
[16][1]:0.2 585 -13 1.01
[16][2]:0.9 375 8 1.08
[16][3]:0.9 698 -30 1.06
[16][4]:0.7 693 3 1.03
[16][5]:0.8 498 -26 1.04
[16][6]:0.5 425 -28 1.07
[16][7]:0 452 -14 1.01
[17][0]:0.5 689 -4 1.07
[17][1]:0 525 24 1.05
[17][2]:0.8 131 13 1.04
[17][3]:0.4 538 -7 1.05
[17][4]:0.8 329 6 1.1
[17][5]:0.2 181 16 1.06
[17][6]:0.7 448 -5 1.06
[17][7]:0.3 335 0 1.09
[18][0]:0.4 133 -14 1
[18][1]:0.9 298 18 1.05
[18][2]:0.1 753 16 1.03
[18][3]:1 421 15 1.09
[18][4]:0.3 417 -20 1.1
[18][5]:0.4 458 -28 1.02
[18][6]:0 687 -20 1.05
[18][7]:0.7 440 19 1.04
[19][0]:0.6 794 -4 1.05
[19][1]:0.4 597 -8 1.03
[19][2]:0.1 351 12 1.04
[19][3]:0.5 630 27 1.09
[19][4]:0.2 151 -2 1.03
[19][5]:0.2 218 -21 1.02
[19][6]:0.8 429 11 1
[19][7]:0.2 616 -15 1.07
[20][0]:0.9 445 -7 1.02
[20][1]:0.7 377 -4 1.08
[20][2]:0.8 797 10 1.1
[20][3]:0.7 385 7 1.09
[20][4]:0.3 446 -9 1.04
[20][5]:0.7 613 28 1.09
[20][6]:0.4 362 -24 1.06
[20][7]:0.7 689 26 1.02
[21][0]:0.5 301 -12 1.04
[21][1]:0.3 761 -6 1.02
[21][2]:0.4 493 -18 1.07
[21][3]:0.6 570 -29 1.03
[21][4]:0.6 779 14 1.02
[21][5]:0.7 253 11 1.07
[21][6]:0.3 703 -24 1.09
[21][7]:0.3 609 16 1.09
[22][0]:0.3 145 -19 1.08
[22][1]:0.2 323 28 1.02
[22][2]:0.8 630 -7 1.05
[22][3]:0.4 747 -11 1.07
[22][4]:0.2 177 2 1.03
[22][5]:0.3 639 -30 1.01
[22][6]:0.9 261 -13 1.02
[22][7]:0.8 583 -14 1.05
[23][0]:0.1 496 -22 1.09
[23][1]:0.2 175 -15 1.1
[23][2]:0.7 509 -22 1.09
[23][3]:0.7 612 -1 1.06
[23][4]:0.3 294 -18 1.01
[23][5]:0.2 719 10 1.01
[23][6]:0.4 705 -29 1.09
[23][7]:1 781 23 1.09
[24][0]:0.1 582 22 1.02
[24][1]:0.7 275 2 1.06
[24][2]:0.6 330 -9 1.02
[24][3]:0.5 629 -26 1.01
[24][4]:0.3 215 0 1.07
[24][5]:0.5 441 5 1.09
[24][6]:0.4 557 -1 1.04
[24][7]:0.6 659 4 1.09
[25][0]:0.7 667 -7 1.03
[25][1]:0.2 670 -2 1.06
[25][2]:1 554 8 1.07
[25][3]:0.2 136 -11 1.04
[25][4]:0.6 746 -16 1.06
[25][5]:0.3 757 -7 1.03
[25][6]:0.2 383 1 1.03
[25][7]:0.4 274 21 1
[26][0]:0.7 235 19 1.1
[26][1]:0 209 23 1.05
[26][2]:0 668 22 1.02
[26][3]:0.7 240 -2 1.03
[26][4]:0.4 418 20 1.06
[26][5]:0.7 604 -26 1.01
[26][6]:0.8 710 10 1.01
[26][7]:0.5 678 -9 1
[27][0]:0.5 117 9 1.09
[27][1]:0.1 137 -15 1
[27][2]:0.5 543 -14 1.03
[27][3]:0.7 738 -9 1.07
[27][4]:0 277 22 1.05
