WO2022155886A1 - 无线通信的方法、装置、通信设备及存储介质 - Google Patents

无线通信的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022155886A1
WO2022155886A1 PCT/CN2021/073274 CN2021073274W WO2022155886A1 WO 2022155886 A1 WO2022155886 A1 WO 2022155886A1 CN 2021073274 W CN2021073274 W CN 2021073274W WO 2022155886 A1 WO2022155886 A1 WO 2022155886A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
information
configuration information
terminal
base station
Prior art date
Application number
PCT/CN2021/073274
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21920284.3A priority Critical patent/EP4283885A4/en
Priority to US18/262,160 priority patent/US20240088991A1/en
Priority to CN202180000266.4A priority patent/CN112889227A/zh
Priority to PCT/CN2021/073274 priority patent/WO2022155886A1/zh
Publication of WO2022155886A1 publication Critical patent/WO2022155886A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • H04B7/18534Arrangements for managing transmission, i.e. for transporting data or a signalling message for enhancing link reliablility, e.g. satellites diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a method, an apparatus, a communication device and a storage medium for wireless communication.
  • Non-terrestrial networks (NTN, Non-Terrestrial Networks), especially satellite communication networks, have the characteristics of wide coverage, strong disaster resistance and large capacity.
  • NTN can be used as a supplement to the fifth-generation mobile communication network (5G, 5th-Generation) terrestrial network, providing continuous services for Internet of Things (IoT, Internet of Things) equipment and mobility platform users, so that the reliability of the 5G network can be improved.
  • 5G fifth-generation mobile communication network
  • IoT Internet of Things
  • the scalability of 5G networks can also be enhanced by providing broadcast or multicast services directly to user equipment at the edge of the network. It can also provide network services for users in remote areas and isolated islands, making network services ubiquitous.
  • the transmission rate supported by the satellite communication network is relatively low, for example, the transmission rate that a single user can support is only tens of Mbps. This cannot meet the high transmission rate requirements of services in specific scenarios, for example, cannot meet the transmission rate requirements of services in enhanced mobile broadband (eMBB, enhanced Mobile Broad Band) scenarios.
  • eMBB enhanced Mobile Broad Band
  • the embodiments of the present disclosure disclose a method, an apparatus, a communication device, and a storage medium for wireless communication.
  • a method for wireless communication wherein, applied to a terminal, the method includes:
  • Data is transmitted simultaneously on multiple beams of the satellite.
  • a method for wireless communication wherein, applied to a base station, the method includes:
  • Data is transmitted simultaneously on multiple beams of the satellite.
  • an apparatus for wireless communication wherein, applied to a terminal, the apparatus includes a first transmission module; wherein,
  • the first transmission module is configured to transmit data simultaneously on multiple beams of the satellite.
  • an apparatus for wireless communication wherein, when applied to a base station, the apparatus includes a second transmission module; wherein,
  • the second transmission module is configured to transmit data simultaneously on multiple beams of the satellite.
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • data is simultaneously transmitted on multiple beams of the satellite.
  • the terminal since the data is simultaneously transmitted on multiple beams of the satellite, that is, the terminal can simultaneously transmit data on different beams at the same time, compared to the fact that the data can only be transmitted on a single beam of the satellite In the manner, data can be transmitted in parallel on the multiple beams, which can improve the transmission rate of data transmission between the terminal and the base station.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram illustrating signal coverage of a satellite beam according to an exemplary embodiment.
  • FIG. 4 is a schematic diagram illustrating signal coverage of a satellite beam according to an exemplary embodiment.
  • FIG. 5 is a schematic diagram illustrating signal coverage of a satellite beam according to an exemplary embodiment.
  • FIG. 6 is a schematic diagram illustrating signal coverage of a satellite beam according to an exemplary embodiment.
  • Fig. 7 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • FIG. 11 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 13 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 14 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 15 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 16 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 17 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 18 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 19 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 20 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 21 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 22 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 23 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 24 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 25 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 26 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 27 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • FIG. 28 is a schematic flowchart of a wireless communication method according to an exemplary embodiment.
  • FIG. 29 is a schematic diagram of a wireless communication apparatus according to an exemplary embodiment.
  • FIG. 30 is a schematic diagram of a wireless communication apparatus according to an exemplary embodiment.
  • FIG. 31 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 32 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on a mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME). Alternatively, the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the embodiments of the present disclosure enumerate multiple implementation manners to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure may be executed independently, or may be executed together with the methods of other embodiments in the embodiments of the present disclosure, or may be executed alone or in combination and then executed together with some methods in other related technologies; this is not limited by the embodiments of the present disclosure.
  • AR Augmented Reality
  • VR Virtual Reality
  • An important feature of the new generation technology is to support flexible configuration of multiple business types.
  • Different service types have different requirements for wireless communication technology.
  • eMBB enhanced Mobile Broad Band
  • eMBB enhanced Mobile Broad Band
  • URLLC Ultra Reliable Low Latency Communication
  • mMTC massive Machine Type Communication
  • a new generation of wireless communication systems requires flexible and configurable designs to support the transmission of multiple service types.
  • Satellite communication refers to the communication carried out by radio communication equipment on the ground using satellites as relays.
  • the satellite communication system consists of a satellite part and a ground part.
  • the characteristics of satellite communication are: the communication range is large; as long as the radio waves emitted by the satellite cover the range, communication can be carried out from any two points; it is not easily affected by land disasters and has high reliability.
  • satellite communication has the following characteristics: 1. Extendable coverage: For areas that cannot be covered by cellular communication systems or have high coverage costs, such as oceans, deserts and remote mountainous areas, satellite communication can be used to solve the problem. communication problems. 2. Emergency communication: Under the condition that the cellular communication infrastructure is unavailable due to extreme conditions such as disasters (such as earthquakes, etc.), satellite communication can be used to quickly establish a communication connection. 3. Provide industry applications: For example, for delay-sensitive services of long-distance transmission, the delay of service transmission can be reduced by means of satellite communication.
  • the satellite communication system and the terrestrial cellular communication system will gradually realize the deep integration, and truly realize the intelligent connection of all things. Whether it is a satellite-ground integrated NTN or a separate NTN, compared with a typical 5G network, it will bring greater performance benefits such as coverage, user bandwidth, system capacity, service reliability, service availability, energy consumption, and connection density. It can provide users with a more reliable and consistent service experience, reduce the cost of operator network deployment, and connect the multi-dimensional space of air, sky, earth and sea to form an integrated ubiquitous network pattern.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, and the method includes:
  • Step 21 simultaneously transmit data on multiple beams of the satellite.
  • the satellite can be a flying base station or a flying device that transmits data between the terminal and the base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • the satellite may be a Low Earth Orbiting (LEO, Low Earth Orbiting).
  • LEO Low Earth Orbiting
  • the satellite may also be a medium orbit satellite (MEO, Medium Earth Orbiting) or a geostationary orbit satellite (GEO, Geostationary Earth Orbiting).
  • the satellite may be deployed in an airspace where the density of ground base stations is less than the density threshold and the channel quality of the wireless communication environment is less than the quality threshold.
  • the density of ground base stations is less than the density threshold and the channel quality of the wireless communication environment is less than the quality threshold.
  • the quality threshold For example, remote mountainous and/or oceanic airspace.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • data is transmitted simultaneously on multiple beams of a satellite or on multiple beams of multiple satellites.
  • data is transmitted simultaneously on multiple beams of the same satellite.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data. In this way, the data transmission rate between the terminal and the base station can be improved.
  • one satellite can transmit or receive data on multiple beams.
  • one satellite can transmit or receive data on three beams, and the three beams are respectively Beam 1, Beam 2 and Beam 3.
  • the signal coverage and/or service time of different beams are different.
  • the signal coverage of beam 1 is larger than the signal coverage of beam 2 and beam 3.
  • the service duration of beam 2 is greater than the service duration of beam 1 and beam 3, that is, t2>t1>t3.
  • each of the multiple beams can serve terminals within the signal coverage of the beam.
  • multiple beams can simultaneously provide services to terminals in an area covered by signals of the multiple beams simultaneously. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • data is transmitted simultaneously on multiple beams of different satellites.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data. In this way, the data transmission rate between the terminal and the base station can be improved.
  • the multiple beams may be working beams of multiple satellites.
  • the beams of satellite 1 are beam 1 and beam 2 ; the beam of satellite 2 is beam 3 .
  • different satellites may have different operating altitudes relative to the ground and/or operating speeds relative to the ground.
  • the operating altitude of satellite 1 is greater than the operating altitude of satellite 2, or the operating speed of satellite 1 is lower than the operating speed of satellite 2.
  • the signal coverage and/or service time of the beams of different satellites is different.
  • the signal coverage of beam 1 is greater than the signal coverage of beam 3.
  • the service duration of beam 1 is greater than the service duration of beam 3, that is, t1>t3.
  • each beam of a different satellite can serve terminals within the signal coverage of that beam.
  • the beams of different satellites can simultaneously provide services to terminals in an area covered by the signals of the beams of the different satellites simultaneously.
  • the terminal receives configuration information of the multiple beams sent by the base station; the terminal simultaneously transmits data on the multiple beams indicated by the configuration information.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data.
  • the satellite may send the configuration information to the terminal in a unicast manner. In another embodiment, the satellite may transmit the configuration information to the terminal by broadcasting.
  • the configuration information may be sent to the terminal when the terminal is in a radio resource control (RRC, Radio Resource Control) connected state or in an RRC disconnected state.
  • RRC Radio Resource Control
  • the satellite can send the configuration information to each terminal through system messages, RRC signaling, or Downlink Control Information (DCI, Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the satellite can send the configuration information to each terminal through a system message. In this way, multiplexing of RRC signaling, system messages or downlink control information, etc. is realized, and the compatibility of signaling is improved.
  • the configuration information includes one or more of the following beam information:
  • the identification ID information of the beam is the identification ID information of the beam
  • the service time information of the beam is the service time information of the beam.
  • data may be simultaneously transmitted on multiple beams indicated by the ID information of the beams in the configuration information.
  • the beam indicated by the ID information of the beam may be a beam scheduled for data transmission by the terminal; or, the beam indicated by the ID information of the beam may be a beam selected by the terminal for data transmission.
  • the base station may send a scheduling request carrying the selected beam to the base station, and the base station may determine a beam for the terminal to perform data transmission according to the scheduling request.
  • the frequency points of different beams may be the same or different.
  • the bandwidths of the different beams may be the same or different.
  • the service time information of the beam may be time point information.
  • the service time information is information of time 1 and time 2, that is, the service time information indicates the duration between time 1 and time 2.
  • the service time of the beam may also be time point information and duration information.
  • the service time information is time 1 and duration 1, that is, the service time information indicates a time period corresponding to time 1 and duration 1.
  • the service time information is determined according to the operating altitude and/or the operating speed of the satellite relative to the ground. In one embodiment, in response to the operating height of the satellite relative to the ground being greater than the altitude threshold, it is determined that the duration indicated by the service time information is greater than the duration threshold; and in response to the satellite's operating altitude relative to the ground being less than the altitude threshold, it is determined that the duration indicated by the service time information is less than the duration threshold.
  • the beam information in the configuration information may include different types of beam information.
  • the beam information may include beam information of the main beam and beam information of the auxiliary beam.
  • the coverage of the main beam is greater than the coverage of the secondary beam, and/or the service duration of the primary beam is greater than the service duration of the secondary beam.
  • the frequency domain resources used by the beams indicated by different types of beam information may be the same or different.
  • the satellite sends configuration information including beam information to the terminal, wherein the beam information includes beam information of the main beam and beam information of the auxiliary beam; the terminal is on the main beam and the auxiliary beam of a satellite , and transmit the data of the base station at the same time.
  • the data transmission rate between the terminal and the base station can be improved.
  • the base station can select any number of auxiliary beams from the multiple auxiliary beams for the terminal to perform data transmission.
  • the beam of satellite 1 is beam 1
  • the beam of satellite 2 is beam 2
  • the terminal can communicate with the base station through beam 1 of satellite 1 and beam 2 of satellite 2.
  • the terminal is on beam 1 of satellite 1 and beam 2 of satellite 2, simultaneously transmitting data. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • the terminal may determine the primary serving satellite and the secondary serving satellite according to the ephemeris information.
  • the ephemeris information includes operating altitude information. In response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite.
  • the terminal transmits data simultaneously on the beam of the primary serving satellite and on the beam of the secondary serving satellite. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station can select any number of auxiliary service satellites from a plurality of auxiliary service satellites for the terminal to perform data transmission.
  • the terminal may receive configuration information of the primary serving base station and/or the secondary serving base station sent by the primary serving base station before using the beam of the primary serving satellite and the beam of the secondary serving satellite to simultaneously transmit data.
  • the configuration information includes one or more of the following information of the beam information: ID information of the beam, frequency point information of the beam, bandwidth information of the beam, and service time information of the beam.
  • a request message for acquiring configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, the number of times indicated by the configuration information data is transmitted simultaneously on each beam.
  • a request message for obtaining configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, on multiple beams indicated by the configuration information, at the same time transfer data.
  • data of the base station is simultaneously transmitted on multiple beams of the satellite.
  • the terminal since the data of the base station is simultaneously transmitted on multiple beams of the satellite, that is, the terminal can simultaneously transmit the data of the base station on different beams at the same time, compared with the data of the base station, which can only be transmitted on a single beam of the satellite
  • the data of the base station can be transmitted in parallel on multiple beams, which can improve the transmission rate of data transmitted between the terminal and the base station.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, and the method includes:
  • Step 71 Simultaneously transmit data on multiple beams of one satellite; or, simultaneously transmit data on multiple beams of multiple satellites.
  • the configuration information sent by the base station is received; and data is simultaneously transmitted on multiple beams of a satellite indicated by the configuration information.
  • data may be simultaneously transmitted on one main beam and at least one auxiliary beam of a satellite indicated by the configuration information.
  • the beam information in the configuration information may include different types of beam information.
