WO2022155992A1 - 一种具有内嵌传感器的零件设计加工方法及系统 - Google Patents

一种具有内嵌传感器的零件设计加工方法及系统 Download PDF

Info

Publication number
WO2022155992A1
WO2022155992A1 PCT/CN2021/074536 CN2021074536W WO2022155992A1 WO 2022155992 A1 WO2022155992 A1 WO 2022155992A1 CN 2021074536 W CN2021074536 W CN 2021074536W WO 2022155992 A1 WO2022155992 A1 WO 2022155992A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
embedded
failure
part model
embedded sensor
Prior art date
Application number
PCT/CN2021/074536
Other languages
English (en)
French (fr)
Inventor
王泽敏
李树寒
兰新强
李桐
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022155992A1 publication Critical patent/WO2022155992A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Definitions

  • the invention belongs to the technical field of 3D printing, and more particularly, relates to a part design and processing method and system with embedded sensors.
  • Embedding sensors in parts can realize online condition monitoring of parts in service.
  • the sensor is usually embedded in the device by means of punching and mold-opening to directly detect the operating state of the device, but the punching method is not suitable for mechanical equipment with harsh operating environments, and the cost of the mold-opening method is relatively high. High, not suitable for actual parts manufacturing.
  • Using conventional forging, casting and other methods to embed sensors in parts processing is very difficult, and using mechanical drilling to destroy the original structure of parts to embed sensors into parts will affect the bearing capacity of parts. Especially in some complex structural parts, it is difficult to achieve. How to reduce the impact of the embedded sensor on the load-carrying capacity of the part and the difficulty of preparation are the concerns of those skilled in the art.
  • the present invention provides a part design and processing method and system with embedded sensors, the purpose of which is to overcome the shortcomings of the traditional method that sensors are embedded in the surface or shallow layers of the part and are difficult to monitor the true state of the deep part of the part , determine the sensor embedded position according to the failure point of the original part, carry out structural optimization and integrated processing based on 3D printing technology, and realize accurate online monitoring of the service status of the parts.
  • a method for designing and processing a part with an embedded sensor comprising: S1, simulating the failure behavior of the part under working conditions according to the original part model, so as to determine the failure behavior of the part.
  • the embedded sensor is included in the part model of , and repeat S3 until the performance parameters of the updated part model meet the corresponding performance index; S5 , 3D print and process the updated part model to prepare a part with embedded sensors.
  • the S1 includes: performing mesh division on the original part model, and according to the material properties, analysis equations and boundary conditions in the original part model after mesh division, the failure behavior of the part under operating conditions is limited. Meta-simulation to determine the failure area and failure mode.
  • the type of the embedded sensor is one or more of a strain sensor, a stress sensor, a resistance sensor, a temperature sensor, a humidity sensor, and an angle sensor.
  • the embedded sensor is designed with the goal that the measurement range, extreme withstand temperature, life and contact form of the embedded sensor meet the monitoring requirements of the corresponding failure form under working conditions.
  • the number of embedded sensors in the failure area is set according to the measurement range and lifespan of the embedded sensors.
  • performance indicators in S4 include one or more of load bearing, pressure bearing, wear resistance, fatigue, and corrosion resistance indicators.
  • the 3D printing and processing of the updated part model in S5 includes: dividing the updated part model layer by layer, and dividing the pattern of each layer after the segmentation into One or more partition graphics; using a 3D printing technology, each of the partition graphics is printed layer by layer using the printing materials required for each of the partition graphics.
  • the 3D printing and processing of the updated part model in S5 includes: dividing the updated part model layer by layer, and dividing the pattern of each layer after the segmentation into One or more partition graphics; using the printing materials required for each of the partition graphics, use a variety of 3D printing technologies to print each of the partition graphics separately, or use a variety of 3D printing technologies to print each layer of each layer pattern layer by layer. Partition graphics.
  • the number of the failure areas is one or more, the number of failure forms is multiple, and the type of the embedded sensor is one or more.
  • a part design and processing system with an embedded sensor comprising: a first simulation module for simulating the failure behavior of the part under working conditions according to the original part model, so as to determine the part The failure area and the failure mode in the failure area; the design module is used to determine the type of the embedded sensor corresponding to the failure mode, and design the embedded sensor so that the designed embedded sensor satisfies Monitoring requirements for the failure form under working conditions; an update module for setting the embedded point and quantity of the embedded sensor in the failure area according to the size parameters of the embedded sensor after design, and for the original The part model is updated, and the updated part model includes the embedded sensor; the second simulation module is used for simulating the updated part model under the working condition, so as to determine the value of the updated part model.
  • the processing module is used for 3D printing and processing the update Post part models to prepare parts with embedded sensors.
