WO2022156476A1 - 一种仿人机器人连续动态稳定跳跃控制方法 - Google Patents

一种仿人机器人连续动态稳定跳跃控制方法 Download PDF

Info

Publication number
WO2022156476A1
WO2022156476A1 PCT/CN2021/140661 CN2021140661W WO2022156476A1 WO 2022156476 A1 WO2022156476 A1 WO 2022156476A1 CN 2021140661 W CN2021140661 W CN 2021140661W WO 2022156476 A1 WO2022156476 A1 WO 2022156476A1
Authority
WO
WIPO (PCT)
Prior art keywords
humanoid robot
robot
humanoid
stable
jumping
Prior art date
Application number
PCT/CN2021/140661
Other languages
English (en)
French (fr)
Inventor
孟立波
陈学超
余张国
黄强
齐皓祥
石青
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2022156476A1 publication Critical patent/WO2022156476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • the invention belongs to the technical field of humanoid robots, and particularly relates to a continuous dynamic and stable jump control method of a humanoid robot.
  • Humanoid robots have human-like appearance characteristics, adapt to various complex terrains through their legs, and can assist or replace humans to complete tasks.
  • the jumping motion can make the humanoid robot have stronger movement ability and enhance the environment adaptability and practical application ability of the humanoid robot.
  • Most of the existing jumping methods for humanoid robots are single-jump control methods, and there is no continuous jumping control method for humanoid robots.
  • the present invention provides a continuous dynamic and stable jumping control method of a humanoid robot, so that the humanoid robot can be continuously dynamically stabilized during the jumping process.
  • the present invention achieves the above technical purpose through the following technical means.
  • a continuous dynamic and stable jump control method for a humanoid robot characterized in that:
  • Establish a humanoid robot jump control method decompose the generalized degrees of freedom of the floating base, and express the whole body dynamics equation of the humanoid robot as Through the expected state of the humanoid robot, the expected foot sole forces F 1 and F 2 of the humanoid robot are obtained, and the driving torque ⁇ of each joint of the lower limb of the humanoid robot is further obtained, and the driving torque ⁇ is applied to the lower limb of the humanoid robot. Plan the jumping trajectory of the humanoid robot and realize the continuous dynamic and stable jumping control of the humanoid robot;
  • k p_jump and k v_jump are the PD control parameters of the expected external force in the vertical direction of the humanoid robot, respectively, q 2 is the knee joint angle of the humanoid robot at the moment of take-off, q 2_jump is the expected knee joint angle of the humanoid robot at the moment of take-off, is the angular velocity of the knee joint at the moment of the humanoid robot taking off, f z is the vertical force exerted by the upper body of the humanoid robot, f x is the expected force in the horizontal direction of the humanoid robot, and ks is the expected external force in the horizontal direction of the humanoid robot and the expectation of the upper body PD control parameters of the torque, v d is the expected movement speed of the humanoid robot in the horizontal direction, z is the position of the humanoid robot in the vertical direction, is the speed of the humanoid robot in the vertical direction, z init is the initial
  • a further technical solution is to introduce stable control conditions for the humanoid robot during the jumping process:
  • p x , p y are the positions of the floating base ⁇ f along the x and y directions in the world coordinate system ⁇ w , respectively
  • f Lz and f Rz are the components of the F 1 and F 2 in the z direction
  • [p Rx p Ry ] and [p Lx p Ly ] are the ZMP positions calculated from the expected contact force and moment of the left and right feet of the humanoid robot, respectively.
  • the ZMP of the humanoid robot needs to satisfy the following constraints: Lx min + ⁇ rx ⁇ p x ⁇ Lx max - ⁇ ax and Ly min + ⁇ ry ⁇ p y ⁇ Ly max - ⁇ ay , where Lx min and Lx max are the minimum and maximum values along the x-direction of the supporting polygon formed by the foot sole and the ground of the humanoid robot, ⁇ rx and ⁇ ax are the compensation amounts along the x-direction, respectively, Ly min and Lx max are the simulation The minimum and maximum values along the y-direction of the support polygon formed by the sole of the human-robot foot and the ground, ⁇ ry and ⁇ ay are the compensation amounts along the y-direction, respectively.
  • the continuous dynamic and stable jump control of the humanoid robot is specifically as follows: applying a driving torque ⁇ to the lower limbs of the humanoid robot, the humanoid robot enters the take-off stage, and when the position of the upper body of the humanoid robot reaches the take-off height, it enters the air stage and controls the operation.
