WO2022156583A1 - 电动汽车平均能耗预测方法及装置 - Google Patents

电动汽车平均能耗预测方法及装置 Download PDF

Info

Publication number
WO2022156583A1
WO2022156583A1 PCT/CN2022/071701 CN2022071701W WO2022156583A1 WO 2022156583 A1 WO2022156583 A1 WO 2022156583A1 CN 2022071701 W CN2022071701 W CN 2022071701W WO 2022156583 A1 WO2022156583 A1 WO 2022156583A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy consumption
average energy
electric vehicle
actual
target
Prior art date
Application number
PCT/CN2022/071701
Other languages
English (en)
French (fr)
Inventor
吴麦青
闫岗
石旭
李雪静
宋丹丹
王胜博
张南
张春美
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP22742062.7A priority Critical patent/EP4159570A4/en
Publication of WO2022156583A1 publication Critical patent/WO2022156583A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/002Integrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions
    • B60W2050/0025Transfer function weighting factor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/18Distance travelled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of electric vehicles, in particular to a method for predicting the average energy consumption of an electric vehicle and a device for predicting the average energy consumption of an electric vehicle.
  • Real-time display of the energy consumption of electric vehicles can not only allow users to more intuitively feel the energy consumption of electric vehicles per 100 kilometers, but also provide users with a guarantee in the process of using the vehicle.
  • the energy consumption of electric vehicles is usually calculated based on the total discharge power and the total mileage of the entire power-on cycle.
  • the driver's driving habits or real-time working conditions have an impact on energy consumption. Therefore, the current energy consumption calculation methods cannot accurately calculate the real-time energy consumption of electric vehicles.
  • the present application provides a method and device for predicting the average energy consumption of an electric vehicle, so as to solve the existing problem that the real-time energy consumption cannot be accurately calculated.
  • a method for predicting average energy consumption of an electric vehicle comprising:
  • the actual energy consumption of the mileage segment corresponding to the current moment of the electric vehicle is determined, and the mileage segment includes a plurality of unit mileage segments;
  • the actual average energy consumption of the electric vehicle at the current moment is determined.
  • determining the initial average energy consumption of the electric vehicle at the current moment according to the actual energy consumption of each unit mileage segment of the traveled mileage segment including:
  • weighted average is performed on the actual energy consumption of each unit mileage segment, and the result of the weighted average is used as the initial average energy consumption of the electric vehicle at the current moment;
  • the weight corresponding to the actual energy consumption of each unit mileage segment decreases as the distance between each unit mileage segment and the mileage corresponding to the electric vehicle at the current moment decreases.
  • determining the actual average energy consumption of the electric vehicle at the current moment according to the initial average energy consumption, the target average energy consumption, and the average energy consumption adjustment parameter including:
  • the target average energy consumption is used as the actual average energy consumption of the electric vehicle at the current moment.
  • adjusting the initial average energy consumption according to the average energy consumption adjustment parameter includes:
  • the difference between the initial average energy consumption and the average energy consumption adjustment parameter is used as the adjusted initial average energy consumption
  • the sum of the initial average energy consumption and the average energy consumption adjustment parameter is used as the adjusted initial average energy consumption.
  • the target average energy consumption is determined according to the following steps:
  • the target average energy consumption is determined according to the ratio of the total energy to the maximum mileage.
  • the method further includes:
  • the initial average energy consumption of the electric vehicle at the next moment is determined according to the first energy and the second energy.
  • determining the initial average energy consumption of the electric vehicle at the next moment according to the first energy and the second energy including:
  • the actual average energy consumption of the electric vehicle at the current moment is used as the initial average energy consumption of the electric vehicle at the next moment.
  • the first energy corresponding to the current unit energy consumption of the battery pack is determined according to the initial average energy consumption, the target average energy consumption, the average energy consumption adjustment parameter, and the remaining energy, include:
  • the first energy corresponding to the current unit energy consumption of the battery pack is determined according to the ratio of the consumed energy to the sum of the energy consumption difference and the average energy consumption adjustment parameter.
  • determining the second energy corresponding to the target unit energy consumption of the battery pack according to the target average energy consumption and the remaining energy including:
  • the second energy corresponding to the target unit energy consumption of the battery pack is determined according to the ratio of the remaining energy to the target average energy consumption.
  • a device for predicting average energy consumption of an electric vehicle comprising:
  • the first energy consumption calculation module is configured to determine the actual energy consumption of the mileage segment corresponding to the current time of the electric vehicle according to the real-time voltage and real-time current of the battery pack of the electric vehicle; the mileage segment includes: Multiple unit mileage;
  • the second energy consumption calculation module is configured to determine the initial average energy consumption of the electric vehicle at the current moment according to the actual energy consumption of each unit mileage segment of the mileage segment that has been driven;
  • a data acquisition module configured to acquire the target average energy consumption and average energy consumption adjustment parameters of the electric vehicle
  • the third energy consumption calculation module is configured to determine the actual average energy consumption of the electric vehicle at the current moment according to the initial average energy consumption, the target average energy consumption and the average energy consumption adjustment parameter.
  • the second energy consumption calculation module includes:
  • a first obtaining sub-module configured to obtain the weight corresponding to the actual energy consumption of each unit mileage segment
  • the first calculation sub-module is configured to perform a weighted average of the actual energy consumption of each unit mileage segment according to the weight corresponding to the actual energy consumption of each unit mileage segment, and use the weighted average result as the current state of the electric vehicle.
  • the weight corresponding to the actual energy consumption of each unit mileage segment decreases as the distance between each unit mileage segment and the mileage corresponding to the electric vehicle at the current moment decreases.
  • the third energy consumption calculation module includes:
  • the second calculation submodule is configured to adjust the initial average energy consumption according to the average energy consumption adjustment parameter if the absolute value of the difference between the initial average energy consumption and the target average energy consumption reaches a first threshold, and Taking the adjusted initial average energy consumption as the actual average energy consumption of the electric vehicle at the current moment;
  • a third calculation sub-module configured to use the target average energy consumption as the current electric vehicle current if the absolute value of the difference between the initial average energy consumption and the target average energy consumption does not reach the first threshold The actual average energy consumption at the moment.
  • the second computing submodule includes:
  • a first calculation unit configured to use the difference between the initial average energy consumption and the average energy consumption adjustment parameter as the adjusted initial average energy consumption if the initial average energy consumption is greater than the target average energy consumption;
  • a second calculation unit configured to use the sum of the initial average energy consumption and the average energy consumption adjustment parameter as the adjusted initial average energy consumption if the initial average energy consumption is not greater than the target average energy consumption.
  • the apparatus further includes a first determination module configured to determine the target average energy consumption.
  • the first determining module includes:
  • a second acquisition sub-module configured to acquire the total energy of the battery pack and the maximum mileage corresponding to the battery pack
  • the first determination sub-module is configured to determine the target average energy consumption according to the ratio of the total energy to the maximum mileage.
  • the apparatus further includes:
  • a first obtaining module configured to obtain the battery after determining the actual average energy consumption of the electric vehicle at the current moment according to the initial average energy consumption, the target average energy consumption and the average energy consumption adjustment parameter the remaining energy of the group;
  • the second determination module is configured to determine the first energy corresponding to the current unit energy consumption of the battery pack according to the initial average energy consumption, the target average energy consumption, the average energy consumption adjustment parameter and the remaining energy ; According to the target average energy consumption and the remaining energy, determine the second energy corresponding to the target unit energy consumption of the battery pack;
  • the third determining module is configured to determine the initial average energy consumption of the electric vehicle at the next moment according to the first energy and the second energy.