  • the following beneficial effects can be achieved through the above technical solutions conceived in the present invention: determine the type of sensor by simulating the failure mode in the part, so as to monitor the possible failure behavior in the part, and determine through structural design and optimization.
  • the optimal embedding position and quantity of various embedded sensors ensures that the embedding method, position and quantity of the sensors will not significantly affect the load of the parts.
  • the cost and difficulty of preparation enable the embedded sensor to monitor the deep state of the part on-line under the service state; the part design and processing process involved in this method have the advantages of simple operation and low production cost, and it is suitable for online life monitoring of key wearing parts. Broad industry application prospects.
  • FIG. 1 is a flowchart of a method for designing and processing a part with an embedded sensor provided by an embodiment of the present invention
  • 2A is a three-dimensional view of an original part provided by an embodiment of the present invention.
  • FIG. 2B is a plan perspective view of an original part provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a model of a strain sensor provided by an embodiment of the present invention.
  • FIG. 4 is a perspective plan view of an optimized part model provided by an embodiment of the present invention.
  • 5A is a three-dimensional diagram of a 3D printing manufacturing process provided by an embodiment of the present invention.
  • 5B is a structural perspective view of a 3D printing manufacturing process provided by an embodiment of the present invention.
  • FIG. 6 is a block diagram of a part design and processing system with embedded sensors according to an embodiment of the present invention.
  • 1 is the stirring needle
  • 2 is the shoulder
  • 3 is the clamping handle
  • 4 is the strain sensor
  • 5 is the transmission wire.
  • FIG. 1 is a flowchart of a method for designing and processing a part with an embedded sensor according to an embodiment of the present invention. Referring to FIG. 1 , in conjunction with FIGS. 2A to 5B , a method for designing and processing a part with an embedded sensor in this embodiment will be described in detail. The method includes operations S1-operation S5.
  • the failure behavior of the part under service conditions is simulated according to the original part model, so as to determine the failure area of the part and the failure mode in the failure area.
  • the original part model is meshed, and according to the material properties, analysis equations and boundary conditions in the original part model after mesh division, the failure behavior of the part under working conditions is subjected to finite element analysis. Simulations to determine failure areas and failure modes.
  • the CAD model of the original part is imported into the CAE software, the CAD model is meshed, the material properties, analysis equations and boundary conditions are imported, and the failure behavior of the part under working conditions is analyzed by finite element.
  • the failure modes include elastic failure, yield failure, plastic failure, brittle fracture, fatigue fracture, corrosion failure, wear failure, creep failure and other failure modes.
  • the number of failure areas is one or more, the number of failure forms is multiple, and the type of embedded sensor is one or more.
  • the type of the embedded sensor corresponding to the failure mode is determined, and the embedded sensor is designed, so that the designed embedded sensor meets the monitoring requirements of the failure mode under working conditions.
  • the types of embedded sensors are one or more of strain sensors, stress sensors, resistance sensors, temperature sensors, humidity sensors, and angle sensors.
  • elastic failure, yield failure, plastic failure, brittle fracture, fatigue fracture, wear failure, creep failure and other failure modes correspond to the selection of strain sensors, stress sensors and resistance sensors; corrosion failure corresponds to the selection of resistance sensors, temperature sensors and humidity sensors .
  • Service condition refers to the final use environment of the part with the embedded sensor.
  • Operation S3 setting the embedded point and quantity of the embedded sensor in the failure area according to the size parameter of the designed embedded sensor, and updating the original part model, and the updated part model includes the embedded sensor.
  • the updated part model is simulated under the working condition to determine whether the performance parameters of the updated part model meet the corresponding performance indicators; if not, operation S3 is repeated until the performance of the updated part model is reached. The parameters meet the corresponding performance indicators.
  • the performance indexes in operation S4 include one or more indexes of load bearing, pressure bearing, wear resistance, fatigue and corrosion resistance.
  • the performance parameters of the CAD model satisfy the corresponding performance index, and then operation S5 is performed.
  • the updated part model is 3D printed to prepare a part with embedded sensors.
  • a 3D printing technology is used to process the updated part model.
  • the updated part model is divided layer by layer, and the pattern of each layer after the division is divided into one or more partition graphics according to the different printing materials required; a 3D printing technology is used, and each partition graphics is adopted.
  • the graphics of each partition need to be printed layer by layer.
  • various 3D printing technologies are used to process the updated part model.
  • the updated part model is divided layer by layer, and the pattern of each layer after division is divided into one or more partition graphics according to the different printing materials required;
  • the 3D printing technology prints the graphics of each partition separately, or uses a variety of 3D printing technologies to print the graphics of each partition in each layer pattern layer by layer.