  • the joints of the humanoid robot reach the desired posture when landing.
  • the humanoid robot falls from the air and contacts the ground, it enters the landing stage, completes a jumping cycle, and returns to the initial state of the robot jumping.
  • the whole body dynamics equation of the humanoid robot is: Among them, F i is the contact force and moment between the feet of the humanoid robot and the ground.
  • the jumping trajectory of the humanoid robot includes the movement trajectory of the torso and the movement trajectory of the ankle, specifically:
  • H 0 is the height difference between the highest height that the center of mass of the humanoid robot can reach and the height of the center of mass when it takes off
  • v 0 is the speed of the center of mass of the humanoid robot when it takes off
  • g is the acceleration of gravity
  • M is the overall mass of the humanoid robot.
  • the position of the base ⁇ f along the three directions of x, y, and z in the world coordinate system ⁇ w , ⁇ x , ⁇ y , and ⁇ z are respectively the floating base ⁇ f in the world coordinate system ⁇ w along the x, y, and z directions.
  • z poses in three directions.
  • the present invention determines the motion track of the humanoid robot torso and the motion track of the ankle according to the desired jump height, including the take-off stage, the aerial stage and the stable landing stage, and controls the humanoid robot according to the characteristics of the take-off stage and the stable landing stage.
  • the present invention significantly improves the motion capability of the humanoid robot and further enhances the environment adaptability of the humanoid robot.
  • the present invention introduces the stable control conditions of the humanoid robot, and at the same time sets the ZMP constraint of the humanoid robot, so that the humanoid robot remains stable during the jumping process and avoids the flipping of the feet of the humanoid robot. resulting in a fall.
  • FIG. 1 is a simplified model diagram of a humanoid robot according to the present invention.
  • FIG. 2 is a schematic diagram of the motion trajectory of the center of mass and the ankle during a single jump of the humanoid robot according to the present invention
  • Fig. 3 is the state schematic diagram of the single jump of the humanoid robot according to the present invention.
  • FIG. 4 is a flow chart of realizing the continuous jumping of the humanoid robot according to the present invention.
  • a continuous dynamic and stable jump control method for a humanoid robot which specifically includes the following steps:
  • Step (1) establish the whole body dynamics equation of the humanoid robot based on the floating base
  • the humanoid robot is simplified to a model composed of five links as shown in Figure 1, where m 0 is the mass of the upper body of the humanoid robot, m 1 is the mass of the right thigh of the humanoid robot, and m 2 is the right calf of the humanoid robot Mass, m 3 is the mass of the left thigh of the humanoid robot, m 4 is the mass of the left leg of the humanoid robot, and the mass of the robot foot is neglected.
  • the motion degree of freedom of the humanoid robot is simplified as a planar robot composed of three joints: ankle joint q 1 , knee joint q 2 and hip joint q 3 .
  • q f is the six generalized degrees of freedom of the floating basis;
  • q l is the joint angle vector of the humanoid robot legs, including the humanoid robot All joint degrees of freedom of the lower limbs;
  • is the driving torque of each joint of the humanoid robot lower limbs,
  • F i is the humanoid robot’s feet and the ground
  • the generated contact force and moment including n r , fr , n l and f l in Figure 1, n r represents the moment generated by the right foot and the ground, fr represents the contact force generated by the right foot and the ground, n l represents the left The moment generated by the foot and the ground, f l represents the contact force generated by the left foot and the ground),
  • J i1 and J i2
  • Step (2) planning the jumping trajectory of the humanoid robot
  • Figure 2 shows the trajectory of the design of the jumping process of the humanoid robot, where t 0 is the moment when the humanoid robot starts to jump, t 1 is the moment when the humanoid robot jumps off the ground, and t 2 is the moment when the humanoid robot landed. t 3 is the moment when the humanoid robot jumps over; the motion trajectory of the torso and the ankle are determined according to the expected jump height, and the calculation method is as follows:
  • the height difference H 0 between the highest height that the center of mass of the humanoid robot can reach in the mid-air phase and the height of the center of mass during take-off is defined as the desired height for take-off. Since the humanoid robot is only affected by gravity in the air, the The state is determined by the state of the humanoid robot leaving the ground.
  • v 0 is the centroid velocity of the humanoid robot at the time of take-off
  • g is the acceleration of gravity
  • the centroid velocity v 0 at the take-off moment is determined by the centroid acceleration of the humanoid robot.
  • a single jump of a humanoid robot is mainly composed of three states, namely:
  • Aerial stage After the humanoid robot reaches the desired off-the-ground attitude, it enters the aerial stage of jumping. The humanoid robot only receives vertical gravity in the air to complete the transition from the take-off stage to the landing adjustment stage. The human-robot take-off and ending posture is adjusted to the landing posture (this is the prior art).
  • Stable landing stage The main purpose of this stage is to keep the humanoid robot stable in the process of landing, and return to the initial state of robot jumping, so as to enter the next jumping cycle.
  • the control of each joint of the humanoid robot at this stage is as follows:
  • the expected force in the horizontal direction of the humanoid robot is set to 0, and the expected force in the vertical direction is determined by the initial jump height z init of the humanoid robot.
  • PD control parameters of the expected external force in the vertical direction when the robot lands z is the position of the humanoid robot in the vertical direction, is the speed of the humanoid robot in the vertical direction; after the landing stage of the humanoid robot, the state of the humanoid robot will return to the take-off stage.
  • Step (3) establish a humanoid robot jump control method
  • Equation (1) can be Transform to:
  • f Lz and f Rz are the expected external forces F 1 and F 2 on the left and right feet of the humanoid robot in the z direction, respectively, [p Rx p Ry ] and [p Lx p Ly ] are the The ZMP (Zero Moment Point, the zero moment point) calculated by the expected contact force and moment of the left and right feet of the robot is the position where the bottom of the humanoid robot receives zero resultant moment along the horizontal direction. Within the supporting polygon formed, the humanoid robot can remain stable and does not flip over to the ) position.
  • the calculation method is as follows:
  • p Rx0 , p Ry0 , p Lx0 , and p Ly0 are the positions of the humanoid robot's right foot and left foot in the world coordinate system ⁇ w respectively; in the process of jumping, the ZMP of the humanoid robot must satisfy the following constraints:
  • Lx min and Lx max are the minimum and maximum values along the x-direction of the supporting polygon formed by the soles of the humanoid robot's feet and the ground, and ⁇ rx and ⁇ ax are the compensation amounts along the x-direction, respectively, so that the humanoid robot can move in the x-direction. It has greater stability; Ly min and Lx max are the minimum and maximum values along the y direction of the support polygon formed by the sole and the ground of the humanoid robot, and ⁇ ry and ⁇ ay are the compensation amounts along the y direction respectively, so that the simulation Human robots have greater stability in the y-direction.
  • Figure 4 shows the flow chart of realizing the continuous jumping of the humanoid robot.
  • the main process is:
  • the humanoid robot stands on the ground and enters the take-off stage, applying a driving torque ⁇ to the lower limbs of the humanoid robot, so that the humanoid robot can move upward; when the upper body position of the humanoid robot reaches the take-off height, it enters the aerial stage, and the aerial stage controls
  • the joints of the humanoid robot reach the desired posture when landing; when the humanoid robot falls from the air and contacts the ground, the humanoid robot enters the landing stage of jumping; through the above three stages, the humanoid robot completes a jumping cycle, If the jump cut-off command is not received, the humanoid robot will re-enter the take-off phase and complete the next jump cycle until the end of the jump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种仿人机器人连续动态稳定跳跃控制方法,根据仿人机器人全身动力学方程,获取仿人机器人下肢各关节驱动力矩,对仿人机器人下肢施加驱动力矩,仿人机器人进入起跳阶段;当仿人机器人上身位置到达起跳高度,进入空中阶段;控制仿人机器人各关节达到落地时的期望姿态,当仿人机器人从空中下落并与地面接触时,进入落地阶段;完成一个跳跃循环,并且返回机器人跳跃的初始状态。这种方法保证仿人机器人的连续动态稳定跳跃控制,显著提升仿人机器人的运动能力,进一步增强仿人机器人的环境适应能力。