[27][5]:0.3 229 24 1.08
[27][6]:0.8 368 30 1.02
[27][7]:0.2 481 -12 1.04
[28][0]:0.9 229 -27 1.09
[28][1]:0.8 192 27 1.07
[28][2]:0.4 151 8 1.05
[28][3]:0.1 299 20 1.07
[28][4]:0.2 394 13 1.06
[28][5]:0.6 279 14 1.07
[28][6]:0.8 551 -15 1
[28][7]:0.9 701 -9 1.09
[29][0]:0.9 124 -13 1.07
[29][1]:0.5 417 -24 1.07
[29][2]:0 613 -24 1.06
[29][3]:1 591 -20 1.09
[29][4]:0.2 503 3 1.09
[29][5]:0 586 -23 1.03
[29][6]:0.6 539 -28 1.04
[29][7]:0 288 10 1.05
[30][0]:0.5 179 -18 1.03
[30][1]:0.8 501 -27 1.01
[30][2]:0.8 374 -30 1.05
[30][3]:0.9 344 -5 1.03
[30][4]:0.8 672 -9 1.05
[30][5]:1 476 19 1.03
[30][6]:0.1 149 -19 1.03
[30][7]:0.7 270 16 1.1
[31][0]:0.2 736 10 1.09
[31][1]:0.5 455 -22 1.08
[31][2]:0.7 525 5 1.06
[31][3]:0.6 244 -1 1.06
[31][4]:0.3 696 22 1.07
[31][5]:0 605 -5 1.03
[31][6]:0.9 621 18 1.09
[31][7]:0.2 163 -26 1.03
[32][0]:0.7 654 -7 1.06
[32][1]:0.7 491 -3 1.07
[32][2]:0.6 122 -4 1.05
[32][3]:0.8 176 -3 1.01
[32][4]:0.1 392 -24 1.07
[32][5]:0.4 290 -16 1.02
[32][6]:0.2 517 20 1.06
[32][7]:0.4 483 -6 1.02
[33][0]:0.2 723 -19 1.06
[33][1]:0.2 551 17 1.04
[33][2]:0.2 513 -1 1.1
[33][3]:1 248 -29 1.1
[33][4]:0.3 724 -18 1.06
[33][5]:0 654 -8 1.03
[33][6]:0.6 146 10 1.06
[33][7]:0.5 427 -15 1.07
[34][0]:1 492 -27 1.08
[34][1]:0.6 521 -21 1.03
[34][2]:0.3 119 13 1.02
[34][3]:0.6 712 -25 1.07
[34][4]:0.8 459 -30 1.03
[34][5]:0.2 163 -22 1.02
[34][6]:0.2 339 14 1.06
[34][7]:0.2 391 9 1.04
[35][0]:0.5 310 25 1.09
[35][1]:0.6 505 0 1.01
[35][2]:0.4 587 -17 1.01
[35][3]:0.1 667 9 1.06
[35][4]:0.1 536 -26 1.04
[35][5]:0.9 796 28 1.09
[35][6]:0.6 300 18 1.08
[35][7]:0.1 106 21 1.04
[36][0]:0.5 371 -14 1.09
[36][1]:0.1 109 5 1.04
[36][2]:0.8 781 19 1.08
[36][3]:0.6 745 -4 1.04
[36][4]:0 776 -11 1.05
[36][5]:0.3 272 -30 1.07
[36][6]:0.1 281 26 1.05
[36][7]:0.5 751 10 1.06
[37][0]:0.8 319 -16 1.07
[37][1]:0.2 750 14 1.06
[37][2]:0.9 343 11 1.09
[37][3]:0.8 159 -16 1.09
[37][4]:1 477 -29 1.05
[37][5]:0.7 371 19 1.1
[37][6]:1 747 3 1.05
[37][7]:0.7 451 -5 1.01
[38][0]:0.3 303 19 1.07
[38][1]:0.5 749 -5 1.07
[38][2]:0.5 283 -19 1.09
[38][3]:0.6 508 -8 1.07
[38][4]:0.8 337 20 1.09
[38][5]:0 439 -19 1.05
[38][6]:0.1 279 -13 1.03
[38][7]:0.9 386 18 1.05