  • the beam information may include beam information of the main beam and beam information of the auxiliary beam.
  • the coverage of the main beam is greater than the coverage of the secondary beam, and/or the service duration of the primary beam is greater than the service duration of the secondary beam.
  • the frequency domain resources used by the beams indicated by different types of beam information may be the same or different.
  • the primary serving satellite and the secondary serving satellite are determined according to the ephemeris information; data is simultaneously transmitted on the beam of the primary serving satellite and the beam of the secondary serving satellite.
  • data may be simultaneously transmitted on a beam of a main serving satellite and a beam of at least one serving satellite.
  • the satellite in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite.
  • the frequency domain resources used by the beams of different satellites may be the same or different.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, and the method includes:
  • Step 81 Receive configuration information sent by the base station
  • the configuration information is used for the terminal to determine multiple beams for transmitting data.
  • the configuration information includes one or more of the following beam information:
  • the service time information of the beam is the service time information of the beam.
  • the configuration information may be sent by the base station, or may be pre-stored in the terminal. In this way, when the terminal needs to transmit data, it can simultaneously transmit data on multiple beams of the satellite indicated by the configuration information.
  • a request message for acquiring configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, the number of times indicated by the configuration information data is transmitted simultaneously on each beam.
  • a request message for obtaining configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, on multiple beams indicated by the configuration information, simultaneously transfer data.
  • the beam information includes:
  • the first beam may be the main beam; the second beam may be the auxiliary beam.
  • the frequency domain resources used by the first beam and the second beam may be the same or different.
  • a satellite sends configuration information to a terminal, wherein the beam information in the configuration information includes information of the first beam and information of the second beam; the terminal is on the first beam and the second beam of a satellite, and at the same time transfer data.
  • the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station may select any number of second beams from the plurality of second beams for the terminal to perform data transmission.
  • this embodiment provides a method for wireless communication, wherein, applied to a terminal, the method includes:
  • Step 91 Receive a system message carrying configuration information sent by a base station; or, receive an RRC message carrying configuration information sent by a base station; or, receive a medium access control MAC control element CE that carries configuration information sent by a base station; or, receive a base station The sent physical layer message that carries configuration information.
  • a system message carrying configuration information sent by a base station is received; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • an RRC message carrying configuration information sent by a base station is received; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • the MAC CE that carries the configuration information sent by the base station is received; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • a physical layer message carrying configuration information sent by a base station is received; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • this embodiment provides a method for wireless communication, wherein, applied to a terminal, the method includes:
  • Step 101 In response to the need to initiate a service whose data transmission rate is greater than a rate threshold, send a request message for acquiring configuration information to a base station.
  • it may be a rate threshold sent by the receiving base station.
  • the rate threshold may also be preconfigured in the terminal.
  • the rate threshold is determined according to the channel environment in which data is transmitted between the terminal and the base station. In one embodiment, in response to the channel quality of data transmitted between the terminal and the base station being greater than the quality threshold, the rate threshold is determined to be greater than a predetermined value; in response to the channel quality of the data transmitted between the terminal and the base station being less than the quality threshold, it is determined that the rate threshold is less than the predetermined value value. In this way, the rate threshold can be adapted to the channel environment.
  • a method for wireless communication is provided in this embodiment, wherein, applied to a terminal, the method includes:
  • Step 111 Receive configuration information sent by the base station according to the request message
  • a request message for acquiring configuration information is sent to the base station; and the configuration information sent by the base station according to the request message is received.
  • the request message may carry the identification information of the satellite, and the base station sends the configuration information of the satellite corresponding to the identification information to the terminal according to the request message.
  • the request message may carry the identification information A of satellite A, the identification information of satellite B, and the identification information C of satellite C.
  • the base station After receiving the request message, the base station can send the configuration of satellite A, satellite B, and satellite C to the terminal. information.
  • the configuration information includes one or more of the following beam information:
  • the service time information of the beam is the service time information of the beam.
  • this embodiment provides a method for wireless communication, wherein, applied to a terminal, the method includes:
  • Step 121 Simultaneously transmit data on the first beam and the second beam of a satellite determined according to the configuration information.
  • the coverage of the first beam is greater than the coverage of the second beam, and/or the service duration of the first beam is greater than the service duration of the second beam.
  • the first beam may be the main beam; the second beam may be the auxiliary beam.
  • the frequency domain resources used by the first beam and the second beam may be the same or different.
  • a satellite sends configuration information to the terminal, wherein the configuration information includes information of the first beam and information of the second beam; the terminal transmits data simultaneously on the first beam and the second beam of a satellite.
  • the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station may select any number of second beams from the multiple second beams for the terminal to perform data transmission.
  • a method for wireless communication is provided in this embodiment, wherein, when applied to a terminal, the satellite includes a main serving satellite and an auxiliary serving satellite; the method includes:
  • Step 131 simultaneously transmit data on the beam of the main serving satellite and the beam of the auxiliary serving satellite;
  • the orbital height of the main serving satellite is greater than the orbital height of the auxiliary serving satellite, and/or the operating speed of the main serving satellite relative to the ground is lower than the operating speed of the auxiliary serving satellite.
  • the terminal may determine the primary serving satellite and the secondary serving satellite according to the ephemeris information. In one embodiment, in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite. In one embodiment, the terminal transmits data of the base station simultaneously on the beam of the primary serving satellite and on the beam of the secondary serving satellite. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • there may be multiple auxiliary service satellites and the base station may select any number of auxiliary service satellites from the multiple auxiliary service satellites for the terminal to perform data transmission.
  • the terminal may receive configuration information of the primary serving base station and/or the secondary serving base station sent by the primary serving base station before using the beam of the primary serving satellite and the beam of the secondary serving satellite to simultaneously transmit data.
  • this embodiment provides a method for wireless communication, wherein, applied to a terminal, the method includes:
  • Step 141 Determine the primary serving satellite according to the ephemeris information.
  • the ephemeris information may include satellite operating speed information, satellite operating altitude information, satellite operating trajectory information, and the like.
  • the satellite in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite. In another embodiment, in response to the operating speed of the satellite being less than the speed threshold, the satellite is determined to be the primary serving satellite; in response to the operating speed of the satellite being greater than the speed threshold, the satellite is determined to be the secondary serving satellite.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, and the method includes:
  • Step 151 Determine the main serving satellite according to the received ephemeris information sent by the base station using the satellite; or, determine the main serving satellite according to pre-acquired ephemeris information of different satellites.
  • the base station sends a system message carrying ephemeris information of the corresponding satellite to the terminal through different satellites; after receiving the system message, the terminal determines the main serving satellite based on the ephemeris information carried in the system message.
  • the base station can obtain the ephemeris information of each satellite; the base station sends a system message carrying the ephemeris information of the corresponding satellite to each satellite; after each satellite receives the system message carrying the ephemeris information of the satellite, it sends The system message is sent to the terminal.
  • a satellite includes satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites is a information, b information, and c information, respectively.
  • the system message carrying the a information is the system message A
  • the system message carrying the b information is the system message.
  • the base station can send system message A to satellite A, system message B to satellite B, and system message C to satellite C.
  • Satellite A sends system message A to the terminal after receiving system message A;
  • satellite B sends system message B to the terminal after receiving system message B;
  • satellite C sends system message C to the terminal after receiving system message C .
  • the terminal can determine the primary serving satellite according to the received ephemeris information.
  • the base station sends indication information to a plurality of satellites, where the indication information instructs the satellite to send the ephemeris information corresponding to the satellite to the terminal.
  • satellites include satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites are respectively a information, b information and c information. Then when the base station sends the instruction information to satellite A, the satellite A will send the a information to the terminal; when the base station sends the instruction information to the satellite B, the satellite B will send the b information to the terminal; when the base station sends the instruction information to the satellite C, the satellite C will send the information to the satellite C.
  • the terminal sends c information. In this way, the terminal can determine the primary serving satellite according to the received ephemeris information.
  • the base station sends a system message carrying ephemeris information of multiple satellites to the terminal through one satellite; after receiving the system message, the terminal determines the main serving satellite based on the ephemeris information carried in the system message.
  • the base station sends indication information to one satellite, where the indication information instructs the satellite to send ephemeris information corresponding to multiple satellites to the terminal.
  • satellites include satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites are respectively a information, b information and c information.
  • the base station sends the instruction information to the satellite A
  • the satellite A will send the information a, b and d to the terminal.
  • the terminal can determine the primary serving satellite according to the received ephemeris information.
  • ephemeris information of different satellites may be stored in the terminal in advance, so that the terminal may determine the main serving satellite according to the ephemeris information pre-stored in the terminal.
  • the satellite in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite. In another embodiment, in response to the operating speed of the satellite being less than the speed threshold, the satellite is determined to be the primary serving satellite; in response to the operating speed of the satellite being greater than the speed threshold, the satellite is determined to be the secondary serving satellite.
  • this embodiment provides a method for wireless communication, wherein, applied to a terminal, the method includes:
  • Step 161 In response to determining the primary serving satellite, access the primary serving satellite.
  • accessing the main serving satellite may be that the terminal accesses the base station through the main serving satellite based on a random access procedure.
  • the terminal may determine the primary serving satellite and the secondary serving satellite according to the ephemeris information. For example, in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite. In another embodiment, in response to the operating speed of the satellite being less than the speed threshold, the satellite is determined to be the primary serving satellite; in response to the operating speed of the satellite being greater than the speed threshold, the satellite is determined to be the secondary serving satellite.
  • the terminal in response to the terminal accessing the primary serving satellite, may wirelessly communicate with the base station via the primary serving satellite. For example, the terminal can send a scheduling request to the base station through the main serving satellite to request to schedule the beam of the auxiliary serving satellite for wireless communication, so that the base station can schedule the auxiliary serving satellite for the terminal to perform wireless communication; data is transmitted simultaneously on the secondary serving beam.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, and the method includes:
  • Step 171 receiving the configuration information sent by the base station using the main serving satellite;
  • the configuration information includes configuration information of the main serving satellite and/or configuration information of the auxiliary serving satellite.
  • configuration information sent by the base station using the primary serving satellite is received.
  • the configuration information includes configuration information of the primary serving satellite and configuration information of the secondary serving satellite.
  • the configuration information includes one or more of the following beam information:
  • the service time information of the beam is the service time information of the beam.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 181 Simultaneously transmit data on multiple beams of the satellite.
  • the satellite can be a flying base station or a flying device that transmits data between the terminal and the base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • the satellite may be a Low Earth Orbiting (LEO, Low Earth Orbiting).
  • LEO Low Earth Orbiting
  • the satellite may also be a medium orbit satellite (MEO, Medium Earth Orbiting) or a geostationary orbit satellite (GEO, Geostationary Earth Orbiting).
  • the satellite may be deployed in an airspace where the density of ground base stations is less than the density threshold and the channel quality of the wireless communication environment is less than the quality threshold.
  • the density of ground base stations is less than the density threshold and the channel quality of the wireless communication environment is less than the quality threshold.
  • the quality threshold For example, remote mountainous and/or oceanic airspace.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • data is transmitted simultaneously on multiple beams of a satellite or on multiple beams of multiple satellites.
  • data is transmitted simultaneously on multiple beams of the same satellite.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data. In this way, the data transmission rate between the terminal and the base station can be improved.
  • one satellite can transmit or receive data on multiple beams, for example, one satellite can transmit or receive data on three beams, and the three beams are beams respectively 1.
  • the signal coverage and/or service time of different beams are different.
  • the signal coverage of beam 1 is larger than the signal coverage of beam 2 and beam 3.
  • the service duration of beam 2 is greater than the service duration of beam 1 and beam 3, that is, t2>t1>t3.
  • each of the multiple beams can serve terminals within the signal coverage of that beam.
  • multiple beams can simultaneously provide services to terminals in an area covered by signals of the multiple beams simultaneously.
  • data is transmitted simultaneously on multiple beams of different satellites.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data. In this way, the data transmission rate between the terminal and the base station can be improved.
  • the multiple beams may be working beams of multiple satellites.
  • the beams of satellite 1 are beam 1 and beam 2; the beam of satellite 2 is beam 3.
  • different satellites may have different operating altitudes relative to the ground and/or operating speeds relative to the ground.
  • the operating altitude of satellite 1 is greater than the operating altitude of satellite 2, or the operating speed of satellite 1 is lower than the operating speed of satellite 2.
  • the signal coverage and/or service time of the beams of different satellites is different.
  • the signal coverage of beam 1 is greater than the signal coverage of beam 3.
  • the service duration of beam 1 is greater than the service duration of beam 3, that is, t1>t3.
  • each beam of a different satellite can serve terminals within the signal coverage of that beam.
  • the beams of different satellites can simultaneously provide services to terminals in an area covered by the signals of the beams of the different satellites simultaneously.
  • the base station sends configuration information of the multiple beams to the terminal; the base station transmits data simultaneously on the multiple beams indicated by the configuration information.
  • the simultaneous transmission of data may be simultaneous reception or simultaneous transmission of data.
  • the satellite may send the configuration information to the terminal in a unicast manner. In another embodiment, the satellite may transmit the configuration information to the terminal by broadcasting.
