WO2022155856A1 - 电池的充电电路和电子设备 - Google Patents

电池的充电电路和电子设备 Download PDF

Info

Publication number
WO2022155856A1
WO2022155856A1 PCT/CN2021/073140 CN2021073140W WO2022155856A1 WO 2022155856 A1 WO2022155856 A1 WO 2022155856A1 CN 2021073140 W CN2021073140 W CN 2021073140W WO 2022155856 A1 WO2022155856 A1 WO 2022155856A1
Authority
WO
WIPO (PCT)
Prior art keywords
operational amplifier
charging
voltage
inverting input
input terminal
Prior art date
Application number
PCT/CN2021/073140
Other languages
English (en)
French (fr)
Inventor
李汇
刘德尚
徐鹏举
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/073140 priority Critical patent/WO2022155856A1/zh
Priority to CN202180084864.4A priority patent/CN116670965A/zh
Priority to EP21920258.7A priority patent/EP4270719A4/en
Publication of WO2022155856A1 publication Critical patent/WO2022155856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the field of battery charging, and in particular, to a battery charging circuit and electronic equipment.
  • the dual-battery charging circuit includes series charging and discharging (that is, two batteries are charged in series and discharged in series), series charging and discharging (that is, two batteries are charged in parallel and discharged in parallel), and parallel charging and discharging (that is, two batteries are charged in parallel in parallel) discharge) and other architectures.
  • series charging and series discharging that is, two batteries are charged in series and discharged in series
  • series charging and discharging that is, two batteries are charged in parallel and discharged in parallel
  • parallel charging and discharging that is, two batteries are charged in parallel in parallel
  • the current parallel charging and discharging requires high matching of two batteries.
  • the capacities of the two batteries are inconsistent, it is easy to cause the voltage difference between the two batteries to be too large, resulting in a decrease in the charging current and an increase in the charging time. , the user experience becomes worse.
  • the internal resistance of the battery is large, the voltage ripple of the system will also be large due to the large voltage difference between the two batteries.
  • Embodiments of the present application provide a battery charging circuit and electronic device, which are used to reduce the battery charging time.
  • a battery charging circuit including: a voltage regulating circuit, a first regulating tube, a second regulating tube, a first operational amplifier, a second operational amplifier and a fully differential operational amplifier; the voltage regulating circuit uses It is used to provide a first charging current to the first charging path through the first regulating tube, and is also used to provide a second charging current to the second charging path through the second regulating tube; the non-inverting input terminal of the fully differential operational amplifier Used to input the first charging voltage on the first charging path, the inverting input terminal of the fully differential operational amplifier is used to input the second charging voltage on the second charging path, the fully differential operational amplifier The inverting output terminal is used to output the first signal, the non-inverting output terminal of the fully differential operational amplifier is used to output the second signal; the first non-inverting input terminal of the first operational amplifier is used to input the first signal, The inverting input terminal of the first operational amplifier is used for inputting a first detection signal proportional to the first charging current, and the first
  • the first non-inverting input terminal of the second operational amplifier is used to input the second signal
  • the inverting input terminal of the second operational amplifier is used to input the
  • the second detection signal is proportional to the second charging current
  • the second operational amplifier is also used for outputting a second control voltage to the gate of the second adjusting tube to adjust the second charging current.
  • the battery charging circuit provided by the embodiment of the present application includes two charging paths for charging the two batteries respectively. If the voltages of the two batteries are equal, the first signal and the second signal output by the fully differential op amp are equal. According to the voltage following principle of the op amp, the first detection signal and the second detection signal are equal, so they are the same as the first detection signal. The proportional first charging current and the second charging current proportional to the second detection signal are kept in balance, so that the two batteries maintain the same voltage during charging. If the voltages of the two batteries are not equal, for example, if the second charging voltage is greater than the first charging voltage, the first signal output by the fully differential op amp is greater than the second signal.
  • the first detection signal is greater than the second signal.
  • Two detection signals so the first charging current proportional to the first detection signal increases, and the second charging current proportional to the second detection signal decreases, so that the first charging voltage rises more quickly until the two batteries recover
  • the charging stop state can be achieved at the same time, and the charging time of the dual batteries can be shortened.
