WO2022155911A1 - 一种超临界流体大功率风力发电机 - Google Patents

一种超临界流体大功率风力发电机 Download PDF

Info

Publication number
WO2022155911A1
WO2022155911A1 PCT/CN2021/073364 CN2021073364W WO2022155911A1 WO 2022155911 A1 WO2022155911 A1 WO 2022155911A1 CN 2021073364 W CN2021073364 W CN 2021073364W WO 2022155911 A1 WO2022155911 A1 WO 2022155911A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
motor
supercritical fluid
power
wind turbine
Prior art date
Application number
PCT/CN2021/073364
Other languages
English (en)
French (fr)
Inventor
卜庆春
Original Assignee
卜庆春
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卜庆春 filed Critical 卜庆春
Publication of WO2022155911A1 publication Critical patent/WO2022155911A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a high-power wind generator, in particular to a supercritical fluid high-power wind generator, and belongs to the technical field of wind generators.
  • the common wind turbines are mainly 2MW models. With the development of the situation, wind turbines with higher power are more and more popular in the market.
  • the 2MW wind turbine has an unreliable transmission, and according to statistics, its failure rate has reached more than 20%. If a higher power model is used, the failure rate will definitely be higher. Therefore, people thought of using hydraulic transmission to replace the gear transmission mechanism, but the hydraulic transmission flow resistance is relatively large. According to the data, the power of hydraulic transmission is difficult to reach thousands of KW, and it is even more difficult to achieve power exceeding tens of thousands of KW. No high-power units appear.
  • the purpose of the present invention is to provide a supercritical fluid high-power wind generator with high power, high efficiency, simple structure, small volume and light weight, so as to solve the problems raised in the above background technology.
  • the present invention provides the following technical solutions:
  • a supercritical fluid high-power wind turbine comprises a vertically arranged wind turbine tower, a swivel seat is rotatably installed on the top of the wind turbine tower, a casing is fixedly installed on the upper end surface of the swivel base, and a wind turbine is rotatably installed on the outer side of one end of the casing , the interior of the casing is provided with a supercritical fluid circulation device connected with the wind turbine, the interior of the casing is fixedly installed with a supercritical fluid motor, the power output end of the supercritical fluid motor is driven and connected with a generator, and the supercritical fluid motor is connected with the supercritical fluid motor.
  • the fluid circulation devices are communicated with each other through fluid pipelines.
  • a fluid box is fixedly installed in the shell, and the interior of the fluid box is filled with supercritical fluid.
  • the supercritical fluid is a mixture of critical carbon dioxide fluid and graphite.
  • the fluid pipeline sequentially connects the fluid box, the supercritical fluid circulation device, and the supercritical fluid motor in series.
  • a switch for controlling the on-off of the fluid pipeline is installed on the fluid pipeline.
  • the supercritical fluid circulation device includes a fluid pump fixedly installed inside the casing, a wind turbine shaft is rotatably connected to the casing, and two ends of the wind turbine shaft are respectively connected with the fluid pump and the wind turbine drive.
  • the fluid pump includes a pump body, the upper part of the pump body is annularly arranged with multiple groups of plunger groups, and the plunger groups include first cylinder liners arranged oppositely at the upper and lower ends of the pump body.
  • a first piston is installed, a first connecting rod is respectively connected between the two first pistons of each plunger group, and the first cylinder liner is communicated with the fluid pipeline through the first fluid inlet and outlet respectively.
  • one end of the pump body is rotatably provided with a power input shaft, and a transmission assembly connected to the first connecting rod of each plunger group is movably installed inside the pump body.
  • the power input shaft rotates, it drives the transmission assembly and drives the plunger groups to do work through the first connecting rods.
  • the supercritical fluid motor includes a plurality of motor cylinders arranged in a ring shape, the plurality of motor cylinders are respectively fixed on the motor cylinder head, the interior of the plurality of motor cylinders are respectively installed with motor pistons, and one end of the motor piston is installed There is a power output assembly, and the power output assembly is drivingly connected with the motor power shaft of the generator.
  • a control valve for distributing flow to multiple motor cylinders is installed on the motor cylinder head, the control valve and multiple motor cylinders are connected through a fluid conduit, and the motor fluid inlet and outlet of the control valve are connected with the fluid pipeline , the power output assembly is provided with an inlet and outlet valve control shaft, and the other end of the inlet and outlet valve control shaft is connected to the control valve for transmission.
  • the supercritical fluid circulation device includes a fluid pump fixedly installed inside the casing, the fluid pump includes a body, the interior of the body is provided with a cavity for installing a power transmission component, and an eccentric shaft is rotatably installed in the cavity.
  • the inner wall of the cavity is provided with a plurality of second cylinder liners in an annular shape, the inside of the second cylinder liners are respectively slidably installed with second pistons, one end of the second pistons is connected with a second connecting rod, and the second cylinder liners respectively communicate with the fluid pipeline through the second fluid inlet and outlet.
  • the supercritical fluid motor includes a gear motor casing, and a rotating component for driving the flow of the supercritical fluid is installed inside the gear motor casing.
  • the gear motor casing is communicated with the fluid pipeline through the gear motor fluid inlet and outlet, and the rotating component Connect to the generator drive.
  • the structure is simple, the conception is ingenious, the supercritical fluid is a mixture of critical carbon dioxide fluid and graphite, graphite is a crystalline form of carbon, has a hexagonal lattice, atoms are arranged in layers, and the same layer of crystal planes
  • the distance between the upper carbon atoms is 0.142nm, and they are covalently bonded to each other; the distance between the layers is 0.34nm, and the atoms are combined by molecular bonds.
  • the force between the layers is very small, so it is easy to slide relatively between the layers. Because of these structural characteristics, its strength and hardness are very low, and its plasticity is also very poor, but it can play a good role in reducing wear and is a good solid lubricant.
  • the fluid pump can be driven to work, the supercritical fluid will flow from the fluid tank to the interior of the fluid pump, and the continuous operation of the fluid pump will give pressure to the supercritical fluid inside the fluid pump, making the supercritical fluid
  • the fluid flows into the supercritical fluid motor, and drives the supercritical fluid motor to work. After the supercritical fluid entering the supercritical fluid motor completes the circulation inside the supercritical fluid motor, it flows to the interior of the fluid tank through the fluid pipeline. , forming a cycle.
  • the shaft of the wind turbine is driven to rotate by the wind turbine, and the shaft of the wind turbine can drive the rotation of the power input shaft.