  • the third determining module is specifically used for:
  • the actual average energy consumption of the electric vehicle at the current moment is used as the initial average energy consumption of the electric vehicle at the next moment.
  • the second determining module includes:
  • a second determination submodule configured to determine the consumed energy of the battery pack according to the remaining energy
  • a third determination sub-module configured to determine the energy consumption difference between the initial average energy consumption and the target average energy consumption
  • the fourth determination sub-module is configured to determine the first energy corresponding to the current unit energy consumption of the battery pack according to the ratio of the consumed energy to the sum of the energy consumption difference and the average energy consumption adjustment parameter.
  • the second determining module includes:
  • the fifth determination sub-module is configured to determine the second energy corresponding to the target unit energy consumption of the battery pack according to the ratio of the remaining energy to the target average energy consumption.
  • the above technical solution of the present application determines the actual energy consumption corresponding to the real-time unit mileage segment of the electric vehicle by acquiring the real-time voltage and real-time current of the battery pack, and determines the electric vehicle based on the actual energy consumption per unit mileage segment, the target average energy consumption and the average energy consumption adjustment parameters.
  • the actual average energy consumption of the vehicle so that the actual average energy consumption of the electric vehicle at the current moment can be calculated in real time and accurately.
  • Fig. 1 is a method flow chart of a method for predicting the average energy consumption of an electric vehicle provided by a preferred embodiment of the present application;
  • Fig. 2 is the initial average energy consumption calculation logic diagram provided by the preferred embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a device for predicting average energy consumption of an electric vehicle provided by a preferred embodiment of the present application.
  • an embodiment of the present application provides a method for predicting the average energy consumption of an electric vehicle, and the method may include:
  • S101 according to the real-time voltage and real-time current of the battery pack of the electric vehicle, determine the actual energy consumption of the mileage segment corresponding to the current time of the electric vehicle, and the mileage segment includes a plurality of unit mileage segments;
  • S102 according to the The actual energy consumption of each unit mileage segment is used to determine the initial average energy consumption of the electric vehicle at the current moment;
  • S103 the target average energy consumption of the electric vehicle and the adjustment parameters of the average energy consumption are obtained;
  • S104 according to the initial average energy consumption and the target average energy consumption and the average energy consumption adjustment parameters to determine the actual average energy consumption of the electric vehicle at the current moment.
  • the actual energy consumption corresponding to the real-time unit mileage of the electric vehicle is determined by obtaining the real-time voltage and real-time current of the battery pack, and the actual energy consumption of the electric vehicle is determined based on the actual energy consumption per unit mileage, the target average energy consumption and the average energy consumption adjustment parameters. Average energy consumption, so that the actual average energy consumption of electric vehicles at the current moment can be calculated in real time and accurately.
  • the unit mileage segment can be 30, and the distance of each unit mileage segment is taken as the vehicle traveling 0.5km, and the parking position of the vehicle is taken as the starting point. After the vehicle is started, each unit mileage is determined according to the vehicle mileage.
  • the driving distance when the vehicle is 0.5km away from the vehicle parking position is the first unit mileage segment, and when the vehicle is 1km away from the vehicle parking position, that is, the driving distance when the vehicle is 0.5km away from the end point of the first unit mileage segment is the second unit mileage segment segment, and so on; when the vehicle is running, the mileage of the vehicle is obtained in real time, and the real-time voltage and real-time current of the battery pack are obtained in real time, and the real-time voltage and real-time current of the battery pack are integrated to obtain the mileage per unit mileage.
  • the actual energy consumption the calculation formula is: Among them, SumE Drv is the actual energy consumption per unit mileage, the unit is kwh, U is the voltage of the battery pack, the unit is v, and I is the current of the battery pack, the unit is A.
  • AvgEn SumEDrv/unit mileage
  • AvgEn SumEDrv/unit mileage
  • the initial average energy consumption is still determined according to the actual energy consumption corresponding to the 30 unit mileage before the current moment; If the mileage exceeds one unit mileage segment, at the next moment, the second unit mileage segment in the 30 unit mileage segments before the current moment is used as the new first unit mileage segment, and the vehicle mileage closest to the current moment is re-determined. of 30 unit miles.
  • the unit mileage segment is updated in real time with the driving distance of the vehicle, and the actual energy consumption corresponding to each unit mileage segment can effectively reflect the impact of the actual operation of the vehicle on energy consumption, such as the current driver's driving habits and current road conditions, etc.
  • the initial average energy consumption of the vehicle at the current moment can be more accurately determined.
  • the target average energy consumption of the electric vehicle and the adjustment parameters of the average energy consumption are obtained, wherein the target average energy consumption of the electric vehicle is the predetermined theoretical average energy consumption of the electric vehicle, and the average energy consumption is
  • the energy consumption adjustment parameter is a predetermined constant used to adjust the actual average energy consumption of the output. For example, if the difference between the initial average energy consumption and the target average energy consumption is too large and the initial average energy consumption is less than the target average energy consumption, the sum of the initial average energy consumption and the average energy consumption adjustment parameters is used as the actual electric vehicle at the current moment. Average energy consumption is output and displayed. It can be understood that when it is necessary to output and display the average energy consumption of 100 kilometers, the actual average energy consumption of the obtained electric vehicle at the current moment can be multiplied by 100.
  • the target average energy consumption of the electric vehicle can be determined in advance through the following steps: obtaining the total energy of the battery pack and the maximum mileage corresponding to the battery pack; determining the target average energy consumption according to the ratio of the total energy to the maximum mileage.
  • the total energy of the battery pack and the corresponding maximum mileage can be directly obtained from the battery pack in advance.
  • the initial average energy consumption of the electric vehicle at the current moment is determined according to the actual energy consumption of each unit mileage segment of the mileage segment, including:
  • the weight of each unit mileage segment in the 30 unit mileage segments is pre-calibrated, and the unit mileage segment is farther from the initial position of the vehicle, for example, the parking position, the smaller the weight value.
  • the weights corresponding to each unit mileage segment in this embodiment are shown in Table 1.
  • Table 1 The weights corresponding to each unit mileage segment decreases with the decrease of the distance between each unit mileage segment and the vehicle at the current moment, which can more effectively reflect the vehicle's mileage before the current moment. Driving conditions, thereby effectively improving the calculation accuracy of the initial average energy consumption of the electric vehicle at the current moment.
  • the actual average energy consumption of the electric vehicle at the current moment is determined according to the initial average energy consumption, the target average energy consumption, and the average energy consumption adjustment parameter, including:
  • the initial average energy consumption is adjusted according to the average energy consumption adjustment parameter, and the adjusted initial average energy consumption is used as the actual electric vehicle at the current moment.
  • Average energy consumption if the absolute value of the difference between the initial average energy consumption and the target average energy consumption does not reach the first threshold, the target average energy consumption is taken as the actual average energy consumption of the electric vehicle at the current moment.
  • the initial average energy consumption is adjusted according to the average energy consumption adjustment parameters, including:
  • the difference between the initial average energy consumption and the average energy consumption adjustment parameter is used as the adjusted initial average energy consumption; if the initial average energy consumption is not greater than the target average energy consumption, the initial average energy consumption The sum of the adjustment parameters with the average energy consumption is used as the initial average energy consumption after adjustment.
  • the average energy consumption adjustment parameter is set to 0.01kwh/km, and the value of the average energy consumption adjustment parameter is used as the first threshold, that is, if the initial average energy consumption is greater than the target average energy consumption, and if the initial average energy consumption is the same as the target average energy consumption
