WO2022156493A1 - 电池保护系统、电池保护方法、车辆、设备、程序和介质 - Google Patents

电池保护系统、电池保护方法、车辆、设备、程序和介质 Download PDF

Info

Publication number
WO2022156493A1
WO2022156493A1 PCT/CN2021/141800 CN2021141800W WO2022156493A1 WO 2022156493 A1 WO2022156493 A1 WO 2022156493A1 CN 2021141800 W CN2021141800 W CN 2021141800W WO 2022156493 A1 WO2022156493 A1 WO 2022156493A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
contactor
circuit
circuit breaker
Prior art date
Application number
PCT/CN2021/141800
Other languages
English (en)
French (fr)
Inventor
申大鹏
刘崇威
吴国辉
韩政达
彭爽
李宏涛
赵文强
董福田
李岩
毕闯
李金鹏
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022156493A1 publication Critical patent/WO2022156493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the present disclosure relates to the field of vehicles, and in particular, to a battery protection system, a battery protection method, a vehicle, an apparatus, a program and a medium.
  • a contactor and a fuse are generally set in the circuit to cut off the circuit when the current is too large.
  • the maximum allowable passing current of the contactor is less than the fusing current of the fuse, there is a protection blind zone in the battery circuit where the contactor and the fuse are set, which neither the contactor nor the fuse can cover.
  • the overload current is located in the protection blind zone
  • the contactor cannot operate and the fuse cannot be blown, which may easily cause the battery temperature to be too high or even catch fire.
  • the purpose of the present disclosure is to provide a battery protection system, a battery protection method, a vehicle, an apparatus, a program and a medium to eliminate the blind spot of current overload protection.
  • a first aspect of the present disclosure provides a battery protection system, comprising: a fuse, provided on a main circuit of the battery; a contactor, provided on a charging circuit and/or a discharging circuit of the battery; a circuit breaker, arranged on the main circuit of the battery; a current detection device, used to detect the battery current flowing through the battery; a controller, connected in communication with the current detection device and the circuit breaker, used for When the battery current is greater than or equal to the maximum allowable current of the contactor, the circuit breaker is controlled to be disconnected to cut off the main circuit.
  • the circuit breaker is also connected in direct communication with a crash sensor for automatically disconnecting in response to a crash signal generated by the crash sensor.
  • the controller is configured to control the circuit breaker to open to cut off when the battery current is greater than or equal to the maximum allowable current of the contactor and less than or equal to the fusing current of the fuse the main circuit.
  • the controller is also connected in communication with the contactor, for controlling the contactor when the battery current is greater than or equal to a preset current threshold and less than the maximum allowable current of the contactor. Contactor is open.
  • the contactor includes a first contactor disposed on the charging circuit, and the controller is configured to, when the battery is in the charging mode, when the battery current is greater than or equal to a preset current threshold, When the current is less than the maximum allowable current of the first contactor, the first contactor is controlled to be disconnected.
  • the contactor includes a second contactor disposed on the discharge circuit, and the controller is configured to, when the battery is in the discharge mode, when the battery current is greater than or equal to a preset current threshold, When the current is less than the maximum allowable current of the second contactor, the second contactor is controlled to be disconnected.
  • the controller is one of the following: a battery management system, a domain controller, and a vehicle controller.
  • a second aspect of the present disclosure provides a battery protection method, comprising: detecting a battery current flowing through the battery; when the battery current is greater than or equal to a contactor disposed on a charging circuit and/or a discharging circuit of the battery In the case of the maximum allowable current, the circuit breaker provided on the main circuit of the battery is controlled to open to cut off the main circuit.
  • the method further includes: controlling the contactor to disconnect when the battery current is greater than or equal to a preset current threshold and less than a maximum allowable current of the contactor.
  • a third aspect of the present disclosure provides a vehicle, including a battery, and a battery protection system provided according to the first aspect of the present disclosure.
  • a fourth aspect of the present disclosure provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the battery protection method provided by the embodiment of the second aspect of the present disclosure.
  • a fifth aspect of the present disclosure provides a computer program, comprising computer-readable codes, when the computer-readable codes are executed on a computing and processing device, causing the computing and processing device to execute the proposed embodiments of the second aspect of the present disclosure battery protection method.
  • a sixth aspect of the present disclosure provides a computer-readable storage medium, in which the computer program proposed by the embodiments of the fifth aspect of the present disclosure is stored.
  • the controller controls the circuit breaker to disconnect.
  • the main circuit can be cut off in time by the circuit breaker.
  • the circuit breaker responds quickly and can effectively protect the main circuit, thereby covering the protection blind area that cannot be covered by contactors and fuses, and reducing the battery overheating or even fire due to excessive current. possibility of explosion.
  • FIG. 1 is a schematic diagram of a system structure of a battery protection system provided by an exemplary embodiment.
  • FIG. 2 is a partial structural schematic diagram of a battery protection system provided by another exemplary embodiment.
  • FIG. 3 is a schematic diagram of a connection structure of a circuit breaker in a battery protection system provided by another exemplary embodiment.
  • FIG. 4 is a flowchart of a battery protection method provided by an exemplary embodiment.
  • FIG. 5 is a flowchart of a battery protection method provided by another exemplary embodiment.
  • FIG. 6 is a flowchart of a battery protection method provided by yet another exemplary embodiment.
  • FIG. 7 is a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a storage unit for portable or fixed program codes for implementing the method according to the present invention according to an embodiment of the present disclosure.
  • a contactor and a fuse are generally set in the circuit to cut off the circuit when the current is too large.
  • the maximum allowable passing current of the contactor is less than the fusing current of the fuse, there is a protection dead zone in the battery circuit where the contactor and the fuse are set, which neither the contactor nor the fuse can cover.
  • the contactor cannot operate and the fuse cannot be blown, which may easily cause the battery temperature to be too high or even catch fire.
  • a first aspect of the present disclosure provides a battery protection system.
  • FIG. 1 is a schematic diagram of a system structure of a battery protection system provided by an exemplary embodiment
  • FIG. 2 is a schematic diagram of a partial structure of a battery protection system provided by another exemplary embodiment.
  • the battery protection system may include a fuse 1, which is provided on the main circuit 5 of the battery 10; a contactor, which is provided on the charging circuit 6 and the discharging circuit of the battery 10; and a circuit breaker 3, which is provided on the battery 10.