  • the first joint drives the first swing yoke to swing three-dimensionally, which is then driven by the joint on the first swing arm.
  • the first connecting rod and the first piston work by extruding the supercritical fluid by reciprocating motion, and the two first pistons connected by the first connecting rod cooperate with each other, so that the first piston squeezes and releases the supercritical fluid in the first cylinder liner.
  • Critical fluid the supercritical fluid is transported into the supercritical fluid motor through the fluid pipeline.
  • the supercritical fluid transported from the fluid pump to the supercritical fluid motor enters the fluid conduit through the motor fluid inlet and outlet, and then enters the motor cylinder from the fluid conduit.
  • the supercritical fluids in the motor cylinder There are more and more supercritical fluids in the motor cylinder, and the huge pressure will drive multiple motor pistons and the motor rocking yoke to cooperate with each other, so as to drive the rotation of the power shaft of the generator to generate electricity.
  • the swing of the motor swing yoke will drive the control valve to distribute the supercritical fluid, so that the supercritical fluid motor can perform coordinated work.
  • the wind turbine shaft drives the eccentric shaft to rotate, and transmits the power to the eccentric shaft bearing, which in turn drives the second connecting rod to work, and the second connecting rod drives the second piston to reciprocate in the second cylinder liner to squeeze the supercritical fluid to meet the work requirements.
  • the circulation of the supercritical fluid through the cogging can drive the rotation of the helical gear, thereby driving the rotation of the driven shaft of the gear motor, and the driven shaft of the gear motor transmits the power to the generator, and the generator generates electricity.
  • the key body is installed between the helical gear and the power shaft of the gear motor, which can make the helical gear more stable during rotation and provide reliable power for work.
  • Both the supercritical fluid motor and the generator are arranged inside the casing.
  • the supercritical fluid motor is connected with the fluid tank and the fluid pump through the fluid pipeline, the supercritical fluid motor and the generator can also be arranged in the outer casing.
  • the properties of supercritical fluid and gas are very similar, there is no need to consider the occurrence of insufficient pressure caused by too long fluid pipelines.
  • Embodiment 1 is a schematic diagram of the overall structure of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an axial plunger type supercritical fluid pump in Embodiment 1 of the present invention
  • Fig. 3 is A-A sectional view in Fig. 2;
  • FIG. 4 is a structural cross-sectional view of an axial plunger type supercritical fluid motor motor with a rocking yoke mechanism in Embodiment 1 of the present invention
  • Fig. 5 is B-B in Fig. 4 sectional view
  • FIG. 6 is a schematic structural diagram of a radial plunger type supercritical fluid pump in Embodiment 2 of the present invention.
  • FIG. 7 is a cross-sectional view of the structure of a helical gear supercritical fluid motor in Embodiment 3 of the present invention.
  • Embodiment 8 is a schematic structural diagram of a helical gear supercritical fluid motor in Embodiment 3 of the present invention.
  • Embodiment 1 As shown in FIG. 1 , a supercritical fluid high-power wind turbine includes a wind turbine tower 13 arranged vertically, a swivel base 11 is rotatably installed on the top of the wind turbine tower 13, and the upper end surface of the swivel base 11 is installed.
  • a casing 2 is fixedly installed, the outer side of one end of the casing 2 is rotatably installed with a wind turbine 1, the interior of the casing 2 is provided with a supercritical fluid circulation device that is connected with the wind turbine 1, and the interior of the casing 2 is fixedly installed with a supercritical fluid motor 6,
  • a generator 7 is drivingly connected to the power output end of the supercritical fluid motor 6 , and the supercritical fluid motor 6 is communicated with the supercritical fluid circulation device through a fluid pipeline 3 .
  • the supercritical fluid circulation device includes a fluid tank 8 fixedly installed inside the casing 2 .
  • the interior of the fluid tank 8 is filled with supercritical fluid 10 .
  • the fluid pipeline 3 sequentially connects the fluid tank 8 , the supercritical fluid circulation device, and the supercritical fluid motor 6 in series.
  • a switch 5 for controlling the on-off of the fluid pipeline 3 is installed on the fluid pipeline 3 .
  • the supercritical fluid 10 is a supercritical carbon dioxide fluid, because the supercritical carbon dioxide fluid is a very ideal working fluid because its function is similar to that of a liquid, and its fluidity is similar to that of a gas.
  • the supercritical fluid 10 can also be a mixture of critical carbon dioxide fluid and graphite.
  • Graphite is a crystalline form of carbon with a hexagonal lattice, and the atoms are arranged in layers. The distance is 0.142nm, and they are covalently bonded to each other; the distance between layers is 0.34nm, and the atoms are combined by molecular bonds. The force between the layers is very small, so it is easy to slide relatively between the layers. Because of these structural characteristics, its strength and hardness are very low, and its plasticity is also very poor, but it can play a good role in reducing wear and is a good solid lubricant.
  • a wind turbine shaft 12 is coaxially and fixedly installed on the side of the wind turbine 1 close to the casing 2 , and the wind turbine shaft 12 penetrates the outer wall of the casing 2 and extends to the inside for a certain distance.
  • the supercritical fluid circulation device includes a fluid pump 4 fixedly installed inside the casing 2 , and two ends of the wind turbine shaft 12 are respectively connected to the fluid pump 4 and the wind turbine 1 in a driving manner.
  • the fluid pump 4 is communicated with the fluid tank 8 through a fluid pipeline 3 , and the supercritical fluid 10 in the fluid tank 8 can enter the interior of the fluid pump 4 through the fluid pipeline 3 .
  • the fluid pipeline 3 is a one-way pipeline in the supercritical fluid circulation device.
  • the base body of the fluid pump 4 is filled with gas, so that the pressure is lower than the supercritical fluid pressure, so that the fluid flows smoothly into the cylinder, and the number of supercritical fluid pump cylinders can be appropriately increased or decreased as required.
  • the supercritical fluid motor 6 is communicated with the fluid tank 8 through the fluid pipeline 3 .
  • the fluid pump 4 can be driven to work, the supercritical fluid 10 will flow from the fluid tank 8 to the interior of the fluid pump 4, and the continuous operation of the fluid pump 4 will give the fluid pump 4 4.
  • the pressure of the supercritical fluid 10 inside makes the supercritical fluid 10 flow to the inside of the supercritical fluid motor 6, and drives the supercritical fluid motor 6 to work, and the supercritical fluid 10 entering the supercritical fluid motor 6 is in the supercritical fluid. After the internal circulation of the motor 6 is completed, it flows to the interior of the fluid tank 8 through the fluid pipeline 3 to form a circulation.
  • the circulation of the supercritical fluid 10 in the supercritical fluid circulation device can be cut off, so that the wind turbine 1 stops rotating, and the supercritical fluid motor 6 stops working.