  • the difference between the target average energy consumption is greater than 0.01kwh/km, the initial average energy consumption minus 0.01kwh/km is used as the actual average energy consumption of the electric vehicle at the current moment; if the initial average energy consumption is less than the target average energy consumption, and if The difference between the initial average energy consumption and the target average energy consumption is greater than 0.01kwh/km, then the initial average energy consumption plus 0.01kwh/km is used as the actual average energy consumption of electric vehicles at the current moment; If the absolute value of the difference in energy consumption is less than 0.01kwh/km, the target average energy consumption is taken as the actual average energy consumption of the electric vehicle at the current moment.
  • the parameters are adjusted based on the average energy consumption.
  • the initial average energy consumption is adjusted and the adjusted initial average energy consumption is used as the actual average energy consumption output at the current moment.
  • the preset upper limit value of energy consumption is 0.05kwh/km
  • the preset lower limit value of energy consumption is 0.02kwh/km
  • the actual average energy consumption at the current moment is 0.01kwh/km
  • Average energy output Multiply the actual average energy consumption at the current moment by 100 to obtain the energy consumption per 100 kilometers at the current moment, and output and display the obtained energy consumption per 100 kilometers to show the current vehicle energy consumption per 100 kilometers in real time to the driver.
  • the actual average energy consumption at the previous moment is output as the actual average energy consumption at the current moment.
  • the method further includes: :
  • the remaining energy of the battery pack determines the first energy corresponding to the current unit energy consumption of the battery pack according to the initial average energy consumption, the target average energy consumption, the average energy consumption adjustment parameter and the remaining energy; determine the battery pack according to the target average energy consumption and remaining energy
  • the second energy corresponding to the target unit energy consumption of the group; the initial average energy consumption of the electric vehicle at the next moment is determined according to the first energy and the second energy.
  • the remaining energy of the battery pack that is, the current SOC of the battery pack, can be directly obtained through the BMS of the electric vehicle, that is, the battery management system.
  • the accuracy of the actual average energy consumption at the current moment is further verified, and the initial average energy consumption at the next moment is adjusted according to the verification result, so as to be able to Effectively correct the calculation results and ensure the calculation accuracy of the actual average energy consumption.
  • the energy corresponding to the current unit energy consumption of the battery pack is the energy consumption corresponding to the current unit SOC of the battery pack; the energy corresponding to the target energy consumption of the battery pack is the energy consumption corresponding to the theoretical unit SOC of the battery pack.
  • determining the first energy corresponding to the current unit energy consumption of the battery pack according to the initial average energy consumption, the target average energy consumption, the average energy consumption adjustment parameter and the remaining energy includes: determining the consumed energy of the battery pack according to the remaining energy; The energy consumption difference between the average energy consumption and the target average energy consumption; the first energy corresponding to the current unit energy consumption of the battery pack is determined according to the ratio between the consumed energy and the energy consumption difference and the sum of the average energy consumption adjustment parameter. Indicates the SOC corresponding to the unit energy consumption in the energy consumed at the current moment.
  • the current SOC of the battery pack is 60%
  • the current SOC value of the battery pack is 60. Since the consumed SOC value is different from the current remaining SOC value, in order to ensure the calculation accuracy and avoid the calculation error being too large, the average energy consumption adjustment parameter is used as the adjustment parameter to adjust the calculation result of the first energy, so as to avoid the first energy The difference from the second energy is too large.
  • determining the second energy corresponding to the target unit energy consumption of the battery pack according to the target average energy consumption and the remaining energy includes: determining the second energy corresponding to the target unit energy consumption of the battery pack according to the ratio of the remaining energy to the target average energy consumption energy.
  • the second energy represents the SOC corresponding to one unit of energy consumption in the remaining energy of the battery pack at the current moment.
  • determining the initial average energy consumption of the electric vehicle at the next moment according to the first energy and the second energy includes: if the absolute value of the difference between the first energy and the second energy reaches the second threshold, taking the electric vehicle at the current The actual average energy consumption at the moment is taken as the initial average energy consumption of the electric vehicle at the next moment.
  • the second threshold is set to 0, that is, if the first energy is equal to the second energy, the actual energy consumption of the electric vehicle at the current moment is used as the value of the second threshold.
  • the average energy consumption is taken as the initial average energy consumption of the electric vehicle at the next moment.
  • the actual average energy consumption at the current moment is used as the initial value of the electric vehicle at the next moment Average energy consumption, according to the initial average energy consumption, target average energy consumption and average energy consumption adjustment parameters to determine the actual average energy consumption of the electric vehicle at the next moment, so as to adjust the actual average energy consumption at the next moment; if the first energy The absolute value of the difference with the second energy does not reach the second threshold, then at the next moment, the initial average energy consumption at the next moment is determined according to the re-determined 30 unit mileage segments, and the actual energy consumption at the next moment is recalculated according to the above process. Average energy consumption.
  • an embodiment of the present application further provides a device for predicting average energy consumption of an electric vehicle, the device comprising:
  • the first energy consumption calculation module 301 is configured to determine the actual energy consumption of the mileage segment corresponding to the current moment of the electric vehicle according to the real-time voltage and real-time current of the battery pack of the electric vehicle; the mileage segment includes a plurality of units mileage;
  • the second energy consumption calculation module 302 is configured to determine the initial average energy consumption of the electric vehicle at the current moment according to the actual energy consumption of each unit mileage segment of the traveled mileage segment;
  • the data acquisition module 303 is configured to acquire the target average energy consumption and the average energy consumption adjustment parameters of the electric vehicle;
  • the third energy consumption calculation module 304 is configured to determine the actual average energy consumption of the electric vehicle at the current moment according to the initial average energy consumption, the target average energy consumption and the average energy consumption adjustment parameter.
  • this embodiment can calculate the actual average energy consumption of electric vehicles more accurately and in real time. Calculate the error, so as to more accurately calculate the current energy consumption and display it to the user, providing a more reliable guarantee for the user to travel.
  • each functional module in each example described in the embodiments disclosed herein can be implemented by electronic hardware. And the division of modules is only a logical function division, and there may be other division methods in actual implementation.
  • each functional module in each embodiment of the present invention may be integrated in one processing device, or each module may exist physically alone, or two or more modules may be integrated in one device.
  • an embodiment of the present application also proposes a device for predicting average energy consumption of an electric vehicle, the device comprising: a processor, a communication interface, a memory, and a communication bus;
  • the processor, the communication interface and the memory communicate with each other through the communication bus;
  • the communication interface is an interface of a communication module;
  • the memory for storing program codes and transmitting the program codes to the processor
  • the processor is used for invoking the instructions of the program code in the memory to execute the method for predicting the average energy consumption of an electric vehicle proposed in the embodiment of the present application.
  • an embodiment of the present application provides a vehicle, where the vehicle includes: the apparatus for predicting the average energy consumption of an electric vehicle shown in FIG. 3 , or includes the above-mentioned device for predicting the average energy consumption of an electric vehicle.
  • an embodiment of the present application further provides a storage medium, where the storage medium is used to store a computer program, and the computer program is used to execute the method proposed by the embodiment of the present application.
  • embodiments of the present application also provide a computer program product including instructions, which, when run on a computer, cause the computer to execute the method proposed by the embodiments of the present application.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施方式提供一种电动汽车平均能耗预测方法及装置。该方法包括:根据电动汽车的电池组的实时电压及实时电流,确定电动汽车当前时刻对应的已行驶里程段的实际能耗,已行驶里程段包括多个单位里程段;根据已行驶里程段的各单位里程段的实际能耗,确定电动汽车在当前时刻的初始平均能耗;获取电动汽车的目标平均能耗及平均能耗调整参数;根据初始平均能耗、目标平均能耗及平均能耗调整参数,确定电动汽车在当前时刻的实际平均能耗。本申请能够实时、精确的计算电动汽车在当前时刻的实际平均能耗。