  • the circuit breaker 3 On the main circuit 5 of When the current is greater than or equal to the maximum allowable current of the contactor, the circuit breaker 3 is controlled to open to cut off the main circuit 5 .
  • the controller controls the circuit breaker 3 to disconnect, so that when the battery current exceeds the contactor's limit due to current overload, short circuit or collision
  • the main circuit 5 can be cut off in time through the circuit breaker 3, the circuit breaker 3 responds quickly, can effectively protect the main circuit 5, cover the protection blind area that the contactor and fuse 1 cannot cover, and reduce the battery 10 caused by excessive current.
  • the temperature is too high or even the possibility of fire and explosion.
  • the battery 10 may include a plurality of battery cells, the plurality of battery cells are connected in series on the main circuit 5, and the fuse 1 may be provided between the plurality of battery cells.
  • the charging circuit 6 may include a charging positive circuit 61 and a charging negative circuit 62, the main circuit 5 has a positive terminal and a negative terminal, the positive terminal of the main circuit 5 is connected to the charging positive circuit 61, and the main circuit 5 has a positive terminal.
  • the negative terminal is connected to the charging negative circuit 62 , and the contactor may include a first contactor 21 , and the first contactor 21 is provided on the charging positive circuit 61 and the charging negative circuit 62 .
  • the discharge circuit may include a discharge positive circuit 71 and a discharge negative circuit 72
  • the main circuit 5 has a positive terminal and a negative terminal
  • the positive terminal of the main circuit 5 is connected to the discharge positive circuit 71
  • the negative terminal of the main circuit 5 is connected.
  • the terminal is connected to the discharge negative circuit 72
  • the contactor may further include a second contactor 22 , and the second contactor 22 is arranged on the discharge positive circuit 71 and the discharge negative circuit 72 .
  • the solution of the present disclosure can be applied to the interior of a battery pack.
  • the battery pack is provided with a plurality of discharge ports 9 .
  • the negative terminal of the battery is connected to the discharge negative circuit 72, so that when the second contactor 22 on the discharge positive circuit 71 is disconnected, or the second contactor 22 on the discharge negative circuit 72 is disconnected, all the discharge interfaces 9 are connected to the battery
  • the connection circuit 10 is disconnected, and the battery 10 stops discharging.
  • the battery pack is provided with a charging interface 8, the positive terminal of the charging interface 8 is connected to the charging positive circuit 61, and the negative terminal of the charging interface 8 is connected to the charging negative circuit 62.
  • the connection circuit between the charging interface 8 and the battery 10 is disconnected, and the battery 10 stops charging.
  • the positive terminals of the multiple charging ports 8 are all connected to the charging positive circuit 61
  • the negative terminals of the multiple charging ports 8 are all connected to the charging negative circuit 62 .
  • all the charging ports 8 are disconnected from the battery 10 and the battery 10 stops charging.
  • the first contactor 21 may be one and disposed on the charging positive circuit 61 or the charging negative circuit 62. When the first contactor 21 is disconnected, the battery 10 stops charging.
  • the second contactor 22 can also be set as one and disposed on the discharge positive circuit 71 or the discharge negative circuit 72. When the second contactor 22 is disconnected, the battery 10 stops discharging.
  • first contactors 21 can be respectively provided on the charging positive circuit 61 and the charging negative circuit 62
  • second contactors 22 can be respectively provided on the discharging positive circuit 71 and the discharging negative circuit 72. Both the contactor 21 and each of the second contactors 22 are connected to the controller, which can also achieve the beneficial effects of the above-mentioned embodiments, which will not be repeated here.
  • the current detection device 4 may be a current sensor, the current sensor is arranged on the main circuit 5 in series, and the current sensor is connected in communication with the controller.
  • the current detection device 4 can also be a shunt and a current measurement device matched with it, and the current measurement device is connected in communication with the controller. Since the usage of the shunt is in the prior art, it will not be repeated here.
  • the current detection device 4 may also be a circuit characteristic value measurement device, and a current measurement module matched with it is integrated in the controller.
  • the circuit characteristic value measurement device may be a voltage measurement device connected in parallel with an element having a fixed resistance value, and the voltage measurement device is communicatively connected to the controller.
  • the resistance value of the element is pre-stored in the controller.
  • the current measurement module converts the pre-stored resistance value and the measured voltage value to determine the current value.
  • the circuit breaker 3 is also directly connected in communication with the crash sensor, for automatically disconnecting in response to a crash signal generated by the crash sensor.
  • the collision sensor sends a collision signal to the circuit breaker 3, and the circuit breaker 3 automatically opens in response to the collision signal of the collision sensor.
  • the circuit breaker 3 can quickly cut off the main circuit 5, stop charging or discharging of the battery 10, avoid short circuit due to the collision, and improve safety.
  • the collision signal of the collision sensor is directly sent to the circuit breaker 3, which can greatly shorten the response time, quickly cut off the circuit, and reduce the occurrence of excessive temperature or even fire and explosion caused by instantaneous short circuit. possible.
  • the circuit breaker 3 can complete the cut-off work within 3ms.
  • the circuit breaker 3 can disconnect the main circuit 5 when the battery current is greater than the maximum allowable current of the contactor, and directly disconnect the main circuit 5 in the event of a collision, which can greatly improve the safety of the battery 10 This reduces the possibility of high temperature or even explosion of the battery 10 due to excessive current.
  • FIG. 3 is a schematic diagram of a connection structure of a circuit breaker 3 in a battery protection system provided by another exemplary embodiment.
  • the circuit breaker 3 communicates with the collision sensor through ABM (English: Active Balance Management, Chinese: Active Balance Management).
  • the controller can also be used to control the circuit breaker 3 to open to cut off the main circuit 5 when the battery current is greater than or equal to the maximum allowable current of the contactor and less than or equal to the fusing current of the fuse 1 .
  • the controller can control the circuit breaker 3 to open, so that the main circuit 5 can be cut off quickly.
  • the circuit breaker 3 cuts off the main circuit 5 and the response time is fast, which can greatly reduce the possibility of the battery 10 being overheated or even catching fire and exploding.
  • the controller may be a BMS (English: Battery Management System, Chinese: Battery Management System), so that the battery protection system is integrated in the battery pack, which can reduce external environment interference and increase reliability. At the same time, when the battery pack is detached from the vehicle body, or the vehicle controller fails, the battery protection system can still work reliably, so as to better protect the battery 10 .
  • BMS Battery Management System
  • Chinese Battery Management System