  • the preferred 3D printing technology is used to first print one of the graphic structures with uniform materials, and then select other preferred 3D printing technologies to print other graphic structures with uniform materials.
  • the graphic structure printing can be done one by one. layer, or can be separated.
  • post-processing of the integral parts obtained by 3D printing is performed to complete the manufacture of new parts, and parts with embedded sensors are obtained.
  • the sensor signals can be collected, the monitoring threshold can be set, and the parts can be monitored in service state.
  • the design and processing method of a part with an embedded sensor is described by taking the design and processing of a stirring head for solid-phase welding metal plates as an example.
  • the stirring head for solid-phase welding metal plates is shown in Figures 2A and 2B, and includes a stirring needle 1, a shaft shoulder 2 and a clamping handle 3.
  • the stirring head rotates at high speed during welding and rubs the workpiece to be welded, which belongs to the wearing part , which needs to be monitored internally.
  • the stirring needle 1 of the stirring head is a key part for bearing force and heat.
  • the real-time monitoring of the stirring needle 1 during the welding process can reflect the use state of the stirring head. Therefore, it is determined to select the strain sensor in operation S2.
  • the measurement range of the strain sensor is 1-100%, and the measurement frequency is greater than 30Hz.
  • the corresponding strain sensor model is as follows shown in Figure 3. After the embedding points and the number of strain sensors are determined in operation S3, the model of the stirring head is updated.
  • operation S4 the effectiveness of the updated stirring head embedded with the embedded sensor is simulated and analyzed, and the bearing capacity of the updated part and the effectiveness of the sensor are verified through the stress-strain simulation, and the updated part structure is obtained, and the updated structure is obtained.
  • a strain sensor 4 and a transmission wire 5 are added inside the stirring head, and the strain sensor 4 is located inside the stirring needle 1 to monitor the stirring needle 1 in real time.
  • one or more 3D printing technologies are used to realize the integrated manufacturing of the structure shown in FIG. 4 .
  • the printing process is shown in FIGS. 5A and 5B , and the clamping handle 3 and part of the transmission wire and the shaft shoulder 2 are sequentially printed in layers.
  • the stirring needle 1 and the strain sensor 4 together with another part of the transmission wire, the stirring needle 1 and the strain sensor 4, the processing of the stirring head embedded with the strain sensor is completed.
  • the sensor fits tightly inside the part, avoiding stress concentrations. Further, post-processing the integral parts to complete the manufacture of new parts, collecting the sensing signals, and monitoring the internal strain of the stirring head in service state, for example, setting the monitoring threshold to 25%, when the threshold is higher than the end of life. , the parts need to be repaired or scrapped.
  • FIG. 6 is a block diagram of a part design and processing system with embedded sensors according to an embodiment of the present invention.
  • the part design and processing system 600 with embedded sensors includes a first simulation module 610 , a design module 620 , an update module 630 , a second simulation module 640 and a processing module 650 .
  • the first simulation module 610 performs operation S1 for simulating the failure behavior of the part under working conditions according to the original part model, so as to determine the failure area of the part and the failure mode in the failure area.
  • the design module 620 performs operation S2 for determining the type of the embedded sensor corresponding to the failure mode, and designing the embedded sensor so that the designed embedded sensor meets the monitoring requirements of the failure mode under operating conditions.
  • the update module 630 for example, performs operation S3, for setting the embedded points and the quantity of the embedded sensor in the failure area according to the size parameter of the designed embedded sensor, and updating the original part model, where the updated part model contains the embedded sensor.
  • Embedded sensor for example, performs operation S3, for setting the embedded points and the quantity of the embedded sensor in the failure area according to the size parameter of the designed embedded sensor, and updating the original part model, where the updated part model contains the embedded sensor.
  • the second simulation module 640 for example, executes operation S4, for simulating the updated part model under the working condition, so as to determine whether the performance parameters of the updated part model satisfy the corresponding performance index, and if not, repeatedly execute the update module 630, until the performance parameters of the updated part model meet the corresponding performance index.
  • the machining module 650 for example, performs operation S5 for 3D printing and machining the updated part model to prepare a part with embedded sensors.
  • the part design and processing system 600 with embedded sensor is used to execute the part design and processing method with embedded sensor in the above-mentioned embodiment shown in FIG. 1 to FIG. 5B .
  • the method for designing and processing a part with an embedded sensor in the embodiment shown in FIG. 1 to FIG. 5B please refer to the method for designing and processing a part with an embedded sensor in the embodiment shown in FIG. 1 to FIG. 5B , which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种具有内嵌传感器的零件设计加工方法及系统,属于3D打印技术领域,方法包括:根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和失效形式;设计满足使用工况下失效形式监测需求的内嵌传感器;设计内嵌传感器的嵌入点和数量,对零件模型进行更新,当更新后零件模型不满足相应的性能指标时,修改内嵌传感器的嵌入点和数量直至满足相应的性能指标,3D打印加工更新后的零件模型,以制备具有内嵌传感器的零件。克服传统方法中传感器嵌入零件表面或浅层难以监测零件深部真实状态的缺点,针对原始零件失效点确定传感器嵌入位置,基于3D打印技术进行结构优化和一体化加工,实现对零件服役状态的精确在线监测。