Description

电动汽车平均能耗预测方法及装置
本申请要求于2021年01月19日提交中国国家知识产权局、申请号为202110067943.6、申请名称为“电动汽车平均能耗预测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,具体地涉及一种电动汽车平均能耗预测方法及一种电动汽车平均能耗预测装置。
背景技术
实时显示电动车的能耗不仅可以让用户更直观的感受到的电动车百公里能耗,也会给用户在用车的过程中提供一种保障。目前,通常基于整个上电循环工况的总放电电量和总行驶里程计算电动汽车的能耗,所计算的能耗没有考虑行车过程中驾驶员的驾驶习惯或实时工况,而实际情况中,驾驶员的驾驶习惯或实时工况对能耗是有影响的,因此,目前的能耗计算方法无法精确的计算电动汽车的实时能耗。
发明内容
本申请提供了一种电动汽车平均能耗预测方法及装置,以解决现有无法精确计算实时能耗的问题。
在本申请的第一方面,提供了一种电动汽车平均能耗预测方法,所述方法包括:
根据所述电动汽车的电池组的实时电压及实时电流,确定所述电动汽车当前时刻对应的已行驶里程段的实际能耗,所述已行驶里程段包括多个单位里程段;
根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗;
获取所述电动汽车的目标平均能耗及平均能耗调整参数;
根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗。
在一些实现方式中,根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗,包括:
获取所述各单位里程段的实际能耗对应的权重;
根据所述各单位里程段的实际能耗对应的权重,对所述各单位里程段的实际能耗进行加权平均,以加权平均的结果作为所述电动汽车在当前时刻的初始平均能耗;
其中,所述各单位里程段的实际能耗对应的权重随所述各单位里程段与所述电动汽车在当前时刻对应的里程的距离的减小而减小。
在一些实现方式中,根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗,包括:
若所述初始平均能耗与所述目标平均能耗的差值的绝对值达到第一阈值,根据所述平均能耗调整参数调整所述初始平均能耗,并以调整后的初始平均能耗作为所述电动汽车在当前时刻的实际平均能耗;
若所述初始平均能耗与所述目标平均能耗的差值的绝对值未达到所述第一阈值,以所述目标平均能耗作为所述电动汽车在当前时刻的实际平均能耗。
在一些实现方式中,根据所述平均能耗调整参数调整所述初始平均能耗,包括:
若所述初始平均能耗大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之差作为调整后的初始平均能耗;
若所述初始平均能耗不大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之和作为调整后的初始平均能耗。
在一些实现方式中,所述目标平均能耗根据以下步骤确定:
获取所述电池组的总能量及所述电池组对应的最大里程;
根据所述总能量与所述最大里程的比值确定所述目标平均能耗。
在一些实现方式中,根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗之后,所述方法还包括:
获取所述电池组的剩余能量;
根据所述初始平均能耗、所述目标平均能耗、所述平均能耗调整参数及所述剩余能量,确定所述电池组的当前单位能耗对应的第一能量;根据所述目标平均能耗及所述剩余能量,确定所述电池组的目标单位能耗对应的第二能量;
根据所述第一能量与所述第二能量确定所述电动汽车在下一时刻的初始平均能耗。
在一些实现方式中,根据所述第一能量与所述第二能量确定所述电动汽车在下一时刻的初始平均能耗,包括:
若所述第一能量与所述第二能量的差值的绝对值达到第二阈值,以所述电动汽车在当前时刻的实际平均能耗作为所述电动汽车在下一时刻的初始平均能耗。
在一些实现方式中,根据所述初始平均能耗、所述目标平均能耗、所述平均能耗调整参数及所述剩余能量,确定所述电池组的当前单位能耗对应的第一能量,包括:
根据所述剩余能量确定所述电池组的已消耗能量;
确定所述初始平均能耗与所述目标平均能耗的能耗差值;
根据所述已消耗能量与所述能耗差值和所述平均能耗调整参数之和的比值,确定所述电池组的当前单位能耗对应的第一能量。
在一些实现方式中,根据所述目标平均能耗及所述剩余能量,确定所述电池组的目标单位能耗对应的第二能量,包括:
根据所述剩余能量与所述目标平均能耗的比值确定所述电池组的目标单位能耗对应的第二能量。
在本申请的第二方面,提供了一种电动汽车平均能耗预测装置,所述装置包括:
第一能耗计算模块,被配置为根据所述电动汽车的电池组的实时电压及实时电流,确定所述电动汽车当前时刻对应的已行驶里程段的实际能耗;所述已行驶里程段包括多个单位里程段;
第二能耗计算模块,被配置为根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗;
数据获取模块,被配置获取所述电动汽车的目标平均能耗及平均能耗调整参数;
第三能耗计算模块,被配置为根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗。
在一些实现方式中,第二能耗计算模块,包括:
第一获取子模块,用于获取所述各单位里程段的实际能耗对应的权重;
第一计算子模块,用于根据所述各单位里程段的实际能耗对应的权重,对所述各单位里程段的实际能耗进行加权平均,以加权平均的结果作为所述电动汽车在当前时刻的初始平均能耗;
其中,所述各单位里程段的实际能耗对应的权重随所述各单位里程段与所述电动汽车在当前时刻对应的里程的距离的减小而减小。
在一些实现方式中,第三能耗计算模块,包括:
第二计算子模块,用于若所述初始平均能耗与所述目标平均能耗的差值的绝对值达到第一阈值,根据所述平均能耗调整参数调整所述初始平均能耗,并以调整后的初始平均能耗作为所述电动汽车在当前时刻的实际平均能耗;
第三计算子模块,用于若所述初始平均能耗与所述目标平均能耗的差值的绝对值未达到所述第一阈值,以所述目标平均能耗作为所述电动汽车在当前时刻的实际平均能耗。
在一些实现方式中,第二计算子模块,包括:
第一计算单元,用于若所述初始平均能耗大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之差作为调整后的初始平均能耗;
第二计算单元,用于若所述初始平均能耗不大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之和作为调整后的初始平均能耗。
在一些实现方式中,所述装置还包括第一确定模块,所述第一确定模块用于确定所述目标平均能耗。所述第一确定模块,包括:
第二获取子模块,用于获取所述电池组的总能量及所述电池组对应的最大里程;
第一确定子模块,用于根据所述总能量与所述最大里程的比值确定所述目标平均能耗。
在一些实现方式中,所述装置还包括:
第一获取模块,用于在根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗之后,获取所述电池组的剩余能量;
第二确定模块,用于根据所述初始平均能耗、所述目标平均能耗、所述平均能耗调整参数及所述剩余能量,确定所述电池组的当前单位能耗对应的第一能量;根据所述目标平均能耗及所述剩余能量,确定所述电池组的目标单位能耗对应的第二能量;
第三确定模块,用于根据所述第一能量与所述第二能量确定所述电动汽车在下一时刻的初始平均能耗。