  • the first operational amplifier further includes a second non-inverting input terminal, the second non-inverting input terminal of the first operational amplifier is used to input the first limit signal, and the first operational amplifier is further used for: selecting the first The smaller value of the limiting signal and the first signal is differentially amplified with the first detection signal to output the first control voltage. Due to the existence of the first limit signal, according to the voltage following principle of the negative feedback loop of the operational amplifier, the maximum value of the first detection signal is limited to be equal to the first limit signal, which also limits the maximum value of the first charging current, which can protect the first detection signal. battery to prevent the first battery from being damaged due to excessive first charging current.
  • the second operational amplifier further includes a second non-inverting input terminal, the second non-inverting input terminal of the second operational amplifier is used for inputting the second limiting signal, and the second operational amplifier is further used for: selecting the second The smaller value of the limiting signal and the second signal is differentially amplified with the second detection signal to output the second control voltage. Due to the existence of the second limit signal, according to the voltage following principle of the negative feedback loop of the operational amplifier, the second detection signal is limited to be equal to the second limit signal at the maximum, and the maximum value of the second charging current is also limited, which can protect the second detection signal. battery, to prevent the second battery from being damaged due to excessive second charging current.
  • it further includes a third operational amplifier and a first resistor, the first resistor is arranged on the path of the first charging current, and the voltage of the non-inverting input terminal of the third operational amplifier coupled to the first resistor is higher than that of the first resistor.
  • the inverting input terminal of the third operational amplifier is coupled to the lower voltage terminal of the first resistor, and the output terminal of the third operational amplifier is coupled to the inverting input terminal of the first operational amplifier.
  • it further includes a fourth operational amplifier and a second resistor, the second resistor is arranged on the path of the second charging current, and the voltage of the non-inverting input terminal of the fourth operational amplifier coupled to the second resistor is higher than that of the second resistor.
  • the high end, the inverting input end of the fourth operational amplifier is coupled to the lower voltage end of the second resistor, and the output end of the fourth operational amplifier is coupled to the inverting input end of the second operational amplifier.
  • the first signal, the second signal, the first detection signal and the second detection signal are voltage signals.
  • the first signal, the second signal, the first detection signal and the second detection signal may also be current signals, which are not limited in this application.
  • a battery charging circuit including: a voltage regulation circuit, a first battery, a second battery, a first regulator, a second regulator, a first operational amplifier, a second operational amplifier, and a fifth operational amplifier. amplifier and sixth operational amplifier;
  • the voltage regulation circuit is used to provide the first charging current to the first charging path where the first battery is located through the first regulating tube, and is also used to charge the second battery where the second battery is located through the second regulating tube
  • the path provides the second charging current;
  • the non-inverting input terminal of the fifth operational amplifier is used to input the second charging voltage or the bias voltage of the second charging voltage on the second charging path, and the inverting input terminal of the fifth operational amplifier is used to input The first charging voltage or the bias voltage of the first charging voltage on the first charging path, the output terminal of the fifth operational amplifier is used to output the first signal;
  • the non-inverting input terminal of the sixth operational amplifier is used to input the first charging voltage or The bias voltage of the first charging voltage, the inverting input terminal of the sixth operational amplifier
  • the first signal and the second signal output by the fully differential operational amplifier are equal.
  • the first detection signal and the second signal are equal.
  • the detection signals are equal, so the first charging current proportional to the first detection signal and the second charging current proportional to the second detection signal are kept in balance, so that the two batteries maintain the same voltage during charging. If the voltages of the two batteries are not equal, for example, if the second charging voltage is greater than the first charging voltage, the first signal output by the fully differential op amp is greater than the second signal. According to the voltage following principle of the op amp, the first detection signal is greater than the second signal.
  • the non-inverting input terminal of the fifth operational amplifier is used to input the second charging voltage plus the first bias voltage
  • the inverting input terminal of the fifth operational amplifier is used to input the first charging voltage.
  • the non-inverting input terminal of the fifth operational amplifier is used to input the second charging voltage
  • the inverting input terminal of the fifth operational amplifier is used to input the first charging voltage minus the first bias voltage.
  • the non-inverting input terminal of the sixth operational amplifier is used to input the first charging voltage plus the second bias voltage
  • the inverting input terminal of the sixth operational amplifier is used to input the second charging voltage.
  • the non-inverting input terminal of the sixth operational amplifier is used to input the first charging voltage
  • the inverting input terminal of the sixth operational amplifier is used to input the second charging voltage minus the second bias voltage.
