WO2022156680A1 - 一种电路系统及方法 - Google Patents

一种电路系统及方法 Download PDF

Info

Publication number
WO2022156680A1
WO2022156680A1 PCT/CN2022/072570 CN2022072570W WO2022156680A1 WO 2022156680 A1 WO2022156680 A1 WO 2022156680A1 CN 2022072570 W CN2022072570 W CN 2022072570W WO 2022156680 A1 WO2022156680 A1 WO 2022156680A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
detection
counter electrode
electrode
electrochemical sensor
Prior art date
Application number
PCT/CN2022/072570
Other languages
English (en)
French (fr)
Inventor
王天星
胡锡江
章子毅
Original Assignee
浙江亿联康医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江亿联康医疗科技有限公司 filed Critical 浙江亿联康医疗科技有限公司
Priority to US18/273,333 priority Critical patent/US20240138704A1/en
Priority to EP22742159.1A priority patent/EP4283289A1/en
Publication of WO2022156680A1 publication Critical patent/WO2022156680A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements

Definitions

  • the invention relates to the field of electricity, in particular to a circuit system for detecting an analyte in a sample and its application.
  • Electrochemical sensors have many advantages such as high efficiency, simplicity, sensitivity, rapidity, easy miniaturization, integration, and low energy consumption. Sensors have been widely used in the automotive industry, environmental monitoring, food safety, clinical diagnosis and other fields.
  • Electrochemical sensors can be divided into potentiometric sensors, current sensors and conductivity sensors according to their output signals.
  • the application of current-type electrochemical sensors is very common, including some gas sensors such as carbon monoxide sensors, nitric oxide sensors, oxygen sensors, etc., and biological sensors such as blood sugar test strips, blood ketone test strips, uric acid test strips, etc., are based on the principle of current-type sensors.
  • the simplest form of this type of sensor is a two-electrode system, consisting of a working electrode (the sensitive electrode) and a counter electrode, separated by a thin layer of electrolyte.
  • the oxidation or reduction reaction is carried out on the surface of the working electrode, and a current is generated and flows through the two electrodes through an external circuit.
  • the magnitude of the generated current is proportional to the concentration of the object to be tested, and the external circuit calculates the concentration of the object to be tested by measuring the magnitude of the current.
  • the potential of the working electrode In order for the reaction to occur, the potential of the working electrode needs to be kept within a specific range, so some electrochemical sensors need to maintain a bias voltage between the working electrode and the counter electrode.
  • the concentration of the reactant increases, the reaction current increases, and the potential of the counter electrode changes due to polarization, resulting in a change in the potential of the working electrode. If the concentration of the reactant continues to increase, the potential of the working electrode may eventually exceed its allowable range, and the sensor signal will not be linear.
  • nitric oxide gas sensors such as Alphasense's NO B4 nitric oxide sensor
  • the manufacturer usually prepares a bias voltage circuit on the sensor when the product leaves the factory, and supplies power through the battery to ensure that the sensor is "ready to work”.
  • electrochemical sensors are often applied to the detection of trace substances, such as the detection of nitric oxide in exhaled breath. Because the content of the measured substance is very low, the response signal of the electrochemical sensor is very small, so some weak interference (such as the interference to the balance current of the electrode loop) will also cause significant noise interference to the detection signal of the working electrode.
  • some weak interference such as the interference to the balance current of the electrode loop
  • background noise such as the background noise generated by the balance current of the counter electrode loop
  • the performances such as the accuracy and reliability of the detection results of the electrochemical sensor are limited to a certain extent, and even affect the detection results.
  • the present invention proposes a circuit system associated with an electrochemical sensor, and a corresponding detection method, so as to eliminate factors such as the balance current of the counter electrode loop and detect the signal of the working electrode. It can reduce the interference of the detection signal, reduce the background noise of the detection signal, and improve the precision of the detection result.
  • the present invention provides the following technical solutions.
  • the present invention provides a circuit system, comprising a circuit and an electrochemical sensor connected to the circuit.
  • a counter electrode on the electrochemical sensor and the circuit are connected by an on-off element, and the on-off element controls the connection between the counter electrode and the circuit. connection or disconnection.
  • the electrochemical sensor includes a working electrode, a counter electrode, a reference electrode, and an auxiliary electrode.
  • the circuit includes a reference voltage generating circuit, a constant potential circuit and a micro-signal measurement circuit.
  • the reference voltage generating circuit is connected to the electrochemical sensor through a potentiostatic circuit.
  • the working electrode and the auxiliary electrode of the electrochemical sensor are respectively connected with the micro-signal test circuit.
  • the counter electrode and the reference electrode on the electrochemical sensor are respectively connected with a potentiostatic circuit. Further, the on-off element is arranged between the counter electrode and the potentiostatic circuit.
  • the circuit system further includes a differential circuit, and the working electrode and the auxiliary electrode are connected to the differential circuit through a micro-signal measurement circuit.
  • the on-off element is selected from on-off switches, relays, field effect transistors, analog switches or triodes.
  • the invention provides a circuit system, including an electrochemical sensor and a circuit, the electrochemical sensor includes a working electrode, a counter electrode, a reference electrode and an auxiliary electrode, an on-off switch is arranged on the circuit connected with the counter electrode, and the An on-off switch controls on-off between the counter electrode and the circuit.
  • the circuit includes a reference voltage generating circuit, a constant potential circuit and a micro-signal measurement circuit.
  • the on-off switch is arranged between the potentiostatic circuit and the counter electrode.
  • the counter electrode is connected to the potentiostatic circuit through the on-off switch;
  • the reference voltage generating circuit is connected to the reference electrode of the electrochemical sensor through the potentiostatic circuit, and the potentiostatic circuit is also connected to the counter electrode of the electrochemical sensor; the work of the electrochemical sensor
  • the electrodes and the auxiliary electrodes are respectively connected with a micro-signal testing circuit to detect the signal generated by the reaction; the micro-signal measuring circuit and the constant potential circuit (and the reference voltage generating circuit) are all connected to the external circuit.
  • the components for controlling the on-off between the counter electrode and the circuit can also be selected from relays, field effect transistors, analog switches or triodes, and other on-off components that can realize on-off functions.
  • the circuits of the circuit system may be an integrated reference voltage generating circuit, a constant potential circuit and a micro-signal measuring circuit, and an integrated circuit or chip including an on-off function on the connection counter electrode.