在一些实现方式中,第三确定模块,具体用于:
若所述第一能量与所述第二能量的差值的绝对值达到第二阈值,以所述电动汽车在当前时刻的实际平均能耗作为所述电动汽车在下一时刻的初始平均能耗。
在一些实现方式中,第二确定模块,包括:
第二确定子模块,用于根据所述剩余能量确定所述电池组的已消耗能量;
第三确定子模块,用于确定所述初始平均能耗与所述目标平均能耗的能耗差值;
第四确定子模块,用于根据所述已消耗能量与所述能耗差值和所述平均能耗调整参数之和的比值,确定所述电池组的当前单位能耗对应的第一能量。
在一些实现方式中,第二确定模块,包括:
第五确定子模块,用于根据所述剩余能量与所述目标平均能耗的比值确定所述电池组的目标单位能耗对应的第二能量。
本申请上述技术方案通过获取电池组的实时电压及实时电流确定电动汽车的实时单位里程段对应的实际能耗,基于单位里程段的实际能耗、目标平均能耗及平均能耗调整参数确定电动汽车的实际平均能耗,从而能够实时、精确的计算电动汽车在当前时刻的实际平均能耗。
本申请实施方式的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请实施方式的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施方式,但并不构成对本申请实施方式的限制。在附图中:
图1是本申请优选实施方式提供的一种电动汽车平均能耗预测方法的方法流程图;
图2是本申请优选实施方式提供的初始平均能耗计算逻辑图;
图3是本申请优选实施方式提供的一种电动汽车平均能耗预测装置的示意框图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
如图1及图2所示,本申请实施例提供了一种电动汽车平均能耗预测方法,该方法可以包括:
S101,根据电动汽车的电池组的实时电压及实时电流,确定电动汽车当前时刻对应的已行驶里程段的实际能耗,已行驶里程段包括多个单位里程段;S102,根据已行驶里程段的各单位里程段的实际能耗,确定电动汽车在当前时刻的初始平均能耗;S103,获取电动汽车的目标平均能耗及平均能耗调整参数;S104,根据初始平均能耗、目标平均能耗及平均能耗调整参数,确定电动汽车在当前时刻的实际平均能耗。
如此,通过获取电池组的实时电压及实时电流确定电动汽车的实时单位里程段对应的实际能耗,基于单位里程段的实际能耗、目标平均能耗及平均能耗调整参数确定电动汽车的实际平均能耗,从而能够实时、精确的计算电动汽车在当前时刻的实际平均能耗。
具体的,在电动汽车行驶的每一时刻,实时确定距离车辆当前时刻对应的里程最近的多个单位里程段的实际能耗。本实施方式中,单位里程段可以为30个,以车辆行驶0.5km作为每个单位里程段的距离,以车辆的停车位置为起点,当车辆启动后,根据车辆的行驶里程确定每个单位里程段,即车辆距离车辆停车位置0.5km时的行驶距离为第一单位里程段,车辆距离车辆停车位置1km时,即车辆距离第一单位里程段的终点0.5km时的行驶距离为第二单位里程段,以此类推;车辆处于运行状态时,实时获取车辆的行驶里程,同时实时获取电池组的实时电压及实时电流,对电池组的实时电压及实时电流进行积分从而得到每个单位里程内的实际能耗,计算公式为:
Figure PCTCN2022071701-appb-000001
其中,SumE Drv为单位里程内的实际能耗,单位为kwh,U为电池组的电压,单 位为v,I为电池组的电流,单位为A。当车辆行驶至距离车辆停车位置15km处时,即可得到车辆在当前时刻之前的30个单位里程段中每个单位里程段的实际能耗,根据公式AvgEn=SumEDrv/单位里程,计算单位里程段的平均能耗,以单位里程段的平均能耗作为当前时刻的初始平均能耗,其中,AvgEn为单位里程段内的平均能耗,单位为kwh/km。可以理解的,在下一时刻时,若车辆的行驶里程不足一个单位里程段,则在下一时刻时,依然依据当前时刻之前的30个单位里程段对应的实际能耗确定初始平均能耗;若车辆的行驶里程超过一个单位里程段,则在下一时刻时,以当前时刻之前的30个单位里程段中的第二单位里程段为新的第一单位里程段,重新确定距离当前时刻车辆行驶里程最近的30个单位里程段。这样,单位里程段随着车辆的行驶距离实时更新,各单位里程段对应的实际能耗能有效的反映车辆的实际运行情况对能耗的影响,例如当前驾驶员的驾驶习惯及当前路况等,从而能更准确的确定车辆在当前时刻的初始平均能耗。得到车辆在当前时刻的初始平均能耗后,获取电动汽车的目标平均能耗及平均能耗调整参数,其中,电动汽车的目标平均能耗为预先确定的电动汽车的理论平均能耗,平均能耗调整参数为预先确定的常量,用于对输出的实际平均能耗进行调节。例如,若初始平均能耗与目标平均能耗的差值过大且初始平均能耗小于目标平均能耗,则以初始平均能耗与平均能耗调整参数的和作为电动汽车在当前时刻的实际平均能耗输出并显示。可以理解的,当需要输出并显示百公里平均能耗时,以得到的电动汽车在当前时刻的实际平均能耗乘以100即可。
电动汽车的目标平均能耗可预先通过以下步骤确定:获取电池组的总能量及电池组对应的最大里程;根据总能量与最大里程的比值确定目标平均能耗。其中,电池组的总能量及对应的最大里程均可预先根据电池组直接得到。
为了更精确的计算电动汽车在当前时刻的实际平均能耗,根据已行驶里程段的各单位里程段的实际能耗,确定电动汽车在当前时刻的初始平均能耗,包括:
获取各单位里程段的实际能耗对应的权重;根据各单位里程段的实际能耗对应的权重,对各单位里程段的实际能耗进行加权平均,以加权平均的结果作为电动汽车在当前时刻的初始平均能耗;其中,各单位里程段的实际能耗对应的权重随各单位里程段与电动汽车在当前时刻对应的里程的距离的减小而减小。
作为一个示例,预先标定30个单位里程段中每个单位里程段的权重,单位里程段距离车辆的初始位置,例如停车位置越远,则权重值越小。电动汽车 在当前时刻的初始平均能耗计算公式如下:AvgE=(a1*AvgE1+a2*AvgE2+……+a29*AvgE29+a30*AvgE30)/30;其中,AvgE为当前时刻的初始平均能耗,单位为kwh;a1,a2……a29,a30为各单位里程段对应的权重,a1+a2……a29+a30=30。本实施方式中各单位里程段对应的权重如表1所示。这样,通过对每个单位里程段进行加权,使得各单位里程段对应的权重随各单位里程段与车辆在当前时刻的距离的减小而减小,能更有效的反映车辆在当前时刻之前的行驶状况,从而有效提高电动汽车在当前时刻的初始平均能耗的计算精确度。
表1
a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15
1.32 1.29 1.26 1.23 1.21 1.19 1.17 1.15 1.12 1.1 1.08 1.06 1.03 1.01 1
a 16 a 17 a 18 a 19 a 20 a 21 a 22 a 23 a 24 a 25 a 26 a 27 a 28 a 29 a 30
0.98 0.95 0.94 0.92 0.9 0.89 0.86 0.85 0.84 0.81 0.8 0.78 0.77 0.75 0.74
本实施方式中,根据初始平均能耗、目标平均能耗及平均能耗调整参数确定电动汽车在当前时刻的实际平均能耗,包括:
若初始平均能耗与目标平均能耗的差值的绝对值达到第一阈值,根据平均能耗调整参数调整初始平均能耗,并以调整后的初始平均能耗作为电动汽车在当前时刻的实际平均能耗;若初始平均能耗与目标平均能耗的差值的绝对值未达到第一阈值,以目标平均能耗作为电动汽车在当前时刻的实际平均能耗。
其中,根据平均能耗调整参数调整初始平均能耗,包括:
若初始平均能耗大于目标平均能耗,以初始平均能耗与平均能耗调整参数之差作为调整后的初始平均能耗;若初始平均能耗不大于目标平均能耗,以初始平均能耗与平均能耗调整参数之和作为调整后的初始平均能耗。
本实施方式中,平均能耗调整参数设置为0.01kwh/km,并以平均能耗调整参数的值作为第一阈值,即若初始平均能耗大于目标平均能耗,且若初始平均能耗与目标平均能耗的差值大于0.01kwh/km,则以初始平均能耗减去0.01kwh/km作为电动汽车在当前时刻的实际平均能耗;若初始平均能耗小于目标平均能耗,且若初始平均能耗与目标平均能耗的差值大于0.01kwh/km,则以初始平均能耗加上0.01kwh/km作为电动汽车在当前时刻的实际平均能耗;若 初始平均能耗与目标平均能耗的差值的绝对值小于0.01kwh/km,则以目标平均能耗作为电动汽车在当前时刻的实际平均能耗。这样,若计算得到的初始平均能耗与目标平均能耗的差值的绝对值过大,如大于0.01kwh/km,则认为初始平均能耗的计算不准确,则基于平均能耗调整参数对初始平均能耗进行调节并以调节后的初始平均能耗作为当前时刻的实际平均能耗输出。
在本实施方式中,在得到当前时刻的实际平均能耗后,还需判断当前时刻的实际平均能耗是否超出预设限值,将当前时刻的实际平均能耗分别与预设的能耗上限值及能耗下限值进行比较,例如,若当前时刻的实际平均能耗为0.06kwh/km,预设的能耗上限值为0.05kwh/km,预设的能耗下限值为0.02kwh/km,则以0.05kwh/km作为当前时刻的实际平均能耗输出;可以理解的,若当前时刻的实际平均能耗为0.01kwh/km,则以0.02kwh/km作为当前时刻的实际平均能耗输出。将当前时刻的实际平均能耗乘以100即得到当前时刻的百公里能耗,将得到的百公里能耗输出并显示,以向驾驶员实时展示当前车辆的百公里能耗。同时,为了避免充电对计算的影响,若在当前时刻,检测到车辆处于充电状态,则以上一时刻的实际平均能耗作为当前时刻的实际平均能耗输出。
为了进一步保证实际平均能耗的计算精确度,在本实施方式的根据初始平均能耗、目标平均能耗及平均能耗调整参数,确定电动汽车在当前时刻的实际平均能耗之后,方法还包括:
获取电池组的剩余能量;根据初始平均能耗、目标平均能耗、平均能耗调整参数及剩余能量确定电池组的当前单位能耗对应的第一能量;根据目标平均能耗及剩余能量确定电池组的目标单位能耗对应的第二能量;根据第一能量与第二能量确定电动汽车在下一时刻的初始平均能耗。其中,电池组的剩余能量即电池组的当前SOC,可通过电动汽车的BMS即电池管理系统直接获取。根据电池组当前的单位能耗对应的能量与电池组的目标能耗对应的能量进一步验证当前时刻的实际平均能耗的精确度,并根据验证结果调节下一时刻的初始平均能耗,从而能有效的对计算结果进行纠错,保证实际平均能耗的计算精确度。其中,电池组当前的单位能耗对应的能量即电池组当前单位SOC对应的能耗;电池组的目标能耗对应的能量即电池组的理论单位SOC对应的能耗。
其中,根据初始平均能耗、目标平均能耗、平均能耗调整参数及剩余能量确定电池组的当前单位能耗对应的第一能量,包括:根据剩余能量确定电池组的已消耗能量;确定初始平均能耗与目标平均能耗的能耗差值;根据已消耗能量与能耗差值和平均能耗调整参数的和的比值确定电池组的当前单位能耗对应的第一能量,第一能量表示当前时刻已消耗的能量中,单位能耗对应的SOC。第一能量的计算公式为:第一能量=(100-当前SOC值)/((初始平均能耗-目标平均能耗)+平均能耗调整参数),可以理解的,若电池组的当前SOC为60%,则电池组的当前SOC值为60。由于已消耗掉的SOC值与当前剩下的SOC值不同,为了保证计算精度,避免计算误差过大,以平均能耗调整参数作为调整参数来调整第一能量的计算结果,以避免第一能量与第二能量的差值过大。
作为一个示例,根据目标平均能耗及剩余能量确定电池组的目标单位能耗对应的第二能量,包括:根据剩余能量与目标平均能耗的比值确定电池组的目标单位能耗对应的第二能量。第二能量的计算公式为:第二能量=当前SOC值/目标平均能耗。第二能量表示当前时刻电池组剩余的能量中的一个单位能耗对应的SOC。
作为一个示例,根据第一能量与第二能量确定电动汽车在下一时刻的初始平均能耗,包括:若第一能量与第二能量的差值的绝对值达到第二阈值,以电动汽车在当前时刻的实际平均能耗作为电动汽车在下一时刻的初始平均能耗,本实施方式中,设定第二阈值为0,即若第一能量等于第二能量时,以电动汽车在当前时刻的实际平均能耗作为电动汽车在下一时刻的初始平均能耗。若第一能量与第二能量的差值的绝对值达到第二阈值,表示实际平均能耗需进行进一步调整,则在下一时刻,以当前时刻的实际平均能耗作为电动汽车在下一时刻的初始平均能耗,根据初始平均能耗、目标平均能耗及平均能耗调整参数确定所述电动汽车在下一时刻的实际平均能耗,以在下一时刻对实际平均能耗进行调节;若第一能量与第二能量的差值的绝对值未达到第二阈值,则在下一时刻,根据重新确定的30个单位里程段确定下一时刻的初始平均能耗,按照上述过程重新计算下一时刻的实际平均能耗。
如图3所示,本申请实施例还提供一种电动汽车平均能耗预测装置,装置包括:
第一能耗计算模块301,被配置为根据电动汽车的电池组的实时电压及实时电流,确定电动汽车当前时刻对应的已行驶里程段的实际能耗;所述已行驶里程段包括多个单位里程段;
第二能耗计算模块302,被配置为根据已行驶里程段的各单位里程段的实际能耗确定电动汽车在当前时刻的初始平均能耗;
数据获取模块303,被配置获取电动汽车的目标平均能耗及平均能耗调整参数;
第三能耗计算模块304,被配置为根据初始平均能耗、目标平均能耗及平均能耗调整参数确定电动汽车在当前时刻的实际平均能耗。
综上所述,本实施方式能更精确、更实时的计算电动汽车实际平均能耗,通过实时的根据当前电池组的电压及电流实时计算车辆的初始平均能耗,可有效的降低能耗的计算误差,从而更精确的计算当前能耗并展现给用户,给用户出行提供更可靠的保障。
本领域普通技术人员可以意识到,本文中所公开的实施例描述的各示例的功能模块,能够以电子硬件来实现。以及模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本发明各个实施例中的各功能模块可以集成在一个处理设备中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个设备中。
此外,本申请实施例还提出一种电动汽车平均能耗预测设备,所述设备包括:处理器、通信接口、存储器和通信总线;
其中,所述处理器、所述通信接口和所述存储器通过所述通信总线完成相互间的通信;所述通信接口为通信模块的接口;
所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器,用于调用所述存储器中程序代码的指令执行本申请实施例提出的所述的电动汽车平均能耗预测方法。
此外,本申请实施例提出一种车辆,所述车辆包括:上述图3所示的电动汽车平均能耗预测装置,或者,包括上述电动汽车平均能耗预测设备。
此外,本申请实施例还提出一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行本申请实施例所提出的方法。
此外,本申请实施例还提出一种包括指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行本申请实施例所提出的方法。