Description

一种具有内嵌传感器的零件设计加工方法及系统 【技术领域】
本发明属于3D打印技术领域,更具体地,涉及一种具有内嵌传感器的零件设计加工方法及系统。
【背景技术】
随着制造业的发展,机械零件的结构设计朝着复杂精密方向深入。由于实际工况环境复杂多变,通过模拟计算的方式估测结构零件的寿命并不准确。因此,对承力、耐磨、耐热、耐蚀等关键零件的不同状态的监测至关重要。传统方法是定期检查关键零件的使用情况,包含目视检查、无损检测等离线检测手段。这些方法不适合部分设备在服役状态下进行检测,而且检测的有效性与检测频率相关。低频率检测则容易漏查漏检,提高频率保障了有效性但会耗费大量成本人力。
在零件中嵌入传感器可以实现零件服役状态下的在线状态监测。现有技术中,通常通过打孔、开模制造的方式将传感器嵌入设备内部以直接检测设备的运行状态,但是打孔的方法不适用于运行环境恶劣的机械设备,开模制造的方法成本较高,不适合应用于实际零件制造。采用常规的锻造、铸造等方法在零件加工环节嵌入传感器的难度很高,而采用机械钻孔破坏零件原始结构的方式将传感器嵌入零件内部,又会导致零件的承载能力受到影响。特别是在一些复杂结构零件内部,很难实现。如何降低内嵌传感器对零件承载能力的影响以及制备难度,是本领域技术人员关心的问题。
【发明内容】
针对现有技术的缺陷和改进需求,本发明提供了一种具有内嵌传感器 的零件设计加工方法及系统,其目的在于克服传统方法中传感器嵌入零件表面或浅层难以监测零件深部真实状态的缺点,针对原始零件失效点确定传感器嵌入位置,基于3D打印技术进行结构优化和一体化加工,实现对零件服役状态的精确在线监测。
为实现上述目的,按照本发明的一个方面,提供了一种具有内嵌传感器的零件设计加工方法,包括:S1,根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和所述失效区域中的失效形式;S2,确定与所述失效形式对应的内嵌传感器的类型,并对所述内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下所述失效形式的监测需求;S3,根据设计后的内嵌传感器的尺寸参数设置所述内嵌传感器在所述失效区域中的嵌入点和数量,并对所述原始零件模型进行更新,更新后的零件模型中包含所述内嵌传感器;S4,对使用工况下所述更新后的零件模型进行模拟,以确定所述更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行所述S3,直至所述更新后的零件模型的性能参数满足所述相应的性能指标;S5,3D打印加工所述更新后的零件模型,以制备具有内嵌传感器的零件。
更进一步地,所述S1包括:对所述原始零件模型进行网格划分,根据网格划分后原始零件模型中的材料特性、分析方程和边界条件,对使用工况下零件的失效行为进行有限元模拟,以确定所述失效区域和失效形式。
更进一步地,所述内嵌传感器的类型为应变传感器、应力传感器、电阻传感器、温度传感器、湿度传感器、角度传感器中的一种或多种。
更进一步地,所述S2中以所述内嵌传感器的测量范围、极限耐受温度、寿命和接触形式满足使用工况下对应失效形式的监测需求为目标,对所述内嵌传感器进行设计。
更进一步地,所述S3中根据所述内嵌传感器的测量范围和寿命设置所述失效区域中内嵌传感器的数量。
更进一步地,所述S4中的性能指标包括承力、承压、耐磨、疲劳、耐腐蚀指标中的一种或多种。
更进一步地,所述S5中3D打印加工所述更新后的零件模型包括:对所述更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;利用一种3D打印技术,采用各所述分区图形所需打印材料逐层打印各所述分区图形。
更进一步地,所述S5中3D打印加工所述更新后的零件模型包括:对所述更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;采用各所述分区图形所需打印材料,利用多种3D打印技术分开打印各所述分区图形,或者,利用多种3D打印技术逐层打印各层图案中的各所述分区图形。
更进一步地,所述失效区域的数量为一个或多个,所述失效形式的数量为多个,所述内嵌传感器的类型为一个或多个。