  • the controller may also be a vehicle controller, and the vehicle controller is connected in communication with the contactor, the circuit breaker 3 and the current detection device 4 .
  • the vehicle controller can be directly connected to the contactor, the circuit breaker 3 and the current detection device 4 through CAN (English: Controller Area Network, Chinese: Controller Area Network).
  • the vehicle controller can also communicate with the contactor, the circuit breaker 3 and the current detection device 4 through the BMS.
  • the controller may also be a domain controller.
  • the current information of the current detection device 4 is sent to the corresponding domain controller through the gateway.
  • the domain controller determines that the contactor or circuit breaker 3 is to be cut off, the domain controller will The information is sent to the contactor or circuit breaker 3 through the gateway to cause the contactor or circuit breaker 3 to open.
  • FIG. 4 is a flowchart of the battery protection method provided by an exemplary embodiment.
  • the battery protection method may include:
  • Step S11 detecting the battery current flowing through the battery
  • the battery current can be directly detected by a current measuring device, for example, directly measured by a current detection element disposed on the loop.
  • the voltage across an element connected in series on the loop can be measured, and the battery current can be converted from the voltage and the resistance of the element.
  • the battery current can be finally obtained by measuring the current of each loop, and summing or differing the measured current values according to the series-parallel relationship.
  • Step S12 when the battery current is greater than or equal to the maximum allowable current of the contactor arranged on the charging circuit and/or the discharging circuit of the battery, the circuit breaker arranged on the main circuit of the battery is controlled to be disconnected to cut off the main circuit .
  • the main circuit can be cut off in time through the circuit breaker, the circuit breaker responds quickly, and can effectively protect the main circuit, covering the contactor and fuse. Covered protection blind area reduces the possibility of battery overheating or even fire and explosion due to excessive current.
  • FIG. 5 is a flowchart of a battery protection method provided by another exemplary embodiment.
  • the method in Fig. 4 may further include: step S13, judging whether the battery current is greater than or equal to a preset threshold, and generating a first judgment result.
  • the preset threshold corresponds to the battery current value when overloaded.
  • the battery current is greater than or equal to the preset threshold, an overload or short circuit occurs.
  • step S12 is executed.
  • step S12 in FIG. 4 may specifically include step S121 and step S122, in the case that the first judgment result is yes, execute step S121: judge whether the battery current is less than the maximum allowable current of the contactor, A second judgment result is generated.
  • step S122 is executed: the circuit breaker provided on the main circuit of the battery is controlled to be disconnected, so as to cut off the main circuit.
  • the method in FIG. 4 may further include step S14, in the case that the second judgment result is yes, perform step S14: control the contactor provided on the main circuit of the battery to be disconnected to cut off main circuit.
  • the main circuit can be cut off directly through the contactor.
  • a prompting device may also be provided in the vehicle, and if the first judgment result is yes, the prompting device is controlled to prompt an alarm message corresponding to excessive battery current, so that the driver can know the battery state in time and take braking action. , leaving the car and other measures to ensure the safety of the occupants in the car.
  • the prompting device may be an in-vehicle display.
  • the prompting device may also be an audio player in the vehicle.
  • a contactor or circuit breaker can be selected according to the magnitude of the battery current to disconnect the main circuit during overload or short circuit, thereby improving safety, and at the same time, when the battery current exceeds the preset threshold and does not reach the fuse In the case of the fuse current of the contactor, the main circuit is cut off in time to eliminate the protection dead zone between the contactor and the fuse.
  • FIG. 6 is a flowchart of a battery protection method provided by yet another exemplary embodiment.
  • step S12 may further include step S123, in the case that the second judgment result is no, step S123 is executed: judging whether the battery current is less than or equal to the fusing current of the circuit breaker, and generating a third critical result.
  • step S122 is executed to cut off the main circuit by opening the circuit breaker.
  • the maximum allowable current of the contactor is 1000A
  • the fusing current of the fuse is 3000A.
  • the contactor is controlled to disconnect to cut off the main circuit; when the battery current is greater than or equal to 1000A and When the current is less than or equal to 3000A, the main circuit is cut off by the circuit breaker; when the battery current is greater than 3000A, the fuse is automatically blown to disconnect the main circuit.
  • the circuit breaker cuts off the main circuit and has a fast response time, which can greatly reduce the possibility of the battery temperature being too high or even the possibility of fire and explosion.
  • the battery current interval corresponding to the contactor, circuit breaker 3 and fuse 1 can be accurately divided, which is convenient for the control background to accurately record the working data. If a fault occurs, it is convenient to quickly determine the problem. parts, so that deficiencies can be identified and improved in time, reducing troubleshooting time.
  • a third aspect of the present disclosure provides a vehicle, including a battery, and a battery protection system provided according to the first aspect of the present disclosure.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device performs the aforementioned battery protection method.
  • the present disclosure also proposes a computer program, comprising computer-readable codes, when the computer-readable codes are executed on a computing processing device, causing the computing processing device to execute the aforementioned battery protection method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 7 is a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 710 and a computer program product or computer readable medium in the form of a memory 730 .
  • the memory 730 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 730 has storage space 750 for program code 751 for performing any of the method steps in the above-described methods.
  • storage space 750 for program code may include various program codes 751 for implementing various steps in the above methods, respectively.
  • the program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 8 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 730 in the server of FIG. 7 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 751', i.e. code readable by a processor such as 710, which when executed by a server, causes the server to perform the various steps in the methods described above.
  • the present disclosure is not limited to the specific details of the above-mentioned embodiments.
  • Various simple modifications can be made to the technical solutions of the present disclosure within the scope of the technical concept of the present disclosure. These simple modifications all fall within the protection scope of the present disclosure.
  • the fuses are arranged between a plurality of battery cells in the exemplary embodiment, the fuses may also be arranged at other positions of the main circuit, and the technical effects of the above-mentioned embodiments can also be achieved.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)