Description

一种仿人机器人连续动态稳定跳跃控制方法 技术领域
本发明属于仿人机器人技术领域,具体涉及一种仿人机器人连续动态稳定跳跃控制方法。
背景技术
仿人机器人具有人类的外形特征,通过双腿适应各种复杂地形,能辅助或替代人类完成作业任务。跳跃运动能使仿人机器人具有更强的运动能力,增强仿人机器人的环境适应能力和实际应用能力。现有关于仿人机器人跳跃的方法,大多为单次跳跃的控制方法,还未有针对仿人机器人连续跳跃控制方法。
发明内容
针对现有技术中存在不足,本发明提供了一种仿人机器人连续动态稳定跳跃控制方法,使仿人机器人跳跃过程中连续动态稳定。
本发明是通过以下技术手段实现上述技术目的的。
一种仿人机器人连续动态稳定跳跃控制方法,其特征在于:
建立基于浮动基的仿人机器人全身动力学方程;
规划仿人机器人跳跃轨迹,包括起跳阶段、空中阶段和稳定落地阶段;起跳阶段中,仿人机器人的期望外力为:
Figure PCTCN2021140661-appb-000001
f x=k s*v d;稳定落地阶段中,仿人机器人的期望外力为f x=0、
Figure PCTCN2021140661-appb-000002
建立仿人机器人跳跃控制方法:对浮动基的广义自由度进行分解,将仿人机器人全身动力学方程表示为
Figure PCTCN2021140661-appb-000003
通过仿人机器人期望的状态,得到仿人机器人所期望的脚底受力F 1与F 2,进一步获取仿人机器人下肢各关节驱动力矩τ,将所述驱动力矩τ施加至仿人机器人下肢,根据规划仿人机器人跳跃轨迹,实现仿人机器人连续动态稳定跳跃控制;
其中,k p_jump与k v_jump分别为仿人机器人竖直方向期望外力的PD控制参数,q 2为仿人机器人起跳时刻的膝关节角度,q 2_jump为仿人机器人起跳时刻的期望膝关节角度,
Figure PCTCN2021140661-appb-000004
为仿人机器人起跳时刻的膝关节角速度,f z为仿人机器人上身施加的竖直方向力,f x为仿人机器人水平方向期望受力,k s为仿人机器人水平方向期望外力与上身期望力矩的PD控制参数,v d为 仿人机器人水平方向期望的运动速度,z为仿人机器人在竖直方向的位置,
Figure PCTCN2021140661-appb-000005
为仿人机器人在竖直方向的速度,z init为仿人机器人初始跳跃高度,k p-landing和k vz分别为仿人机器人落地时竖直方向期望外力的PD控制参数,M ij为仿人机器人的质量矩阵,q f为浮动基的6个广义自由度,q l为仿人机器人双腿的关节角度向量,h i为仿人机器人重力、科里奥利力矩阵,J i1与J i2为从仿人机器人脚底转换到仿人机器人关节空间的雅克比转换矩阵,i、j=1,2。
进一步的技术方案,在跳跃的过程中,引入仿人机器人稳定的控制条件:
Figure PCTCN2021140661-appb-000006
p x、p y分别为浮动基∑ f在世界坐标系∑ w中沿着x、y方向的位置,f Lz和f Rz分别为所述F 1和F 2在z方向的分量,[p Rx p Ry]和[p Lx p Ly]分别为根据仿人机器人左右脚的期望接触力和力矩计算的ZMP位置。
更进一步的技术方案,在跳跃的过程中,仿人机器人的ZMP需满足如下约束:Lx minrx<p x<Lx maxax和Ly minry<p y<Ly maxay,其中Lx min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿x方向的最小值与最大值,δ rx与δ ax分别为沿x方向的补偿量,Ly min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿y方向的最小值与最大值,δ ry与δ ay分别为沿y方向的补偿量。
进一步的技术方案,所述仿人机器人连续动态稳定跳跃控制具体为:对仿人机器人下肢施加驱动力矩τ,仿人机器人进入起跳阶段,当仿人机器人上身位置到达起跳高度,进入空中阶段,控制仿人机器人各关节达到落地时的期望姿态,当仿人机器人从空中下落并与地面接触时,进入落地阶段,完成一个跳跃循环,并且返回机器人跳跃的初始状态。
进一步的技术方案,所述仿人机器人全身动力学方程为:
Figure PCTCN2021140661-appb-000007
其中F i为仿人机器人双脚与地面产生的接触力和力矩。
进一步的技术方案,所述仿人机器人跳跃轨迹包括躯干的运动轨迹与脚踝的运动轨迹,具体为:
Figure PCTCN2021140661-appb-000008
Figure PCTCN2021140661-appb-000009
Figure PCTCN2021140661-appb-000010
其中H 0为仿人机器人空中阶段质心能达到的最高高度与起跳时的质心高度的高度差,v 0为仿人机器人起跳时刻的质心速度,g为重力加速度,
Figure PCTCN2021140661-appb-000011
为仿人机器人的质心加速度,M为仿人机器人整体质量。