[39][0]:0.9 437 -26 1.01
[39][1]:0.1 489 -4 1.06
[39][2]:0.5 537 -25 1.03
[39][3]:0.6 270 -30 1.01
[39][4]:0.4 677 9 1.05
[39][5]:0 725 1 1.05
[39][6]:0.7 125 -12 1.02
[39][7]:0.7 400 -10 1.02
[40][0]:0.2 494 17 1
[40][1]:0.8 221 -2 1.03
[40][2]:0.2 285 11 1.05
[40][3]:0 209 8 1.08
[40][4]:0.8 131 -23 1.03
[40][5]:0.8 783 -22 1.06
[40][6]:0.7 792 -10 1.01
[40][7]:0.5 703 8 1.03
[41][0]:0 109 21 1.07
[41][1]:0.2 761 23 1
[41][2]:0.6 447 3 1.09
[41][3]:0.9 510 20 1.03
[41][4]:0.1 201 1 1.07
[41][5]:0.4 187 -1 1.01
[41][6]:0.9 277 20 1.05
[41][7]:0 646 -6 1.08
[42][0]:0.2 200 -17 1.07
[42][1]:0.9 353 -4 1.08
[42][2]:0.7 443 7 1
[42][3]:0.9 510 23 1.09
[42][4]:0.2 586 -25 1.01
[42][5]:0.3 766 -6 1.07
[42][6]:0.5 693 9 1.03
[42][7]:0.9 296 26 1
[43][0]:0.7 497 22 1.07
[43][1]:0.8 470 -24 1.03
[43][2]:0.6 401 -26 1.04
[43][3]:0.6 522 -8 1.06
[43][4]:0.1 493 -17 1.05
[43][5]:0.7 141 -25 1.04
[43][6]:0.8 530 10 1.05
[43][7]:0.6 245 4 1.07
[44][0]:1 418 -29 1.08
[44][1]:0.3 246 -2 1.09
[44][2]:0.7 451 -16 1.08
[44][3]:0.2 615 16 1.04
[44][4]:0.1 192 -10 1.04
[44][5]:0.4 254 -9 1.04
[44][6]:0 508 -29 1.04
[44][7]:1 787 10 1.01
[45][0]:0.6 676 -22 1.04
[45][1]:0.6 645 -8 1.04
[45][2]:0 329 -12 1.07
[45][3]:0.5 347 10 1.07
[45][4]:0.9 234 -23 1.03
[45][5]:0.2 328 19 1.1
[45][6]:0 258 29 1.1
[45][7]:0 327 15 1.03
[46][0]:0.3 198 -14 1.06
[46][1]:0.8 139 7 1.07
[46][2]:0.6 666 -10 1.05
[46][3]:0.7 658 7 1.01
[46][4]:0.7 337 3 1.01
[46][5]:0.3 145 14 1.04
[46][6]:0.3 138 24 1.01
[46][7]:0.5 641 20 1.08
[47][0]:0.3 458 18 1.01
[47][1]:0.3 165 -11 1.02
[47][2]:0 756 -5 1.07
[47][3]:0.8 443 16 1.08
[47][4]:0.9 567 0 1.08
[47][5]:0.3 223 -3 1.04
[47][6]:0.3 224 -9 1.01
[47][7]:0.2 797 6 1.08
[48][0]:0.7 181 27 1.06
[48][1]:0.5 269 1 1.05
[48][2]:0.3 564 4 1.04
[48][3]:0 131 3 1.07
[48][4]:0.6 316 25 1.04
[48][5]:0.8 388 23 1.04
[48][6]:0.2 465 -13 1.02
[48][7]:0.9 773 28 1.06
[49][0]:0.7 291 3 1.05
[49][1]:1 296 -28 1.07
[49][2]:0 730 28 1.02
[49][3]:0.3 488 16 1.07
[49][4]:0.4 326 0 1.04
[49][5]:0.4 423 5 1.04
[49][6]:0.6 208 -9 1.03
[49][7]:0.5 277 -25 1.04
这里假设航班备降时间与备降场期望两个目标同等重要,即在公式(4)中,两个目标的权重相同(β=1-β,故β=0.5)。在Cplex求解器中键入该模型,导入案例参数,通过该软件求解,获得分配结果。