  • the micro-signal measurement circuit is an I/V conversion and amplification circuit, through which the reaction current signal on the working electrode and the auxiliary electrode can be detected.
  • circuit system may also be provided with a differential circuit after the micro-signal measurement circuit of the working electrode and the auxiliary electrode, and the differential signal is directly detected during detection.
  • the present invention provides a test device for detecting an analyte in a sample, wherein the test device includes the circuit system of the present invention.
  • the sample is a gas sample.
  • the analyte is a trace substance with a very small content.
  • the trace substances are selected from nitric oxide and the like in the gas sample.
  • the gas sample is a breath sample.
  • testing device further includes an air inlet, an air outlet and an air chamber, and the electrochemical sensor is installed in the air chamber.
  • the present invention provides a test device for detecting nitric oxide, and the test device includes the circuit system of the present invention.
  • the present invention provides a detection method for reducing signal noise, the method includes providing a test device, the test device includes the circuit system of the present invention; when detecting, disconnecting the connection between the counter electrode and the circuit .
  • the detection method includes the following steps: before the detection, apply a bias voltage to the electrochemical sensor, and at this time, the connection state between the counter electrode and the circuit is maintained; during the detection, the on-off element is disconnected to make the connection between the counter electrode and the circuit. No connection; after the detection, reconnect the on-off element to make the counter electrode communicate with the circuit.
  • a bias voltage is applied between the working electrode, the auxiliary electrode and the reference electrode of the electrochemical sensor to stabilize the baseline signal of the electrochemical sensor.
  • a detection method based on the circuit system of the present invention includes the following steps: before detection, applying a bias voltage between electrodes, at this time, an on-off switch is kept in a connected state, and the counter electrode is connected to a circuit; during detection, the on-off switch is disconnected Turn off the switch to disconnect the counter electrode from the circuit; after the test, reconnect the on-off switch on the counter electrode circuit to prepare for the next test.
  • the described circuit pre-applies a bias voltage between the working electrode, the auxiliary electrode and the reference electrode of the electrochemical sensor through the reference voltage generating circuit and the potentiostatic circuit therein, and makes it balance and stabilize.
  • the on-off switch on the circuit connected to the counter electrode remains connected.
  • the counter electrode and the reference electrode still maintain the potential close to before the disconnection to ensure that the electrochemical sensor is correct. completed detection.
  • reconnect the on-off switch to connect the counter electrode with the potentiostatic circuit.
  • the potentiostatic circuit and the electrochemical sensor are rebalanced and stabilized to prepare for the next detection.
  • the present invention also provides the application of the circuit system and detection method in nitric oxide detection, including applying the circuit system to a nitric oxide electrochemical sensor, and through The detection method of the present invention completes the detection of nitric oxide. Further, the circuit system is installed on a nitric oxide measuring device.
  • a detection method for detecting an analyte in a sample comprising providing a test device, the test device comprising the circuit system of the present invention, and the detection step includes: before the detection, connecting the electrode and the circuit; During detection, the connection between the counter electrode and the circuit is disconnected, and the test device detects the analyte in the sample; after the detection, the connection between the counter electrode and the circuit is connected.
  • the sample is a gas sample.
  • the analyte is a very small amount of trace substances, for example, the trace substances are selected from nitric oxide in a gas sample and the like.
  • the detection includes the following steps: before the detection, apply a bias voltage to the electrochemical sensor to keep the connection state between the counter electrode and the circuit; during the detection, disconnect the on-off element to make the counter electrode and the circuit disconnected; the detection ends After that, reconnect the on-off element to connect the counter electrode with the circuit.
  • a gas sample is input into the testing device, the input gas contacts the electrochemical sensor, and the testing device detects the content of nitric oxide in the gas sample.
  • an on-off element is arranged between the counter electrode on the electrochemical sensor and the circuit, and the on-off switch is used to switch between the two states of connection and disconnection. Switching can effectively eliminate the interference of factors such as the balance current of the electrode circuit on the detection signal of the working electrode, reduce the background noise of the detection signal, improve the precision of the detection result, and significantly improve the detection performance of the electrochemical sensor.
  • the circuit system of the present invention can be widely used in sample analysis, and can significantly improve the detection accuracy, especially in the analysis of trace substances, such as the analysis of the content of nitric oxide in exhaled breath.
  • FIG. 1 is a block diagram of a circuit structure of an embodiment of the present invention, and the circuit system according to the present invention is shown in the dashed box.
  • FIG. 2 is a schematic circuit diagram of an embodiment of the present invention.
  • FIG. 3 is an example of a reference voltage and bias voltage generating circuit.
  • Figure 4 is a graph of the detection results of the comparison test based on the NO sensor - 0ppb (high-purity nitrogen).
  • Figure 5 is a graph of the detection results of the comparison test based on the NO sensor - 20ppb NO standard gas.
  • Figure 6 is a graph of the detection results of the comparison test based on the NO sensor - 65ppb NO standard gas.
  • the electrochemical sensor includes a working electrode (WE), a counter electrode (CE), a reference electrode (RE) and an auxiliary electrode (AE); the counter electrode and the reference electrode are respectively connected On the constant potential circuit, an on-off switch is arranged between the counter electrode and the constant potential circuit; the reference voltage generating circuit is connected to the reference electrode of the electrochemical sensor through the constant potential circuit; the working electrode and the auxiliary electrode of the electrochemical sensor are respectively connected To the micro-signal test circuit to detect the signal generated by the reaction; the micro-signal measurement circuit and the constant potential circuit (and the reference voltage generating circuit) are all connected to the external circuit.
  • WE working electrode
  • CE counter electrode
  • RE reference electrode
  • AE auxiliary electrode
  • the circuit system shown in FIG. 2 is taken as an example to illustrate the circuit system designed by the present invention for the electrochemical sensor with four electrodes.
  • the electrochemical sensor includes 4 electrodes, a counter electrode (C), a reference electrode (R), a working electrode (W), an auxiliary electrode (A), and the auxiliary electrode (A) is used to eliminate the working environment (such as temperature) on the baseline current.