  • the fluid pump 4 uses an axial plunger type supercritical fluid pump, and the axial plunger type supercritical fluid pump includes a pump body fixedly installed inside the casing 2 twenty two.
  • the fluid pump 4 includes a pump body 22 , and a plurality of sets of plunger groups 77 are arranged on the upper part of the pump body 22 in an annular shape along its axis.
  • the plunger group 77 includes the first cylinder liners 18 which are respectively arranged opposite to the upper and lower ends of the pump body 22 .
  • First pistons 17 are respectively installed in the first cylinder liner 18 , and first connecting rods 19 are respectively connected between the two first pistons 17 of each group of plungers 77 .
  • the first cylinder liner 18 is communicated with the fluid pipeline 3 through the first fluid inlet and outlet 28 respectively.
  • One end of the first cylinder liner 18 away from each other can be detachably installed with the first cylinder cover 16 , and the first cylinder cover 16 and the pump body 22 are in a sealed connection.
  • the first cylinder head 16 is provided with a first fluid inlet and outlet 28 for the supercritical fluid 10 to enter and exit.
  • the inside of the first cylinder liner 18 is slidably mounted with a reciprocating first piston 17 coaxially.
  • the outer wall of the first piston 17 matches the shape of the inner wall of the first cylinder liner 18 .
  • the first connecting rod 19 and each of the first pistons 17 are coaxially arranged.
  • One end of the pump body 22 is rotatably installed with a power input shaft 14 for transmitting power, one end of the power input shaft 14 is connected to the wind turbine shaft 12 in a driving manner, and the other end of the power input shaft 14 penetrates the pump body 22 and extends to its interior for a section. distance.
  • a power shaft housing 21 fixedly mounted on the inner wall of the pump body 22 is provided at the position where the power input shaft 14 extends to the inside of the pump body 22 .
  • the power shaft housing 21 and the power input shaft 14 are rotatably connected through the first bearing 20 , the inner ring of the first bearing 20 is rotatably connected with the outer wall of the power input shaft 14 , and the outer ring of the first bearing 20 is connected with the power shaft shell
  • the inner wall of the body 21 is slidably connected.
  • the power shaft housing 21 is detachably mounted with an end cover 15 on the side away from the transmission assembly, and the end cover 15 and the power shaft housing 21 are in a sealed connection.
  • a sealing ring 29 is arranged between the end cover 15 and the power input shaft 14 .
  • the inside of the pump body 22 and near the middle position is provided with a transmission assembly for power transmission.
  • the transmission assembly includes a first rocking yoke seat 27 that is fixedly disposed inside the pump body 22 and coaxial with the power input shaft 14 .
  • a first rocking yoke 25 for driving the first piston 17 to work is movably installed between the first rocking yoke base 27 and the power input shaft 14 .
  • the first rocking yoke 25 and the first rocking yoke base 27 are connected by a first cross joint 26 .
  • a first swing arm 24 is fixedly installed between the first swing yoke 25 and each of the first connecting rods 19 , and the first swing arms 24 are all installed on the first connecting rod 19 at a position close to the middle thereof.
  • the outer part of the pump body 22 is detachably installed with the upper end cover 31 of the pump body and the lower end cover 32 of the pump body which cooperate with each other.
  • a closed space is formed between the sleeves 18 .
  • the first cross joint 26 is connected between the first rocking yoke 25 and the first rocking yoke base 27 , so that the first rocking yoke 25 can take the first rocking yoke base 27 as a fulcrum and be three-dimensional on the first rocking yoke base 27 swing.
  • the wind turbine shaft 12 is driven to rotate by the wind turbine 1, and the wind turbine shaft 12 can drive the rotation of the power input shaft 14.
  • the first joint 30 drives the first swing yoke 25 to swing three-dimensionally
  • the first connecting rod 19 and the first piston 17 are driven to reciprocate to squeeze the supercritical fluid 10 to work, and the two first pistons 17 connected by the first connecting rod 19
  • the first piston 17 squeezes and releases the supercritical fluid 10 on the first cylinder liner 18 , and the supercritical fluid 10 is transported into the supercritical fluid motor 6 through the fluid pipeline 3 .
  • the supercritical fluid 10 extruded by the fluid pump 4 enters the supercritical fluid motor 6 through the fluid pipeline 3, and the supercritical fluid motor 6 performs work to input power to the generator 7, so that the generator 7 to generate electricity.
  • the supercritical fluid motor 6 includes a plurality of motor cylinders 63 arranged in a ring shape.
  • the plurality of motor cylinder blocks 63 are respectively fixed on the motor cylinder head 64 .
  • Motor pistons 60 are respectively installed inside the plurality of motor cylinders 63 , and a power output assembly is installed at one end of the motor pistons 60 .
  • the power output assembly is in driving connection with the motor power shaft 48 of the generator 7
  • the generator 7 includes a generator casing 47, and a generator power shaft 48 is rotatably disposed inside the motor casing 47, and the generator power shaft 48 uses a "T"-shaped power shaft.
  • the outer side of the generator power shaft 48 is annularly sheathed with a generator rotor 49 matched with the generator power shaft 48 .
  • a generator stator 50 is fixedly mounted on the inner wall of the generator casing 47 at a position corresponding to the generator rotor 49 .
  • a rotor bearing 51 is rotatably connected to one end of the generator power shaft 48 , and the rotor bearing 51 is fixedly mounted on the generator casing 47 .
  • One end of the generator power shaft 48 close to the rotor bearing 51 is coaxial and fixedly connected with a rotating block 73 .
  • a control valve 58 for distributing flow to the plurality of motor cylinders 63 is installed on the motor cylinder head 64 , and the control valve 58 communicates with the plurality of motor cylinders 63 through a fluid conduit 62 .
  • the motor fluid inlet 61 of the control valve 58 is communicated with the fluid pipeline 3 , the power output assembly is provided with an inlet and outlet valve control shaft 57 , and the other end of the inlet and outlet valve control shaft 57 is drivingly connected to the control valve 58 .
  • the power take-off assembly includes a motor connecting rod 59 that drives a motor piston 60 .
  • a motor rocking yoke 53 is provided at one end of the motor connecting rod 59 away from the motor piston 60 .
  • the upper end of the motor rocking yoke 53 is coaxially mounted with a motor rocking yoke rocking rod 52 .
  • the motor connecting rod 59 is connected with the motor rocking yoke 53 through the motor joint 56 .
  • a motor rocking yoke base 55 is disposed at the middle position of the motor rocking yoke 53 , the motor rocking yoke base 55 extends downward for a certain distance, and the motor rocking yoke base 55 is fixedly installed inside the motor cylinder head 64 .
  • the motor rocking yoke base 55 and the motor rocking yoke 53 are rotatably connected through the motor rocking yoke cross joint 54 .
  • An inlet and outlet valve control shaft 57 made of a wire flexible shaft is coaxially arranged inside the motor rocking yoke 55 .
  • control valve 58 is in the prior art and can be directly purchased in the market, and is not described in detail in this embodiment.