按照本发明的另一个方面,提供了一种具有内嵌传感器的零件设计加工系统,包括:第一模拟模块,用于根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和所述失效区域中的失效形式;设计模块,用于确定与所述失效形式对应的内嵌传感器的类型,并对所述内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下所述失效形式的监测需求;更新模块,用于根据设计后的内嵌传感器的尺寸参数设置所述内嵌传感器在所述失效区域中的嵌入点和数量,并对所述原始零件模型进行更新,更新后的零件模型中包含所述内嵌传感器;第二模拟模块,用于对使用工况下所述更新后的零件模型进行模拟,以确定所述更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行所述更新模块,直至所述更新后的零件模型的性能参数满足所述相应的性能指标;加工模块,用于3D打印加工所述更新后的零件模型,以制备具有内嵌传感器的零件。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:通过模拟零件中的失效形式确定传感器的类型,以对零件中可能出现的失效行为进行监测,通过结构设计和优化确定各类内嵌传感器的最佳嵌入位置和数量,保证传感器的嵌入方式、位置和数量不会明显影响零件的载荷,在此基础上,利用3D打印实现传感器在零件加工时直接制造和嵌入,降低制备成本和难度,使得内嵌传感器可以在线监测零件服役状态下的深部状态;该方法涉及的零件设计和加工流程具有操作简单、生产成本低的优点,适合关键易损件的在线寿命监测,具有广阔的行业应用前景。
【附图说明】
图1为本发明实施例提供的具有内嵌传感器的零件设计加工方法的流程图;
图2A为本发明实施例提供的原始零件的三维图;
图2B为本发明实施例提供的原始零件的平面透视图;
图3为本发明实施例提供的应变传感器的模型示意图;
图4为本发明实施例提供的优化后的零件模型的平面透视图;
图5A为本发明实施例提供的3D打印制造工序的三维图;
图5B为本发明实施例提供的3D打印制造工序的结构透视图;
图6为本发明实施例提供的具有内嵌传感器的零件设计加工系统的框图。
在所有附图中,相同的附图标记用来表示相同的元件或者结构,其中:
1为搅拌针,2为轴肩,3为夹持柄,4为应变传感器,5为传输导线。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图1为本发明实施例提供的具有内嵌传感器的零件设计加工方法的流程图。参阅图1,结合图2A-图5B,对本实施例中具有内嵌传感器的零件设计加工方法进行详细说明。方法包括操作S1-操作S5。
操作S1,根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和失效区域中的失效形式。
根据本发明实施例,操作S1中,对原始零件模型进行网格划分,根据网格划分后原始零件模型中的材料特性、分析方程和边界条件,对使用工况下零件的失效行为进行有限元模拟,以确定失效区域和失效形式。具体地,例如将原始零件的CAD模型导入CAE软件中,对CAD模型进行网格划分,导入材料特性、分析方程和边界条件,对使用工况下零件的失效行为进行有限元分析。
失效形式包括弹性失效、屈服失效、塑性失效、脆性断裂、疲劳断裂、腐蚀失效、磨损失效、蠕变失效等失效形式。本发明实施例中,失效区域的数量为一个或多个,失效形式的数量为多个,内嵌传感器的类型为一个或多个。
操作S2,确定与失效形式对应的内嵌传感器的类型,并对内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下失效形式的监测需求。
根据失效形式确定内嵌传感器的类型。内嵌传感器的类型为应变传感器、应力传感器、电阻传感器、温度传感器、湿度传感器、角度传感器中的一种或多种。具体地,弹性失效、屈服失效、塑性失效、脆性断裂、疲劳断裂、磨损失效、蠕变失效等失效形式对应选取应变传感器、应力传感 器和电阻传感器;腐蚀失效对应选取电阻传感器、温度传感器和湿度传感器。
确定内嵌传感器的类型之后,以内嵌传感器的测量范围、极限耐受温度、寿命和接触形式满足使用工况下对应失效形式的监测需求为目标,对内嵌传感器的结构、材料和电路等进行设计。使用工况是指该具有内嵌传感器的零件的最终使用环境。
操作S3,根据设计后的内嵌传感器的尺寸参数设置内嵌传感器在失效区域中的嵌入点和数量,并对原始零件模型进行更新,更新后的零件模型中包含内嵌传感器。
根据设计后的内嵌传感器的尺寸形状确定其在失效区域的具体嵌入点,根据内嵌传感器的测量范围和寿命对失效区域中内嵌传感器的数量进行选取设置,之后基于该需要嵌入在零件内的传感器对原始零件CAD模型进行更新。
操作S4,对使用工况下更新后的零件模型进行模拟,以确定更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行操作S3,直至更新后的零件模型的性能参数满足相应的性能指标。
操作S4中的性能指标包括承力、承压、耐磨、疲劳、耐腐蚀指标中的一种或多种。具体地,例如将更新后零件的CAD模型导入CAE软件中,以模拟得到其承力、承压、耐磨、疲劳、耐腐蚀等性能参数,并将得到的性能参数与相应的性能指标进行对比;若未达到相应的性能指标,修改失效区域中内嵌传感器的嵌入点和数量,并再次对零件的CAD模型进行更新、模拟,重复对比、修改、更新、模拟等操作,直至更新后零件的CAD模型的性能参数满足相应的性能指标,然后执行操作S5。