进一步的技术方案,所述对浮动基的广义自由度进行分解,具体为:q f=[p x p y p zθ  xθ  yθ] T,其中p x、p y、p z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的位置,θ x、θ y、θ z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的姿态。
本发明的有益效果为:
(1)本发明根据期望的跳跃高度确定仿人机器人躯干的运动轨迹与脚踝的运动轨迹,包括起跳阶段、空中阶段和稳定落地阶段,根据起跳阶段和稳定落地阶段的特点,控制仿人机器人的期望外力,保证仿人机器人的连续动态稳定跳跃控制,本发明显著提升仿人机器人的运动能力,进一步增强仿人机器人的环境适应能力。
(2)本发明在仿人机器人跳跃的过程中,引入仿人机器人稳定的控制条件,同时设置仿人机器人的ZMP约束,使仿人机器人在跳跃过程中保持稳定,避免仿人机器人脚部翻转而引起摔倒情况的发生。
附图说明
图1为本发明所述仿人机器人简化模型图;
图2为本发明所述仿人机器人单次跳跃过程中质心与脚踝的运动轨迹示意图;
图3为本发明所述仿人机器人单次跳跃的状态示意图;
图4为本发明所述实现仿人仿人机器人连续跳跃流程图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
一种仿人机器人连续动态稳定跳跃控制方法,具体包括如下步骤:
步骤(1),建立基于浮动基的仿人机器人全身动力学方程
将仿人机器人简化为如图1所示的五个连杆组成的模型,其中m 0为仿人机器人上身质量, m 1为仿人机器人右腿大腿质量,m 2为仿人机器人右腿小腿质量,m 3为仿人机器人左腿大腿质量,m 4为仿人机器人左腿小腿质量,机器人足部的质量忽略不计。仿人机器人的运动自由度简化为具有踝关节q 1、膝关节q 2、髋关节q 3的三个关节所组成的平面机器人。
建立仿人机器人质心在以浮动基∑ f为参考坐标系的动力学方程:
Figure PCTCN2021140661-appb-000012
其中,M ij(i,j=1,2)为仿人机器人的质量矩阵;q f为浮动基的6个广义自由度;q l为仿人机器人双腿的关节角度向量,包括仿人机器人下肢所有关节自由度;h i为仿人机器人重力、科里奥利力矩阵(i=1,2),τ为仿人机器人下肢各个关节的驱动力矩,F i为仿人机器人双脚与地面产生的接触力和力矩(包括图1中n r、f r、n l和f l,n r表示右脚与地面产生的力矩,f r表示右脚与地面产生的接触力,n l表示左脚与地面产生的力矩,f l表示左脚与地面产生的接触力),J i1与J i2为从仿人机器人脚底转换到仿人机器人关节空间的雅克比转换矩阵,其中i=1时代表右脚,i=2时代表左脚。
步骤(2),规划仿人机器人跳跃轨迹
如图2所示为设计仿人机器人跳跃过程的运动轨迹,其中t 0为仿人机器人开始跳跃的时刻,t 1为仿人机器人跳跃离地的时刻,t 2为仿人机器人落地的时刻,t 3为仿人机器人跳跃结束的时刻;根据期望的跳跃高度确定躯干的运动轨迹与脚踝的运动轨迹,计算方法如下:
Figure PCTCN2021140661-appb-000013
Figure PCTCN2021140661-appb-000014
Figure PCTCN2021140661-appb-000015
其中,在本实施例中,定义仿人机器人空中阶段质心能达到的最高高度与起跳时的质心高度的高度差H 0为起跳的期望高度,由于仿人机器人在空中只受重力作用,空中的状态由仿人机器人离开地面的状态决定,式(2)中v 0为仿人机器人起跳时刻的质心速度,g为重力加速度,且起跳时刻的质心速度v 0由仿人机器人的质心加速度
Figure PCTCN2021140661-appb-000016
积分获得,而
Figure PCTCN2021140661-appb-000017
由仿人机器人期望的地面受力及仿人机器人所受重力决定;M为仿人机器人整体质量,F 1、F 2表示仿人机 器人所期望的脚底受力。
如图3所示,仿人机器人单次跳跃主要由三个状态组成,分别是:
1)起跳阶段:仿人机器人站立在地面上,通过下肢的运动,推动仿人机器人上身向上运动,使全身具有向上的运动速度,为仿人机器人提供跳跃的动力。在起跳阶段中,仿人机器人的期望外力可以由以下公式计算得到:
Figure PCTCN2021140661-appb-000018
f x=k s*v d              (6)
其中,k p_jump与k v_jump分别为仿人机器人竖直方向期望外力的PD控制参数(位置和速度),q 2为仿人机器人起跳时刻的膝关节角度,q 2_jump为仿人机器人起跳时刻的期望膝关节角度,
Figure PCTCN2021140661-appb-000019
为仿人机器人起跳时刻的膝关节角速度;f z为仿人机器人上身施加的竖直方向力,且f z=f Lz+f Rz,可以通过调节k p_jump的大小来调节仿人机器人跳跃的高度;f x为仿人机器人水平方向期望受力,且f x=f Lx+f Rx,k s为仿人机器人水平方向期望外力与上身期望力矩的PD控制参数,v d为仿人机器人水平方向期望的运动速度,可以通过调节v d的大小来调节仿人机器人跳跃过程中水平方向期望受力。