Abstract

本公开涉及一种电池保护系统、电池保护方法和车辆。本公开的电池保护系统包括:熔断器,设置在所述电池的主回路上;接触器,设置在所述电池的充电回路和/或放电回路上;断路器,设置在所述电池的主回路上;电流检测装置,用于检测流经所述电池的电池电流;控制器,与所述电流检测装置和所述断路器通信连接,用于在所述电池电流大于或等于所述接触器的最大允许电流的情况下,控制所述断路器断开,以切断所述主回路。如此,当电池电流超过接触器的最大允许电流时,能够通过断路器及时切断主回路,断路器响应迅速,能有效保护主回路,覆盖接触器与熔断器无法保护的盲区,降低电池因电流过大导致温度过高甚至起火爆炸的可能。

Description

电池保护系统、电池保护方法、车辆、设备、程序和介质
相关申请的交叉引用
本公开要求在2021年01月25日提交中国专利局、申请号为202110097442.2、名称为“电池保护系统、电池保护方法和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆领域,具体地,涉及一种电池保护系统、电池保护方法、车辆、设备、程序和介质。
背景技术
随着新能源汽车技术的发展,车辆的安全要求越来越重视,当前市场车辆起火事件频发,起火原因包括电流过载、短路、碰撞、电芯等问题导致。
为了解决电池所在回路上可能存在的因过载、短路或碰撞造成电流过大的情况,一般在回路中设置接触器和熔断器,以在电流过大时切断电路。
但是,由于接触器的最大允许通过电流小于熔断器的熔断电流,因此,设置接触器和熔断器的电池回路中存在一个接触器和熔断器均无法覆盖的保护盲区,当过载电流位于该保护盲区内时,接触器无法动作,熔断器无法熔断,容易导致电池温度过高甚至起火。
发明内容
本公开的目的是提供一种电池保护系统、电池保护方法、车辆、设备、程序和介质,以消除电流过载保护的盲区。
为了实现上述目的,本公开第一方面提供一种电池保护系统,包括:熔断器,设置在所述电池的主回路上;接触器,设置在所述电池的充电回路和/或放电回路上;断路器,设置在所述电池的主回路上;电流检测装置,用于检测流经所述电池的电池电流;控制器,与所述电流检测装置和所述断路器通信连接,用于在所述电池电流大于或等于所述接触器的最大允许电流的情况下,控制所述断路器断开,以切断所述主回路。
可选地,所述断路器还与碰撞传感器直接通信连接,用于响应于所述碰撞传感器生 成的碰撞信号,自动断开。
可选地,所述控制器用于在所述电池电流大于或等于所述接触器的最大允许电流且小于或等于所述熔断器的熔断电流的情况下,控制所述断路器断开,以切断所述主回路。
可选地,所述控制器还与所述接触器通信连接,用于在所述电池电流大于或等于预设的电流阈值,并小于所述接触器的最大允许电流的情况下,控制所述接触器断开。
可选地,所述接触器包括设置在所述充电回路上的第一接触器,所述控制器用于在所述电池处于充电模式时,在所述电池电流大于或等于预设的电流阈值,并小于所述第一接触器的最大允许电流的情况下,控制所述第一接触器断开。
可选地,所述接触器包括设置在所述放电回路上的第二接触器,所述控制器用于在所述电池处于放电模式时,在所述电池电流大于或等于预设的电流阈值,并小于所述第二接触器的最大允许电流的情况下,控制所述第二接触器断开。
可选地,所述控制器为以下中的一种:电池管理系统、域控制器、整车控制器。
本公开第二方面提供了一种电池保护方法,包括:检测流经所述电池的电池电流;在所述电池电流大于或等于设置在所述电池的充电回路和/或放电回路上的接触器的最大允许电流的情况下,控制设置在所述电池的主回路上的断路器断开,以切断所述主回路。
可选地,所述方法还包括:在所述电池电流大于或等于预设的电流阈值,并小于所述接触器的最大允许电流的情况下,控制所述接触器断开。
本公开第三方面提供了一种车辆,包括电池,还包括根据本公开第一方面提供的电池保护系统。
本公开第四方面提供了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第二方面实施例所提出的电池保护方法。
本公开第五方面提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第二方面实施例所提出的电池保护方法。
本公开第六方面提供了一种计算机可读存储介质,其中存储了本公开第五方面实施例所提出的计算机程序。
上述技术方案中,通过在主回路上设置断路器,当电流超过接触器的最大允许电流,控制器控制断路器断开,如此,当因电流过载、短路或因碰撞导致电池电流超过接触器的最大允许电流时,能够通过断路器及时切断主回路,断路器响应迅速,能有效保护主回路,从而覆盖接触器与熔断器无法覆盖的保护盲区,降低电池因电流过大导致温度过高甚至起火爆炸的可能。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是一示例性实施例提供的电池保护系统的系统结构示意图。
图2是另一示例性实施例提供的电池保护系统的部分结构示意图。
图3是又一示例性实施例提供的电池保护系统中断路器的连接结构示意图。
图4是一示例性实施例提供的电池保护方法的流程图。
图5是另一示例性实施例提供的电池保护方法的流程图。
图6是又一示例性实施例提供的电池保护方法的流程图。
图7为本公开实施例提供的一种计算处理设备的结构示意图。
图8为本公开实施例提供的一种用于便携式或者固定实现根据本发明的方法的程序代码的存储单元的示意图。
附图标记说明
1-熔断器,21-第一接触器,22-第二接触器,3-断路器,4-电流检测装置,5-主回路,6-充电回路,61-充电正极回路,62-充电负极回路,71-放电正极回路,72-放电负极回路,8-充电接口,9-放电接口,10-电池。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
首先对本公开可能的应用的场景进行说明。为了解决电池所在回路上可能存在的因过载、短路或碰撞造成电流过大的情况,一般在回路中设置接触器和熔断器,以在电流 过大时切断电路。
但是,由于接触器的最大允许通过电流小于熔断器的熔断电流,因此,设置接触器和熔断器的电池回路中存在一个接触器和熔断器均无法覆盖的保护盲区,当电流的大小位于该盲区内时,接触器无法动作,熔断器无法熔断,容易导致电池温度过高甚至起火。
为解决上述存在的技术问题,本公开第一方面提供了一种电池保护系统。