  • the configuration information may be sent to the terminal when the terminal is in a radio resource control (RRC, Radio Resource Control) connected state or in an RRC disconnected state.
  • RRC Radio Resource Control
  • the satellite can send the configuration information to each terminal through system messages, RRC signaling, or Downlink Control Information (DCI, Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the satellite can send the configuration information to each terminal through a system message. In this way, multiplexing of RRC signaling, system messages or downlink control information, etc. is realized, and the compatibility of signaling is improved.
  • the configuration information includes one or more of the following beam information:
  • the identification ID information of the beam is the identification ID information of the beam
  • the service time information of the beam is the service time information of the beam.
  • data may be simultaneously transmitted on multiple beams indicated by the ID information of the beams in the configuration information.
  • the beam indicated by the ID information of the beam may be a beam scheduled for data transmission by the terminal; or, the beam indicated by the ID information of the beam may be a beam selected by the terminal for data transmission.
  • the base station may send a scheduling request carrying the selected beam to the base station, and the base station may determine a beam for the terminal to perform data transmission according to the scheduling request.
  • the frequency points of different beams may be the same or different.
  • the bandwidths of the different beams may be the same or different.
  • the service time information of the beam may be time point information.
  • the service time information is information of time 1 and time 2, that is, the service time information indicates the duration between time 1 and time 2.
  • the service time of the beam may also be time point information and duration information.
  • the service time information is time 1 and duration 1, that is, the service time information indicates a time period corresponding to time 1 and duration 1.
  • the service time information is determined according to the operating altitude and/or the operating speed of the satellite relative to the ground. In one embodiment, in response to the operating height of the satellite relative to the ground being greater than the altitude threshold, it is determined that the duration indicated by the service time information is greater than the duration threshold; and in response to the satellite's operating altitude relative to the ground being less than the altitude threshold, it is determined that the duration indicated by the service time information is less than the duration threshold.
  • the beam information in the configuration information may include different types of beam information.
  • the beam information may include beam information of the main beam and beam information of the auxiliary beam.
  • the coverage of the main beam is greater than the coverage of the secondary beam, and/or the service duration of the primary beam is greater than the service duration of the secondary beam.
  • the frequency domain resources used by the beams indicated by different types of beam information may be the same or different.
  • the satellite sends configuration information including beam information to the terminal, wherein the beam information includes beam information of the main beam and beam information of the auxiliary beam; the base station is in the main beam and the auxiliary beam of a satellite. , and transmit data at the same time. In this way, the data transmission rate between the terminal and the base station can be improved.
  • the base station can select any number of auxiliary beams from the multiple auxiliary beams for the terminal to perform data transmission.
  • the beam of satellite 1 is beam 1
  • the beam of satellite 2 is beam 2.
  • the base station can communicate with the terminal through beam 1 of satellite 1 and beam 2 of satellite 2.
  • the base station is on beam 1 of satellite 1 and beam 2 of satellite 2, simultaneously transmitting data. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station may determine the primary serving satellite and the secondary serving satellite according to the ephemeris information.
  • the ephemeris information includes motion altitude information.
  • the satellite In response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite.
  • the base station transmits data simultaneously on the beam of the primary serving satellite and on the beam of the secondary serving satellite. In this way, the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station can select any number of auxiliary service satellites from a plurality of auxiliary service satellites for the terminal to perform data transmission.
  • a request message for obtaining configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, the terminal sends a Data is transmitted simultaneously on multiple beams.
  • a request message for obtaining configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, the terminal, on multiple beams indicated by the configuration information, Simultaneously transmit data.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 191 Transmit data simultaneously on multiple beams of one satellite; or transmit data simultaneously on multiple beams of multiple satellites.
  • the base station sends configuration information to the terminal; the base station simultaneously transmits data of the base station on multiple beams of a satellite indicated by the configuration information.
  • data may be simultaneously transmitted on one main beam and at least one auxiliary beam of a satellite indicated by the configuration information.
  • the beam information in the configuration information may include different types of beam information.
  • the beam information may include beam information of the main beam and beam information of the auxiliary beam.
  • the coverage of the main beam is greater than the coverage of the secondary beam, and/or the service duration of the primary beam is greater than the service duration of the secondary beam.
  • the frequency domain resources used by the beams indicated by different types of beam information may be the same or different.
  • the primary serving satellite and the secondary serving satellite are determined according to the ephemeris information; data is simultaneously transmitted on the beam of the primary serving satellite and the beam of the secondary serving satellite.
  • the data of the base station may be simultaneously transmitted on the beam of one main serving satellite and the beam of at least one serving satellite.
  • the satellite in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite.
  • the frequency domain resources used by the beams of different satellites may be the same or different.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 201 sending configuration information to the terminal
  • the configuration information is used for the terminal to determine multiple beams for transmitting data.
  • the configuration information includes one or more of the following beam information:
  • the service time information of the beam is the service time information of the beam.
  • the terminal in response to the terminal needing to transmit data with a data transmission rate greater than a rate threshold, the terminal sends a request message for obtaining configuration information to the base station; after receiving the configuration information sent by the base station according to the request message, the terminal indicates in the configuration information On the multiple beams of the base station, the data of the base station is transmitted simultaneously.
  • a request message for obtaining configuration information is sent to the base station; after receiving the configuration information sent by the base station according to the request message, on multiple beams indicated by the configuration information, at the same time transfer data.
  • the beam information includes:
  • the first beam may be the main beam; the second beam may be the auxiliary beam.
  • the frequency domain resources used by the first beam and the second beam may be the same or different.
  • a satellite sends configuration information to a terminal, wherein the beam information in the configuration information includes information of the first beam and information of the second beam; the base station is on the first beam and the second beam of a satellite, and at the same time transfer data.
  • the transmission rate of data transmission between the terminal and the base station can be improved.
  • the base station may select any number of second beams from the plurality of second beams for the terminal to perform data transmission.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 211 Send a system message carrying configuration information to the terminal; or, send an RRC message carrying configuration information to the terminal; or, send a MAC CE carrying configuration information to the terminal; or, send a physical layer message carrying configuration information to the terminal.
  • the base station sends a system message carrying configuration information to the terminal; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • the base station sends an RRC message carrying configuration information to the terminal; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • the base station sends a MAC CE carrying configuration information to the terminal; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • the base station sends a physical layer message carrying configuration information to the terminal; data is simultaneously transmitted on multiple beams indicated by the configuration information.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 221 Receive a request message for acquiring configuration information sent by the terminal.
  • the terminal sends a request message for acquiring configuration information to the base station in response to the need to initiate a service whose data transmission rate is greater than the rate threshold.
  • the rate threshold is sent to the terminal.
  • the rate threshold is determined according to the channel environment in which data is transmitted between the terminal and the base station. In one embodiment, in response to the channel quality of data transmitted between the terminal and the base station being greater than the quality threshold, the rate threshold is determined to be greater than a predetermined value; in response to the channel quality of the data transmitted between the terminal and the base station being less than the quality threshold, it is determined that the rate threshold is less than the predetermined value value. In this way, the rate threshold can be adapted to the channel environment.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 231 Send configuration information to the terminal according to the request message.
  • the request message may carry the identification information of the satellite, and the base station sends the configuration information of the satellite corresponding to the identification information to the terminal according to the request message.
  • the request message may carry the identification information A of satellite A, the identification information of satellite B, and the identification information C of satellite C.
  • the base station After receiving the request message, the base station can send the configuration of satellite A, satellite B, and satellite C to the terminal. information.
  • the configuration information includes one or more of the following beam information:
  • the identification ID information of the beam is the identification ID information of the beam
  • the service time information of the beam is the service time information of the beam.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 241 Simultaneously transmit data on the first beam and the second beam of a satellite determined according to the configuration information.
  • the coverage of the first beam is greater than the coverage of the second beam, and/or the service duration of the first beam is greater than the service duration of the second beam.
  • the first beam may be the main beam; the second beam may be the auxiliary beam.
  • the frequency domain resources used by the first beam and the second beam may be the same or different.
  • a satellite sends configuration information to the terminal, wherein the configuration information includes information of the first beam and information of the second beam; the base station transmits data simultaneously on the first beam and the second beam of a satellite.
  • the data transmission rate between the terminal and the base station can be improved.
  • the base station may select any number of second beams from the multiple second beams for the terminal to perform data transmission.
  • this embodiment provides a method for wireless communication, wherein, when applied to a base station, the satellite includes a primary serving satellite and an auxiliary serving satellite; the method includes:
  • Step 251 simultaneously transmit data on the beam of the main serving satellite and the beam of the auxiliary serving satellite;
  • the orbital height of the main serving satellite is greater than the orbital height of the auxiliary serving satellite, and/or the operating speed of the main serving satellite relative to the ground is lower than the operating speed of the auxiliary serving satellite.
  • the base station may determine the primary serving satellite and the secondary serving satellite according to the ephemeris information. For example, in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite.
  • the base station transmits data simultaneously on the beam of the primary serving satellite and on the beam of the secondary serving satellite. In this way, the data transmission rate between the terminal and the base station can be improved.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 261 Determine the primary serving satellite according to the ephemeris information.
  • the ephemeris information may include satellite operating speed information, satellite operating altitude information, satellite operating trajectory information, and the like.
  • the satellite in response to the operating altitude of the satellite being greater than the altitude threshold, the satellite is determined to be the primary serving satellite; in response to the operating altitude of the satellite being less than the altitude threshold, the satellite is determined to be the secondary serving satellite. In another embodiment, in response to the operating speed of the satellite being less than the speed threshold, the satellite is determined to be the primary serving satellite; in response to the operating speed of the satellite being greater than the speed threshold, the satellite is determined to be the secondary serving satellite.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 271 the main serving satellite sends configuration information to the terminal
  • the configuration information includes configuration information of the main serving satellite and/or configuration information of the auxiliary serving satellite.
  • the base station in response to the terminal accessing the primary serving satellite, transmits configuration information to the terminal using the primary serving satellite.
  • the configuration information includes configuration information of the primary serving satellite and configuration information of the secondary serving satellite.
  • the configuration information includes one or more of the following beam information:
  • the identification ID information of the beam is the identification ID information of the beam
  • the service time information of the beam is the service time information of the beam.
  • this embodiment provides a method for wireless communication, wherein, applied to a base station, the method includes:
  • Step 281 use the satellite to send ephemeris information to the terminal.
  • the base station can obtain the ephemeris information of each satellite; the base station sends a system message carrying the ephemeris information of the corresponding satellite to each satellite; after each satellite receives the system message carrying the ephemeris information of the satellite, it sends The system message is sent to the terminal.
  • a satellite includes satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites is a information, b information, and c information, respectively.
  • the system message carrying the a information is the system message A
  • the system message carrying the b information is the system message.
  • the base station can send system message A to satellite A, system message B to satellite B, and system message C to satellite C.
  • Satellite A sends system message A to the terminal after receiving system message A;
  • satellite B sends system message B to the terminal after receiving system message B;
  • satellite C sends system message C to the terminal after receiving system message C .
  • the terminal can determine the primary serving satellite according to the received ephemeris information.
  • the base station sends indication information to the satellite, where the indication information instructs the satellite to send the ephemeris information corresponding to the satellite to the terminal.
  • satellites include satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites are respectively a information, b information and c information. Then when the base station sends the instruction information to satellite A, the satellite A will send the a information to the terminal; when the base station sends the instruction information to the satellite B, the satellite B will send the b information to the terminal; when the base station sends the instruction information to the satellite C, the satellite C will send the information to the satellite C.
  • the terminal sends c information. In this way, the terminal can determine the primary serving satellite according to the received ephemeris information.
  • the base station sends indication information to one satellite, where the indication information instructs the satellite to send ephemeris information corresponding to multiple satellites to the terminal.
  • satellites include satellite A, satellite B, and satellite C.
  • the ephemeris information corresponding to the satellites are respectively a information, b information and c information.
  • the base station sends the instruction information to the satellite A
  • the satellite A will send the information a, b and d to the terminal.
  • the terminal can determine the primary serving satellite according to the received ephemeris information.
  • an embodiment of the present disclosure provides an apparatus for wireless communication, wherein, when applied to a terminal, the apparatus includes a first transmission module 291; wherein,
  • the first transmission module 291 is configured to transmit data simultaneously on multiple beams of the satellite.
  • an embodiment of the present disclosure provides an apparatus for wireless communication, wherein, when applied to a base station, the apparatus includes a second transmission module 301; wherein,
  • the second transmission module 301 is configured to transmit data simultaneously on multiple beams of the satellite.
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • this embodiment provides a terminal 800, which may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 806 provides power to various components of terminal 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800 .
  • Multimedia component 808 includes screens that provide an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the terminal 800 is in an operating mode, such as a calling mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between terminal 800 and other devices.
  • Terminal 800 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the terminal 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by the processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