  • the supercritical fluid 10 delivered from the fluid pump 4 to the supercritical fluid motor 6 enters the interior of the fluid conduit 62 through the motor fluid inlet 61, and then enters the interior of the motor cylinder 63 from the fluid conduit 62 , the continuous rotation of the wind turbine 1 will cause more and more supercritical fluid 10 to be delivered to the motor cylinder 63, and the huge pressure will drive multiple motor pistons 60 to cooperate with the motor rocking yoke 53, thereby driving power generation.
  • the rotation of the motor power shaft 48 generates electricity.
  • the swing of the motor rocking yoke 53 will drive the control valve 58 to distribute the supercritical fluid 10 , so that the supercritical fluid motor 6 can perform coordinated work.
  • Embodiment 2 As shown in FIG. 6, this embodiment is an improvement made to a supercritical fluid high-power wind power generator in Embodiment 1, which includes a supercritical fluid high-power wind power generator in the above-mentioned embodiment 1. All technical features of the machine, the improvement lies in the overall structure of the fluid pump 4.
  • the fluid pump 4 includes a body 34 fixedly installed inside the housing 2 , and a cavity 74 for installing a power transmission component is provided inside the body 34 .
  • a right side cover 39 is fixedly mounted on one end of the body 34 close to the wind turbine, and a left side cover 40 is fixedly mounted on the other end of the body 34 .
  • the right side cover 39 cooperates with the left side cover 40 to seal the cavity 74 provided inside the body 34 for installing the power transmission assembly.
  • An eccentric shaft 45 for transmitting power to the power transmission assembly is disposed at the middle position of the right side cover 39 , one end of the eccentric shaft 45 penetrates the right side cover 39 and extends into the cavity 74 for a distance, and the other side of the eccentric shaft 45 One end is coaxially and fixedly connected with the wind turbine shaft 12 .
  • a high-pressure sealing ring 46 for sealing the cavity 74 is installed at the position corresponding to the eccentric shaft 45 on the right side cover 39 , and the high-pressure sealing ring 46 and the eccentric shaft 45 are connected in rotation.
  • the power transmission assembly includes an eccentric shaft bearing 44 fixedly mounted on the eccentric shaft 45 at the position of the cavity 74 , and the eccentric shaft bearing 44 is eccentrically mounted on the eccentric shaft 45 .
  • a plurality of side bearings 33 for supporting the eccentric shaft bearing 44 to rotate in the cavity 74 are respectively disposed between the eccentric shaft bearing 44 and the right side cover 39 and the left side cover 40 .
  • a plurality of second cylinder liners 42 are annularly formed on the inner wall of the cavity 74 .
  • Second pistons 35 are respectively slidably installed inside the second cylinder liner 42 , and the shape of the second piston 35 matches the shape of the second cylinder liner 42 .
  • One end of the second piston 35 is connected with a second connecting rod 38 .
  • a second cylinder cover 36 is detachably installed at a position corresponding to the body 34 of the second cylinder liner 42 , and the second cylinder cover 36 is used to seal the second cylinder liner 42 .
  • the second cylinder head 36 is provided with a second fluid inlet and outlet 37 for the supercritical fluid 10 to pass through.
  • the second fluid inlet and outlet 37 is used to control the inflow and outflow of the supercritical fluid 10 .
  • a sealing ring 75 for sealing the second cylinder liner 42 is fixedly installed at the connection between the second cylinder head 36 and the body 34 .
  • the second piston 35 is annularly sleeved with an oil scraper ring 76 for preventing the supercritical fluid 10 in the second cylinder liner 42 from flowing out.
  • the outer movable sleeve of the shoe end of the second connecting rod 38 is provided with a snap ring 43, and the snap ring 43 can make the connecting rod lean on the outer circle of the eccentric shaft bearing more firmly.
  • the wind turbine shaft 12 drives the eccentric shaft 45 to rotate, and transmits the power to the eccentric shaft bearing 44.
  • the eccentric shaft bearing 44 then drives the second connecting rod 38 to work in turn, and the second connecting rod 38 drives the second piston 35 in the second
  • the cylinder liner 42 performs reciprocating motion to squeeze the supercritical fluid 10 to meet the working requirements.
  • Embodiment 3 As shown in Figures 7-8, this embodiment is an improvement to a supercritical fluid high-power wind turbine in Embodiment 1, which includes a supercritical fluid high-power wind turbine in Embodiment 1 above. All the technical features of the wind turbine are improved in the overall structure of the supercritical fluid motor 6 .
  • the supercritical fluid motor 6 includes a gear motor casing 65 fixedly installed inside the casing 2 , and the gear motor casing 65 communicates with the fluid tank 8 through the fluid pipeline 3 .
  • a rotating component for driving the flow of the supercritical fluid 10 is rotatably installed inside the gear motor housing 65 .
  • a gear motor fluid inlet and outlet 68 is provided on the side wall of the gear motor casing 65 for the supercritical fluid 10 to enter and exit.
  • the gear motor fluid inlet and outlet 68 communicate with the inner cavity of the gear motor casing 65 .
  • the rotating assembly includes a gear motor power shaft 69 rotatably installed in the inner cavity of the gear motor housing 65 .
  • a key body 70 is fixedly mounted on the gear motor power shaft 69 .
  • a helical gear 67 is fixedly sleeved on the gear motor power shaft 69 .
  • the key body 70 is installed between the helical gear 67 and the gear motor power shaft 69 , which can make the helical gear 67 more stable during rotation and provide reliable power for work.
  • a gear motor driven shaft 66 parallel to the gear motor power shaft 69 is rotatably installed in the inner cavity of the gear motor housing 65 .
  • the gear motor driven shaft 66 is fixedly sleeved with the same helical gear 67 , and the helical gear 67 on the gear motor driven shaft 66 meshes with the helical gear 67 on the gear motor power shaft 69 .
  • a fluid inlet 71 for the supercritical fluid 10 to pass through is opened in the middle of the two mutually meshing helical gears 67 .
  • a tooth slot 72 is formed between the two mutually meshing helical gears 67 .
  • tooth gaps 72 are beneficial to the expansion of the supercritical fluid 10 to improve the efficiency.
  • the gear motor driven shaft 66 is coaxially and detachably connected to the power input end of the generator 7 .
  • the circulation of the supercritical fluid 10 through the tooth slot 72 can drive the rotation of the helical gear 67 , thereby driving the rotation of the driven shaft 66 of the gear motor, and the driven shaft 66 of the gear motor then transmits the power to the generator 7 , the generator 7 performs power generation work.
  • the first fluid inlet and outlet 28, the second fluid inlet and outlet 37, the motor fluid inlet and outlet 61 and the gear motor fluid inlet and outlet 68 are all one-way channels. In actual work, one must be an inlet, One is for export.
  • the supercritical fluid motor 6 and the generator 7 in the present invention are both arranged inside the casing 2.
  • the supercritical fluid motor 6 is connected with the fluid tank 8 and the fluid pump 4 through the fluid pipeline 3, so The supercritical fluid motor 6 and the generator 7 can also be arranged on the ground or other locations. Since the properties of the supercritical fluid 10 are very similar to gas, it is not necessary to consider the situation that the fluid pipeline 3 is too long and the pressure is insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)