  • the operational amplifier (U2A) keeps the potential of the reference electrode (R) equal to the input reference potential Vref, and outputs a suitable potential to the counter electrode (C), and an on-off switch (K1) is connected to the counter electrode to control the counter electrode and the On-off between circuits; the operational amplifier (U3A) applies the potential Vbias to the working electrode (W) of the electrochemical sensor through input 3 to maintain the bias voltage between the working electrode (W) and the reference electrode (R) At the same time, a micro-signal measurement circuit for I/V conversion is formed through the operational amplifier (U3A), resistor R9 and capacitor C3, and the output terminal 1 of the operational amplifier (U3A) outputs a signal to detect the reaction on the working electrode (W).
  • the generated micro signal; the working mode of the auxiliary electrode (A) is the same as that of the working electrode (W).
  • the operational amplifier (U4A) applies the potential Vbias to the auxiliary electrode (A) of the electrochemical sensor through the input ) and the reference electrode (R), and through the operational amplifier (U4A), resistor R11, and capacitor C4 to form a micro-signal measurement circuit for I/V conversion, at the output of the operational amplifier (U4A) 1
  • the output signal is used to detect the micro signal generated on the auxiliary electrode (A) during the reaction.
  • a differential circuit (circuit inside the dashed line) is set after the micro-signal measurement circuit of the working electrode and the auxiliary electrode, and the differential signal is directly detected during detection, that is, the working electrode (W) and the auxiliary electrode are processed by the differential amplifier U5 (A)
  • the signal generated during detection, the final signal Vout is output, and the influence of the working environment (such as temperature) on the reaction baseline current is eliminated.
  • FIG. 3 is an example of the generating circuit of the reference voltage and the bias voltage.
  • the generating circuit of the reference voltage and the bias voltage may also adopt other suitable manners.
  • U1 is a reference voltage source, and outputs Vref and Vbias, which are respectively connected to the input terminal 3 of the corresponding operational amplifier (U2A) and the input terminal 3 of the operational amplifier (U3A, U4A).
  • Test example 1 Test comparison example of two circuit systems
  • a four-electrode nitric oxide (NO) electrochemical gas sensor (NO sensor for short) is used to test the detection effect of the present invention.
  • the measurement method is as follows: install the nitric oxide (NO) electrochemical gas sensor and circuit into the measurement device, which is provided with an air inlet and an air outlet, and then pump the gas to be measured from the air inlet through the air pump for measurement. .
  • NO nitric oxide
  • test flow of the detection method is as follows:
  • the bias voltage is set to 0.35V: specifically 0.90V for the reference electrode, 1.25V for the working electrode and auxiliary electrode, and keep it for at least 24 hours to make the electrochemical
  • the baseline signal of the sensor stabilizes
  • the circuit system is basically the same as that shown in Figure 2, except that the on-off switch K1 is not connected to the counter electrode, but the counter electrode is directly connected to the constant potential circuit, and the counter electrode is always connected.
  • the test flow of the detection method as a control example is as follows:
  • the bias voltage is set to 0.35V: specifically 0.90V for the reference electrode, and 1.25V for the working electrode and auxiliary electrode), and keep it for at least 24 hours, so that the electric
  • the baseline signal of the chemical sensor stabilizes
  • test baseline is 8 seconds, and 1 data is collected in 0.1 seconds;
  • the graphs of the detection results of the comparison test are shown in Figure 4 to Figure 6 . It can be seen from the figure that the curve of the detection result of the control example fluctuates significantly and the noise is very large, while the curve of the detection result of the present invention is very smooth and the noise is very small.
  • Table 1 shows that the standard deviation SD in the prior art test reaches 4.17 ⁇ 6.13ppb, and the standard deviation SD between the tests reaches 0.53ppb; and the standard deviation SD in the test of the present invention is only 0.07 ⁇ 0.10ppb, and the standard deviation between the tests is only 0.07 ⁇ 0.10ppb. SD is only 0.17ppb. It can be seen that compared with the prior art, the technology of the present invention reduces the signal noise by dozens of times, the signal-to-noise ratio is greatly improved, and the ability to detect the lower limit of nitric oxide is greatly improved; at the same time, the technology of the present invention also significantly improves the repetition between tests. sexual performance.
  • This embodiment uses a multimeter to test the technology of the present invention before testing (the on-off switch of the counter electrode is kept connected before the test), during the test (the counter electrode is disconnected by the on-off switch during the test), and after the test (the counter electrode after the test is detected.
  • the on-off switch immediately restores the connection) to monitor the potential, and record the potential values before the detection, at the end of the detection, and after the detection.
  • a total of 3 concentrations of nitric oxide standard gas of 35ppb, 210ppb, and 3330ppb were tested, and each concentration was tested twice. The results are shown in Table 4.
  • the monitoring found that the potential of the counter electrode was basically stable before the detection (fluctuation was about 0.1mV); after the detection started, the on-off switch of the counter electrode was turned off, and the potential of the counter electrode would gradually increase in a small range. It is slightly larger, but the rise is not large; after the detection, connect the on-off switch of the counter electrode immediately, and the potential of the counter electrode immediately returns to the level before the detection, and the interval does not exceed 1 second.
  • the results show that: compared with the prior art, the technology of the present invention significantly reduces the signal noise of the electrochemical sensor, greatly improves the signal-to-noise ratio, the signal curve within the test is more stable, and the signal curve between the tests is more consistent. It can be seen that the technology of the present invention provides a technical basis for improving the detection limit capability of the electrochemical sensor and shortening the detection time; the technology of the present invention has great application value for the detection of some trace substances of the electrochemical sensor. For example, in the detection of exhaled nitric oxide, the concentration of exhaled nitric oxide is usually between several ppb and tens of ppb.
  • the clinical critical point of FeNO50 in normal people and patients is 25 ppb, while the clinical critical point of CaNO is only 5 ppb. Therefore, the test precision and accuracy of low concentration NO are very important for the clinical application of the test results.
  • the technology of the invention significantly reduces the detection noise, improves the detection limit capability, improves the detection repeatability, and reduces the difference between tests (especially at low concentrations), which is of great significance for the application of electrochemical sensors in clinical detection. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Amplifiers (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