测试得到50个航班航班的平均改航备降时间为59.36分钟,其中航路飞行时间和等待时间分别为53.53和5.83分钟。
图2为分配结果中关于每个航班飞行所需时间与可用的剩余飞行时间T i的对比。由图2可见T i都超过120分钟,而分配的飞行所需时间几乎都小于120分钟(只有航班24和40超出),多数小于60分钟。
图3给了不同飞行时间区间的航班数量统计,可见航班所需改航备降时间ST as–BT小于60分钟的情况有33架(15+18=33),占总航班数量的66%;所需 改行时间少于120分钟的航班量有48架(15+18+7+4+4+0=48),占总航班数量的98%。50个航班中航路飞行时间少于60分钟的有37架(12+25=37),占总航班量的72%。航班的空中等待时间少于10分钟有40架(29+11=40),占总航班量的80%。根据现行运行规章规定(CCAR-121R5),航班在备降场空中等待的最后储备燃油要能够保障航班等待飞行30分钟。分配结果中等待时间全部小于30分钟,并且80%航班等待时间小于10分钟,因此,满足规章的要求,并且可以节约空中等待时间和燃油消耗。
图4为分配结果中,航班备降机场的期望值,以及航班对应备降场的最大期望值和最小期望值。测试中50个航班平均值为0.888,通过图4可见多数航班分配的备降机场期望值接近最大期望值。
图5显示了飞往所有备降机场的航班期望值的排序。分配给第1预期备降场的航班有23架,占总航班量的46%(图中的“1,23,46%”);分配前三期望备降机场的航班量有39架,占总航班量的78%(图中的“1,23,46%”,“2,9,18%”,“3,7,14%”),所以多数航班可以获得预期的备降机场。
在公式(4)中β=0.5考虑了总改航备降时间最短和航空公司对备降场期望值最大两个目标(以下简称“双目标模型”)。如果只考虑改行备降时间最小,不考虑备降场期望目标,则令公式(4)中β=1即可。对比β=0.5与β=1两种情况的不同求解结果如下。
双目标模型(β=0.5)与以最短的改行备降时间为目标(β=1)的方法进行比较后,发现双目标会多耗用一些飞行时间,但能较大程度地满足航空公司对备降机场的期望。一方面,平均改行备降时间从53.64分钟增加到59.36分钟,增加了10.66%(如图6箱线图所示)。β=0.5中有19架(38%)航班的总改行备降时间大于β=1的情况,平均每个航班增加5.72分钟的飞行时间,但是最大飞行时间相同(每个航班的时间对比见图6的柱形图)。另一方面,期望值平均值从0.524增加到0.704,增加34.35%(如图7箱线图所示),有18个航班的期望增大。对于β=1中,大于0.8的期望值只有16架航班,大于0.6 的期望值有26架航班,而对于β=0.5中,分别有28和39架航班。因此,大多数航班可以改航到其预期的备降机场,这将为航空公司带来很多便利。
为确定权重系数β的影响,以0.02为步长将两个目标加权系数β从0改变到1,可以获得总改行备降时间和期望值的对应关系,如图8所示。图中,最小平均改行备降时间为53.64分钟,此时β=1,平均期望值仅为0.524。如果平均改行备降时间为60分钟,平均期望值将增长超过0.7,为0.704,此时β=0.5。因此,在延长6.35分钟飞行时间的情况下,可以获得0.18的期望值平均增量,可增加34.35%,这将为航空公司带来极大的便利,并且大多数航班将有机会改航到他们的预期备降机场。如果平均改行备降时间超过60分钟,则期望值增长缓慢,期望带来的效益增量不大。
图9统计了模型运行所需的时间,这里共进行了51次试验,平均测试消耗时间为0.456秒,标准偏差为0.024,在改航决策中是可以满足决策时间的要求。
案例研究50个航班和8个备降机场情况,计算结果表明可以在每个航班的剩余飞行时间内完成备降,备降优化方案计算时间不超过1秒;此外33个航班(66%)备降所需时间少于60分钟,48个航班(66%)所需时间少于120分钟,具有较高的灵活性,满足航空公司的要求。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。尽管上面已经描述了本发明的实施例,但是本发明不限于上述实施例,而是可以基于本发明的技术精神进行各种修改。

Claims (6)

  1. 基于协同优化的应急备降场选择方法,包含如下的步骤:
    (1)在目的机场关闭后,第一时间收集所有受目的机场关闭影响航班的飞行计划信息,确定受影响航班数目、可用备降机场的数目以及各个航班的期望备降机场;
    (2)确定受影响航班的实时位置、速度、航路风速,受影响航班的飞机类别;
    (3)各受影响航班各自确定剩余飞机油量,得到可用剩余飞行时间;
    (4)根据飞行计划中涉及到的备降机场,确定各备降机场可用于备降的时隙以及机场容量,为受影响航班分配降落时间;
    (5)以最大程度减小总改航备降时间和满足航空公司对备降机场的期望为目标,建立航班备降的整数规划模型;
    (6)求解所述航班备降的整数规划模型,获得航班备降分配结果;
    (7)根据分配结果发布备降方案,各受影响航班根据所述备降方案前往相应的备降场机场备降。