本公开实施例提供了一种无线通信的方法,其中,应用于终端,该方法,包括:在卫星的多个波束上,同时传输数据。

Description

无线通信的方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信的方法、装置、通信设备及存储介质。
背景技术
非地面网络(NTN,Non-Terrestrial Networks),尤其是卫星通信网络,具有广覆盖、强灾害抵抗能力和大容量的特性。NTN既可作为第五代移动通信网络(5G,5th-Generation)地面网络的补充,为物联网(IoT,Internet of Things)设备和移动性平台用户提供连续性服务,使得5G网络的可靠性得到增强。也可以通过直接对网络边缘的用户设备提供广播或多播服务,使得5G网络的可扩展性得到增强。还可以为处于偏远地区和孤岛等的用户提供网络服务,使得网络服务无处不在。
相关技术中,卫星通信网络支持的传输速率较低,例如,单个用户能够支持的传输速率只有几十Mbps。这无法满足特定场景下业务的高传输速率要求,例如,无法满足增强带宽(eMBB,enhanced Mobile Broad Band)场景下业务的传输速率要求。
发明内容
本公开实施例公开了一种无线通信的方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种无线通信的方法,其中,应用于终端,所述方法,包括:
在卫星的多个波束上,同时传输数据。
根据本公开实施例的第二方面,提供一种无线通信的方法,其中,应用于基站,所述方法,包括:
在卫星的多个波束上,同时传输数据。
根据本公开实施例的第三方面,提供一种无线通信的装置,其中,应用于终端,所述装置,包括第一传输模块;其中,
所述第一传输模块,被配置为:在卫星的多个波束上,同时传输数据。
根据本公开实施例的第四方面,提供一种无线通信的装置,其中,应用于基站,所述装置,包括第二传输模块;其中,
所述第二传输模块,被配置为:在卫星的多个波束上,同时传输数据。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执 行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,在卫星的多个波束上,同时传输数据。这里,由于数据是在所述卫星的多个波束上同时传输的,即终端在同一时间可以在不同的波束上同时传输数据,相较于所述数据只能在所述卫星的单个波束上传输的方式,所述多个波束上能够并行传输数据,这能够提升所述终端与所述基站之间传输数据的传输速率。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图3是根据一示例性实施例示出的卫星波束的信号覆盖的示意图。
图4是根据一示例性实施例示出的卫星波束的信号覆盖的示意图。
图5是根据一示例性实施例示出的卫星波束的信号覆盖的示意图。
图6是根据一示例性实施例示出的卫星波束的信号覆盖的示意图。
图7是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图8是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图9是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图10是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图11是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图12是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图13是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图14是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图15是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图16是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图17是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图18是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图19是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图20是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图21是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图22是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图23是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图24是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图25是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图26是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图27是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图28是根据一示例性实施例示出的一种无线通信方法的流程示意图。
图29是根据一示例性实施例示出的一种无线通信装置的示意图。
图30是根据一示例性实施例示出的一种无线通信装置的示意图。
图31是根据一示例性实施例示出的一种终端的结构示意图。
图32是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术 (the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对相关应用和相关场景进行说明:
增强现实(AR,Augmented Reality)和虚拟现实(VR,Virtual Reality)等新型互联网应用的不断涌现对于无线通信技术提出了更高的要求,驱使无线通信技术的不断演进以满足应用的需求。
新一代技术的一个重要特点就是要支持多种业务类型的灵活配置。由于不同的业务类型对于无线通 信技术有不同的要求。例如,增强带宽(eMBB,enhanced Mobile Broad Band)业务类型主要的要求侧重在大带宽和高速率等方面。超高可靠低时延(URLLC,Ultra Reliable Low Latency Communication)业务类型主要的要求侧重在较高的可靠性以及低的时延方面。大规模机器类型通信(mMTC,massive Machine Type Communication)业务类型主要的要求侧重在大的连接数方面。因此,新一代的无线通信系统需要灵活和可配置的设计来支持多种业务类型的传输。
在无线通信技术中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信系统由卫星部分和地面部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响,可靠性高。
卫星通信作为地面的通信系统的补充,具有如下特点:1、可以延伸覆盖:对于蜂窝通信系统无法覆盖或是覆盖成本较高的地区,如海洋、沙漠和偏远山区等,可以通过卫星通信来解决通信的问题。2、应急通信:在发生灾难(如,地震等)的极端情况导致蜂窝通信的基础设施不可用的条件下,使用卫星通信可以快速的建立通信连接。3、提供行业应用:比如对于长距离传输的时延敏感业务,可以通过卫星通信的方式来降低业务传输的时延。
在无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正地实现万物智联。无论是星地融合的NTN还是单独的NTN,与典型的5G网络相比,都将对覆盖范围、用户带宽、系统容量、服务可靠性、服务可用性、能耗和连接密度等性能带来较大影响,能够为用户提供更为可靠的一致性服务体验,降低运营商网络部署成本,连通空、天、地、海多维空间,形成一体化的泛在网络格局。
如图2所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤21、在卫星的多个波束上,同时传输数据。
该卫星可以是飞行的基站或者是终端与基站之间传输数据的飞行设备。该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。这里,卫星可以为低轨卫星(LEO,Low Earth Orbiting)。需要说明的是,随着卫星无线通信网络的演进,卫星还可以是中轨卫星(MEO,Medium Earth Orbiting)或者地球同步轨道卫星(GEO,Geostationary Earth Orbiting)等。
在一个实施例中,该卫星可以是部署在地面基站密度小于密度阈值、无线通信环境的信道质量小于质量阈值的空域。例如,偏远的山区和/或海洋所在空域。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,在一个卫星的多个波束上或者在多个卫星的多个波束上,同时传输数据。
在一个实施例中,在同一个卫星的多个波束上,同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。如此,可以提升终端与基站之间传输数据的速率。
在一个实施例中,请参见图3,一个卫星可以在多个波束上进行数据的发送或是接收,例如,一个卫星可以在3个波束上进行数据的发送或是接收,3个波束分别为波束1、波束2和波束3。这里,不同的波束的信号覆盖范围和/或服务时间不同。例如,波束1的信号覆盖范围大于波束2和波束3的信号覆盖范围。又例如,波束2的服务时长大于波束1和波束3的服务时长,即t2>t1>t3。这里,多个波束中的每个波束都能给该波束的信号覆盖范围内的终端提供服务。这里,多个波束能够同时给被该多个波束的信号同时覆盖的区域中的终端同时提供服务。如此,能够提升终端与基站之间传输数据的传输速率。
在一个实施例中,在不同卫星的多个波束上,同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。如此,可以提升终端与基站之间传输数据的速率。
在一个实施例中,请参见图4,多个波束可以是多个卫星的工作波束,例如,卫星1的波束为波束1和波束2;卫星2的波束为波束3。这里,不同卫星相对地面的运行高度和/或相对地面的运行速度可以不同。例如,卫星1的运行高度大于卫星2的运行高度,或者卫星1的运行速度小于卫星2的运行速度。这里,不同卫星的波束的信号覆盖范围和/或服务时间不同。例如,波束1的信号覆盖范围大于波束3的信号覆盖范围。又例如,波束1的服务时长大于波束3的服务时长,即t1>t3。这里,不同卫星的每个波束都能给该波束的信号覆盖范围内的终端提供服务。这里,不同卫星的波束能够同时给被该不同卫星的波束的信号同时覆盖的区域中的终端同时提供服务。
在一个实施例中,终端会接收基站发送的该多个波束的配置信息;终端在该配置信息指示的多个波束上同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。
在一个实施例中,卫星可以是通过单播方式向终端发送配置信息。在另一个实施例中,卫星可以是通过广播方式向终端发送配置信息。
在一个实施例中,该配置信息可以在终端处于无线资源控制(RRC,Radio Resource Control)连接态或者处于RRC非连接态时发送给终端。对于处于RRC连接态的终端,卫星可以将该配置信息通过系统消息、RRC信令或者下行控制信息(DCI,Downlink Control Information)信令发送给各终端。对于处于RRC非连接态的终端,卫星可以将该配置信息通过系统消息发送给各终端。这样,实现了RRC信令、系统消息或下行控制信息等的复用,提升了信令的兼容性。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的标识ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
在一个实施例中,可以在配置信息中波束的ID信息指示的多个波束上,同时传输数据。
这里,波束的ID信息指示的波束可以是被调度用于供终端进行数据传输的波束;或者,波束的ID信息指示的波束可以是供终端进行选择以进行数据传输的波束。这里,需要说明的是,终端选择波束后,仍需要由基站统一进行调度进行数据传输。在一个实施例中,终端可以向基站发送携带选择的波束的调度请求,基站可以根据该调度请求确定供终端进行数据传输的波束。
在一个实施例中,不同波束的频点可以相同或者不同。
在一个实施例中,不同波束的带宽可以相同或者不同。
在一个实施例中,波束的服务时间信息可以是时间点的信息。例如,服务时间信息为时刻1和时刻2的信息,即服务时间信息指示时刻1和时刻2之间的时长。在另一个实施例中,波束的服务时间还可以是时间点的信息和时长信息。例如,服务时间信息为时刻1和时长1,即服务时间信息指示时刻1和时长1对应的时段。
在一个实施例中,服务时间信息是根据卫星相对地面的运行高度和/或相对地面的运行速度确定的。在一个实施例中,响应于卫星相对地面的运行高度大于高度阈值,确定服务时间信息指示的时长大于时长阈值;响应于卫星相对地面的运行高度小于高度阈值,确定服务时间信息指示的时长小于时长阈值。在另一个实施例中,响应于卫星相对地面的运行速度大于速度阈值,确定服务时间信息指示的时长小于时长阈值;响应于卫星相对地面的运行速度小于速度阈值,确定服务时间信息指示的时长大于时长阈值。
在一个实施例中,配置信息中的波束信息可以包括不同类型的波束信息。例如,波束信息可以包括主波束的波束信息和辅波束的波束信息。这里,主波束的覆盖范围大于辅波束的覆盖范围,和/或主波束的服务时长大于辅波束的服务时长。这里,不同类型的波束信息指示的波束所使用的频域资源可以相同也可以不同。
在一个实施例中,请参见图5,卫星向终端发送包括波束信息的配置信息,其中,波束信息包括主波束的波束信息和辅波束的波束信息;终端在一个卫星的主波束和辅波束上,同时传输基站的数据。如此,可以提升终端与基站之间传输数据的速率。这里,需要说明的是,辅波束可以有多个。基站可以从多个辅波束中选择任意数量的辅波束供终端进行数据传输。
在一个实施例中,请参见图6,卫星1的波束为波束1,卫星2的波束为波束2。终端可以通过卫星1的波束1和卫星2的波束2与基站进行通信。在一个实施例中,终端在卫星1的波束1和卫星2的波束2上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。
在一个实施例中,终端可以根据星历信息确定主服务卫星和辅服务卫星。在一个实施例中,星历信息包括运行高度的信息。响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在一个实施例中,终端在主服务卫星的波束上和辅服务卫星的波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,辅服务卫星可以有多个。基站可以从多个辅服务卫星中选择任意数量的辅服务卫星供终端进行数据传输。
在一个实施例中,终端在利用主服务卫星的波束和辅服务卫星的波束同时传输数据之前,可以接收主服务基站发送的主服务基站和/或辅服务基站的配置信息。这里,该配置信息,包括波束信息的以下一种或者多种信息:波束的ID信息、波束的频点信息、波束的带宽信息和波束的服务时间信息。
在一个实施例中,响应于终端需要传输数据传输速率大于速率阈值的数据,向基站发送获取配置信息的请求消息;在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,响应于终端与基站建立RRC连接,向基站发送获取配置信息的请求消息;在接 收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