以上结合附图详细描述了本申请的可选实施方式,但是,本申请实施方式并不限于上述实施方式中的具体细节,在本申请实施方式的技术构思范围内,可以对本申请实施方式的技术方案进行多种简单变型,这些简单变型均属于本申请实施方式的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请实施方式对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请实施方式的思想,同样应当视为本申请实施方式所公开的内容。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处 理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种电动汽车平均能耗预测方法,其特征在于,所述方法包括:
    根据所述电动汽车的电池组的实时电压及实时电流,确定所述电动汽车当前时刻对应的已行驶里程段的实际能耗,所述已行驶里程段包括多个单位里程段;
    根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗;
    获取所述电动汽车的目标平均能耗及平均能耗调整参数;
    根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗。
  2. 根据权利要求1所述的电动汽车平均能耗预测方法,其特征在于,根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗,包括:
    获取所述各单位里程段的实际能耗对应的权重;
    根据所述各单位里程段的实际能耗对应的权重,对所述各单位里程段的实际能耗进行加权平均,以加权平均的结果作为所述电动汽车在当前时刻的初始平均能耗;
    其中,所述各单位里程段的实际能耗对应的权重随所述各单位里程段与所述电动汽车在当前时刻对应的里程的距离的减小而减小。
  3. 根据权利要求1所述的电动汽车平均能耗预测方法,其特征在于,根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗,包括:
    若所述初始平均能耗与所述目标平均能耗的差值的绝对值达到第一阈值,根据所述平均能耗调整参数调整所述初始平均能耗,并以调整后的初始平均能耗作为所述电动汽车在当前时刻的实际平均能耗;
    若所述初始平均能耗与所述目标平均能耗的差值的绝对值未达到所述第一阈值,以所述目标平均能耗作为所述电动汽车在当前时刻的实际平均能耗。
  4. 根据权利要求3所述的电动汽车平均能耗预测方法,其特征在于,根据所述平均能耗调整参数调整所述初始平均能耗,包括:
    若所述初始平均能耗大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之差作为调整后的初始平均能耗;
    若所述初始平均能耗不大于所述目标平均能耗,以所述初始平均能耗与所述平均能耗调整参数之和作为调整后的初始平均能耗。
  5. 根据权利要求1所述的电动汽车平均能耗预测方法,其特征在于,所述目标平均能耗根据以下步骤确定:
    获取所述电池组的总能量及所述电池组对应的最大里程;
    根据所述总能量与所述最大里程的比值确定所述目标平均能耗。
  6. 根据权利要求1所述的电动汽车平均能耗预测方法,其特征在于,根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗之后,所述方法还包括:
    获取所述电池组的剩余能量;
    根据所述初始平均能耗、所述目标平均能耗、所述平均能耗调整参数及所述剩余能量,确定所述电池组的当前单位能耗对应的第一能量;根据所述目标平均能耗及所述剩余能量,确定所述电池组的目标单位能耗对应的第二能量;
    根据所述第一能量与所述第二能量确定所述电动汽车在下一时刻的初始平均能耗。
  7. 根据权利要求6所述的电动汽车平均能耗预测方法,其特征在于,根据所述第一能量与所述第二能量确定所述电动汽车在下一时刻的初始平均能耗,包括:
    若所述第一能量与所述第二能量的差值的绝对值达到第二阈值,以所述电动汽车在当前时刻的实际平均能耗作为所述电动汽车在下一时刻的初始平均能耗。
  8. 根据权利要求6所述的电动汽车平均能耗预测方法,其特征在于,根据所述初始平均能耗、所述目标平均能耗、所述平均能耗调整参数及所述剩余能量,确定所述电池组的当前单位能耗对应的第一能量,包括:
    根据所述剩余能量确定所述电池组的已消耗能量;
    确定所述初始平均能耗与所述目标平均能耗的能耗差值;
    根据所述已消耗能量与所述能耗差值和所述平均能耗调整参数之和的比 值,确定所述电池组的当前单位能耗对应的第一能量。
  9. 根据权利要求6所述的电动汽车平均能耗预测方法,其特征在于,根据所述目标平均能耗及所述剩余能量,确定所述电池组的目标单位能耗对应的第二能量,包括:
    根据所述剩余能量与所述目标平均能耗的比值确定所述电池组的目标单位能耗对应的第二能量。
  10. 一种电动汽车平均能耗预测装置,其特征在于,所述装置包括:
    第一能耗计算模块,被配置为根据所述电动汽车的电池组的实时电压及实时电流,确定所述电动汽车当前时刻对应的已行驶里程段的实际能耗;所述已行驶里程段包括多个单位里程段;
    第二能耗计算模块,被配置为根据所述已行驶里程段的各单位里程段的实际能耗,确定所述电动汽车在当前时刻的初始平均能耗;
    数据获取模块,被配置获取所述电动汽车的目标平均能耗及平均能耗调整参数;
    第三能耗计算模块,被配置为根据所述初始平均能耗、所述目标平均能耗及所述平均能耗调整参数,确定所述电动汽车在当前时刻的实际平均能耗。
  11. 一种电动汽车平均能耗预测设备,其特征在于,所述设备包括:处理器、通信接口、存储器和通信总线;
    其中,所述处理器、所述通信接口和所述存储器通过所述通信总线完成相互间的通信;所述通信接口为通信模块的接口;
    所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器,用于调用所述存储器中程序代码的指令执行权利要求6所述的电动汽车平均能耗预测方法。
  12. 一种车辆,其特征在于,
    所述车辆包括:上述权利要求11所述的车辆的电动汽车平均能耗预测装置;或者,
    所述车辆包括:上述权利要求12所述的电动汽车平均能耗预测设备。
  13. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序用于执行权利要求1至9任意一项所述的方法。
  14. 一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行权利要求1至9任意一项所述的方法。
PCT/CN2022/071701 2021-01-19 2022-01-13 电动汽车平均能耗预测方法及装置 WO2022156583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22742062.7A EP4159570A4 (en) 2021-01-19 2022-01-13 METHOD AND DEVICE FOR PREDICTING THE AVERAGE ENERGY CONSUMPTION OF AN ELECTRIC VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110067943.6 2021-01-19
CN202110067943.6A CN112810614B (zh) 2021-01-19 2021-01-19 电动汽车平均能耗预测方法及装置