  • the non-inverting input terminal of the fifth operational amplifier is used to input the second charging voltage plus the first bias voltage
  • the inverting input terminal of the fifth operational amplifier is used to input the first charging voltage minus the first bias voltage. second bias voltage.
  • the non-inverting input terminal of the sixth operational amplifier is used to input the first charging voltage plus the third bias voltage
  • the inverting input terminal of the sixth operational amplifier is used to input the second charging voltage minus the fourth bias voltage.
  • the first operational amplifier further includes a second non-inverting input terminal, the second non-inverting input terminal of the first operational amplifier is used to input the first limit signal, and the first operational amplifier is further used for: selecting the first The smaller value of the limiting signal and the first signal is differentially amplified with the first detection signal to output the first control voltage. Due to the existence of the first limit signal, according to the voltage following principle of the negative feedback loop of the operational amplifier, the maximum value of the first detection signal is limited to be equal to the first limit signal, which also limits the maximum value of the first charging current, which can protect the first detection signal. battery to prevent the first battery from being damaged due to excessive first charging current.
  • the second operational amplifier further includes a second non-inverting input terminal, the second non-inverting input terminal of the second operational amplifier is used for inputting the second limiting signal, and the second operational amplifier is further used for: selecting the second The smaller value of the limiting signal and the second signal is differentially amplified with the second detection signal to output the second control voltage. Due to the existence of the second limit signal, according to the voltage following principle of the negative feedback loop of the operational amplifier, the second detection signal is limited to be equal to the second limit signal at the maximum, and the maximum value of the second charging current is also limited, which can protect the second detection signal. battery, to prevent the second battery from being damaged due to excessive second charging current.
  • it further includes a third operational amplifier and a first resistor, the first resistor is arranged on the path of the first charging current, and the voltage of the non-inverting input terminal of the third operational amplifier coupled to the first resistor is higher than that of the first resistor.
  • the inverting input terminal of the third operational amplifier is coupled to the lower voltage terminal of the first resistor, and the output terminal of the third operational amplifier is coupled to the inverting input terminal of the first operational amplifier.
  • it further includes a fourth operational amplifier and a second resistor, the second resistor is arranged on the path of the second charging current, and the voltage of the non-inverting input terminal of the fourth operational amplifier coupled to the second resistor is higher than that of the second resistor.
  • the high end, the inverting input end of the fourth operational amplifier is coupled to the lower voltage end of the second resistor, and the output end of the fourth operational amplifier is coupled to the inverting input end of the second operational amplifier.
  • the first signal, the second signal, the first detection signal and the second detection signal are voltage signals.
  • the first signal, the second signal, the first detection signal and the second detection signal may also be current signals, which are not limited in this application.
  • an electronic device comprising a battery charging circuit and a working circuit according to the first aspect to the second aspect and any of the embodiments thereof, where the battery charging circuit is used to supply power to the working circuit.
  • FIG. 1 is a schematic structural diagram 1 of an electronic device including a battery charging circuit provided by an embodiment of the present application;
  • FIG. 2 is a second schematic structural diagram of an electronic device including a battery charging circuit provided by an embodiment of the present application
  • FIG. 3 is a third schematic structural diagram of an electronic device including a battery charging circuit provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic structural diagram of an electronic device including a battery charging circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram 1 of a charging circuit for a battery according to an embodiment of the present application.
  • FIG. 6 is a second schematic structural diagram of a charging circuit for a battery according to an embodiment of the present application.
  • FIG. 7 is a third structural schematic diagram of a charging circuit for a battery provided by an embodiment of the present application.
  • FIG. 8 is a fourth schematic structural diagram of a charging circuit for a battery according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram 5 of a charging circuit for a battery according to an embodiment of the present application.
  • FIG. 10 is a sixth schematic structural diagram of a charging circuit for a battery according to an embodiment of the application.
  • FIG. 11 is a seventh schematic structural diagram of a charging circuit for a battery according to an embodiment of the present application.
  • an embodiment of the present application provides an electronic device including a battery charging circuit, and the electronic device 12 includes a battery charging circuit 121 and a working circuit 122 .
  • the power adapter 11 converts commercial power into DC power through AC-DC conversion to supply power to the battery in the battery charging circuit 121 ; during normal operation, the battery charging circuit 121 supplies power to the working circuit 122 .