本公开实施例中,在卫星的多个波束上,同时传输基站的数据。这里,由于基站的数据是在卫星的多个波束上同时传输的,即终端在同一时间可以在不同的波束上同时传输基站的数据,相较于基站的数据只能在卫星的单个波束上传输的方式,多个波束上能够并行传输基站的数据,这能够提升终端与基站之间传输数据的传输速率。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤71、在一个卫星的多个波束上,同时传输数据;或者,在多个卫星的多个波束上,同时传输数据。
在一个实施例中,接收基站发送的配置信息;在该配置信息指示的一个卫星的多个波束上,同时传输数据。这里,可以是在该配置信息指示的一个卫星的一个主波束和至少一个辅波束上,同时传输数据。这里,配置信息中的波束信息可以包括不同类型的波束信息。例如,波束信息可以包括主波束的波束信息和辅波束的波束信息。这里,主波束的覆盖范围大于辅波束的覆盖范围,和/或主波束的服务时长大于辅波束的服务时长。这里,不同类型的波束信息指示的波束所使用的频域资源可以相同也可以不同。
在一个实施例中,根据星历信息,确定主服务卫星和辅服务卫星;在主服务卫星的波束和辅服务卫星的波束上,同时传输数据。这里,可以是在一个主服务卫星的波束和至少一个服务卫星的波束上,同时传输数据。这里,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。这里,不同卫星的波束所使用的频域资源可以相同也可以不同。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤81、接收基站发送的配置信息;
其中,配置信息,用于供终端确定传输数据的多个波束。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
在一个实施例中,配置信息可以是基站发送的,也可以是预先存储在终端中。如此,终端在需要传输数据时,就可以在该配置信息指示的卫星的多个波束上,同时传输数据。
在一个实施例中,响应于终端需要传输数据传输速率大于速率阈值的数据,向基站发送获取配置信 息的请求消息;在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,响应于终端与基站建立RRC连接,向基站发送获取配置信息的请求消息;在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,波束信息,包括:
第一波束的信息;
第二波束的信息;其中,第一波束的覆盖范围大于第二波束的覆盖范围,和/或,第一波束的服务时长大于第二波束的服务时长。
这里,第一波束可以是主波束;第二波束可以是辅波束。这里,第一波束和第二波束所使用的频域资源可以相同也可以不同。
在一个实施例中,一个卫星向终端发送配置信息,其中,配置信息中的波束信息包括第一波束的信息和第二波束的信息;终端在一个卫星的第一波束和第二波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,第二波束可以有多个。基站可以从多个第二波束中选择任意数量的第二波束供终端进行数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤91、接收基站发送的携带配置信息的系统消息;或者,接收基站发送的携带配置信息的RRC消息;或者,接收基站发送的携带配置信息的媒体接入控制MAC控制单元CE;或者,接收基站发送的携带配置信息的物理层消息。
在一个实施例中,接收基站发送的携带配置信息的系统消息;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,接收基站发送的携带配置信息的RRC消息;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,接收基站发送的携带配置信息的MAC CE;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,接收基站发送的携带配置信息的物理层消息;在配置信息指示的多个波束上,同时传输数据。
这样,实现了RRC消息、系统消息、MAC CE和物理层消息的复用,提升了信令的兼容性。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤101、响应于需要发起数据传输速率大于速率阈值的业务,向基站发送获取配置信息的请求消 息。
在一个实施例中,可以是接收基站发送的速率阈值。在另一个实施例中,也可以是在终端中预先配置速率阈值。
在一个实施例中,根据终端与基站之间传输数据的信道环境确定速率阈值。在一个实施例中,响应于终端与基站之间传输数据的信道质量大于质量阈值,确定速率阈值大于预定值;响应于终端与基站之间传输数据的信道质量小于质量阈值,确定速率阈值小于预定值。如此,速率阈值可以适应于信道环境。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图11所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤111、接收基站根据请求消息发送的配置信息;
在一个实施例中,响应于需要发起数据传输速率大于速率阈值的业务,向基站发送获取配置信息的请求消息;接收基站根据请求消息发送的配置信息。
在一个实施例中,请求消息可以携带卫星的标识信息,基站根据请求消息向终端发送该标识信息对应的卫星的配置信息。
例如,请求消息可以携带A卫星的标识信息A、B卫星的标识信息B和C卫星的标识信息C,则基站在接收到请求消息后,可以向终端发送卫星A、卫星B和卫星C的配置信息。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图12所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤121、在根据配置信息确定的一个卫星的第一波束和第二波束上,同时传输数据。
在一个实施例中,第一波束的覆盖范围大于第二波束的覆盖范围,和/或,第一波束的服务时长大于第二波束的服务时长。这里,第一波束可以是主波束;第二波束可以是辅波束。这里,第一波束和第二波束所使用的频域资源可以相同也可以不同。
在一个实施例中,一个卫星向终端发送配置信息,其中,配置信息包括第一波束的信息和第二波束的信息;终端在一个卫星的第一波束和第二波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,第二波束可以有多个,基站可以从多个第二波束中选择任意数量的第二波束供终端进行数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以 与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图13所示,本实施例中提供一种无线通信的方法,其中,应用于终端,卫星包括主服务卫星和辅服务卫星;该方法,包括:
步骤131、在主服务卫星的波束和辅服务卫星的波束上,同时传输数据;
其中,主服务卫星的轨道高度大于辅服务卫星的轨道高度,和/或,主服务卫星相对地面的运行速度小于辅服务卫星的运行速度。
在一个实施例中,终端可以根据星历信息确定主服务卫星和辅服务卫星。在一个实施例中,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在一个实施例中,终端在主服务卫星的波束上和辅服务卫星的波束上,同时传输基站的数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,辅服务卫星可以有多个,基站可以从多个辅服务卫星中选择任意数量的辅服务卫星供终端进行数据传输。
在一个实施例中,终端在利用主服务卫星的波束和辅服务卫星的波束同时传输数据之前,可以接收主服务基站发送的主服务基站和/或辅服务基站的配置信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图14所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤141、根据星历信息,确定主服务卫星。
在一个实施例中,星历信息,可以包括卫星的运行速度信息、卫星的运行高度信息和卫星的运行轨迹信息等。
在一个实施例中,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在另一个实施例中,响应于卫星的运行速度小于速度阈值,确定该卫星为主服务卫星;响应于卫星的运行速度大于速度阈值,确定该卫星为辅服务卫星。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图15所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤151、根据接收到的基站利用卫星发送的星历信息,确定主服务卫星;或者,根据预先获取的不同卫星的星历信息,确定主服务卫星。
在一个实施例中,基站通过不同卫星向终端发送携带对应卫星的星历信息的系统消息;终端在接收到该系统消息后,基于该系统消息携带的星历信息确定主服务卫星。
在一个实施例中,基站可以获取各个卫星的星历信息;基站向各个卫星发送携带对应卫星的星历信息的系统消息;各个卫星在接收到携带该卫星的星历信息的系统消息后,将该系统消息发送给所述终端。例如,卫星包括卫星A、卫星B和卫星C,卫星对应的星历信息分别为a信息、b信息和c信息,携带 a信息的系统消息为系统消息A,携带b信息的系统消息为系统消息B,携带c信息的系统消息为系统消息C,则基站可以向卫星A发送系统消息A,向卫星B发送系统消息B,向卫星C发送系统消息C。卫星A在接收到系统消息A后将系统消息A发送给终端;卫星B在接收到系统消息B后将系统消息B发送给终端;卫星C在接收到系统消息C后将系统消息C发送给终端。如此,终端可以根据接收到的星历信息确定主服务卫星。
在一个实施例中,基站向多个卫星发送指示信息,其中,指示信息,指示卫星向终端发送该卫星对应的星历信息。例如,卫星包括卫星A、卫星B和卫星C。卫星对应的星历信息分别为a信息、b信息和c信息。则当基站向卫星A发送指示信息,卫星A会向终端发送a信息;当基站向卫星B发送指示信息,卫星B会向终端发送b信息;当基站向卫星C发送指示信息,卫星C会向终端发送c信息。如此,终端可以根据接收到的星历信息确定主服务卫星。
在一个实施例中,基站通过一个卫星向终端发送携带多个卫星的星历信息的系统消息;终端在接收到该系统消息后,基于该系统消息携带的星历信息确定主服务卫星。
在一个实施例中,基站向一个卫星发送指示信息,其中,指示信息,指示卫星向终端发送多个卫星对应的星历信息。例如,卫星包括卫星A、卫星B和卫星C。卫星对应的星历信息分别为a信息、b信息和c信息。则当基站向卫星A发送指示信息,卫星A会向终端发送a信息、b信息和d信息。如此,终端可以根据接收到的星历信息确定主服务卫星。
在一个实施例中,可以预先将不同卫星的星历信息存储在终端中,如此,终端就可以根据预先存储在终端中的星历信息确定主服务卫星。
在一个实施例中,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在另一个实施例中,响应于卫星的运行速度小于速度阈值,确定该卫星为主服务卫星;响应于卫星的运行速度大于速度阈值,确定该卫星为辅服务卫星。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图16所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤161、响应于确定主服务卫星,接入主服务卫星。
在一个实施例中,接入主服务卫星可以是终端基于随机接入过程通过主服务卫星接入基站。
在一个实施例中,终端可以根据星历信息确定主服务卫星和辅服务卫星。例如,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在另一个实施例中,响应于卫星的运行速度小于速度阈值,确定该卫星为主服务卫星;响应于卫星的运行速度大于速度阈值,确定该卫星为辅服务卫星。
在一个实施例中,响应于终端接入主服务卫星,终端可以通过该主服务卫星与基站进行无线通信。例如,终端可以通过主服务卫星向基站发送请求调度辅服务卫星的波束进行无线通信的调度请求,如此,基站就可以调度辅服务卫星供终端进行无线通信;终端在主服务卫星的波束和基站调度的辅服务波束上,同时传输数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图17所示,本实施例中提供一种无线通信的方法,其中,应用于终端,该方法,包括:
步骤171、接收基站利用主服务卫星发送的配置信息;
其中,配置信息,包括主服务卫星的配置信息和/或辅服务卫星的配置信息。
在一个实施例中,响应于终端接入主服务卫星,接收基站利用主服务卫星发送的配置信息。
在一个实施例中,配置信息包括主服务卫星的配置信息和辅服务卫星的配置信息。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图18所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤181、在卫星的多个波束上,同时传输数据。
该卫星可以是飞行的基站或者是终端与基站之间传输数据的飞行设备。该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。这里,卫星可以为低轨卫星(LEO,Low Earth Orbiting)。需要说明的是,随着卫星无线通信网络的演进,卫星还可以是中轨卫星(MEO,Medium Earth Orbiting)或者地球同步轨道卫星(GEO,Geostationary Earth Orbiting)等。
在一个实施例中,该卫星可以是部署在地面基站密度小于密度阈值、无线通信环境的信道质量小于质量阈值的空域。例如,偏远的山区和/或海洋所在空域。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,在一个卫星的多个波束上或者在多个卫星的多个波束上,同时传输数据。
在一个实施例中,在同一个卫星的多个波束上,同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。如此,可以提升终端与基站之间传输数据的速率。
在一个实施例中,请再次参见图3,一个卫星可以在多个波束上进行数据的发送或者接收,例如,一个卫星可以在3个波束上进行数据的发送或者接收,3个波束分别为波束1、波束2和波束3。这里,不同的波束的信号覆盖范围和/或服务时间不同。例如,波束1的信号覆盖范围大于波束2和波束3的信号覆盖范围。又例如,波束2的服务时长大于波束1和波束3的服务时长,即t2>t1>t3。这里,多个 波束中的每个波束都能给该波束的信号覆盖范围内的终端提供服务。这里,多个波束能够同时给被该多个波束的信号同时覆盖的区域中的终端同时提供服务。
在一个实施例中,在不同卫星的多个波束上,同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。如此,可以提升终端与基站之间传输数据的速率。
在一个实施例中,请再次参见图4,多个波束可以是多个卫星的工作波束,例如,卫星1的波束为波束1和波束2;卫星2的波束为波束3。这里,不同卫星相对地面的运行高度和/或相对地面的运行速度可以不同。例如,卫星1的运行高度大于卫星2的运行高度,或者卫星1的运行速度小于卫星2的运行速度。这里,不同卫星的波束的信号覆盖范围和/或服务时间不同。例如,波束1的信号覆盖范围大于波束3的信号覆盖范围。又例如,波束1的服务时长大于波束3的服务时长,即t1>t3。这里,不同卫星的每个波束都能给该波束的信号覆盖范围内的终端提供服务。这里,不同卫星的波束能够同时给被该不同卫星的波束的信号同时覆盖的区域中的终端同时提供服务。
在一个实施例中,基站会向终端发送该多个波束的配置信息;基站在该配置信息指示的多个波束上同时传输数据。这里,同时传输数据可以是同时接收或者同时发送数据。
在一个实施例中,卫星可以是通过单播方式向终端发送配置信息。在另一个实施例中,卫星可以是通过广播方式向终端发送配置信息。