操作S5,3D打印加工所述更新后的零件模型,以制备具有内嵌传感器的零件。
本发明一实施例中,操作S5中采用一种3D打印技术加工更新后的零 件模型。具体地,对更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;利用一种3D打印技术,采用各分区图形所需打印材料逐层打印各分区图形。
本发明另一实施例中,操作S5中采用多种3D打印技术加工更新后的零件模型。具体地,对更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;采用各分区图形所需打印材料,利用多种3D打印技术分开打印各分区图形,或者,利用多种3D打印技术逐层打印各层图案中的各分区图形。采用多种3D打印技术时,采用优选的3D打印技术先打印其中一种具有统一材料的图形结构,再依次选用其它优选的3D打印技术打印其它具有统一材料的图形结构,图形结构打印可以是逐层的,也可以是分开的。
进一步地,对3D打印得到的整体零件进行后处理完成新零件的制造,得到具有内嵌传感器的零件,可以对传感信号进行采集,设置监测阈值,实现服役状态下监测零件。
本实施例中,以设计加工用于固相焊接金属板的搅拌头为例说明该具有内嵌传感器的零件设计加工方法。该用于固相焊接金属板的搅拌头如图2A和2B所示,包括搅拌针1、轴肩2和夹持柄3,该搅拌头在焊接时高速旋转摩擦待焊工件,属于易损件,需要对其内部进行监测。
具体地,操作S1中对使用工况下搅拌头的失效行为进行模拟分析后,确定该搅拌头的搅拌针1为承力、承热的关键部位。对搅拌针1焊接过程中的实时监测可以反映搅拌头的使用状态,因此,操作S2中确定选用应变传感器,应变传感器的测量范围为1-100%,测量频率大于30Hz,相应的应变传感器模型如图3所示。操作S3中确定应变传感器的嵌入点和数量之后,对搅拌头的模型进行更新。操作S4中对更新后嵌入有内嵌传感器的搅拌头的有效性进行模拟分析,通过应力应变模拟验证结构更新后的零件的承载能力与传感器有效性,获得更新后的零件结构,更新后的结构为图4,相比 原始零件结构,在搅拌头内部增加了应变传感器4和传输导线5,且应变传感器4位于搅拌针1内部,以实时监测搅拌针1。操作S5中采用一种或多种3D打印技术实现图4所示结构的一体化制造,打印过程如图5A和图5B所示,依次分层打印夹持柄3与部分传输导线、轴肩2与另一部分传输导线、搅拌针1与应变传感器4,完成内嵌应变传感器的搅拌头的加工。传感器紧密贴合零件内部,避免了应力集中。进一步地,对整体零件进行后处理完成新零件的制造,对传感信号进行采集,在服役状态下监测搅拌头内部应变,例如设置监测阈值为25%,当高于此阈值即视为寿命终止,需将零件返修或报废处理。
图6为本发明实施例提供的具有内嵌传感器的零件设计加工系统的框图。参阅图6,该具有内嵌传感器的零件设计加工系统600包括第一模拟模块610、设计模块620、更新模块630、第二模拟模块640以及加工模块650。
第一模拟模块610例如执行操作S1,用于根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和失效区域中的失效形式。
设计模块620例如执行操作S2,用于确定与失效形式对应的内嵌传感器的类型,并对内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下失效形式的监测需求。
更新模块630例如执行操作S3,用于根据设计后的内嵌传感器的尺寸参数设置内嵌传感器在失效区域中的嵌入点和数量,并对原始零件模型进行更新,更新后的零件模型中包含内嵌传感器。
第二模拟模块640例如执行操作S4,用于对使用工况下更新后的零件模型进行模拟,以确定更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行更新模块630,直至更新后的零件模型的性能参数满足相应的性能指标。
加工模块650例如执行操作S5,用于3D打印加工所述更新后的零件 模型,以制备具有内嵌传感器的零件。
具有内嵌传感器的零件设计加工系统600用于执行上述图1-图5B所示实施例中的具有内嵌传感器的零件设计加工方法。本实施例未尽之细节,请参阅前述图1-图5B所示实施例中的具有内嵌传感器的零件设计加工方法,此处不再赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有内嵌传感器的零件设计加工方法,其特征在于,包括:
    S1,根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和所述失效区域中的失效形式;