  2. 根据权利要求1所述的基于协同优化的应急备降场选择方法,其特征在于,所述步骤(5)中的航班备降的整数规划模型,具体为:
    一个目标函数:
    Figure PCTCN2022073449-appb-100001
    六个约束条件:
    (21)每个航班最多分配给一个机场的一个时隙,并且每个时隙最多只能分配一个航班,表示为:
    Figure PCTCN2022073449-appb-100002
    Figure PCTCN2022073449-appb-100003
    (22)备降分配的时隙s时间必须小于航班剩余飞行时间T i,表示为:
    Figure PCTCN2022073449-appb-100004
    (23)航班i从改航点到备降机场a的航路飞行时间应早于机场a的分配的时隙s,表示为:
    Figure PCTCN2022073449-appb-100005
    (24)飞往备降机场a的航班总数不应超过其可接受的航班总量,即容量Q a,表示为:
    Figure PCTCN2022073449-appb-100006
    (25)机场的飞机类别限制,表示为:
    Figure PCTCN2022073449-appb-100007
    其中,min表示求取最小值,β为加权系数,0≤β≤1,i表示航班索引,N表示需要备降的总航班量,a表示可用备降场索引,M表示可用的备降机场数量,s表示机场提供的可选备降时隙,S a表示a机场未来一段时间内可用于备降航班的时隙量,ST as表示a机场第s个时隙的时刻,BT表示目标机场突然关闭的时刻,T i为航班i根据剩余燃油获得的剩余飞行时间,x ias为决策变量,当航班i分配的是备降机场a的s时隙时,x ias取值为1,其余情况取值为0,P ia表示航空公司选择a作为航班i的备降机场的期望值,BM是一个远大于T i的数值,D ia为航班i到备降机场a的距离,V i为航班i所选的巡航速度,Wind ia表示航班i到备降机场a的飞行过程的平均风速,λ ia为校正因子,C i是航班i的机型代码分类,C a是机场a可以接受的重量最大的飞机机型代码。
  3. 根据权利要求2所述的基于协同优化的应急备降场选择方法,其特征在于,所述的备降机场数量M以及需要备降的总航班量N满足M<N。
  4. 根据权利要求2所述的基于协同优化的应急备降场选择方法,其特征在于,所述的0≤P ia≤1,且P ia值越大,航空公司越希望转移到该机场备降。
  5. 根据权利要求2所述的基于协同优化的应急备降场选择方法,其特征在于,所述的1≤λ ia≤1.1。
  6. 根据权利要求2所述的基于协同优化的应急备降场选择方法,其特征在于,所述的β=0.5。
PCT/CN2022/073449 2021-01-25 2022-01-24 基于协同优化的应急备降场选择方法 WO2022156797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110098879.8A CN112949978B (zh) 2021-01-25 2021-01-25 基于协同优化的应急备降场选择方法
CN202110098879.8 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022156797A1 true WO2022156797A1 (zh) 2022-07-28

Family

ID=76236582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073449 WO2022156797A1 (zh) 2021-01-25 2022-01-24 基于协同优化的应急备降场选择方法

Country Status (2)

Country Link
CN (1) CN112949978B (zh)
WO (1) WO2022156797A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116129678A (zh) * 2022-12-26 2023-05-16 南京莱斯信息技术股份有限公司 基于航迹运行的进港航班时隙自主协商分配系统及方法
CN116562637A (zh) * 2023-03-22 2023-08-08 中国民航科学技术研究院 航班改航运行决策方法、系统、装置及存储介质
CN117422208A (zh) * 2023-12-18 2024-01-19 南京莱斯信息技术股份有限公司 跨境航班协调国内机场无可用时隙时分配建议时刻的方法
CN117933494A (zh) * 2024-03-21 2024-04-26 中国民用航空总局第二研究所 基于综合航空运输系协同的航班调时调减方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112949978B (zh) * 2021-01-25 2022-10-28 中国民航大学 基于协同优化的应急备降场选择方法