在一个实施例中,该配置信息可以在终端处于无线资源控制(RRC,Radio Resource Control)连接态或者处于RRC非连接态时发送给终端。对于处于RRC连接态的终端,卫星可以将该配置信息通过系统消息、RRC信令或者下行控制信息(DCI,Downlink Control Information)信令发送给各终端。对于处于RRC非连接态的终端,卫星可以将该配置信息通过系统消息发送给各终端。这样,实现了RRC信令、系统消息或下行控制信息等的复用,提升了信令的兼容性。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的标识ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
在一个实施例中,可以在配置信息中波束的ID信息指示的多个波束上,同时传输数据。
这里,波束的ID信息指示的波束可以是被调度用于供终端进行数据传输的波束;或者,波束的ID信息指示的波束可以是供终端进行选择以进行数据传输的波束。这里,需要说明的是,终端选择波束后,仍需要由基站统一进行调度进行数据传输。在一个实施例中,终端可以向基站发送携带选择的波束的调度请求,基站可以根据该调度请求确定供终端进行数据传输的波束。
在一个实施例中,不同波束的频点可以相同或者不同。
在一个实施例中,不同波束的带宽可以相同或者不同。
在一个实施例中,波束的服务时间信息可以是时间点的信息。例如,服务时间信息为时刻1和时刻2的信息,即服务时间信息指示时刻1和时刻2之间的时长。在另一个实施例中,波束的服务时间还可以是时间点的信息和时长信息。例如,服务时间信息为时刻1和时长1,即服务时间信息指示时刻1和 时长1对应的时段。
在一个实施例中,服务时间信息是根据卫星相对地面的运行高度和/或相对地面的运行速度确定的。在一个实施例中,响应于卫星相对地面的运行高度大于高度阈值,确定服务时间信息指示的时长大于时长阈值;响应于卫星相对地面的运行高度小于高度阈值,确定服务时间信息指示的时长小于时长阈值。在另一个实施例中,响应于卫星相对地面的运行速度大于速度阈值,确定服务时间信息指示的时长小于时长阈值;响应于卫星相对地面的运行速度小于速度阈值,确定服务时间信息指示的时长大于时长阈值。
在一个实施例中,配置信息中的波束信息可以包括不同类型的波束信息。例如,波束信息可以包括主波束的波束信息和辅波束的波束信息。这里,主波束的覆盖范围大于辅波束的覆盖范围,和/或主波束的服务时长大于辅波束的服务时长。这里,不同类型的波束信息指示的波束所使用的频域资源可以相同也可以不同。
在一个实施例中,请再次参见图5,卫星向终端发送包括波束信息的配置信息,其中,波束信息包括主波束的波束信息和辅波束的波束信息;基站在一个卫星的主波束和辅波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的速率。这里,需要说明的是,辅波束可以有多个。基站可以从多个辅波束中选择任意数量的辅波束供终端进行数据传输。
在一个实施例中,请再次参见图6,卫星1的波束为波束1,卫星2的波束为波束2。基站可以通过卫星1的波束1和卫星2的波束2与终端进行通信。在一个实施例中,基站在卫星1的波束1和卫星2的波束2上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。
在一个实施例中,基站可以根据星历信息确定主服务卫星和辅服务卫星。在一个实施例中,星历信息包括运动高度的信息。响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在一个实施例中,基站在主服务卫星的波束上和辅服务卫星的波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,辅服务卫星可以有多个。基站可以从多个辅服务卫星中选择任意数量的辅服务卫星供终端进行数据传输。
在一个实施例中,响应于终端需要传输数据传输速率大于速率阈值的数据,向基站发送获取配置信息的请求消息;终端在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,响应于终端与基站建立RRC连接,向基站发送获取配置信息的请求消息;终端在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图19所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤191、在一个卫星的多个波束上,同时传输数据;或者,在多个卫星的多个波束上,同时传输数据。
在一个实施例中,基站向终端发送配置信息;基站在该配置信息指示的一个卫星的多个波束上,同 时传输基站的数据。这里,可以是在该配置信息指示的一个卫星的一个主波束和至少一个辅波束上,同时传输数据。这里,配置信息中的波束信息可以包括不同类型的波束信息。例如,波束信息可以包括主波束的波束信息和辅波束的波束信息。这里,主波束的覆盖范围大于辅波束的覆盖范围,和/或主波束的服务时长大于辅波束的服务时长。这里,不同类型的波束信息指示的波束所使用的频域资源可以相同也可以不同。
在一个实施例中,根据星历信息,确定主服务卫星和辅服务卫星;在主服务卫星的波束和辅服务卫星的波束上,同时传输数据。这里,可以是在一个主服务卫星的波束和至少一个服务卫星的波束上,同时传输基站的数据。这里,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。这里,不同卫星的波束所使用的频域资源可以相同也可以不同。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图20所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤201、向终端发送配置信息;
其中,配置信息,用于供终端确定传输数据的多个波束。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
在一个实施例中,响应于终端需要传输数据传输速率大于速率阈值的数据,终端向基站发送获取配置信息的请求消息;在接收到基站根据该请求消息发送的配置信息后,终端在配置信息指示的多个波束上,同时传输基站的数据。
在一个实施例中,响应于终端与基站建立RRC连接,向基站发送获取配置信息的请求消息;在接收到基站根据该请求消息发送的配置信息后,在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,波束信息,包括:
第一波束的信息;
第二波束的信息;其中,第一波束的覆盖范围大于第二波束的覆盖范围,和/或,第一波束的服务时长大于第二波束的服务时长。这里,第一波束可以是主波束;第二波束可以是辅波束。这里,第一波束和第二波束所使用的频域资源可以相同也可以不同。
在一个实施例中,一个卫星向终端发送配置信息,其中,配置信息中的波束信息包括第一波束的信息和第二波束的信息;基站在一个卫星的第一波束和第二波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的传输速率。这里,需要说明的是,第二波束可以有多个。基站可以从多个第二波束中选择任意数量的第二波束供终端进行数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图21所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤211、向终端发送携带配置信息的系统消息;或者,向终端发送携带配置信息的RRC消息;或者,向终端发送携带配置信息的MAC CE;或者,向终端发送携带配置信息的物理层消息。
在一个实施例中,基站向终端发送携带配置信息的系统消息;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,基站向终端发送携带配置信息的RRC消息;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,基站向终端发送携带配置信息的MAC CE;在配置信息指示的多个波束上,同时传输数据。
在一个实施例中,基站向终端发送携带配置信息的物理层消息;在配置信息指示的多个波束上,同时传输数据。
这样,实现了RRC消息、系统消息、MAC CE和物理层消息的复用,提升了信令的兼容性。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图22所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤221、接收终端发送的获取配置信息的请求消息。
在一个实施例中,终端响应于需要发起数据传输速率大于速率阈值的业务,向基站发送获取配置信息的请求消息。
在一个实施例中,向终端发送速率阈值。
在一个实施例中,根据终端与基站之间传输数据的信道环境确定速率阈值。在一个实施例中,响应于终端与基站之间传输数据的信道质量大于质量阈值,确定速率阈值大于预定值;响应于终端与基站之间传输数据的信道质量小于质量阈值,确定速率阈值小于预定值。如此,速率阈值可以适应于信道环境。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图23所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤231、根据请求消息向终端发送配置信息。
在一个实施例中,请求消息可以携带卫星的标识信息,基站根据请求消息向终端发送该标识信息对应的卫星的配置信息。
例如,请求消息可以携带A卫星的标识信息A、B卫星的标识信息B和C卫星的标识信息C,则基站在接收到请求消息后,可以向终端发送卫星A、卫星B和卫星C的配置信息。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的标识ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图24所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤241、在根据配置信息确定的一个卫星的第一波束和所述第二波束上,同时传输数据。
在一个实施例中,第一波束的覆盖范围大于第二波束的覆盖范围,和/或,第一波束的服务时长大于第二波束的服务时长。这里,第一波束可以是主波束;第二波束可以是辅波束。这里,第一波束和第二波束所使用的频域资源可以相同也可以不同。
在一个实施例中,一个卫星向终端发送配置信息,其中,配置信息包括第一波束的信息和第二波束的信息;基站在一个卫星的第一波束和第二波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的速率。这里,需要说明的是,第二波束可以有多个,基站可以从多个第二波束中选择任意数量的第二波束供终端进行数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图25所示,本实施例中提供一种无线通信的方法,其中,应用于基站,所述卫星包括主服务卫星和辅服务卫星;该方法,包括:
步骤251、在主服务卫星的波束和辅服务卫星的波束上,同时传输数据;
其中,主服务卫星的轨道高度大于辅服务卫星的轨道高度,和/或,主服务卫星相对地面的运行速度小于辅服务卫星的运行速度。
在一个实施例中,基站可以根据星历信息确定主服务卫星和辅服务卫星。例如,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在一个实施例中,基站在主服务卫星的波束上和辅服务卫星的波束上,同时传输数据。如此,可以提升终端与基站之间传输数据的速率。这里,需要说明的是,辅服务卫星可以有多个。基站可以从多个辅服务卫星中选择任意数量的辅服务卫星供终端进行数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图26所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤261、根据星历信息,确定主服务卫星。
在一个实施例中,星历信息,可以包括卫星的运行速度信息、卫星的运行高度信息和卫星的运行轨迹信息等。
在一个实施例中,响应于卫星的运行高度大于高度阈值,确定该卫星为主服务卫星;响应于卫星的运行高度小于高度阈值,确定该卫星为辅服务卫星。在另一个实施例中,响应于卫星的运行速度小于速度阈值,确定该卫星为主服务卫星;响应于卫星的运行速度大于速度阈值,确定该卫星为辅服务卫星。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图27所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤271、主服务卫星向终端发送配置信息;
其中,配置信息,包括主服务卫星的配置信息和/或辅服务卫星的配置信息。
在一个实施例中,响应于终端接入主服务卫星,基站利用主服务卫星向终端发送配置信息。
在一个实施例中,配置信息包括主服务卫星的配置信息和辅服务卫星的配置信息。
在一个实施例中,配置信息,包括波束信息的以下一种或者多种信息:
波束的标识ID信息;
波束的频点信息;
波束的带宽信息;
波束的服务时间信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图28所示,本实施例中提供一种无线通信的方法,其中,应用于基站,该方法,包括:
步骤281、利用卫星向终端发送星历信息。
在一个实施例中,基站可以获取各个卫星的星历信息;基站向各个卫星发送携带对应卫星的星历信息的系统消息;各个卫星在接收到携带该卫星的星历信息的系统消息后,将该系统消息发送给所述终端。例如,卫星包括卫星A、卫星B和卫星C,卫星对应的星历信息分别为a信息、b信息和c信息,携带a信息的系统消息为系统消息A,携带b信息的系统消息为系统消息B,携带c信息的系统消息为系统消息C,则基站可以向卫星A发送系统消息A,向卫星B发送系统消息B,向卫星C发送系统消息C。卫星A在接收到系统消息A后将系统消息A发送给终端;卫星B在接收到系统消息B后将系统消息B发送给终端;卫星C在接收到系统消息C后将系统消息C发送给终端。如此,终端可以根据接收到的星历信息确定主服务卫星。
在一个实施例中,基站向卫星发送指示信息,其中,指示信息,指示卫星向终端发送该卫星对应的星历信息。例如,卫星包括卫星A、卫星B和卫星C。卫星对应的星历信息分别为a信息、b信息和c信息。则当基站向卫星A发送指示信息,卫星A会向终端发送a信息;当基站向卫星B发送指示信息,卫星B会向终端发送b信息;当基站向卫星C发送指示信息,卫星C会向终端发送c信息。如此,终 端可以根据接收到的星历信息确定主服务卫星。
在一个实施例中,基站向一个卫星发送指示信息,其中,指示信息,指示卫星向终端发送多个卫星对应的星历信息。例如,卫星包括卫星A、卫星B和卫星C。卫星对应的星历信息分别为a信息、b信息和c信息。则当基站向卫星A发送指示信息,卫星A会向终端发送a信息、b信息和d信息。如此,终端可以根据接收到的星历信息确定主服务卫星。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图29所示,本公开实施例中提供一种无线通信的装置,其中,应用于终端,该装置,包括第一传输模块291;其中,
第一传输模块291,被配置为:在卫星的多个波束上,同时传输数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图30所示,本公开实施例中提供一种无线通信的装置,其中,应用于基站,该装置,包括第二传输模块301;其中,
所述第二传输模块301,被配置为:在卫星的多个波束上,同时传输数据。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图31所示,本公开一个实施例提供一种终端的结构。
参照图31所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广 播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图31,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基 于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图32所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图32,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (31)