图1是一示例性实施例提供的电池保护系统的系统结构示意图,图2是另一示例性实施例提供的电池保护系统的部分结构示意图。参照图1和图2,电池保护系统可以包括熔断器1,设置在电池10的主回路5上;接触器,设置在电池10的充电回路6和放电回路上;断路器3,设置在电池10的主回路5上;电流检测装置4,用于检测流经电池10的电池电流;控制器(图1中未示出),与电流检测装置4和断路器3通信连接,用于在电池电流大于或等于接触器的最大允许电流的情况下,控制断路器3断开,以切断主回路5。
如此,通过在主回路5上设置断路器3,当电流超过接触器的最大允许电流,控制器控制断路器3断开,这样,当因电流过载、短路或因碰撞导致电池电流超过接触器的最大允许电流时,能够通过断路器3及时切断主回路5,断路器3响应迅速,能有效保护主回路5,覆盖接触器与熔断器1无法覆盖的保护盲区,降低电池10因电流过大导致温度过高甚至起火爆炸的可能。
示例性地,参照图1,电池10可以包括多个电池单元,多个电池单元串联在主回路5上,熔断器1可以设置在多个电池单元之间。
示例性地,参照图1,充电回路6可以包括充电正极回路61和充电负极回路62,主回路5具有正极端和负极端,主回路5的正极端与充电正极回路61连接,主回路5的负极端与充电负极回路62连接,接触器可以包括第一接触器21,第一接触器21设置在充电正极回路61以及充电负极回路62上。
示例性地,参照图1,放电回路可以包括放电正极回路71和放电负极回路72,主回路5具有正极端和负极端,主回路5的正极端与放电正极回路71连接,主回路5的负极端与放电负极回路72连接,接触器还可以包括第二接触器22,第二接触器22设置在放电正极回路71以及放电负极回路72上。
示例性地,参照图1,本公开的方案可以应用于电池包内部,电池包上设有多个放电接口9,每个放电接口9的正极端与放电正极回路71连通,每个放电接口9的负极端 与放电负极回路72连通,这样,当放电正极回路71上的第二接触器22断开,或放电负极回路72上的第二接触器22断开时,则所有放电接口9与电池10的连接回路被断开,电池10停止放电。
示例性地,参照图1,电池包上设有充电接口8,充电接口8的正极端与充电正极回路61连接,充电接口8的负极端与充电负极回路62连接,当充电正极回路61上的第一接触器21断开,或充电负极回路62上的第一接触器21断开,则充电接口8与电池10的连接回路被断开,电池10停止充电。
需要说明的是,上述优选的实施方式仅仅用于阐述本公开的原理,并非旨在于限制本公开的保护范围。在不偏离本公开原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本公开能够适用于更加具体的应用场景。
例如,充电接口8可以为多个,多个充电接口8的正极端均与充电正极回路61连接,多个充电接口8的负极端均与充电负极回路62连接。这样,当充电正极回路61上的第一接触器21断开,或充电负极回路62上的第一接触器21断开,则所有充电接口8与电池10断开连接,电池10停止充电。
再例如,第一接触器21可以为一个,并设置在充电正极回路61或充电负极回路62上,当第一接触器21断开,则电池10停止充电。
同理,第二接触器22也可设置为一个,并设置在放电正极回路71或放电负极回路72上,当第二接触器22断开,则电池10停止放电。
可以理解,充电正极回路61和充电负极回路62上可以分别设置多个第一接触器21,放电正极回路71和放电负极回路72上可以分别设置多个第二接触器22,每个第一接触器21以及每个第二接触器22均与控制器连接,也能够实现上述实施方式的有益效果,此处不再赘述。
示例性地,参照图1,电流检测装置4可以为电流传感器,电流传感器串联设置在主回路5上,且电流传感器与控制器通信连接。
可替换地,电流检测装置4还可以为分流器以及与其配套的电流测量装置,电流测量装置与控制器通信连接。由于分流器的使用方式为现有技术,此处不再赘述。
可替换地,电流检测装置4还可以为电路特征值测量装置,且控制器内集成有与之配套的电流测量模块。
具体来说,示例性地,电路特征值测量装置可以为与具有固定电阻值元件并联的电 压测量装置,电压测量装置与控制器通信连接。控制器内预存有该元件的电阻值,在接收到电压测量装置的信号后,电流测量模块根据预存的电阻值和测量的电压值进行换算,从而确定电流值。
可选地,断路器3还与碰撞传感器直接通信连接,用于响应于碰撞传感器生成的碰撞信号,自动断开。
本方案中,当车辆发生碰撞时,碰撞传感器向断路器3发送碰撞信号,断路器3响应于碰撞传感器的碰撞信号,自动断开。如此,在车辆发生碰撞的时候,断路器3能够迅速切断主回路5,停止电池10的充电或放电,避免因碰撞发生短路等情况,提高安全性。
还需指出,由于碰撞传感器和断路器3直接通信连接,碰撞传感器的碰撞信号直接发送至断路器3,能够大大缩短反应时间,快速切断电路,能够减少因瞬时短路造成温度过高甚至起火爆炸的可能。
例如,断路器3在接收到碰撞传感器的碰撞信号后,可在3ms内完成切断工作。
通过上述设置方式,在非碰撞情况下,断路器3能够在电池电流大于接触器的最大允许电流时断开主回路5,并且在碰撞时直接断开主回路5,能够大大提升电池10的安全性,降低电池10因电流过大导致高温甚至爆炸的可能。
示例性地,图3是又一示例性实施例提供的电池保护系统中断路器3的连接结构示意图。参照图3,当电池包采用主动均衡管理时,断路器3与碰撞传感器通过ABM(英文:Active Balance Management,中文:主动均衡管理)实现通信。
可选地,控制器还可以用于在电池电流大于或等于接触器的最大允许电流且小于或等于熔断器1的熔断电流的情况下,控制断路器3断开,以切断主回路5。
通过上述设置方式,当电池电流大于或等于接触器的最大允许电流,且小于或等于熔断器1的熔断电流,控制器能够控制断路器3断开,从而能迅速切断主回路5。
特别是当电池电流接近或达到熔断器1的熔断电流时,由于熔断器1的熔断需要一定时间,而电池电流以接近或达到熔断电流的强度持续一定时间,会大大增加电池10起火的风险。本方案中通过断路器3切断主回路5响应时间迅速,能够大大减少电池10温度过高甚至起火爆炸的可能。
参照图3,可选地,控制器可以为BMS(英文:Battery Management System,中文:电池管理系统),这样,电池保护系统集成在电池包内,能够减少外界环境的干扰,可靠 性增加。同时,当电池包与车身脱离,或整车控制器失效,电池保护系统依然能够可靠工作,以能更好地保护电池10。
可替换地,控制器还可以为整车控制器,整车控制器与接触器、断路器3以及电流检测装置4通信连接。
可选地,整车控制器可以通过CAN(英文:Controller Area Network,中文:控制器局域网络)与接触器、断路器3以及电流检测装置4直接通信连接。