一种电路系统及运用该电路系统的检测方法。电路系统包括电路及连接于电路上的电化学传感器,电路包括基准电压电路、恒电位电路和微信号测量电路,并在对应电路上设置通断开关。利用电路系统的测试装置和检测方法能有效降低信号噪音,减少检测过程中对检测信号的干扰,提高样本检测结果的精密度和准确性。

Description

一种电路系统及方法 技术领域
本发明涉及电学领域,具体涉及一种用于检测样本中被分析物的电路系统及其应用。
背景技术
电化学传感器具有高效、简便、灵敏、快速、易于微型化、集成化、能耗低等诸多优点,近年来更是随着电化学、材料学、生物学等相关学科技术的快速发展,电化学传感器已经被广泛应用到汽车工业、环境监测、食品安全、临床诊断等领域中。
电化学传感器的工作原理是将待测物质以适当形式置于电化学反应池中,测量其电化学参数(如电位、电流、电导)的变化,实现待检物质含量的测定。电化学传感器按照其输出信号的不同,可以分为电位型传感器、电流型传感器和电导型传感器。
电流型的电化学传感器应用非常普遍,包括一些气体传感器如一氧化碳传感器、一氧化氮传感器、氧传感器等,生物传感器如血糖试纸、血酮试纸、尿酸试纸等,都是基于电流型传感器的原理。这类传感器最简单的一种形式就是两电极系统,由工作电极(敏感电极)和对电极组成,两者之间用一个薄层电解液隔开。当待测样本进入传感器后,在工作电极表面进行氧化或者还原反应,产生电流并通过外电路流经两个电极。产生的电流的大小和待测物的浓度成正比,外电路通过测量电流的大小推算出待测物的浓度。
为了让反应能够发生,工作电极的电位需要保持在一个特定的范围内,因此一些电化学传感器需要在工作电极相对于对电极之间维持一个偏置电压。当反应物的浓度增加时,反应电流增加,对电极电位因极化发生改变,导致工作电极的电位也随之改变。如果反应物浓度不断地升高,工作电极的电位最终有可能超出其允许范围,传感器信号将不成线性。因此针对上述问题,技术人员引入了参比电极,并利用恒电位电路在参比电极上施加了基准电位;在检测过程中,参比电极上基本无电流流过,因此在工作电极和参比电极之间维持在一个恒定的电位;此时对电极则仍然可以极化,和工作电极形成反应回路,但不会对传感器的检测 上限造成限制。
一些电化学传感器,如一氧化氮气体传感器(如Alphasense公司的NO B4一氧化氮传感器),在新施加偏置电压后,会产生一个比较大的、快速下降的基线信号,并且需要一个比较长的时间进行稳定。因此对于这类电化学传感器,生产厂家通常会在产品出厂时在传感器上配制偏置电压的电路,通过电池供电,以保证传感器“准备好工作”的状态。
目前,电化学传感器经常被应用到痕量物质的检测中,如呼气中一氧化氮的检测。因为被测物质含量很低,电化学传感器的响应信号很小,所以一些微弱的干扰(如对电极回路平衡电流的干扰)也会对工作电极检测信号造成显著的噪音干扰。然而,现有技术尚未有效解决背景噪音(如对电极回路平衡电流所产生的背景噪音)的问题,电化学传感器检测结果的精度、可靠性等性能都受到了一定的局限,甚至影响其检测结果的应用。
发明内容
为克服现有技术存在的上述问题和缺陷,本发明提出了一种与电化学传感器相关联的电路系统,及其相对应的检测方法,以消除对电极回路平衡电流等因素对工作电极检测信号的干扰,降低检测信号的背景噪音,提高检测结果的精密度。
为实现本发明的目的,本发明提供了如下的技术方案。
本发明提供了一种电路系统,包括电路和与电路连接的电化学传感器,电化学传感器上的对电极与电路之间通过通断元件连接,所述通断元件控制对电极与所述电路之间的连通或断开。
在一个实施例中,所述电化学传感器包括工作电极、对电极、参比电极和辅助电极。
进一步的,所述电路包括基准电压发生电路、恒电位电路和微信号测量电路。所述基准电压发生电路通过恒电位电路连接到电化学传感器上。所述电化学传感器的工作电极、辅助电极分别与微信号测试电路连接。
进一步的,电化学传感器上的对电极、参比电极分别与恒电位电路连接。更进一步的,通断元件设置在对电极和恒电位电路之间。
在一个实施例中,所述电路系统还包括差分电路,工作电极、辅助电极通过微信号测量电路与差分电路连接。
进一步的,所述通断元件选自通断开关、继电器、场效应管、模拟开关或三极管。
本发明提供了一种电路系统,包括电化学传感器和电路,所述电化学传感器包括工作电极、对电极、参比电极和辅助电极,与对电极连接的电路上设置有通断开关,所述通断开关控制对电极和所述电路之间的通断。
进一步的,所述电路包括基准电压发生电路、恒电位电路和微信号测量电路。
更进一步的,所述通断开关设置在恒电位电路和对电极之间。对电极通过通断开关连接到恒电位电路上;基准电压发生电路通过恒电位电路连接到电化学传感器参比电极上,恒电位电路同时也和电化学传感器的对电极连接;电化学传感器的工作电极和辅助电极上分别连接微信号测试电路以检测反应产生的信号;微信号测量电路和恒电位电路(以及基准电压发生电路)皆连接到外电路。
进一步的,控制对电极和电路之间通断的元件除采用前述的通断开关外,还可选择继电器、场效应管、模拟开关或三极管,以及可以实现通断功能的其他通断元件。
所述电路系统的电路可以是集成的基准电压发生电路、恒电位电路和微信号测量电路,以及在连接对电极上包括有通断功能的集成电路或芯片。
所述的微信号测量电路为I/V转换放大电路,通过此电路可以检测工作电极及辅助电极上的反应电流信号。
进一步的,所述电路系统在工作电极和辅助电极的微信号测量电路之后还可设置有差分电路,检测时直接检测差分信号。
本发明提供了一种用于样本中被分析物检测的测试装置,所述测试装置中包括本发明所述的电路系统。
进一步的,所述的样本为气体样本。
进一步的,所述的被分析物为含量非常微小的痕量物质。例如,所述痕量物质选自气体样本中的一氧化氮等。更进一步的,所述气体样本为呼气样本。
进一步的,所述测试装置还包括进气口、出气口和气室,电化学传感器安装在所述气室内。
本发明提供了一种检测一氧化氮的测试装置,所述测试装置包括本发明所述的电路系统。
本发明提供了一种降低信号噪音的检测方法,所述方法包括提供一种测试装置,所述测试装置包括本发明所述的电路系统;在检测时,断开对电极与电路之间的连接。