  1. 一种无线通信的方法,其中,应用于终端,所述方法,包括:
    在卫星的多个波束上,同时传输数据。
  2. 根据权利要求1所述的方法,其中,所述在卫星的多个波束上,同时传输数据,包括:
    在一个卫星的多个波束上,同时传输数据;
    或者,
    在多个卫星的多个波束上,同时传输数据。
  3. 根据权利要求2所述的方法,其中,所述方法,还包括:
    接收所述基站发送的配置信息;
    其中,所述配置信息,用于供所述终端确定传输数据的所述多个波束。
  4. 根据权利要求3所述的方法,其中,所述配置信息,包括波束信息的以下一种或者多种信息:
    波束的标识ID信息;
    波束的频点信息;
    波束的带宽信息;
    波束的服务时间信息。
  5. 根据权利要去4所述的方法,其中,所述波束信息,包括:
    第一波束的信息;
    第二波束的信息;其中,所述第一波束的覆盖范围大于所述第二波束的覆盖范围,和/或,所述第一波束的服务时长大于所述第二波束的服务时长。
  6. 根据权利要求3所述的方法,其中,所述接收所述基站发送的配置信息,包括:
    接收所述基站发送的携带所述配置信息的系统消息;
    或者,
    接收所述基站发送的携带所述配置信息的无线资源控制RRC消息;
    或者,
    接收所述基站发送的携带所述配置信息的媒体接入控制MAC控制单元CE;
    或者,
    接收所述基站发送的携带所述配置信息的物理层消息。
  7. 根据权利要求3所述的方法,其中,所述方法,还包括:
    响应于需要发起数据传输速率大于速率阈值的业务,向所述基站发送获取所述配置信息的请求消息。
  8. 根据权利要求7所述的方法,其中,所述接收所述基站发送的配置信息,包括:
    接收所述基站根据所述请求消息发送的所述配置信息。
  9. 根据权利要求5所述的方法,其中,所述在一个卫星的多个波束上,同时传输数据,包括:
    在根据所述配置信息确定的一个卫星的所述第一波束和所述第二波束上,同时传输数据。
  10. 根据权利要求2所述的方法,其中,所述卫星包括主服务卫星和辅服务卫星;所述在多个卫星 的多个波束上,同时传输数据,包括:
    在所述主服务卫星的波束和所述辅服务卫星的波束上,同时传输数据;
    其中,所述主服务卫星的轨道高度大于所述辅服务卫星的轨道高度,和/或,所述主服务卫星相对地面的运行速度小于所述辅服务卫星的运行速度。
  11. 根据权利要求10所述的方法,其中,所述方法,还包括:
    根据星历信息,确定所述主服务卫星。
  12. 根据权利要求11所述的方法,其中,所述根据星历信息,确定所述主服务卫星,包括:
    根据接收到的基站利用所述卫星发送的所述星历信息,确定所述主服务卫星;
    或者,
    根据预先获取的不同卫星的星历信息,确定所述主服务卫星。
  13. 根据权利要求11所述的方法,其中,所述方法,还包括:
    响应于确定所述主服务卫星,接入所述主服务卫星。
  14. 根据权利要求13所述的方法,其中,所述接收基站发送的配置信息,包括:
    接收所述基站利用所述主服务卫星发送的配置信息;
    其中,所述配置信息,包括所述主服务卫星的配置信息和/或所述辅服务卫星的配置信息。
  15. 一种无线通信的方法,其中,应用于基站,所述方法,包括:
    在卫星的多个波束上,同时传输数据。
  16. 根据权利要求15所述的方法,其中,所述在卫星的多个波束上,同时传输数据,包括:
    在一个卫星的多个波束上,同时传输数据;
    或者,
    在多个卫星的多个波束上,同时传输数据。
  17. 根据权利要求16所述的方法,其中,所述方法,还包括:
    向所述终端发送配置信息;
    其中,所述配置信息,用于供所述终端确定传输数据的所述多个波束。
  18. 根据权利要求17所述的方法,其中,所述配置信息,包括波束信息的以下一种或者多种信息:
    波束的标识ID信息;
    波束的频点信息;
    波束的带宽信息;
    波束的服务时间信息。
  19. 根据权利要求18所述的方法,其中,所述波束信息,包括:
    第一波束的信息;
    第二波束的信息;其中,所述第一波束的覆盖范围大于所述第二波束的覆盖范围,和/或,所述第一波束的服务时长大于所述第二波束的服务时长。
  20. 根据权利要求17所述的方法,其中,所述向终端发送配置信息,包括:
    向所述终端发送携带所述配置信息的系统消息;
    或者,
    向所述终端发送携带所述配置信息的RRC消息;
    或者,
    向所述终端发送携带所述配置信息的MAC CE;
    或者,
    向所述终端发送携带所述配置信息的物理层消息。
  21. 根据权利要求17所述的方法,其中,所述方法,还包括:
    接收所述终端发送的获取所述配置信息的请求消息。
  22. 根据权利要求21所述的方法,其中,所述向终端发送配置信息,包括:
    根据所述请求消息向所述终端发送所述配置信息。
  23. 根据权利要求19所述的方法,其中,所述在一个卫星的多个波束上,同时传输数据,包括:
    在根据所述配置信息确定的一个卫星的所述第一波束和所述第二波束上,同时传输数据。
  24. 根据权利要求16所述的方法,其中,所述卫星包括主服务卫星和辅服务卫星;所述在多个卫星的多个波束上,同时传输基站的数据,包括:
    在所述主服务卫星的波束和所述辅服务卫星的波束上,同时传输数据;
    其中,所述主服务卫星的轨道高度大于所述辅服务卫星的轨道高度,和/或,所述主服务卫星相对地面的运行速度小于所述辅服务卫星的运行速度。
  25. 根据权利要求24所述的方法,其中,所述方法,还包括:
    根据星历信息,确定所述主服务卫星。
  26. 根据权利要求25所述的方法,其中,所述向终端发送配置信息,包括:
    所述主服务卫星向所述终端发送配置信息;
    其中,所述配置信息,包括所述主服务卫星的配置信息和/或所述辅服务卫星的配置信息。
  27. 根据权利要求25所述的方法,其中,所述方法,还包括:
    利用所述卫星向所述终端发送所述星历信息。
  28. 一种无线通信的装置,其中,应用于终端,所述装置,包括第一传输模块;其中,
    所述第一传输模块,被配置为:在卫星的多个波束上,同时传输数据。
  29. 一种无线通信的装置,其中,应用于基站,所述装置,包括第二传输模块;其中,
    所述第二传输模块,被配置为:在卫星的多个波束上,同时传输数据。
  30. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至14或权利要求15至权利要求26任一项提供的方法。
  31. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至14或权利要求15至权利要求26任一项提供的方法。
PCT/CN2021/073274 2021-01-22 2021-01-22 无线通信的方法、装置、通信设备及存储介质 WO2022155886A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21920284.3A EP4283885A4 (en) 2021-01-22 2021-01-22 WIRELESS COMMUNICATION METHOD AND APPARATUS, AND COMMUNICATION DEVICE AND STORAGE MEDIUM
US18/262,160 US20240088991A1 (en) 2021-01-22 2021-01-22 Method for wireless communication and communication device
CN202180000266.4A CN112889227A (zh) 2021-01-22 2021-01-22 无线通信的方法、装置、通信设备及存储介质
PCT/CN2021/073274 WO2022155886A1 (zh) 2021-01-22 2021-01-22 无线通信的方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073274 WO2022155886A1 (zh) 2021-01-22 2021-01-22 无线通信的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022155886A1 true WO2022155886A1 (zh) 2022-07-28