可替换地,整车控制器还可以通过BMS实现与接触器、断路器3以及电流检测装置4的通信。
可替换地,控制器还可以为域控制器。
示例性地,在电池10运行的过程中,电流检测装置4的电流信息通过网关发送至对应的域控制器,在域控制器判断要切断接触器或断路器3时,域控制器将对应的信息通过网关发送至接触器或断路器3,以使接触器或断路器3断开。
本公开第二方面提供一种电池保护方法,图4是一示例性实施例提供的电池保护方法的流程图,参照图4,电池保护方法可以包括:
步骤S11,检测流经电池的电池电流;
示例性地,可以通过电流测量装置直接检测电池电流,例如通过设置在回路上的电流检测元件直接测量得到。
可替换地,还可通过测量与电池电流相关的其他特征值得到。
例如,可以测量串联在回路上元件两端的电压,并通过电压以及元件的电阻值,换算得到电池电流。
再例如,还可通过测量各个回路的电流,并根据串并联关系,对测量的电流值进行求和或做差,最终得到电池电流。
步骤S12,在电池电流大于或等于设置在电池的充电回路和/或放电回路上的接触器的最大允许电流的情况下,控制设置在电池的主回路上的断路器断开,以切断主回路。
如此,当因电流过载、短路或因碰撞导致电池电流超过接触器的最大允许电流时,能够通过断路器及时切断主回路,断路器响应迅速,能有效保护主回路,覆盖接触器与熔断器无法覆盖的保护盲区,降低电池因电流过大导致温度过高甚至起火爆炸的可能。
图5是另一示例性实施例提供的电池保护方法的流程图。参照图5,图4中的方法,在步骤S12之前,还可以包括:步骤S13,判断电池电流是否大于或等于预设阈值,生 成第一判断结果。
示例性地,预设阈值对应过载时的电池电流值。当电池电流大于或等于预设阈值时,则说明发生过载或短路。
因此,在第一判断结果为是的情况下,执行步骤S12。
示例性地,参照图5,图4中的步骤S12可以具体包括步骤S121和步骤S122,在第一判断结果为是的情况下,执行步骤S121:判断电池电流是否小于接触器的最大允许电流,生成第二判断结果。
在第二判断结果为否的情况下,执行步骤S122:控制设置在电池主回路上的断路器断开,以切断主回路。
示例性地,参照图5,图4中的方法还可以包括步骤S14,在第二判断结果为是的情况下,执行步骤S14:控制设置在电池的主回路上的接触器断开,以切断主回路。
如此,在电池电流小于接触器的最大允许电流的情况下,可以通过接触器直接切断主回路。
其中,有关主回路、放电回路以及充电回路的相关具体实施方式已经在有关该系统的实施例中进行了详细描述,此处不再详细阐述说明。
示例性地,车辆内还可设置提示装置,在第一判断结果为是的情况下,控制提示装置提示对应于电池电流过大的警报信息,以使驾驶人员及时知晓电池状态,并采取制动、离车等措施保证车内人员安全。
示例性地,提示装置可以为车内显示器。
可替换地,提示装置还可以为车内的音频播放器。
通过步骤S121、步骤S122以及步骤S14,能够在过载或短路时根据电池电流的大小选择接触器或断路器将主回路断开,提高安全性,同时能够在电池电流超过预设阈值且未达到熔断器的熔断电流的情况下及时切断主回路,消除接触器与熔断器之间存在的保护盲区。
图6是又一示例性实施例提供的电池保护方法的流程图。参照图6,针对图5中的方法,步骤S12还可以包括步骤S123,在第二判断结果为否的情况下,执行步骤S123:判断电池电流是否小于或等于断路器的熔断电流,生成第三判断结果。
在第三判断结果为是的情况下,执行步骤S122,以通过断开断路器切断主回路。
例如,接触器的最大允许电流为1000A,熔断器的熔断电流为3000A,当电池电流 大于预设阈值且小于1000A时,则控制接触器断开,以切断主回路;当电池电流大于等于1000A且小于等于3000A时,通过断路器切断主回路;当电池电流大于3000A时,熔断器自动熔断以断开主回路。
通过上述设置方式,即使电池电流达到了熔断器的熔断电流,依然通过断路器切断电池电流。由于熔断器的熔断需要一定时间,而电池电流以接近或达到熔断电流的强度持续一定时间,会大大增加电池起火的风险。本方案中通过断路器切断主回路响应时间迅速,能够大大减少电池温度过高甚至起火爆炸的可能。
同时,还需指出,通过上述设置方式,能够将接触器、断路器3以及熔断器1对应的电池电流区间进行准确划分,便于控制后台准确记录工作数据,若发生故障,便于快速确定发生问题的零部件,进而能及时发现不足并进行改进,缩短故障排查时间。
本公开第三方面提供了一种车辆,包括电池,还包括根据本公开第一方面提供的电池保护系统。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的电池保护方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的电池保护方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图7为本公开实施例提供的一种计算处理设备的结构示意图。该计算处理设备通常包括处理器710和以存储器730形式的计算机程序产品或者计算机可读介质。存储器730可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器730具有用于执行上述方法中的任何方法步骤的程序代码751的存储空间750。例如,用于程序代码的存储空间750可以包括分别用于实现上面的方法中的各种步骤的各个程序代码751。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘、紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图 8所示的便携式或者固定存储单元。该存储单元可以具有与图7的服务器中的存储器730类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码751’,即可以由诸如710之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。例如,虽然在示例性的实施例中熔断器设置在多个电池单元之间,但熔断器也可设置在主回路的其他位置,也能实现上述实施例的技术效果。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如可以针对具体地场景根据需要分别设置不同数量的第一接触器和第二接触器。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (13)