Abstract

一种超临界流体大功率风力发电机,包括竖直设置的风力机塔(13),风力机塔(13)的顶转动安装有转座(11),转座(11)的上端面固定安装有外壳(2),外壳(2)一端的外侧转动安装有风力机(1),外壳(2)的内部设置有与风力机(1)传动连接的超临界流体循环装置,外壳(2)的内部固定安装有超临界流体马达(6),超临界流体马达(6)的动力输出端传动连接有发电机(7),超临界流体马达(6)与超临界流体循环装置之间通过流体管路(3)连通。

Description

一种超临界流体大功率风力发电机 技术领域
本发明涉及一种大功率风力发电机,具体涉及一种超临界流体大功率风力发电机,属于风力发动机技术领域。
背景技术
目前,常见的风力发电机是以2MW机型为主,随着形势的发展,更大功率的风力发电机,越来越受到市场的欢迎。
2MW机型的风力发电机,因变速器不可靠,据统计它的故障率已高达20%以上,如果采用更大功率的机型,肯定故障率会更高。所以后来人们想到了用液压传动来替代齿轮变速机构,但是液压传动流动阻力比较大,据资料介绍液压传动的功率,很难达到数千KW,更难达到超越上万KW的功率,所以至今仍无大功率的机组出现。
为克服以上问题,直驱式大功率风力发电的试验机,也在各地出现,10MW机型的转子直径达到了惊人的10米,重量也达到了数百吨,这样不但制造困难巨大,而且因转速极低(只有10转/分左右),效率也不高,致使大功率的风力发电机的发展一度受到了很大的制约。
发明内容
本发明的目的在于提供一种功率大,效率高,结构简单,体积小、重量轻的超临界流体大功率风力发电机,以解决上述背景技术中提出的问题。
为解决上述技术问题,本发明提供如下技术方案:
一种超临界流体大功率风力发电机,包括竖直设置的风力机塔,风力机塔的顶转动安装有转座,转座的上端面固定安装有外壳,外壳一端的外侧转动安装有风力机,外壳的内部设置有与风力机传动连接的超临界流体循环装置,外壳的内部固定安装有超临界流体马达,超临界流体马达的动力输出端传动连接有发电机,超临界流体马达与超临界流体循环装置之间通过流体管路连通。
以下是本发明对上述技术方案的进一步优化:
外壳内固定安装有流体箱,流体箱的内部填充有超临界流体,超临界流体为临界二氧化碳流体与石墨的混合体,流体管路依次将流体箱、超临界流体循环装置、超临界流体马达串联,流体管路上安装有用于控制流体管路通断的开关。
进一步优化:超临界流体循环装置包括固定安装在外壳的内部的流体泵,外壳上转动连接有风力机轴,风力机轴的两端分别与流体泵和风力机传动连接。
进一步优化:流体泵包括泵体,泵体的上沿其轴线呈环形布设有多组柱塞组,柱塞组包括分别相对布设在泵体上下两端的第一缸套,第一缸套内分别安装有第一活塞,每组柱塞组的两第一活塞之间分别连接有第一连杆,第一缸套分别通过第一流体进出口与流体管路连通。
进一步优化:泵体的一端转动设置有动力输入轴,泵体的内部活动安装有与各柱塞组的第一连杆传动连接的传动组件,传动组件的动力输入端与动力输入轴传动连接,动力输入轴转动时驱动传动组件并通过各第一连杆带动各柱塞组做功。
进一步优化:超临界流体马达包括呈环形布设的多个马达缸体,多个马达缸体分别固定安装在马达缸盖上,多个马达缸体的内部分别安装有马达活塞,马达活塞的一端安装有动力输出组件,动力输出组件与发电机的电机动力轴传动连接。
进一步优化:马达缸盖上安装有用于对多个马达缸体配流的控制阀,控制阀与多个马达缸体之间通过流体导管相连通,控制阀的马达流体进出口与流体管路相连通,动力输出组件上安装有进出阀控制轴,进出阀控制轴的另一端与控制阀传动连接。
进一步优化:超临界流体循环装置包括固定安装在外壳的内部的流体泵,流体泵包括机体,机体的内部设置有用于安装动力传输组件的空腔,空腔内转动安装有偏心轴。
进一步优化:空腔的内壁上呈环形开设有多个第二缸套,第二缸套的内部分别滑动安装有第二活塞,第二活塞的一端均连接有第二连杆,第二缸套分别通过第二流体进出口与流体管路连通。
进一步优化:超临界流体马达包括齿轮马达壳体,齿轮马达壳体的内部转动安装有用于带动超临界流体流动的转动组件,齿轮马达壳体通过齿轮马达流体进出口与流体管路连通,转动组件与发电机传动连接。
本发明采用上述技术方案,结构简单,构思巧妙,超临界流体为临界二氧化碳流体与石墨的混合体,石墨是碳的一种结晶形态,具有六方晶格,原子呈层状排列,同一层晶面上碳原子间的距离为0.142nm,相互之间是共价键结合;层与层之间的距离为0.34nm,原子间呈分子键结合。层与层之间的作用力很小,故很容易在层间发生相对滑动。因为这些结构上的特点,导致它的强度、硬度很低,塑性也很差,但可以起到很好的减磨作用,是一种很好的固体润滑剂。
通过风力机轴的转动,可以带动流体泵进行工作,所述超临界流体会从流体箱内流至流体泵的内部,流体泵的持续工作会给流体泵内部的超临界流体压力,使超临界流体流至超临 界流体马达的内部,带动超临界流体马达进行工作,进入到超临界流体马达内部的超临界流体在超临界流体马达内部完成循环后,再通过流体管路流至流体箱的内部,形成一个循环。
通过风力机带动风力机轴转动,风力机轴可以带动动力输入轴的转动,动力输入轴旋转时,第一活接头带动第一摇摆轭作立体摆动,再通过第一摇摆臂上的活接头带动第一连杆和第一活塞作往复运动挤压超临界流体而工作,通过第一连杆相连接的两个第一活塞相互配合,使第一活塞在第一缸套进行挤压和释放超临界流体,将超临界流体通过流体管路输送至超临界流体马达内。
从流体泵内输送至超临界流体马达内的超临界流体通过马达流体进出口进入到流体导管的内部,再从流体导管内进入到马达缸体的内部,风力机不停地转动会使输送至马达缸体内的超临界流体越来越多,巨大的压力会驱动多个马达活塞与马达摇摆轭相互配合,以此来带动发电机动力轴的转动,进行发电。
同时马达摇摆轭的摆动会带动控制阀对超临界流体进行配流,使该超临界流体马达进行协调的工作。
风力机轴带动偏心轴转动,将动力传输给偏心轴轴承,偏心轴轴承再依次带动第二连杆工作,第二连杆带动第二活塞在第二缸套内做往复运动来挤压超临界流体,达到工作需求。
通过齿槽的超临界流体的流通可以带动斜齿轮的转动,以此来带动齿轮马达从动轴的转动,齿轮马达从动轴再将动力传输至发电机,发电机进行发电工作。
键体安装在斜齿轮与齿轮马达动力轴之间,能够使斜齿轮在转动时更稳定,为工作提供可靠动力。
超临界流体马达与发电机均设置在外壳的内部,在实际工作中,因超临界流体马达与流体箱、流体泵之间通过流体管路连通,所以超临界流体马达与发电机还可以设置在地面或者其他位置,因超临界流体与气体的性质非常相似,所以不需考虑流体管路过长导致压力不足的情况发生。
下面结合附图和实施例对本发明进一步说明。
附图说明
图1为本发明中实施例1的总体结构示意图;
图2为本发明实施例1中轴向柱塞式超临界流体泵结构示意图;
图3为图2中A-A向剖视图;
图4为本发明实施例1中带摇摆轭机构的轴向柱塞式超临界流体马达电机的结构剖视图;
图5为图4中B-B向剖视图;
图6为本发明实施例2中径向柱塞式超临界流体泵结构示意图;
图7为本发明实施例3中斜齿轮超临界流体马达结构剖视图;
图8为本发明实施例3中斜齿轮超临界流体马达结构示意图。