  • the working circuit 122 includes a processor, a memory, a communication interface, etc., which is not limited.
  • the battery charging circuit 121 includes a first charging chip 1211 , a second charging chip 1212 , a first battery 1213 and a second battery 1214 .
  • the power adapter 11 charges the first battery 1213 through the first charging chip 1211, and the power adapter 11 also charges the second battery 1214 through the second charging chip 1212, that is, the two charging chips independently control the charging of one battery.
  • the structure of the charging circuit of the battery is simple and the control is convenient, when the capacities of the two batteries are inconsistent, it is easy to cause the voltage difference between the two batteries to be too large, resulting in a decrease in the total charging current and an increase in the charging time. Bad user experience.
  • the internal resistance of the battery is large, the voltage ripple of the system will also be large due to the large voltage difference between the two batteries.
  • an embodiment of the present application provides another electronic device including a battery charging circuit
  • the battery charging circuit 121 may further include a micro-controller unit (MCU, MCU).
  • MCU micro-controller unit
  • the MCU 1215 reduces the voltage difference between the two batteries and improves the charging efficiency by controlling the two charging chips to adjust the charging voltage of the corresponding batteries respectively.
  • the hardware cost of the charging circuit of such a battery is high, and the control logic of the MCU is complicated.
  • the embodiments of the present application provide another electronic device including a charging circuit for a battery, which compares the voltages of two batteries through an analog circuit, and increases its charging current for a battery with a low voltage until the two batteries have the same voltage. Charging can improve the charging efficiency.
  • the electronic device 12 includes a battery charging circuit 121 and a working circuit 122 .
  • the working circuit 122 may include a processor, a memory, a communication interface and other devices that consume power, which are not specifically limited.
  • the power adapter 11 charges the two batteries through the battery charging circuit 121 ; when the electronic device 12 is working normally, the battery charging circuit 121 (the battery in the battery) is also used to supply power to the working circuit 122 .
  • the battery charging circuit 121 includes: a voltage regulating circuit 301 , a first regulating tube 302 , a second regulating tube 303 , a first battery 304 , a second battery 305 , a first operational amplifier 306 , a second operational amplifier 307 and an operational amplifier circuit 308 .
  • a third operational amplifier 309, a fourth operational amplifier 310, a first resistor Rsns1, and a second resistor Rsns2 may also be included.
  • Rbat1 in the figure is the equivalent resistance of the first battery 304
  • Rbat2 is the equivalent resistance of the second battery 305 .
  • the voltage regulation circuit 301 can provide the first charging current Ichg1 to the first charging path where the first battery 304 is located through the first regulating tube 302 , and is also used to provide the second charging path where the second battery 304 is located through the second regulating tube 303 .
  • the voltage adjustment circuit 301 may be a DC-DC conversion circuit (eg, a buck circuit) or a DC-DC conversion chip (eg, a buck chip), or a circuit that performs DC voltage conversion, which is not limited in this application.
  • the first pass transistor 302 and the second pass tube 303 may be devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs) that control current through voltage.
  • MOSFETs metal-oxide-semiconductor field-effect transistors
  • the operational amplifier circuit 308 is used to input the first charging voltage Vbat1 on the first charging path and the second charging voltage Vbat2 on the second charging path; output the first signal S1 to the first operational amplifier 306 and output the first signal S1 to the second operational amplifier 307 The second signal S2; wherein, the voltage difference between the second charging voltage Vbat2 and the first charging voltage Vbat1 is proportional to the first signal S1; the voltage difference between the first charging voltage Vbat1 and the second charging voltage Vbat2 is proportional to the second signal S2 proportional.
  • the working principle of the op amp is: the difference between the signal (such as voltage or current) of the non-inverting input and the inverting input of the op amp multiplied by the amplification factor of the op amp is the signal output by the op amp (such as voltage or current).
  • the "signal" referred to in the present application may be a voltage or a current, and the signal may be a voltage as an example, but it is not limited to this.
  • the first operational amplifier 306 includes a first non-inverting input terminal and an inverting input terminal.
  • the first non-inverting input terminal of the first operational amplifier 306 is used to input the first signal S1
  • the inverting input terminal of the first operational amplifier 306 is used to input the first detection signal Ssns1 proportional to the first charging current Ichg1.