CN113777623B (zh) * 2021-11-11 2022-02-08 中国民航大学 一种飞机尾流威胁区域预测告警方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042316A1 (en) * 2006-12-22 2010-02-18 Thales Device and method for assisting in the choice of rerouting airports
US8565944B1 (en) * 2009-10-13 2013-10-22 The Boeing Company Alternate diversion airport planner
CN110443523A (zh) * 2019-08-15 2019-11-12 中国国际航空股份有限公司 选择备降机场的方法、装置和计算机设备
CN112949978A (zh) * 2021-01-25 2021-06-11 中国民航大学 基于协同优化的应急备降场选择方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398186A (en) * 1991-12-17 1995-03-14 The Boeing Company Alternate destination predictor for aircraft
US9310222B1 (en) * 2014-06-16 2016-04-12 Sean Patrick Suiter Flight assistant with automatic configuration and landing site selection method and apparatus
CN105469647B (zh) * 2016-01-29 2017-10-17 中国电子科技集团公司第二十八研究所 一种航路时隙资源协同多目标优化分配方法
CN107944625B (zh) * 2017-11-23 2021-09-07 南京航空航天大学 基于历史运行数据驱动的单机场航班换季时隙优化方法
CN109583627B (zh) * 2018-10-31 2020-09-29 北京航空航天大学 飞机着陆排队优化方法及装置
CN110827582A (zh) * 2019-10-25 2020-02-21 海南太美航空股份有限公司 一种用于应急自动获取航班降落点的系统和方法
CN110706520B (zh) * 2019-10-31 2021-08-31 中国电子科技集团公司第二十八研究所 一种基于概率容量的航路与机场时隙鲁棒分配双层规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042316A1 (en) * 2006-12-22 2010-02-18 Thales Device and method for assisting in the choice of rerouting airports
US8565944B1 (en) * 2009-10-13 2013-10-22 The Boeing Company Alternate diversion airport planner
CN110443523A (zh) * 2019-08-15 2019-11-12 中国国际航空股份有限公司 选择备降机场的方法、装置和计算机设备
CN112949978A (zh) * 2021-01-25 2021-06-11 中国民航大学 基于协同优化的应急备降场选择方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO YIFEI: "Research on the Optimization Model of Flights Alternate Based on Linear Programming", SCIENCE TECHNOLOGY AND ENGINEERING, ZHONGGUO JISHU JINGJI YANJIUHUI, CN, vol. 13, no. 27, 30 September 2013 (2013-09-30), CN , pages 6222 - 6225, XP055954264, ISSN: 1671-1815 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116129678A (zh) * 2022-12-26 2023-05-16 南京莱斯信息技术股份有限公司 基于航迹运行的进港航班时隙自主协商分配系统及方法
CN116129678B (zh) * 2022-12-26 2024-05-28 南京莱斯信息技术股份有限公司 基于航迹运行的进港航班时隙自主协商分配系统及方法
CN116562637A (zh) * 2023-03-22 2023-08-08 中国民航科学技术研究院 航班改航运行决策方法、系统、装置及存储介质