图中:1-风力机;2-外壳;3-流体管路;4-流体泵;5-开关;6-超临界流体马达;7-发电机;8-流体箱;9-恒温器;10-超临界流体;11-转座;12-风力机轴;13-风力机塔;14-动力输入轴;15-端盖;16-第一缸盖;17-第一活塞;18-第一缸套;19-第一连杆;20-第一轴承;21-动力轴壳体;22-泵体;23-第一摇摆轭摆杆;24-第一摇摆臂;25-第一摇摆轭;26-第一十字接头;27-第一摇摆轭座;28-第一流体进出口;29-密封圈;30-第一活接头;31-泵体上端盖;32-泵体下端盖;33-侧轴承;34-机体;35-第二活塞;36-第二缸盖;37-第二流体进出口;38-第二连杆;39-右侧盖;40-左侧盖;41-紧固件;42-第二缸套;43-卡环;44-偏心轴轴承;45-偏心轴;46-高压密封圈;47-发电机壳;48-发电机动力轴;49-发电机转子;50-发电机定子;51-转子轴承;52-马达摇摆轭摆杆;53-马达摇摆轭;54-马达摇摆轭十字接头;55-马达摇摆轭座;56-马达活接头;57-进出阀控制轴;58-控制阀;59-马达连杆;60-马达活塞;61-马达流体进出口;62-流体导管;63-马达缸体;64-马达缸盖;65-齿轮马达壳体;66-齿轮马达从动轴;67-斜齿轮;68-齿轮马达流体进出口;69-齿轮马达动力轴;70-键体;71-流体入口;72-齿槽;73-转动块;74-空腔;75-密封环;76-刮油环;77-柱塞组。
具体实施方式
实施例1:如图1所示,一种超临界流体大功率风力发电机,包括竖直设置的风力机塔13,风力机塔13的顶转动安装有转座11,转座11的上端面固定安装有外壳2,外壳2一端的外侧转动安装有风力机1,外壳2的内部设置有与风力机1传动连接的超临界流体循环装置,外壳2的内部固定安装有超临界流体马达6,超临界流体马达6的动力输出端传动连接有发电机7,超临界流体马达6与超临界流体循环装置之间通过流体管路3连通。
所述超临界流体循环装置包括固定安装在外壳2内部的流体箱8。
所述流体箱8的内部填充有超临界流体10。
所述流体管路3依次将流体箱8、超临界流体循环装置、超临界流体马达6串联。
所述流体管路3上安装有用于控制流体管路3通断的开关5。
这样设计,所述超临界流体10为超临界二氧化碳流体,因为超临界二氧化碳流体做功能力近似液体,流动性方面近似气体,是非常理想的工质。
在本实施例外,超临界流体10还可以为临界二氧化碳流体与石墨的混合体,石墨是碳的一种结晶形态,具有六方晶格,原子呈层状排列,同一层晶面上碳原子间的距离为0.142nm,相互之间是共价键结合;层与层之间的距离为0.34nm,原子间呈分子键结合。层与层之间的作用力很小,故很容易在层间发生相对滑动。因为这些结构上的特点,导致它的强度、硬度很低,塑性也很差,但可以起到很好的减磨作用,是一种很好的固体润滑剂。
所述风力机1靠近外壳2的一侧同轴设固定安装有风力机轴12,风力机轴12贯穿外壳2的外壁并向其内部延伸一段距离。
所述超临界流体循环装置包括固定安装在外壳2的内部的流体泵4,风力机轴12的两端分别与流体泵4和风力机1传动连接。
所述流体泵4与流体箱8之间通过流体管路3相连通,流体箱8内部的超临界流体10可以通过流体管路3进入到流体泵4的内部。
所述流体管路3在超临界流体循环装置内为单向管路。
所述流体泵4的基体内部充填气体,使其压力低于超临界流体压力,以便流体顺利利于缸体内,根据需要可以适当增减超临界流体泵缸体的数量。
所述超临界流体马达6与流体箱8之间通过流体管路3相连通。
在工作中,通过风力机轴12的转动,可以带动流体泵4进行工作,所述超临界流体10会从流体箱8内流至流体泵4的内部,流体泵4的持续工作会给流体泵4内部的超临界流体10压力,使超临界流体10流至超临界流体马达6的内部,带动超临界流体马达6进行工作,进入到超临界流体马达6内部的超临界流体10在超临界流体马达6内部完成循环后,再通过流体管路3流至流体箱8的内部,形成一个循环。
当需要停止该装置时,通过控制开关5,可以切断超临界流体10在超临界流体循环装置内的循环,使风力机1停止转动,超临界流体马达6停止做功。
如图2-3所示,在本实施中,所述流体泵4使用的为轴向柱塞式超临界流体泵,轴向柱塞式超临界流体泵包括固定安装在外壳2内部的泵体22。
流体泵4包括泵体22,泵体22的上沿其轴线呈环形布设有多组柱塞组77。
所述柱塞组77包括分别相对布设在泵体22上下两端的第一缸套18。
所述第一缸套18内分别安装有第一活塞17,每组柱塞组77的两第一活塞17之间分别连接有第一连杆19。
所述第一缸套18分别通过第一流体进出口28与流体管路3连通。
所述第一缸套18相互远离的一端均可拆卸安装有第一缸盖16,第一缸盖16与泵体22之间为密封连接。
所述第一缸盖16上开设有用于超临界流体10进出的第一流体进出口28。
所述第一缸套18的内部均滑动且同轴安装有可往复运动的第一活塞17,第一活塞17的外壁与第一缸套18的内壁形状相匹配。
所述第一连杆19与每个第一活塞17均为同轴线设置。
所述泵体22的一端转动安装有用于传输动力的动力输入轴14,动力输入轴14的一端与风力机轴12传动连接,动力输入轴14的另一端贯穿泵体22并向其内部延伸一段距离。
所述动力输入轴14延伸至泵体22内部的位置处设置有固定安装在泵体22内壁上的动力轴壳体21。
所述动力轴壳体21与动力输入轴14之间通过第一轴承20转动连接,第一轴承20的内圈与动力输入轴14的外壁转动连接,第一轴承20的外圈与动力轴壳体21的内壁滑动连接。
所述动力轴壳体21在远离传动组件的一侧可拆卸安装有端盖15,端盖15与动力轴壳体21之间为密封连接。
所述端盖15与动力输入轴14之间设置有密封圈29,密封圈29固定设置在端盖15靠近动力输入轴14的位置处,密封圈29与动力输入轴14之间为转动连接。
所述泵体22的内部且靠近其中间位置处设置有用于传输动力的传动组件,传动组件的动力输出端通过第一活接头30与动力输入轴14传动连接。
所述传动组件包括固定设置在泵体22内部且与动力输入轴14同轴的第一摇摆轭座27。
所述第一摇摆轭座27与动力输入轴14之间活动安装有用于驱动第一活塞17工作的第一摇摆轭25。
所述第一摇摆轭25与第一摇摆轭座27之间通过第一十字接头26连接。
所述第一摇摆轭25与每个第一连杆19之间均固定安装有第一摆臂24,第一摆臂24均安装在第一连杆19上靠近其中间的位置处。
所述泵体22的外部可拆卸安装有相互配合的泵体上端盖31和泵体下端盖32,泵体上端盖31和泵体下端盖32相互配合使泵体22的内腔与第一缸套18之间形成一个密闭的空间。
所述第一十字接头26连接在第一摇摆轭25和第一摇摆轭座27之间,可使第一摇摆轭25以第一摇摆轭座27为支点并在第一摇摆轭座27上立体摆动。
在工作中,通过风力机1带动风力机轴12转动,风力机轴12可以带动动力输入轴14的转动,动力输入轴14旋转时,第一活接头30带动第一摇摆轭25作立体摆动,再通过第一摇摆臂24上的活接头30带动第一连杆19和第一活塞17作往复运动挤压超临界流体10而工作,通过第一连杆19相连接的两个第一活塞17相互配合,使第一活塞17在第一缸套18进行挤压和释放超临界流体10,将超临界流体10通过流体管路3输送至超临界流体马达6内。