进一步的,检测前,对电极和电路之间保持连通。
进一步的,检测结束后,再次使对电极和电路之间的连通。
具体的,所述检测方法包括以下步骤:检测前,给电化学传感器施加偏置电压,此时对电极和电路之间保持连接状态;检测时,断开通断元件,使对电极和电路之间不连通;检测结束后,重新连接上通断元件,使对电极与电路连通。
进一步的,检测前,在电化学传感器的工作电极和辅助电极、参比电极之间施加偏置电压,使电化学传感器的基线信号达到稳定。
一种基于本发明所述电路系统的检测方法,包括以下步骤:检测前,在电极之间施加偏置电压,此时通断开关保持连接状态,将对电极与电路相连;检测时,断开通断开关,将对电极与电路断开;检测结束后,重新连接对电极电路上的通断开关,以准备下一次检测。
进一步的,检测前,所述的电路通过其中的基准电压发生电路、恒电位电路预先给电化学传感器的工作电极、辅助电极和参比电极之间施加偏置电压,并使之达到平衡和稳定,此时连接对电极的电路上的通断开关保持连接状态。检测时,断开通断开关,使对电极与恒电位电路断开,此时由于电化学传感器的电容性,对电极及参比电极上依然保持有断开前接近的电位,保证电化学传感器正确的完成检测。检测结束后,重新连接上通断开关,使对电极与恒电位电路连接上,恒电位电路和电化学传感器重新平衡和稳定,以准备下一次检测。
基于本发明所述电路系统和检测方法,本发明还提供了所述电路系统和检测方法在一氧化氮检测上的应用,包括将所述电路系统应用在一氧化氮电化学传感器上,并通过本发明所述检测方法完成一氧化氮的检测。更进一步的,将所述电路系统安装在一氧化氮测量装置上。
一种用于样本中被分析物检测的检测方法,包括提供一种测试装置,所述测试装置包括本发明所述的电路系统,其检测步骤包括:检测前,对电极和电路之连通;在检测时,断开对电极与电路之间的连接,测试装置对样本中被分析物进行检测;检测结束后,连通对电极和电路之间的连接。
进一步的,所述的样本为气体样本。更进一步的,所述的被分析物为量非常微小的痕量物质,例如,所述痕量物质选自气体样本中的一氧化氮等。
进一步的,包括以下步骤:检测前,给电化学传感器施加偏置电压,使对电极和电路之间保持连接状态;检测时,断开通断元件,使对电极和电路之间不连通;检测结束后,重新连接上通断元件,使对电极与电路连接。
进一步的,检测时,向测试装置中输入气体样本,输入的气体与电化学传感器接触,测试装置检测气体样本中一氧化氮的含量。
利用本发明的电路系统,及运用该电路系统的测试装置和检测方法,在电化学传感器上的对电极与电路之间设置通断元件,通过通断开关在连接和断开两种状态之间切换,可以有效消除对电极回路平衡电流等因素对工作电极检测信号的干扰,降低检测信号的背景噪音,提高检测结果的精密度,显著提高了电化学传感器的检测性能。本发明所述电路系统可被广泛应用于样本分析,能显著提高检测的精准度,特别是在痕量物质的分析上,例如对呼气中一氧化氮的含量分析。
附图说明
图1为本发明一个实施例的电路结构框图,虚线框内为该实施例本发明所述电路系统。
图2为本发明一个实施例电路示意图。
图3为基准电压和偏置电压的发生电路的一个示例。
图4为基于NO传感器的比对测试检测结果曲线图-0ppb(高纯氮气)。
图5为基于NO传感器的比对测试检测结果曲线图-20ppb NO标气。
图6为基于NO传感器的比对测试检测结果曲线图-65ppb NO标气。
具体实施方式
下面通过实施例并结合附图,对本发明的技术方案作进一步的具体说明。
如图1所示本发明的一个设计方案中,电化学传感器包括工作电极(WE)、对电极(CE)、参比电极(RE)和辅助电极(AE);对电极、参比电极分别连接到恒电位电路上,对电极和恒电位电路之间设置有通断开关;基准电压发生电路通过恒电位电路连接到电化学传感器的参比电极上;电化学传感器的工作电极、辅助电极分别连接到微信号测试电路以检测反应产生的信号;微信号测量电路和恒电位电路(以及基准电压发生电路)皆连接到外电路。
以图2所示作为例子,以说明本发明针对电化学传感器为四电极的方案设计的电路系统。
如图2所示,电化学传感器包括4个电极,对电极(C)、参比电极(R)、工作电极(W)、辅助电极(A),辅助电极(A)用以消除工作环境(如温度)对基线电流的影响。运算放大器(U2A)使参比电极(R)的电位保持等于输入的基准电位Vref,并给对电极(C)输出合适的电位,对电极上连接有通断开关(K1)以控制对电极和电路之间的通断;运算放大器(U3A)通过输入端3给电化学传感器的工作电极(W)施加电位Vbias,以保持工作电极(W)和参比电极(R)之间的偏置电压,同时通过运算放大器(U3A)、电阻R9、电容C3组成了I/V转换的微信号测量电路,在运算放大器(U3A)的输出端1输出信号,用以检测反应时工作电极(W)上产生的微信号;辅助电极(A)的工作方式和工作电极(W)一致,运算放大器(U4A)通过输入端3给电化学传感器的辅助电极(A)施加电位Vbias,以保持辅助电极(A)和参比电极(R)之间的偏置电压,同时通过运算放大器(U4A)、电阻R11、电容C4组成了I/V转换的微信号测量电路,在运算放大器(U4A)的输出端1输出信号,用以检测反应时辅助电极(A)上产生的微信号。在本例中,在工作电极和辅助电极的微信号测量电路之后设置有差分电路(虚线框内电路),检测时直接检测差分信号,即通过差分放大器U5进行处理工作电极(W)和辅助电极(A)检测时产生的信号,输出最终信号Vout,消除工作环境(如温度)对反应基线电流的影响。
图3为基准电压和偏置电压的发生电路的一个示例,基准电压和偏置电压的发生电路还可采用其他合适的方式。在图3所示示例中U1为基准电压源,输出Vref和Vbias,分别连接到对应的运算放大器(U2A)的输入端3和运算放大器(U3A、U4A)的输入端3。
测试例1两种电路系统的测试对比例
基于图2的电路系统,采用四电极的一氧化氮(NO)电化学气体传感器(简称NO传感器),进行本发明的检测效果测试。
测量方式如下:把一氧化氮(NO)电化学气体传感器及电路安装到测量装置中,该测量装置设有进气口和出气口,然后通过气泵把待测气体从进气口泵入 进行测量。