CN116562637B (zh) * 2023-03-22 2023-11-03 中国民航科学技术研究院 航班改航运行决策方法、系统、装置及存储介质
CN117422208A (zh) * 2023-12-18 2024-01-19 南京莱斯信息技术股份有限公司 跨境航班协调国内机场无可用时隙时分配建议时刻的方法
CN117422208B (zh) * 2023-12-18 2024-03-22 南京莱斯信息技术股份有限公司 跨境航班协调国内机场无可用时隙时分配建议时刻的方法
CN117933494A (zh) * 2024-03-21 2024-04-26 中国民用航空总局第二研究所 基于综合航空运输系协同的航班调时调减方法
CN117933494B (zh) * 2024-03-21 2024-05-31 中国民用航空总局第二研究所 基于综合航空运输系协同的航班调时调减方法

Also Published As

Publication number Publication date
CN112949978B (zh) 2022-10-28
CN112949978A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022156797A1 (zh) 基于协同优化的应急备降场选择方法
Andreatta et al. Aircraft flow management under congestion
Filar et al. How airlines and airports recover from schedule perturbations: a survey
Rosenberger et al. Rerouting aircraft for airline recovery
CN109584638B (zh) 一种面向区域网络的先期航班时刻协同优化方法
CN109726917B (zh) 一种基于四维航迹的货运航班调度方法和装置
CN106485954B (zh) 基于Point Merge航路结构的繁忙终端区内进场航迹动态优化方法
CN109711619B (zh) 考虑空地运行限制的多机场战略航班时刻协同优化方法
JP2004526258A (ja) 空港への航空機到着を最適化するスケジュールに基づく管理システム
CN109583627A (zh) 飞机着陆排队优化方法及装置
CN113112874B (zh) 一种航路时隙与高度层协同优化分配方法
WO2023197452A1 (zh) 一种航班排序信息的时空转换方法
Carr et al. Airline arrival prioritization in sequencing and scheduling
Carr et al. Fast-time study of airline-influenced arrival sequencing and scheduling
CN114693142A (zh) 一种考虑运行效能的单机场航班时刻配置方法
CN114299762A (zh) 一种基于一致性监测的航班时隙自动优化方法及系统
CN110909946B (zh) 一种基于公路换乘的航班计划优化方法
CN100433076C (zh) 着陆飞行器排序方法
Chevalley et al. Nasa atd-2 trajectory option set prototype capability for rerouting departures in metroplex airspace
CN111582592A (zh) 一种区域机场群航线网络优化方法
CN109034543A (zh) 以降低后续调整概率为目标的远机位登机口初始分配方法
Atkins et al. Noise-sensitive final approach trajectory optimization for runway-independent aircraft
F. Shmelova et al. Collaborative decision-making models for UAV operator's Intelligent Decision Support System in emergencies
Moolchandani et al. Simulation study for interoperability of urban air mobility scheduling and separation services in ideal conditions
Li et al. A probabilistic decision-making model for runway configuration planning under stochastic wind conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742275

Country of ref document: EP

Kind code of ref document: A1