如图4-5所示,通过流体泵4挤压出的超临界流体10通过流体管路3进入到超临界流体马达6内,超临界流体马达6做功给发电机7输入动力,使发电机7进行发电工作。
所述超临界流体马达6包括呈环形布设的多个马达缸体63。
所述多个马达缸体63分别固定安装在马达缸盖64上。
所述多个马达缸体63的内部分别安装有马达活塞60,马达活塞60的一端安装有动力输出组件。
所述动力输出组件与发电机7的电机动力轴48传动连接
所述发电机7包括发电机壳47,电机壳47的内部转动设置有发电机动力轴48,所述发电机动力轴48使用“丁”字型动力轴。
所述发电机动力轴48的外侧呈环形套装有与发电机动力轴48相配合的发电机转子49。
所述发电机壳47的内壁且与发电机转子49相对应的位置处固定安装有发电机定子50。
所述发电机动力轴48的一端转动连接有转子轴承51,转子轴承51固定安装在发电机壳47上。
所述发电机动力轴48靠近转子轴承51的一端同轴且固定连接有转动块73。
所述马达缸盖64上安装有用于对多个马达缸体63配流的控制阀58,控制阀58与多个马达缸体63之间通过流体导管62相连通。
所述控制阀58的马达流体进出口61与流体管路3相连通,动力输出组件上安装有进出阀控制轴57,进出阀控制轴57的另一端与控制阀58传动连接。
所述动力输出组件包括驱动马达活塞60的马达连杆59。
所述马达连杆59远离马达活塞60的一端设置有马达摇摆轭53。
所述马达摇摆轭53的上端同轴安装有马达摇摆轭摆杆52,马达摇摆轭53通过马达摇摆轭摆杆52偏心设置在转动块73远离发电机动力轴48一侧的端面上。
所述马达连杆59与马达摇摆轭53之间通过马达活接头56连接。
所述马达摇摆轭53的中间位置处设置有马达摇摆轭座55,所述马达摇摆轭座55向下延伸一段距离,且马达摇摆轭座55固定安装在马达缸盖64的内部。
所述马达摇摆轭座55与马达摇摆轭53之间通过马达摇摆轭十字接头54转动连接。
所述马达摇摆轭座55的内部同轴设置有用钢丝软轴制成的的进出阀控制轴57。
所述控制阀58为现有技术,可在市面上直接购买获得,在此实施例中不做过多赘述。
在工作中,从流体泵4内输送至超临界流体马达6内的超临界流体10通过马达流体进出口61进入到流体导管62的内部,再从流体导管62内进入到马达缸体63的内部,风力机1不停地转动会使输送至马达缸体63内的超临界流体10越来越多,巨大的压力会驱动多个马达活塞60与马达摇摆轭53相互配合,以此来带动发电机动力轴48的转动,进行发电。
同时马达摇摆轭53的摆动会带动控制阀58对超临界流体10进行配流,使该超临界流体马达6进行协调的工作。
实施例2:如图6所示,该实施例是对实施例1中一种超临界流体大功率风力发电机做出的改进,其包括上述实施例1中一种超临界流体大功率风力发电机的所有技术特征,改进之处在于流体泵4的整体结构上。
所述流体泵4包括固定安装在外壳2内部的机体34,机体34的内部设置有用于安装动力传输组件的空腔74。
所述机体34在靠近风力机的一端固定安装有右侧盖39,机体34的另一端固定安装有左侧盖40。
所述右侧盖39与左侧盖40相互配合,使机体34的内部设置的用于安装动力传输组件的空腔74密封。
所述右侧盖39的中间位置处设置有用于将动力输送至动力传输组件的偏心轴45,偏心轴45的一端贯穿右侧盖39并向空腔74内延伸一段距离,偏心轴45的另一端与风力机轴12同轴且固定连接。
所述右侧盖39与偏心轴45相对应的位置处安装有用于密封空腔74的高压密封圈46,高压密封圈46与偏心轴45之间为转动连接。
所述动力传输组件包括固定安装在偏心轴45上位于空腔74位置处的偏心轴轴承44,偏心轴轴承44偏心安装在偏心轴45上。
所述偏心轴轴承44与右侧盖39、左侧盖40之间分别设置有多个用于支撑偏心轴轴承44在空腔74内转动的侧轴承33。
所述空腔74的内壁上呈环形开设有多个第二缸套42。
所述第二缸套42的内部分别滑动安装有第二活塞35,第二活塞35的形状与第二缸套42的形状相匹配。
所述第二活塞35的一端均连接有第二连杆38。
所述第二缸套42与机体34相对应的位置处可拆卸安装有第二缸盖36,第二缸盖36用于密封第二缸套42。
所述第二缸盖36上开设有用于超临界流体10通过的第二流体进出口37,该第二流体进出口37用于控制超临界流体10的进出。
所述第二缸盖36与机体34的连接处固定安装有用于密封第二缸套42的密封环75。
所述第二活塞35上环形套设有防止第二缸套42内超临界流体10流出的刮油环76。
所述第二连杆38的瓦端外部活动套设有卡环43,该卡环43可以使连杆靠在偏心轴轴承外圆上更牢固。
在工作中,风力机轴12带动偏心轴45转动,将动力传输给偏心轴轴承44,偏心轴轴承44再依次带动第二连杆38工作,第二连杆38带动第二活塞35在第二缸套42内做往复运动来挤压超临界流体10,达到工作需求。
实施例3:如图7-8所示,该实施例是对实施例1中一种超临界流体大功率风力发电机做出的改进,其包括上述实施例1中一种超临界流体大功率风力发电机的所有技术特征,改进之处在于超临界流体马达6的整体结构上。
所述超临界流体马达6包括固定安装在外壳2内部的齿轮马达壳体65,齿轮马达壳体65通过流体管路3与流体箱8相连通。
所述齿轮马达壳体65的内部转动安装有用于带动超临界流体10流动的转动组件。
所述齿轮马达壳体65的侧壁上开设有用于超临界流体10进出的齿轮马达流体进出口68,齿轮马达流体进出口68与齿轮马达壳体65的内腔相连通。
所述转动组件包括转动安装在齿轮马达壳体65内腔的齿轮马达动力轴69。
所述齿轮马达动力轴69上固定安装有键体70。
所述齿轮马达动力轴69上固定套设有斜齿轮67。
这样设计,键体70安装在斜齿轮67与齿轮马达动力轴69之间,能够使斜齿轮67在转动时更稳定,为工作提供可靠动力。
所述齿轮马达壳体65内腔转动安装有与齿轮马达动力轴69相平行的齿轮马达从动轴66。
所述齿轮马达从动轴66上固定套设有与相同的斜齿轮67,且齿轮马达从动轴66上的斜齿轮67与齿轮马达动力轴69上的斜齿轮67相互啮合。
所述两相互啮合的斜齿轮67中部开设有用于超临界流体10通过的流体入口71。
所述两相互啮合的斜齿轮67之间形成齿槽72。
这样设计,齿槽72有利于超临界流体10的膨胀而提高效率。
所述齿轮马达从动轴66与发电机7的动力输入端同轴可拆卸连接。
在工作中,通过齿槽72的超临界流体10的流通可以带动斜齿轮67的转动,以此来带动齿轮马达从动轴66的转动,齿轮马达从动轴66再将动力传输至发电机7,发电机7进行发电工作。
在本发明中,所表述的第一流体进出口28、第二流体进出口37、马达流体进出口61和齿轮马达流体进出口68均为单向通道,在实际工作中,必定一个为进口,一个为出口。
本发明中的超临界流体马达6与发电机7均设置在外壳2的内部,在实际工作中,因超临界流体马达6与流体箱8、流体泵4之间通过流体管路3连通,所以超临界流体马达6与发电机7还可以设置在地面或者其他位置,因超临界流体10与气体的性质非常相似,所以不需考虑流体管路3过长导致压力不足的情况发生。
对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变型仍落入本发明的保护范围之内。