对于本发明的实施方案,检测方法的测试流程如下:
1)检测前,给电化学传感器预先施加偏置电压(例如偏置电压设为0.35V:具体为参比电极0.90V,工作电极和辅助电极为1.25V,至少保持24小时以上,使电化学传感器的基线信号稳定下来;
2)检测开始时,断开对电极上的通断开关K1,测试基线信号8秒,0.1秒采1个数据
3)然后,在电化学传感器的气室内以恒定的流量(1mL/s)通过一氧化氮样本气体(用氮气进行平衡),测试检测信号22秒,0.1秒采1个数据;
4)检测完成后,停止通气并停止数据采样,马上连通对电极上的通断开关K1,使电化学传感器恢复平衡,以准备好下一次检测。
作为对照(对照例)的电路系统基本同图2一致,只是对电极上没有连接通断开关K1,而是对电极直接连接恒电位电路,对电极一直保持连接状态。作为对照例的检测方法的测试流程如下:
1)检测前,给电化学传感器预先施加偏置电压(例如偏置电压设为0.35V:具体为参比电极0.90V,工作电极和辅助电极为1.25V),至少保持24小时以上,使电化学传感器的基线信号稳定下来;
2)检测开始时,测试基线8秒,0.1秒采1个数据;
3)然后,在电化学传感器的气室内以恒定的流量(1mL/s)通过一氧化氮气体(用氮气进行平衡),测试检测信号22秒,0.1秒采1个数据;
4)检测完成后,停止通气并停止数据采样。
测试共测试了3种浓度的一氧化氮气体,浓度分别为:0ppb(高纯氮气)、20ppb、65ppb。对于每种浓度的气体,本发明实施方案和现有技术分别测试3次。比对测试的检测结果曲线图如图4~图6。从图可见,对照例的检测结果曲线波动显著、可见噪音非常大,而本发明的检测结果曲线非常平滑、噪音非常小。
采用25.1秒到30.0秒(从基线测量开始计时)反应平台期的检测结果,计算每一次测试内的结果均值、标准偏差和变异系数;然后计算每种技术每种浓度 气体的3次测量间的总均值、标准偏差、和变异系数。并对本发明技术和现有技术的结果进行比对,数据如表1~表3所示。
表1.检测结果比对表–0ppb(高纯氮气)
Figure PCTCN2022072570-appb-000001
表2.检测结果比对表–20ppb
Figure PCTCN2022072570-appb-000002
表3.检测结果比对表–65ppb
Figure PCTCN2022072570-appb-000003
表1可见,现有技术测试内的标准偏差SD达4.17~6.13ppb,测试间的标准偏差SD达0.53ppb;而本发明技术测试内标准偏差SD仅为0.07~0.10ppb,测试间的标准偏差SD仅为0.17ppb。可见相比现有技术,本发明技术把信号噪音降低了几十倍,信噪比大幅提升,极大地提高了一氧化氮检测低限的能力;同时本发明技术也显著提升了测试间的重复性性能。
表2可见,现有技术测试内的变异系数CV达27.9%~33.8%,测试间的变异 系数CV达18.1%;而本发明技术测试内变异系数CV仅为0.5%~0.9%,测试间的变异系数CV仅为1.2%。表3可见,现有技术测试内的变异系数CV达4.8%~8.2%,测试间的变异系数CV达2.5%;而本发明技术测试内变异系数CV仅为0.3%,测试间的变异系数CV仅为0.2%。可见相比现有技术,本发明技术的信号噪音显著减低、信噪比大幅提升,另外也显著提升了测试间的重复性性能。
测试例2
本实施例是用万用表对本发明技术的测试进行了检测前(检测前对电极的通断开关保持连接)、检测中(检测中对电极通过通断开关断开)、检测后(检测后对电极的通断开关马上恢复连接)的电位进行监测,并记录检测前、检测终末、和检测后的电位值。分别测试了35ppb、210ppb、3330ppb共3种浓度的一氧化氮标准气体,每种浓度分别测试2次,结果如表4。
监测发现:检测前对电极电位基本稳定(波动约0.1mV);检测开始后,断开对电极的通断开关,对电极的电位逐渐会小幅度的上升,低浓度上升幅度很小,高浓度略微大些,但上升幅度都不大;检测后,马上连接对电极的通断开关,对电极的电位马上恢复到检测前的水平,间隔不超过1秒。可见,由于电化学传感器的高电容性,检测中对电极断开后,在一氧化氮高至3330ppb的测量范围内(一般市面上FeNO检测产品的测试上限),其电位变化非常小,不会影响测试;测试结束后,恢复连通对电极,对电极的电位迅速恢复(1秒内),不影响产品的实际使用。
表4本发明技术测试时的对电极电位监测数据(单位:mV)
NO浓度 测试 检测前 检测终末 上升 检测后1秒
35ppb 测试1 887.7 888.5 0.8 887.7
35ppb 测试2 887.7 888.4 0.7 887.8
210ppb 测试1 887.9 888.9 1.0 887.9
210ppb 测试2 887.9 888.9 1.0 888.0
3330ppb 测试1 888.1 892.9 4.8 887.9
3330ppb 测试2 887.1* 891.5 4.4 887.2
*:本次测试仪器重新启动过,前面5次结果为连续测试。
因此,结果说明:相比现有技术,本发明技术显著降低了电化学传感器的信号噪音、信噪比大幅提升,测试内的信号曲线更加平稳,测试间的信号曲线更加一致。可见,本发明技术为提高电化学传感器的检测低限能力、缩短检测时间提供了技术基础;本发明技术对电化学传感器在一些痕量物质的检测上具有重大的应用价值。例如呼气一氧化氮的检测,通常人呼气一氧化氮的浓度在几ppb到几十ppb之间,正常人和病人的FeNO50临床临界点在25ppb、而CaNO的临床临界点仅有5ppb,因此低浓度NO的测试精度、准确度对检测结果的临床应用非常重要。本发明技术显著降低了检测噪音,提高了检测低限能力,提高了检测重复性、降低测试间差异(特别是在低浓度上),这对于电化学传感器在临床检测上的应用具有重要的意义。
以上的实施例仅仅是对本发明部分优选的实施方式进行描述,任何熟悉本技术领域的人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (20)