2)空中阶段:仿人机器人在到达期望的离地姿态之后,进入跳跃的空中阶段,仿人机器人在空中只受到竖直方向的重力,完成由起跳阶段到落地调整阶段的过渡,需要将仿人机器人起跳结束姿态调整至落地姿态(为现有技术)。
3)稳定落地阶段:本阶段的主要目的是使仿人机器人在落地的过程中保持稳定,并且返回机器人跳跃的初始状态,从而进入下一个跳跃循环。本阶段仿人机器人各个关节的控制如下:
f x=0           (7)
Figure PCTCN2021140661-appb-000020
为使仿人机器人保持稳定性,将仿人机器人水平方向期望受力设为0,竖直方向期望受力由仿人机器人初始跳跃高度z init决定,k p-landing和k vz分别为仿人机器人落地时竖直方向期望外力的PD控制参数,z为仿人机器人在竖直方向的位置,
Figure PCTCN2021140661-appb-000021
为仿人机器人在竖直方向的速度;经过仿人机器人落地阶段,仿人机器人的状态将回到起跳阶段。
步骤(3),建立仿人机器人跳跃控制方法
对浮动基的广义自由度进行分解:
q f=[p x p y p z θ x θ y θ z] T      (9)
其中p x、p y、p z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的位置,θ x、θ y、θ z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的姿态;令p=[p x p y p z] T、θ=[θ x θ y θ z] T,则式(1)可变形为:
Figure PCTCN2021140661-appb-000022
Figure PCTCN2021140661-appb-000023
通过分析公式(10)可知,与浮动基固连的仿人机器人躯干运动状态(包括运动位置和姿态)只与仿人机器人脚底受到的外力相关,而且,可以通过仿人机器人期望的状态(见图2),得到
Figure PCTCN2021140661-appb-000024
Figure PCTCN2021140661-appb-000025
通过公式(3)(公式(3)中的质量矩阵、雅克比转换矩阵和重力、科里奥利力矩阵可以直接求出)计算得到仿人机器人所期望的脚底受力,即F 1与F 2。在获得仿人机器人期望外力与仿人机器人运动状态的基础之上,通过公式(11)的关系,求得仿人机器人下肢各关节驱动力矩τ,从而获得了使仿人机器人产生跳跃运动的控制量。
在仿人机器人跳跃过程中,需要使仿人机器人在跳跃过程中保持稳定,避免仿人机器人脚部翻转而引起摔倒情况的发生。因此,在跳跃的过程中,引入仿人机器人稳定的控制条件:
Figure PCTCN2021140661-appb-000026
Figure PCTCN2021140661-appb-000027
其中,f Lz和f Rz分别为仿人机器人左脚和右脚受到的期望外力F 1与F 2在z方向的分量,[p Rx p Ry]和[p Lx p Ly]分别为根据仿人机器人左右脚的期望接触力和力矩计算的ZMP(Zero Moment Point,零力矩点,为仿人机器人脚底受到沿水平方向合力矩为零的位置,若该位置位于仿人机器人脚底与地面接触点所组成的支撑多边形内,则仿人机器人能够保持稳定,不发生翻到)位置,其计算方法如下式:
Figure PCTCN2021140661-appb-000028
Figure PCTCN2021140661-appb-000029
其中,p Rx0、p Ry0、p Lx0、p Ly0分别为仿人机器人右脚和左脚的在世界坐标系∑ w中的位置;在跳跃的过程中,仿人机器人的ZMP需满足如下约束:
Lx minrx<p x<Lx maxax           (16)
Ly minry<p y<Ly maxay          (17)
其中,Lx min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿x方向的最小值与最大值,δ rx与δ ax分别是沿着x方向的补偿量,使仿人机器人在x方向具有更大的稳定性;Ly min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿y方向的最小值与最大值,δ ry与δ ay分别是沿着y方向的补偿量,使仿人机器人在y方向具有更大的稳定性。
图4所示为实现仿人仿人机器人连续跳跃的流程图,主要过程为:
首先仿人机器人站立于地面之上,进入起跳阶段,对仿人机器人下肢施加驱动力矩τ,使仿人机器人具有向上的运动;当仿人机器人上身位置到达起跳高度,进入空中阶段,空中阶段控制仿人机器人各关节达到落地时的期望姿态;当仿人机器人从空中下落,并与地面接触之后,仿人机器人进入跳跃的落地阶段;通过上述三个阶段,仿人机器人完成了一个跳跃循环,如果未接收到跳跃截止命令,仿人机器人将重新进入到起跳阶段,完成下一个跳跃循环,直到结束跳跃。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (7)