  1. 一种电池保护系统,其特征在于,包括:
    熔断器,设置在所述电池的主回路上;
    接触器,设置在所述电池的充电回路和/或放电回路上;
    断路器,设置在所述电池的主回路上;
    电流检测装置,用于检测流经所述电池的电池电流;
    控制器,与所述电流检测装置和所述断路器通信连接,用于在所述电池电流大于或等于所述接触器的最大允许电流的情况下,控制所述断路器断开,以切断所述主回路。
  2. 根据权利要求1所述的电池保护系统,其特征在于,所述断路器还与碰撞传感器直接通信连接,用于响应于所述碰撞传感器生成的碰撞信号,自动断开。
  3. 根据权利要求1所述的电池保护系统,其特征在于,所述控制器用于在所述电池电流大于或等于所述接触器的最大允许电流且小于或等于所述熔断器的熔断电流的情况下,控制所述断路器断开,以切断所述主回路。
  4. 根据权利要求1所述的电池保护系统,其特征在于,所述控制器还与所述接触器通信连接,用于在所述电池电流大于或等于预设的电流阈值,并小于所述接触器的最大允许电流的情况下,控制所述接触器断开。
  5. 根据权利要求4所述的电池保护系统,其特征在于,所述接触器包括设置在所述充电回路上的第一接触器,所述控制器用于在所述电池处于充电模式时,在所述电池电流大于或等于预设的电流阈值,并小于所述第一接触器的最大允许电流的情况下,控制所述第一接触器断开。
  6. 根据权利要求4所述的电池保护系统,其特征在于,所述接触器包括设置在所述放电回路上的第二接触器,所述控制器用于在所述电池处于放电模式时,在所述电池电流大于或等于预设的电流阈值,并小于所述第二接触器的最大允许电流的情况下,控制所述第二接触器断开。
  7. 根据权利要求1至6中任一项所述的电池保护系统,其特征在于,所述控制器为以下中的一种:电池管理系统、域控制器、整车控制器。
  8. 一种电池保护方法,其特征在于,包括:
    检测流经所述电池的电池电流;
    在所述电池电流大于或等于设置在所述电池的充电回路和/或放电回路上的接触器的最大允许电流的情况下,控制设置在所述电池的主回路上的断路器断开,以切断所述主回路。
  9. 根据权利要求8所述的电池保护方法,其特征在于,所述方法还包括:
    在所述电池电流大于或等于预设的电流阈值,并小于所述接触器的最大允许电流的情况下,控制所述接触器断开。
  10. 一种车辆,包括电池,其特征在于,还包括根据权利要求1至7中任一项所述的电池保护系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求8或9所述的电池保护方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求8或9所述的电池保护方法。
  13. 一种计算机可读存储介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2021/141800 2021-01-25 2021-12-27 电池保护系统、电池保护方法、车辆、设备、程序和介质 WO2022156493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110097442.2A CN114792965A (zh) 2021-01-25 2021-01-25 电池保护系统、电池保护方法和车辆
CN202110097442.2 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022156493A1 true WO2022156493A1 (zh) 2022-07-28