  1. 一种电路系统,包括电路和与电路连接的电化学传感器,其特征在于,电化学传感器上的对电极与电路之间通过通断元件连接,所述通断元件控制对电极与所述电路之间的连通或断开。
  2. 根据权利要求1所述的电路系统,其特征在于,所述电化学传感器包括工作电极、对电极、参比电极和辅助电极。
  3. 根据权利要求1所述的电路系统,其特征在于,所述电路包括基准电压发生电路、恒电位电路和微信号测量电路。
  4. 根据权利要求3所述的电路系统,其特征在于,电化学传感器上的对电极、参比电极分别与恒电位电路连接。
  5. 根据权利要求4所述的电路系统,其特征在于,所述通断元件设置在对电极和恒电位电路之间。
  6. 根据权利要求3所述的电路系统,其特征在于,基准电压发生电路通过恒电位电路连接到电化学传感器上。
  7. 根据权利要求3所述的电路系统,其特征在于,电化学传感器的工作电极、辅助电极分别与微信号测试电路连接。
  8. 根据权利要求7所述的电路系统,其特征在于,还设有差分电路,工作电极、辅助电极通过微信号测量电路与差分电路连接。
  9. 根据权利要求1所述的电路系统,其特征在于,所述通断元件选自通断开关、继电器、场效应管、模拟开关或三极管。
  10. 一种用于样本中被分析物检测的测试装置,其特征在于,所述测试装置包括权利要求1至9之一所述的电路系统。
  11. 根据权利要求10所述的测试装置,其特征在于,所述被分析物选自气体样本中的一氧化氮。
  12. 根据权利要求11所述的测试装置,其特征在于,所述测试装置还包括进气口、出气口和气室,电化学传感器安装在所述气室内。
  13. 一种降低信号噪音的方法,其特征在于,提供权利要求1至9之一所述的电路系统;在检测时,断开对电极与电路之间的连接。
  14. 根据权利要求13所述的方法,其特征在于,在不处于检测状态时,对电极和电路之间保持连通。
  15. 根据权利要求13所述的方法,其特征在于,包括以下步骤:
    检测前,给电化学传感器施加偏置电压,使对电极和电路之间保持连接状态;
    检测时,断开通断元件,使对电极和电路之间不连通;
    检测结束后,重新连接上通断元件,使对电极与电路连接。
  16. 根据权利要求15所述的方法,其特征在于,检测前,在电化学传感器的工作电极和辅助电极、参比电极之间施加偏置电压,使电化学传感器的基线信号达到稳定。
  17. 一种用于样本中被分析物检测的检测方法,其特征在于,提供一种测试装置,所述测试装置包括权利要求1至9之一所述的电路系统,检测步骤包括:
    检测前,对电极和电路之间连通;
    在检测时,断开对电极与电路之间的连接,测试装置对样本中被分析物进行检测;
    检测结束后,连通对电极和电路之间的连接。
  18. 根据权利要求17所述的检测方法,其特征在于,包括以下步骤:检测前,给电化学传感器施加偏置电压,使对电极和电路之间保持连接状态。
  19. 根据权利要求17所述的检测方法,其特征在于,被分析物选自气体样本中的一氧化氮。
  20. 根据权利要求19所述的检测方法,其特征在于,检测时,向测试装置中输入气体样本,输入的气体与电化学传感器接触,测试装置检测气体样本中一氧化氮的含量。
PCT/CN2022/072570 2021-01-20 2022-01-18 一种电路系统及方法 WO2022156680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/273,333 US20240138704A1 (en) 2021-01-20 2022-01-18 Circuitry and method
EP22742159.1A EP4283289A1 (en) 2021-01-20 2022-01-18 Circuit system and method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202120170996 2021-01-20
CN202110079362 2021-01-20
CN202120170996.6 2021-01-20
CN202120160650.8 2021-01-20
CN202120160650 2021-01-20
CN202110079362.4 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022156680A1 true WO2022156680A1 (zh) 2022-07-28