  1. 一种仿人机器人连续动态稳定跳跃控制方法,其特征在于:
    建立基于浮动基的仿人机器人全身动力学方程;
    规划仿人机器人跳跃轨迹,包括起跳阶段、空中阶段和稳定落地阶段;起跳阶段中,仿人机器人的期望外力为:
    Figure PCTCN2021140661-appb-100001
    f x=k s*v d;稳定落地阶段中,仿人机器人的期望外力为f x=0、
    Figure PCTCN2021140661-appb-100002
    建立仿人机器人跳跃控制方法:对浮动基的广义自由度进行分解,将仿人机器人全身动力学方程表示为
    Figure PCTCN2021140661-appb-100003
    通过仿人机器人期望的状态,得到仿人机器人所期望的脚底受力F 1与F 2,进一步获取仿人机器人下肢各关节驱动力矩τ,将所述驱动力矩τ施加至仿人机器人下肢,根据规划仿人机器人跳跃轨迹,实现仿人机器人连续动态稳定跳跃控制;
    其中,k p_jump与k v_jump分别为仿人机器人竖直方向期望外力的PD控制参数,q 2为仿人机器人起跳时刻的膝关节角度,q 2_jump为仿人机器人起跳时刻的期望膝关节角度,
    Figure PCTCN2021140661-appb-100004
    为仿人机器人起跳时刻的膝关节角速度,f z为仿人机器人上身施加的竖直方向力,f x为仿人机器人水平方向期望受力,k s为仿人机器人水平方向期望外力与上身期望力矩的PD控制参数,v d为仿人机器人水平方向期望的运动速度,z为仿人机器人在竖直方向的位置,
    Figure PCTCN2021140661-appb-100005
    为仿人机器人在竖直方向的速度,z init为仿人机器人初始跳跃高度,k p-landing和k vz分别为仿人机器人落地时竖直方向期望外力的PD控制参数,M ij为仿人机器人的质量矩阵,q f为浮动基的6个广义自由度,q l为仿人机器人双腿的关节角度向量,h i为仿人机器人重力、科里奥利力矩阵,J i1与J i2为从仿人机器人脚底转换到仿人机器人关节空间的雅克比转换矩阵,i、j=1,2。
  2. 根据权利要求1所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,在跳跃的过程中,引入仿人机器人稳定的控制条件:
    Figure PCTCN2021140661-appb-100006
    p x、p y分别为浮动基∑ f在世界坐标系∑ w中沿着x、y方向的位置,f Lz和f Rz分别为所述F 1和F 2在z方向的分量,[p Rx p Ry]和[p Lx p Ly]分别为根据仿人机器人左右脚的期望接触力和力矩计算的ZMP位置。
  3. 根据权利要求2所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,在跳跃 的过程中,仿人机器人的ZMP需满足如下约束:Lx minrx<p x<Lx maxax和Ly minry<p y<Ly maxay,其中Lx min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿x方向的最小值与最大值,δ rx与δ ax分别为沿x方向的补偿量,Ly min、Lx max为仿人机器人脚底与地面形成的支撑多边形沿y方向的最小值与最大值,δ ry与δ ay分别为沿y方向的补偿量。
  4. 根据权利要求1所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,所述仿人机器人连续动态稳定跳跃控制具体为:对仿人机器人下肢施加驱动力矩τ,仿人机器人进入起跳阶段,当仿人机器人上身位置到达起跳高度,进入空中阶段,控制仿人机器人各关节达到落地时的期望姿态,当仿人机器人从空中下落并与地面接触时,进入落地阶段,完成一个跳跃循环,并且返回机器人跳跃的初始状态。
  5. 根据权利要求1所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,所述仿人机器人全身动力学方程为:
    Figure PCTCN2021140661-appb-100007
    其中F i为仿人机器人双脚与地面产生的接触力和力矩。
  6. 根据权利要求1所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,所述仿人机器人跳跃轨迹包括躯干的运动轨迹与脚踝的运动轨迹,具体为:
    Figure PCTCN2021140661-appb-100008
    Figure PCTCN2021140661-appb-100009
    Figure PCTCN2021140661-appb-100010
    其中H 0为仿人机器人空中阶段质心能达到的最高高度与起跳时的质心高度的高度差,v 0为仿人机器人起跳时刻的质心速度,g为重力加速度,
    Figure PCTCN2021140661-appb-100011
    为仿人机器人的质心加速度,M为仿人机器人整体质量。
  7. 根据权利要求1所述的仿人机器人连续动态稳定跳跃控制方法,其特征在于,所述对浮动基的广义自由度进行分解,具体为:q f=[p x p y p z θ x θ y θ z] T,其中p x、p y、p z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的位置,θ x、θ y、θ z分别为浮动基∑ f在世界坐标系∑ w中沿着x、y、z三个方向的姿态。
PCT/CN2021/140661 2021-01-21 2021-12-23 一种仿人机器人连续动态稳定跳跃控制方法 WO2022156476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110083373.X 2021-01-21
CN202110083373.XA CN112859901B (zh) 2021-01-21 2021-01-21 一种仿人机器人连续动态稳定跳跃控制方法