Claims (10)

  1. 一种超临界流体大功率风力发电机,包括竖直设置的风力机塔(13),风力机塔(13)的顶转动安装有转座(11),转座(11)的上端面固定安装有外壳(2),外壳(2)一端的外侧转动安装有风力机(1),其特征在于:外壳(2)的内部设置有与风力机(1)传动连接的超临界流体循环装置,外壳(2)的内部固定安装有超临界流体马达(6),超临界流体马达(6)的动力输出端传动连接有发电机(7),超临界流体马达(6)与超临界流体循环装置之间通过流体管路(3)连通。
  2. 根据权利要求1所述的一种超临界流体大功率风力发电机,其特征在于:外壳(2)内固定安装有流体箱(8),流体箱(8)的内部填充有超临界流体(10),超临界流体(10)为临界二氧化碳流体与石墨的混合体,流体管路(3)依次将流体箱(8)、超临界流体循环装置、超临界流体马达(6)串联,流体管路(3)上安装有用于控制流体管路(3)通断的开关(5)。
  3. 根据权利要求2所述的一种超临界流体大功率风力发电机,其特征在于:超临界流体循环装置包括固定安装在外壳(2)的内部的流体泵(4),外壳(2)上转动连接有风力机轴(12),风力机轴(12)的两端分别与流体泵(4)和风力机(1)传动连接。
  4. 根据权利要求3所述的一种超临界流体大功率风力发电机,其特征在于:流体泵(4)包括泵体(22),泵体(22)的上沿其轴线呈环形布设有多组柱塞组(77),柱塞组(77)包括分别相对布设在泵体(22)上下两端的第一缸套(18),第一缸套(18)内分别安装有第一活塞(17),每组柱塞组(77)的两第一活塞(17)之间分别连接有第一连杆(19),第一缸套(18)分别通过第一流体进出口(28)与流体管路(3)连通。
  5. 根据权利要求4所述的一种超临界流体大功率风力发电机,其特征在于:泵体(22)的一端转动设置有动力输入轴(14),泵体(22)的内部活动安装有与各柱塞组(77)的第一连杆(19)传动连接的传动组件,传动组件的动力输入端与动力输入轴(14)传动连接,动力输入轴(14)转动时驱动传动组件并通过各第一连杆(19)带动各柱塞组(77)做功。
  6. 根据权利要求5所述的一种超临界流体大功率风力发电机,其特征在于:超临界流体马达(6)包括呈环形布设的多个马达缸体(63),多个马达缸体(63)分别固定安装在马达缸盖(64)上, 多个马达缸体(63)的内部分别安装有马达活塞(60),马达活塞(60)的一端安装有动力输出组件,动力输出组件与发电机(7)的电机动力轴(48)传动连接。
  7. 根据权利要求6所述的一种超临界流体大功率风力发电机,其特征在于:马达缸盖(64)上安装有用于对多个马达缸体(63)配流的控制阀(58),控制阀(58)与多个马达缸体(63)之间通过流体导管(62)相连通,控制阀(58)的马达流体进出口(61)与流体管路(3)相连通,动力输出组件上安装有进出阀控制轴(57),进出阀控制轴(57)的另一端与控制阀(58)传动连接。
  8. 根据权利要求1所述的一种超临界流体大功率风力发电机,其特征在于:超临界流体循环装置包括固定安装在外壳(2)的内部的流体泵(4),流体泵(4)包括机体(34),机体(34)的内部设置有用于安装动力传输组件的空腔(74),空腔(74)内转动安装有偏心轴(45)。
  9. 根据权利要求8所述的一种超临界流体大功率风力发电机,其特征在于:空腔(74)的内壁上呈环形开设有多个第二缸套(42),第二缸套(42)的内部分别滑动安装有第二活塞(35),第二活塞(35)的一端均连接有第二连杆(38),第二缸套(42)分别通过第二流体进出口(37)与流体管路(3)连通。
  10. 根据权利要求1所述的一种超临界流体大功率风力发电机,其特征在于:超临界流体马达(6)包括齿轮马达壳体(65),齿轮马达壳体(65)的内部转动安装有用于带动超临界流体(10)流动的转动组件,齿轮马达壳体(65)通过齿轮马达流体进出口(68)与流体管路(3)连通,转动组件与发电机(7)传动连接。
PCT/CN2021/073364 2020-01-22 2021-01-22 一种超临界流体大功率风力发电机 WO2022155911A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010089573 2020-01-22
CN202110076915.0 2021-01-20
CN202110076915.0A CN112648145B (zh) 2020-01-22 2021-01-20 一种超临界流体大功率风力发电机

Publications (1)

Publication Number Publication Date
WO2022155911A1 true WO2022155911A1 (zh) 2022-07-28

Family

ID=75370932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073364 WO2022155911A1 (zh) 2020-01-22 2021-01-22 一种超临界流体大功率风力发电机

Country Status (2)

Country Link
CN (1) CN112648145B (zh)
WO (1) WO2022155911A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107700A1 (en) * 2002-12-09 2004-06-10 Tennessee Valley Authority Simple and compact low-temperature power cycle
CN102748236A (zh) * 2011-04-22 2012-10-24 郑重胜 保证并网稳定的新型流体传动风力发电机
CN102959238A (zh) * 2010-11-30 2013-03-06 三菱重工业株式会社 风轮发电机和潮流发电机
WO2014087459A1 (en) * 2012-12-07 2014-06-12 Mitsubishi Heavy Industries, Ltd. Fluid working machine and wind turbine generator
CN206045921U (zh) * 2016-09-23 2017-03-29 厦门大学 一种用于制备超临界二氧化碳混合工质的系统
CN111980765A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种低温工质超临界发电的制冷系统及制冷设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405599B (zh) * 2014-09-24 2017-02-01 西安交通大学 一种利用太阳能的燃气‑超临界二氧化碳联合动力发电系统
KR20190052794A (ko) * 2017-11-09 2019-05-17 부산대학교 산학협력단 풍력 터빈 냉각 시스템 결합 유기 랭킨 사이클 발전 시스템
CN111980770A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种低温工质超临界发电系统或者动力设备
CN210396834U (zh) * 2019-08-02 2020-04-24 四季洋圃生物机电股份有限公司 超临界发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107700A1 (en) * 2002-12-09 2004-06-10 Tennessee Valley Authority Simple and compact low-temperature power cycle
CN102959238A (zh) * 2010-11-30 2013-03-06 三菱重工业株式会社 风轮发电机和潮流发电机
CN102748236A (zh) * 2011-04-22 2012-10-24 郑重胜 保证并网稳定的新型流体传动风力发电机
WO2014087459A1 (en) * 2012-12-07 2014-06-12 Mitsubishi Heavy Industries, Ltd. Fluid working machine and wind turbine generator
CN206045921U (zh) * 2016-09-23 2017-03-29 厦门大学 一种用于制备超临界二氧化碳混合工质的系统
CN111980765A (zh) * 2019-05-21 2020-11-24 北京宏远佰思德科技有限公司 一种低温工质超临界发电的制冷系统及制冷设备

Also Published As

Publication number Publication date
CN112648145A (zh) 2021-04-13
CN112648145B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US8297052B2 (en) Hydraulic electricity generator
CN2900850Y (zh) 风力发电系统
CN110578666A (zh) 一种水力恒压式双效压缩空气储能系统
Tao et al. Mechanical design and numerical simulation of digital-displacement radial piston pump for multi-megawatt wind turbine drivetrain
WO2009112942A2 (en) Dynamic fluid energy conversion
CN202659427U (zh) 用于风力发电的液压传动系统
CN106050758B (zh) 能量储存系统及发电厂
CN107905954A (zh) 一种具有雨水收集降温功能的风能发电机组保护舱
WO2022155911A1 (zh) 一种超临界流体大功率风力发电机
CN202659435U (zh) 开放式低速大流量径向柱塞泵
CN204476680U (zh) 用于潮汐发电设备的流体泵及潮汐发电设备
CN102384055B (zh) 低转速柱塞泵装置及应用该装置的风力发电装置
CN107956630A (zh) 摆动式海浪发电装置
CN109083821A (zh) 一种曲轴连杆式风能吸功泵
CN107917074B (zh) 一种给恒压储气源供气的专用空压机系统
CN202273819U (zh) 低转速柱塞泵装置及应用该装置的风力发电装置
CN105971981B (zh) 液压动力机构及液压式风力发电机
CN205918543U (zh) 液压式风力发电机
CN205027520U (zh) 一种低温绝热气瓶用截止阀寿命试验系统
CN108180104A (zh) 基于换向阀的水压发动机
CN210422861U (zh) 水力循环发电系统及其高压泵
CN102720647A (zh) 开放式低速大流量径向柱塞泵
CN104595143B (zh) 立式双动式旋压泵
CN202468145U (zh) 利用自然流水或风力作为动力的发电装置
CN103133291A (zh) 超高压径向柱塞泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920309

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21920309

Country of ref document: EP

Kind code of ref document: A1