Family

ID=76040148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073274 WO2022155886A1 (zh) 2021-01-22 2021-01-22 无线通信的方法、装置、通信设备及存储介质

Country Status (4)

Country Link
US (1) US20240088991A1 (zh)
EP (1) EP4283885A4 (zh)
CN (1) CN112889227A (zh)
WO (1) WO2022155886A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4362349A1 (en) * 2021-06-25 2024-05-01 Beijing Xiaomi Mobile Software Co., Ltd. Configuration information sending method and apparatus, configuration information receiving method and apparatus, communication apparatus, and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199289A (zh) * 1997-04-15 1998-11-18 环球星有限合伙人公司 低地球轨道分布式信关通信系统
CN110679097A (zh) * 2017-06-21 2020-01-10 蓝色探索有限责任公司 宽带卫星终端
CN110830093A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 传输信道状态信息的方法和装置
WO2020062092A1 (en) * 2018-09-28 2020-04-02 Nokia Shanghai Bell Co., Ltd. Method, device and computer readable medium for supporting satellite access
CN111182658A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 一种卫星通信的方法、装置及系统
CN112106413A (zh) * 2019-03-28 2020-12-18 联发科技股份有限公司 在非地面网络中进行多普勒补偿的辅助信息

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592481A (en) * 1995-06-06 1997-01-07 Globalstar L.P. Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas
US6990314B1 (en) * 1999-03-18 2006-01-24 The Directv Group, Inc. Multi-node point-to-point satellite communication system employing multiple geo satellites
US8705436B2 (en) * 2006-02-15 2014-04-22 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
CN101663843B (zh) * 2007-03-21 2014-07-30 维尔塞特公司 用于在点波束卫星上提供广播业务的技术
ES2332077B1 (es) * 2007-09-21 2010-10-22 Fundacio Privada Centre Tecnologic De Telecomunicacions De Catalunya Tecnicas de conformacion de haz para comunicaciones via satelite de banda ancha.
JP2010122044A (ja) * 2008-11-19 2010-06-03 Mitsubishi Electric Corp マルチビーム送信アンテナのビーム指向方向測定方法およびそれを用いたマルチビーム送信アンテナサブシステム
FR3045988B1 (fr) * 2015-12-18 2017-12-29 Thales Sa Procede de communication par satellite a repartition de capacite flexible a base de saut de faisceaux et de schema de reutilisation fractionnaire
CN106571865B (zh) * 2016-11-14 2020-02-18 上海微小卫星工程中心 卫星星群的遥测数据接入传输方法
CN116112050A (zh) * 2017-11-17 2023-05-12 华为技术有限公司 一种波束配置方法和装置
US10447380B1 (en) * 2018-12-28 2019-10-15 Hughes Network Systems, Llc Phased array with independently steerable beams
CN109831243A (zh) * 2019-01-31 2019-05-31 西南电子技术研究所(中国电子科技集团公司第十研究所) 全空域多波束覆盖卫星链路前传和回传方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199289A (zh) * 1997-04-15 1998-11-18 环球星有限合伙人公司 低地球轨道分布式信关通信系统
CN110679097A (zh) * 2017-06-21 2020-01-10 蓝色探索有限责任公司 宽带卫星终端
CN110830093A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 传输信道状态信息的方法和装置
WO2020062092A1 (en) * 2018-09-28 2020-04-02 Nokia Shanghai Bell Co., Ltd. Method, device and computer readable medium for supporting satellite access
CN111182658A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 一种卫星通信的方法、装置及系统
CN112106413A (zh) * 2019-03-28 2020-12-18 联发科技股份有限公司 在非地面网络中进行多普勒补偿的辅助信息

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283885A4 *

Also Published As

Publication number Publication date
CN112889227A (zh) 2021-06-01
EP4283885A4 (en) 2024-03-27
US20240088991A1 (en) 2024-03-14
EP4283885A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2022006821A1 (zh) 无线通信的方法、装置、设备及存储介质
WO2022006826A1 (zh) 卫星通信方法及装置、核心网网元及存储介质
CN114175715B (zh) 信息传输方法、装置、通信设备和存储介质
WO2022061739A1 (zh) 传输时延补偿方法、装置、通信设备和存储介质
CN112585888B (zh) 数据传输方法及装置、通信设备和存储介质
US20240098595A1 (en) Method and apparatus for determining handover configuration, and communication device
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN112236977A (zh) 参数配置方法、装置、通信设备和存储介质
CN115315903B (zh) 干扰处理方法及装置、通信设备和存储介质
WO2022155886A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022036597A1 (zh) 信息处理方法、装置及计算机可读存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022027473A1 (zh) 小区测量处理方法、装置、通信设备及存储介质
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
WO2022021271A1 (zh) 波束切换方法及装置、网络设备、终端及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
KR20230004780A (ko) 정보 전송 방법, 장치, 통신 기기 및 저장 매체 (information transmission method and apparatus, and communication device and storage medium)
WO2022188088A1 (zh) 重选小区的方法、装置、通信设备及存储介质
US20240163754A1 (en) Cell reselection method and apparatus, communication device, and storage medium
WO2022120830A1 (zh) 数据传输方法及装置、存储介质
WO2024098268A1 (zh) 信息传输方法及装置、通信设备及存储介质
WO2023044772A1 (zh) 通信方法、通信装置、通信设备及存储介质
WO2022198523A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023221025A1 (zh) 波束确定方法、装置、通信设备及存储介质
WO2023201660A1 (zh) Rsrp门限参数确定方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920284

Country of ref document: EP

Effective date: 20230822