  • the operational amplifier 306 is also used for outputting the first control voltage Vctrl1 to the gate of the first adjusting transistor 302 to adjust the first charging current Ichg1.
  • the first control voltage Vctrl1 is equal to the difference between the first signal S1 and the first detection signal Ssns1 multiplied by the amplification factor of the first operational amplifier 306 .
  • the first detection signal Ssns1 proportional to the first charging current Ichg1 can be obtained through the third operational amplifier 309 and the first resistor Rsns1.
  • the first resistor Rsns1 is set on the path of the first charging current Ichg1 (eg, the path between the first adjustment tube 302 and the first battery 304 ), and the non-inverting input terminal of the third operational amplifier 309 is coupled to the voltage of the first resistor Rsns1
  • the higher end (such as the end coupled with the first adjustment tube 302)
  • the inverting input end of the third operational amplifier 309 is coupled to the lower voltage end of the first resistor Rsns1 (such as the end coupled with the first battery 304)
  • the output terminal of the third operational amplifier 309 is coupled to the inverting input terminal of the first operational amplifier 306 .
  • the first detection signal Ssns1 Rsns1*Ichg1*A3, that is, the first detection signal Ssns1 is proportional to the first charging current Ichg1, wherein A3 is the amplification factor of the third operational amplifier 309 .
  • the present application does not limit the specific circuit for collecting the first detection signal Ssns1.
  • the figure shows a possible implementation manner, but is not intended to be limiting.
  • the second operational amplifier 307 includes a first non-inverting input terminal and an inverting input terminal.
  • the first non-inverting input terminal of the second operational amplifier 307 is used to input the second signal S2
  • the inverting input terminal of the second operational amplifier 307 is used to input the second detection signal Ssns2 proportional to the second charging current Ichg2, the second
  • the operational amplifier 307 is also used for outputting the second control voltage Vctrl2 to the gate of the second pass transistor 303 to adjust the second charging current Ichg2.
  • the second control voltage Vctrl2 is equal to the difference between the second signal S2 and the second detection signal Ssns2 multiplied by the amplification factor of the second operational amplifier 307 .
  • the second detection signal Ssns2 proportional to the second charging current Ichg2 can be obtained through the fourth operational amplifier 310 and the second resistor Rsns2.
  • the second resistor Rsns2 is disposed on the path of the second charging current Ichg2 (eg, the path between the second pass transistor 303 and the second battery 305 ), and the non-inverting input terminal of the fourth operational amplifier 310 is coupled to the voltage of the second resistor Rsns2
  • the higher end (such as the end coupled with the second adjustment tube 303 )
  • the inverting input end of the fourth operational amplifier 310 is coupled to the lower voltage end of the second resistor Rsns2 (such as the end coupled with the second battery 305 )
  • the output terminal of the fourth operational amplifier 310 is coupled to the inverting input terminal of the second operational amplifier 307 .
  • the second detection signal Ssns2 Rsns2*Ichg2*A4, that is, the second detection signal Ssns2 is proportional to the second charging current Ichg2, where A4 is the amplification factor of the fourth operational amplifier 310 .
  • the present application does not limit the specific circuit for collecting the second detection signal Ssns2.
  • the figure shows a possible implementation manner, but is not intended to be limiting.
  • the first signal S1, the second signal S2, the first detection signal Ssns1 and the second detection signal Ssns2 may be voltage signals or current signals.
  • the present application uses a voltage signal as an example, but is not intended to be limited thereto.
  • the operational amplifier circuit 308 , the first operational amplifier 306 , and the first adjustment tube 302 form a negative feedback loop of the first operational amplifier 306
  • the operational amplifier circuit 308 , the second operational amplifier 307 , and the second adjustment tube 303 form the second operational amplifier 307 negative feedback loop.
  • the first detection signal Ssns1 is greater than the second detection signal Ssns2
  • the first charging current Ichg1 proportional to the first detection signal Ssns1 will increase, and the second charging current Ichg2 proportional to the second detection signal Ssns2 will decrease.
  • Ichg1>Ichg2 so that the first charging voltage rises more rapidly, until the two batteries are stably charged at the same voltage, and the charging stop state can be reached at the same time, shortening the charging of the dual batteries. time.