Family

ID=82460086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141800 WO2022156493A1 (zh) 2021-01-25 2021-12-27 电池保护系统、电池保护方法、车辆、设备、程序和介质

Country Status (2)

Country Link
CN (1) CN114792965A (zh)
WO (1) WO2022156493A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851852A (zh) * 2022-06-08 2022-08-05 广州小鹏汽车科技有限公司 短路保护系统及电动交通工具的动力电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097543A1 (en) * 2001-01-25 2002-07-25 Dialog Semiconductor Gmbh Charge/discharge protection circuit for a rechargeable battery
CN102646960A (zh) * 2011-02-22 2012-08-22 北京科易动力科技有限公司 一种电池组主回路接口保护电路及保护方法
CN104002684A (zh) * 2013-02-26 2014-08-27 通用汽车环球科技运作有限责任公司 用于控制电池系统中电流中断部件的系统和方法
CN207234401U (zh) * 2017-10-09 2018-04-13 中航锂电(洛阳)有限公司 一种储能电源系统
CN207652031U (zh) * 2017-12-29 2018-07-24 国网江苏省电力有限公司电力科学研究院 一种用于不间断直流电源系统的锂电池控制保护装置
CN111033937A (zh) * 2018-03-16 2020-04-17 株式会社Lg化学 集成开关装置和包括集成开关装置的用于监测和保护电池的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097543A1 (en) * 2001-01-25 2002-07-25 Dialog Semiconductor Gmbh Charge/discharge protection circuit for a rechargeable battery
CN102646960A (zh) * 2011-02-22 2012-08-22 北京科易动力科技有限公司 一种电池组主回路接口保护电路及保护方法
CN104002684A (zh) * 2013-02-26 2014-08-27 通用汽车环球科技运作有限责任公司 用于控制电池系统中电流中断部件的系统和方法
CN207234401U (zh) * 2017-10-09 2018-04-13 中航锂电(洛阳)有限公司 一种储能电源系统
CN207652031U (zh) * 2017-12-29 2018-07-24 国网江苏省电力有限公司电力科学研究院 一种用于不间断直流电源系统的锂电池控制保护装置
CN111033937A (zh) * 2018-03-16 2020-04-17 株式会社Lg化学 集成开关装置和包括集成开关装置的用于监测和保护电池的系统

Also Published As

Publication number Publication date
CN114792965A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
US10079483B2 (en) Assembly for electrically protecting a potential short-circuit or an overload in a direct current power network having a system-determined, variable source-internal resistance
US9257729B2 (en) Response to over-current in a battery pack
US9806545B2 (en) Battery management system, motor vehicle and battery module
KR20140061637A (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
JP2006208365A (ja) 入力充電電圧の測定によるスマートバッテリの故障を確認する方法と関係するシステム
KR20120134611A (ko) 2차 전지, 이를 이용한 다중팩 병렬 구조의 정보 교환을 위한 2차 전지 관리 시스템 및 방법
EP3143655B1 (en) Battery module with a controllable external heat sink
WO2022156493A1 (zh) 电池保护系统、电池保护方法、车辆、设备、程序和介质
CN103825253B (zh) 电动车电池安全控制装置及控制方法
CN105620292B (zh) 一种汽车高压供电的控制系统及方法
US11658370B2 (en) Safety protection device and method for battery test system
KR20150064623A (ko) 릴레이 융착 검출장치 및 검출방법
CN117040050B (zh) 电路的分断控制方法、系统、装置及电子设备
WO2024087452A1 (zh) 电池能量控制方法及系统
WO2024087458A1 (zh) 高压电路短路保护方法及系统
KR20140097803A (ko) 배터리 팩, 이에 적용되는 전력차단 모듈 및 배터리 전력차단 방법
CN115923586A (zh) 一种电池系统过电流保护方法及车辆
KR100918564B1 (ko) 배터리 장치의 릴레이 상태 검출방법
CN110505971B (zh) 电气控制系统
CN115871512A (zh) 电池检测及电池充电控制方法、装置、设备及介质
CN113489104A (zh) 保护电路、电池管理系统和电池包
CN111478404B (zh) 一种用于锂电池管理系统的放电系统及放电控制方法
CN214929012U (zh) 电动车辆及电动车辆中接触器的安全监控系统
EP4057461A1 (en) A method and an electrical protection device for protecting a load powered by a power source
WO2022230549A1 (ja) 電源制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920865

Country of ref document: EP

Kind code of ref document: A1