    S2,确定与所述失效形式对应的内嵌传感器的类型,并对所述内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下所述失效形式的监测需求;
    S3,根据设计后的内嵌传感器的尺寸参数设置所述内嵌传感器在所述失效区域中的嵌入点和数量,并对所述原始零件模型进行更新,更新后的零件模型中包含所述内嵌传感器;
    S4,对使用工况下所述更新后的零件模型进行模拟,以确定所述更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行所述S3,直至所述更新后的零件模型的性能参数满足所述相应的性能指标;
    S5,3D打印加工所述更新后的零件模型,以制备具有内嵌传感器的零件。
  2. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S1包括:对所述原始零件模型进行网格划分,根据网格划分后原始零件模型中的材料特性、分析方程和边界条件,对使用工况下零件的失效行为进行有限元模拟,以确定所述失效区域和失效形式。
  3. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述内嵌传感器的类型为应变传感器、应力传感器、电阻传感器、温度传感器、湿度传感器、角度传感器中的一种或多种。
  4. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S2中以所述内嵌传感器的测量范围、极限耐受温度、寿命和接触形式满足使用工况下对应失效形式的监测需求为目标,对所述内嵌传感 器进行设计。
  5. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S3中根据所述内嵌传感器的测量范围和寿命设置所述失效区域中内嵌传感器的数量。
  6. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S4中的性能指标包括承力、承压、耐磨、疲劳、耐腐蚀指标中的一种或多种。
  7. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S5中3D打印加工所述更新后的零件模型包括:
    对所述更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;
    利用一种3D打印技术,采用各所述分区图形所需打印材料逐层打印各所述分区图形。
  8. 如权利要求1所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述S5中3D打印加工所述更新后的零件模型包括:
    对所述更新后的零件模型进行逐层分割,并按照所需打印材料的不同将分割后每层的图案划分为一个或多个分区图形;
    采用各所述分区图形所需打印材料,利用多种3D打印技术分开打印各所述分区图形,或者,利用多种3D打印技术逐层打印各层图案中的各所述分区图形。
  9. 如权利要求1-8任一项所述的具有内嵌传感器的零件设计加工方法,其特征在于,所述失效区域的数量为一个或多个,所述失效形式的数量为多个,所述内嵌传感器的类型为一个或多个。
  10. 一种具有内嵌传感器的零件设计加工系统,其特征在于,包括:
    第一模拟模块,用于根据原始零件模型对使用工况下零件的失效行为进行模拟,以确定零件的失效区域和所述失效区域中的失效形式;
    设计模块,用于确定与所述失效形式对应的内嵌传感器的类型,并对所述内嵌传感器进行设计,使得设计后的内嵌传感器满足使用工况下所述失效形式的监测需求;
    更新模块,用于根据设计后的内嵌传感器的尺寸参数设置所述内嵌传感器在所述失效区域中的嵌入点和数量,并对所述原始零件模型进行更新,更新后的零件模型中包含所述内嵌传感器;
    第二模拟模块,用于对使用工况下所述更新后的零件模型进行模拟,以确定所述更新后的零件模型的性能参数是否满足相应的性能指标,若不满足,重复执行所述更新模块,直至所述更新后的零件模型的性能参数满足所述相应的性能指标;
    加工模块,用于3D打印加工所述更新后的零件模型,以制备具有内嵌传感器的零件。
PCT/CN2021/074536 2021-01-20 2021-01-30 一种具有内嵌传感器的零件设计加工方法及系统 WO2022155992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110072212.0 2021-01-20
CN202110072212.0A CN112395714B (zh) 2021-01-20 2021-01-20 一种具有内嵌传感器的零件设计加工方法及系统