  • the voltage drop VDROP across the two pass transistors can be minimized, thereby improving the charging efficiency.
  • the first operational amplifier 306 may further include a second non-inverting input terminal, and the second non-inverting input terminal of the first operational amplifier 306 is used to input the first limit signal Slimit1, the first An operational amplifier 306 is also used for: selecting the smaller value input from the first non-inverting input terminal and the second non-inverting input terminal, and performing differential amplification with the signal input from the inverting input terminal to output the first control voltage Vctrl1. That is, the first operational amplifier 306 selects the smaller value of the first limit signal Slimit1 and the first signal S1, and makes a difference with the first detection signal Ssns1 to output the first control voltage Vctrl1.
  • the first detection signal Ssns1 is limited to be equal to the first limit signal Slimit1 at the maximum, and the maximum value of the first charging current Ichg1 is also limited,
  • the first battery 304 can be protected to prevent the first battery 304 from being damaged due to excessive first charging current Ichg1.
  • the second operational amplifier 307 may further include a second non-inverting input terminal, and the second non-inverting input terminal of the second operational amplifier 307 is used to input the second limit signal Slimit2, the first The second operational amplifier 307 is also used for: selecting the smaller value input from the first non-inverting input terminal and the second non-inverting input terminal, and performing differential amplification with the signal input from the inverting input terminal to output the second control voltage Vctrl2. That is, the second operational amplifier 307 selects the smaller value of the second limit signal Slimit2 and the second signal S2, and makes a difference with the second detection signal Ssns2 to output the second control voltage Vctrl2.
  • the second detection signal Ssns2 is limited to be equal to the second limit signal Slimit2 at the maximum, which also limits the maximum value of the second charging current Ichg2,
  • the second battery 305 can be protected to prevent the second battery 305 from being damaged due to excessive second charging current Ichg2.
  • the first limit signal Slimit1 and the second limit signal Slimit2 can be obtained by a reference signal generation circuit (eg, a reference voltage generation circuit, a reference current generation circuit), and the structure of the reference signal generation circuit is not limited in this application.
  • the first limit signal Slimit1 and the second limit signal Slimit2 may be a voltage signal and a current signal.
  • the present application uses a voltage signal as an example, but is not intended to be limited thereto.
  • the possible structure of the operational amplifier circuit 308 is described below by taking the battery charging circuit 121 of FIG. 4 as an example:
  • the operational amplifier circuit 308 includes a fully differential operational amplifier 3081; the non-inverting input terminal IN+ of the fully differential operational amplifier 3081 is used to input the first charging voltage Vbat1; the fully differential operational amplifier 3081 The inverting input terminal IN- is used to input the second charging voltage Vbat2; the inverting output terminal OUT- of the fully differential operational amplifier 3081 is used to output the first signal S1; the non-inverting output terminal OUT+ of the fully differential operational amplifier 3081 is used to output the first signal S1.
  • the common mode input terminal COM of the fully differential operational amplifier 3081 is used to input the reference voltage Vref.
  • the reference voltage Vref can be obtained by a reference signal generation circuit, and the structure of the reference signal generation circuit is not limited.
  • the first signal S1 Vref-A(Vbat1-Vbat2)/2 outputted by the inverting output terminal OUT- of the fully differential operational amplifier 3081 , where A is the amplification factor of the fully differential operational amplifier 3081 .
  • A is the amplification factor of the fully differential operational amplifier 3081 .
  • the fully differential operational amplifier 3081, the first operational amplifier 306, and the first adjustment tube 302 form a negative feedback loop of the first operational amplifier 306, and the fully differential operational amplifier 3081, the second operational amplifier 307, and the second adjustment tube 303 form the second operational amplifier Put 307 in the negative feedback loop.
  • Vbat1 Vbat2 (ie in a balanced state)
  • the first operational amplifier 306 selects the first signal S1 and the first detection signal Ssns1 to differentiate to output the first control voltage Vctrl1
  • the second limit signal Slimit2 is greater than the second signal S2
  • the second operational amplifier 307 selects the second signal S2 and the second detection signal Ssns2 to differentiate to output the second control voltage Vctrl2.
  • the magnitude of the reference voltage Vref can be determined according to the expected Ichg1, Rsns1 and A3 in the balanced state, or the magnitude of the reference voltage Vref can be determined according to the expected Ichg2, Rsns2 and A4 in the balanced state.