Publications (1)

Publication Number Publication Date
WO2022156476A1 true WO2022156476A1 (zh) 2022-07-28

Family

ID=76008905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140661 WO2022156476A1 (zh) 2021-01-21 2021-12-23 一种仿人机器人连续动态稳定跳跃控制方法

Country Status (2)

Country Link
CN (1) CN112859901B (zh)
WO (1) WO2022156476A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116176721A (zh) * 2023-04-25 2023-05-30 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种跳跃轨迹可调的连续跳跃机器人
CN118061248A (zh) * 2024-04-18 2024-05-24 北京理工大学 一种单腿机器人的动力学验证方法、装置、介质及产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859901B (zh) * 2021-01-21 2021-12-24 北京理工大学 一种仿人机器人连续动态稳定跳跃控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153038A (ja) * 2003-11-20 2005-06-16 Sony Corp 脚式移動ロボット、並びに脚式移動ロボットのための足部構造
CN101525011A (zh) * 2008-03-04 2009-09-09 王慧娟 一种跳跃机器人及采用惯性匹配的运动优化方法
CN105599816A (zh) * 2015-10-20 2016-05-25 浙江大学 一种3d欠驱动双足机器人跳跃运动的步态规划方法
CN110405763A (zh) * 2019-07-24 2019-11-05 北京理工大学 一种仿人机器人多关节协同爆发跳跃的规划方法
CN111367327A (zh) * 2020-04-02 2020-07-03 杭州云深处科技有限公司 一种四足机器人仿生跳跃动作的控制方法和装置
CN112208793A (zh) * 2020-09-29 2021-01-12 北京理工大学 一种用于控制动量驱动机器人的智能跳跃方法
CN112859901A (zh) * 2021-01-21 2021-05-28 北京理工大学 一种仿人机器人连续动态稳定跳跃控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603279B2 (ja) * 2001-09-26 2004-12-22 独立行政法人科学技術振興機構 二脚歩行式人型ロボット
JP2011063240A (ja) * 2009-09-18 2011-03-31 Honda Motor Co Ltd 倒立振子制御型の移動体の制御装置
CN103204193B (zh) * 2013-04-08 2015-10-07 浙江大学 一种欠驱动双足机器人行走控制方法
CN103273477A (zh) * 2013-05-29 2013-09-04 北京邮电大学 一种可跳跃的移动机器人
CN112060082B (zh) * 2020-08-19 2021-10-15 大连理工大学 基于仿生强化学习型小脑模型的在线稳定控制仿人机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153038A (ja) * 2003-11-20 2005-06-16 Sony Corp 脚式移動ロボット、並びに脚式移動ロボットのための足部構造
CN101525011A (zh) * 2008-03-04 2009-09-09 王慧娟 一种跳跃机器人及采用惯性匹配的运动优化方法
CN105599816A (zh) * 2015-10-20 2016-05-25 浙江大学 一种3d欠驱动双足机器人跳跃运动的步态规划方法
CN110405763A (zh) * 2019-07-24 2019-11-05 北京理工大学 一种仿人机器人多关节协同爆发跳跃的规划方法
CN111367327A (zh) * 2020-04-02 2020-07-03 杭州云深处科技有限公司 一种四足机器人仿生跳跃动作的控制方法和装置
CN112208793A (zh) * 2020-09-29 2021-01-12 北京理工大学 一种用于控制动量驱动机器人的智能跳跃方法
CN112859901A (zh) * 2021-01-21 2021-05-28 北京理工大学 一种仿人机器人连续动态稳定跳跃控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116176721A (zh) * 2023-04-25 2023-05-30 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种跳跃轨迹可调的连续跳跃机器人
CN116176721B (zh) * 2023-04-25 2023-07-18 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种跳跃轨迹可调的连续跳跃机器人
CN118061248A (zh) * 2024-04-18 2024-05-24 北京理工大学 一种单腿机器人的动力学验证方法、装置、介质及产品

Also Published As

Publication number Publication date
CN112859901B (zh) 2021-12-24
CN112859901A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022156476A1 (zh) 一种仿人机器人连续动态稳定跳跃控制方法
WO2020233050A1 (zh) 一种双足机器人不平整路面动态跑步步态实现方法
JP3443077B2 (ja) ロボットの運動パターン生成装置及び運動パターン生成方法、並びにロボット
KR101131775B1 (ko) 다리식 이동 로봇의 제어장치
KR101209097B1 (ko) 다리식 이동 로봇의 보용생성장치 및 제어장치
US7278501B2 (en) Legged walking robot and motion control method therefor
CN110202580B (zh) 一种扰动恢复的仿人机器人空间柔顺控制模型构建方法
CN101068663B (zh) 腿式移动机器人及其控制方法
Griffin et al. Straight-leg walking through underconstrained whole-body control
KR20120134036A (ko) 로봇 및 그 제어방법
CN110405763B (zh) 一种仿人机器人多关节协同爆发跳跃的规划方法
CN109032142A (zh) 一种含腰部结构的双足机器人设计以及反馈控制方法
US20120165987A1 (en) Walking robot and control method thereof
Zhang et al. Mechanism design for locust-inspired robot with one-DOF leg based on jumping stability
KR20110082394A (ko) 보행 로봇 및 그 제어 방법
CN109871018A (zh) 一种具有腰部自由度四足机器人的控制方法
CN110262510A (zh) 一种降低行走能耗的仿人机器人质心轨迹规划方法
US7801643B2 (en) Legged mobile robot and control program for the robot
CN113830197B (zh) 一种应用于双足机器人动态行走的平衡控制方法
Kim et al. Realization of dynamic stair climbing for biped humanoid robot using force/torque sensors
Mineshita et al. Jumping motion generation for humanoid robot using arm swing effectively and changing in foot contact status
CN112918585A (zh) 一种欠驱动双足步行机器人的步态控制方法
JP2003117858A (ja) ロボットの歩行制御装置及び歩行制御方法
JP3674779B2 (ja) 脚式移動ロボットのための動作制御装置及び動作制御方法、並びにロボット装置
Chen et al. Realization of complex terrain and disturbance adaptation for hydraulic quadruped robot under flying trot gait

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920850

Country of ref document: EP

Kind code of ref document: A1