Publications (1)

Publication Number Publication Date
WO2022156583A1 true WO2022156583A1 (zh) 2022-07-28

Family

ID=75870033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071701 WO2022156583A1 (zh) 2021-01-19 2022-01-13 电动汽车平均能耗预测方法及装置

Country Status (3)

Country Link
EP (1) EP4159570A4 (zh)
CN (1) CN112810614B (zh)
WO (1) WO2022156583A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101087A (zh) * 2023-03-10 2023-05-12 金彭车业无锡有限公司 一种电动车增程系统
CN116215314A (zh) * 2023-05-08 2023-06-06 深圳市创诺新电子科技有限公司 车载电源电量控制装置及控制方法
CN116424154A (zh) * 2023-03-06 2023-07-14 合众新能源汽车股份有限公司 一种电动车辆能耗估算方法、系统、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810614B (zh) * 2021-01-19 2022-04-19 长城汽车股份有限公司 电动汽车平均能耗预测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126368A (ja) * 2011-12-15 2013-06-24 Hyundai Motor Co Ltd 電気自動車の走行可能距離算出方法
CN108790860A (zh) * 2018-04-18 2018-11-13 浙江吉利汽车研究院有限公司 可行驶里程计算方法、系统及汽车
CN108819722A (zh) * 2018-06-01 2018-11-16 汉腾汽车有限公司 一种电动汽车续航里程预估方法
CN112810614A (zh) * 2021-01-19 2021-05-18 长城汽车股份有限公司 电动汽车平均能耗预测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931145B2 (ja) * 2014-09-02 2016-06-08 三菱電機株式会社 車両用エネルギーマネジメント装置
CN104340074B (zh) * 2014-09-11 2016-09-21 清华大学 车辆行驶里程修正方法及系统
CN109532555B (zh) * 2018-10-19 2020-11-03 北京经纬恒润科技有限公司 一种续航里程的计算方法及装置
CN111376790A (zh) * 2018-12-28 2020-07-07 观致汽车有限公司 用于确定车辆的行驶里程的方法、装置、设备和介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126368A (ja) * 2011-12-15 2013-06-24 Hyundai Motor Co Ltd 電気自動車の走行可能距離算出方法
CN108790860A (zh) * 2018-04-18 2018-11-13 浙江吉利汽车研究院有限公司 可行驶里程计算方法、系统及汽车
CN108819722A (zh) * 2018-06-01 2018-11-16 汉腾汽车有限公司 一种电动汽车续航里程预估方法
CN112810614A (zh) * 2021-01-19 2021-05-18 长城汽车股份有限公司 电动汽车平均能耗预测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159570A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116424154A (zh) * 2023-03-06 2023-07-14 合众新能源汽车股份有限公司 一种电动车辆能耗估算方法、系统、设备及介质
CN116424154B (zh) * 2023-03-06 2024-02-13 合众新能源汽车股份有限公司 一种电动车辆能耗估算方法、系统、设备及介质
CN116101087A (zh) * 2023-03-10 2023-05-12 金彭车业无锡有限公司 一种电动车增程系统
CN116101087B (zh) * 2023-03-10 2024-03-08 金彭车业无锡有限公司 一种电动车增程系统
CN116215314A (zh) * 2023-05-08 2023-06-06 深圳市创诺新电子科技有限公司 车载电源电量控制装置及控制方法
CN116215314B (zh) * 2023-05-08 2023-09-12 深圳市创诺新电子科技有限公司 车载电源电量控制装置及控制方法

Also Published As

Publication number Publication date
CN112810614A (zh) 2021-05-18
EP4159570A1 (en) 2023-04-05
CN112810614B (zh) 2022-04-19
EP4159570A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022156583A1 (zh) 电动汽车平均能耗预测方法及装置
US10215576B2 (en) Energy-optimized vehicle route selection
CN107933317B (zh) 估算剩余续驶里程的方法、装置、设备及纯电动汽车
CN111670340B (zh) 一种车辆剩余行驶里程的获取方法、电子设备及车辆
JP5918477B2 (ja) 電気自動車の残り走行距離適応型初期値設定装置及び方法
CN107458259A (zh) 一种新能源电动汽车剩余里程估算方法
US20110196817A1 (en) Motor vehicle acceleration determining system
CN111376790A (zh) 用于确定车辆的行驶里程的方法、装置、设备和介质
US11203271B2 (en) Apparatus and method for displaying distance to empty of vehicle
US8949009B2 (en) Driver display of energy consumption as a monetary rate
US20190344775A1 (en) Method for calculating a management setpoint for managing the fuel and electric power consumption of a hybrid motor vehicle
KR101856291B1 (ko) 친환경 차량의 주행가능거리 산출 시스템 및 방법
CN108931739A (zh) 电池系统soc估算误差的确定方法、装置以及汽车
EP4328082A1 (en) Method and apparatus for determining driving range of electric vehicle, and vehicle
CN112373319B (zh) 增程式车辆的动力系统控制方法、系统及车辆
CN110077274B (zh) 一种物流电动车可行驶距离的估算方法、装置及设备
CN113060015A (zh) 一种车辆扭矩处理方法、装置及设备
CN114572055A (zh) 续航里程估算方法、装置、计算机设备和存储介质
WO2023123094A1 (zh) 确定续航里程的方法、装置、系统、电动汽车和存储介质
CN108985966B (zh) 电量消耗计算方法、装置、车辆及计算机可读存储介质
JP2017203733A (ja) 航続可能範囲表示装置、航続可能範囲表示方法及びプログラム
KR101926872B1 (ko) 전기자동차의 잔존주행거리 추정방법
CN114987287B (zh) 剩余续驶里程预测方法、装置、车辆及计算机存储介质
CN117429266A (zh) 续航显示值确定方法、装置、车辆、电子设备及存储介质
CN116118513A (zh) 一种续驶里程计算方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022742062

Country of ref document: EP

Effective date: 20221228

NENP Non-entry into the national phase

Ref country code: DE