Publications (1)

Publication Number Publication Date
WO2022155992A1 true WO2022155992A1 (zh) 2022-07-28

Family

ID=74625584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074536 WO2022155992A1 (zh) 2021-01-20 2021-01-30 一种具有内嵌传感器的零件设计加工方法及系统

Country Status (2)

Country Link
CN (1) CN112395714B (zh)
WO (1) WO2022155992A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112858A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Component with internal sensor and method of additive manufacture
CN106769039A (zh) * 2016-12-13 2017-05-31 西安交通大学 一种适用于滚动轴承旋转部件监测的安装组件
CN107958114A (zh) * 2017-11-24 2018-04-24 中国科学院金属研究所 一种关键构件分区表征的寿命预测方法
CN108312493A (zh) * 2018-01-26 2018-07-24 天津职业技术师范大学 一种基于3d打印的内嵌磁铁零部件制造工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156281A1 (de) * 2001-11-19 2003-06-05 Emil Broell Gmbh & Co Überwachung von textiltechnologischen Prozessen textilkontaktierender Maschinenkomponenten und des Zustands dieser textilkontaktierenden Maschinenkomponente
CN101532816B (zh) * 2009-04-09 2011-04-06 浙江大学 基于巨磁阻传感器和智能算法的多层厚度涡流检测装置
CN103727911B (zh) * 2013-12-20 2017-08-25 北京中力智研物联科技有限公司 基于mems阵列的组装式深部位移监测设备及系统
CN106017568B (zh) * 2016-07-06 2018-12-25 沈阳建筑大学 预制装配式混凝土体系的结构健康监测系统及集成方法
CN109764783A (zh) * 2017-11-09 2019-05-17 张家港裕顺沙发制造有限公司 一种具有内置电子监测装置的支架开关检具
CN108002164B (zh) * 2017-12-22 2023-06-02 深圳市质量安全检验检测研究院 一种电梯制动器动作状态检测装置及检测方法
CN109894925B (zh) * 2019-04-24 2020-11-20 西北工业大学 基于内嵌式压电传感器的薄壁件铣削加工振动监测方法
CN110586944A (zh) * 2019-09-20 2019-12-20 航发优材(镇江)增材制造有限公司 金属3d打印零件的激光表面改性方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112858A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Component with internal sensor and method of additive manufacture
CN106769039A (zh) * 2016-12-13 2017-05-31 西安交通大学 一种适用于滚动轴承旋转部件监测的安装组件
CN107958114A (zh) * 2017-11-24 2018-04-24 中国科学院金属研究所 一种关键构件分区表征的寿命预测方法
CN108312493A (zh) * 2018-01-26 2018-07-24 天津职业技术师范大学 一种基于3d打印的内嵌磁铁零部件制造工艺

Also Published As

Publication number Publication date
CN112395714B (zh) 2021-03-30
CN112395714A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN110348103B (zh) 一种基于数字孪生的车辆抗毁伤评估方法
Lou et al. Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals
Makarov et al. The design concept of digital twin
US20160300003A1 (en) Rotorcraft Component Simulation using Scan-based Geometry
CN106202732B (zh) 一种渐开线直齿圆柱齿轮副的齿向修形方法及与其配套的专用参数化cad系统
CN106503358A (zh) 一种零部件装配检测方法及系统
JP2019098515A (ja) 刃具状態検査システム及び方法
CN211979669U (zh) 一种基于bim的桥梁荷载试验构件内部损伤监测系统
WO2020037995A1 (zh) 一种滚动轴承外圈缺陷二维量化诊断方法
CN109477804A (zh) 设置方法、检查方法、缺陷评估装置及结构体的制造方法
WO2022155992A1 (zh) 一种具有内嵌传感器的零件设计加工方法及系统
CN116698642A (zh) 一种汽修工具生产用的工作站控制方法及系统
CN113984880B (zh) 对管道金属损失缺陷生成三维轮廓的方法及装置
Sinha Efficient wall thickness analysis methods for optimal design of casting parts
CN114169101A (zh) 航空发动机叶片超声滚压强化工艺的数字孪生建模方法
Budzik et al. The place of 3D printing in the manufacturing and operational process based on the industry 4.0 structure
Tao et al. Development of magnetic flux leakage pipe inspection robot using hall sensors
Kokkonen et al. Robust lightweight design and digital twins considering manufacturing quality variation and sustainability requirements
Zhang et al. Investigations on model-based simulation of tool wear with carbide tools in milling operation
CN113275771A (zh) 一种基于数字孪生的空间在轨激光加工过程实时监测方法
CN114155623B (zh) 一种轧机联轴器疲劳寿命的在线计算方法
KR102115959B1 (ko) 겹침 인덱스 또는 함몰 지수를 이용한 단류선 정량화 방법
Xuefei et al. Metal structure damage location pattern matching method based on virtual damage characteristics
WO2023077275A1 (zh) 机床加工精度预测方法、装置、存储介质和电子设备
Han Development of a Graph-GPT Model for Predicting (Fretting) Fatigue Behavior, Accounting for Experimentally Observed Scatter Phenomena Influenced by Microstructure Inhomogeneity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920383

Country of ref document: EP

Kind code of ref document: A1