Family

ID=82527050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072570 WO2022156680A1 (zh) 2021-01-20 2022-01-18 一种电路系统及方法

Country Status (4)

Country Link
US (1) US20240138704A1 (zh)
EP (1) EP4283289A1 (zh)
CN (2) CN114813883A (zh)
WO (1) WO2022156680A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
CN101375794A (zh) * 2007-09-01 2009-03-04 霍夫曼-拉罗奇有限公司 体内监测分析物浓度的测量系统及检测该系统故障的方法
CN102323309A (zh) * 2004-05-30 2012-01-18 埃葛梅崔克斯股份有限公司 测量设备和与之使用的方法
CN108291886A (zh) * 2015-09-03 2018-07-17 阿什温-乌沙司公司 具有数字接口的恒电势器/恒流器
CN108802150A (zh) * 2018-05-16 2018-11-13 罗克佳华科技集团股份有限公司 一种基于四电极系统的新型气态污染物浓度传感器
WO2019010153A1 (en) * 2017-07-03 2019-01-10 Arch Chemicals, Inc. POTENTIOSTAT CIRCUIT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
CN102323309A (zh) * 2004-05-30 2012-01-18 埃葛梅崔克斯股份有限公司 测量设备和与之使用的方法
CN101375794A (zh) * 2007-09-01 2009-03-04 霍夫曼-拉罗奇有限公司 体内监测分析物浓度的测量系统及检测该系统故障的方法
CN108291886A (zh) * 2015-09-03 2018-07-17 阿什温-乌沙司公司 具有数字接口的恒电势器/恒流器
WO2019010153A1 (en) * 2017-07-03 2019-01-10 Arch Chemicals, Inc. POTENTIOSTAT CIRCUIT
CN108802150A (zh) * 2018-05-16 2018-11-13 罗克佳华科技集团股份有限公司 一种基于四电极系统的新型气态污染物浓度传感器

Also Published As

Publication number Publication date
EP4283289A1 (en) 2023-11-29
CN114813883A (zh) 2022-07-29
CN114813884A (zh) 2022-07-29
US20240138704A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
TWI431273B (zh) 生物感測器用之異常輸出偵測系統
US7943034B2 (en) Method and apparatus for providing a stable voltage to an analytical system
KR101256133B1 (ko) 전기화학적 분석대상물 검출 동안에 비정상적인 경로의검출을 위한 방법 및 장치
JPH04254750A (ja) 感イオン電界効果トランジスタを利用するバイオセンサー用測定回路
US20180321349A1 (en) Internal integrated circuit resistance calibration
WO2022156680A1 (zh) 一种电路系统及方法
WO2021169242A1 (zh) 一种双通道电化学生物传感器及测量血红素浓度的方法
Liu et al. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection
CN102706932B (zh) 一种电化学气体传感器正反向电流适配电路及方法
CN114778642B (zh) 具有三个电极的葡萄糖浓度信息采集装置
US6220076B1 (en) Differential gas analyzer
CN212904653U (zh) 一种电化学传感器的电路及检测设备
US8896292B2 (en) System and method for gain adjustment in transimpedance amplifier configurations for analyte measurement
TW201310027A (zh) 生物感測器、感測單元與方法
Chen et al. Enhancing the Measurement Sensitivity and Repeatability of Electrolyte-Insulator-Semiconductor Capacitor Sensor With Impedance Conversion
WO1989002593A1 (en) Noise reduction technique for electrochemical cells
TWI481869B (zh) 血球容積比測量方法、血糖濃度測量方法及使用前述方法的電化學量測裝置
WO2021259328A1 (zh) 一种电化学传感器的电路及方法和设备
Hernández et al. Measuring system for amperometric chemical sensors using the three-electrode technique for field application
CN114778626B (zh) 一种葡萄糖传感器信号调理电路
Qiao et al. Portable three-electrode circuit for electrochemical micro-sensors
Ranjan et al. Development of signal conditioning system for biosensor applications
CN116718653A (zh) 一种水质检测装置、数据处理方法及检测系统
Maclay et al. Microfabricated amperometric electrochemical sensors for gas detection
JP3476061B2 (ja) 水蒸気分圧計測方法及び水蒸気分圧計測センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022742159

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742159

Country of ref document: EP

Effective date: 20230821