  • the desired Ichg1 in the equilibrium state can be adjusted according to Rsns1, A3 and Vref
  • the desired Ichg2 in the equilibrium state can be adjusted according to Rsns2, A4 and Vref.
  • Vbat1 and Vbat2 are not the same (that is, in an unbalanced state), for example, if Vbat2>Vbat1, then the non-inverting output terminal OUT+ of the fully differential operational amplifier 3081 outputs the second signal S2 ⁇ Vref, the inverting output terminal of the fully differential operational amplifier 3081 OUT- outputted first signal S1>Vref, that is, S2 ⁇ S1.
  • the first detection signal is equal to the second detection signal, so the first charging current proportional to the first detection signal and the second charging current proportional to the second detection signal are kept in balance, so that the two batteries maintain the same voltage during charging. If the voltages of the two batteries are not equal, for example, if the second charging voltage is greater than the first charging voltage, the first signal output by the fully differential op amp is greater than the second signal. According to the voltage following principle of the op amp, the first detection signal is greater than the second signal.
  • the charging stop state can be achieved at the same time, which shortens the charging time of the dual batteries.
  • the voltage drop VDROP across the two pass transistors can be minimized, thereby improving the charging efficiency.
  • the operational amplifier circuit 308 includes a fifth operational amplifier 3082 and a sixth operational amplifier 3083 .
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2, the inverting input terminal of the fifth operational amplifier 3082 is used to input the first charging voltage Vbat1, and the output of the fifth operational amplifier 3082 The terminal is used to output the first signal S1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1, the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2, and the output terminal of the sixth operational amplifier 3083 is used to output the second charging voltage Vbat2. signal S2.
  • the fifth operational amplifier 3082, the first operational amplifier 306, and the first adjustment tube 302 form a negative feedback loop of the first operational amplifier 306, and the sixth operational amplifier 3083, the second operational amplifier 307, and the second adjustment tube 303 form the second operational amplifier. Put 307 in the negative feedback loop.
  • the working principle of the battery charging circuit 121 is as follows:
  • the first operational amplifier 306 and the second operational amplifier 307 have the same amplification factor
  • the third operational amplifier 309 and the fourth operational amplifier 310 have the same amplification factor
  • the first resistor Rsns1 and the second resistor Rsns2 are the same.
  • the first charging current Ichg1 and the second charging current Ichg2 are equal (for example, both are 1A) as an example, that is, the first detection signal Ssns1 proportional to the first charging current Ichg1 and the second charging current Ichg2
  • the proportional second detection signals Ssns2 are equal.
  • Vbat1 Vbat2 (that is, in a balanced state), that is, the voltage difference input by the fifth operational amplifier 3082 is zero, then the first signal S1 output by the fifth operational amplifier 3082 is an indeterminate constant value (which may or may not be very large). small), if the first signal S1 is a small constant value, according to the voltage following principle of the negative feedback loop of the operational amplifier, the first detection signal Ssns1 is also a small constant value, which will cause the first charging current Ichg1 is very small, prolonging the charging time of the first battery 304 .
  • the second detection signal Ssns2 proportional to the second charging current Ichg2 is also a small constant value.
  • the second charging current Ichg2 will be very small, and the charging time of the second battery 305 will be prolonged.
  • Vbat1 and Vbat2 are not the same (that is, in an unbalanced state), for example, if Vbat2>Vbat1, the first signal S1 output by the fifth operational amplifier 3082 increases, and the sixth operational amplifier 3083 has a lower input voltage at the non-inverting input than the inverting input terminal input voltage, so the second signal S2 output by the sixth operational amplifier 3083 is a small constant value.
  • the second detection signal proportional to the second charging current Ichg2 is made The signal Ssns2 is also a small constant value, which will cause the second charging current Ichg2 to be small, and prolong the charging time of the second battery 305 .
  • the difference between the signals input from the non-inverting input terminal and the inverting input terminal of the first operational amplifier 306 is greater than the signal difference between the non-inverting input terminal and the inverting input terminal of the second operational amplifier 307, so that the first control signal output by the first operational amplifier 306
  • the embodiment of the present application provides an operational amplifier circuit 308 as shown in FIG. 7 to FIG. 10 .
  • a bias voltage is added on the basis of the voltage difference between the two batteries input by the sixth operational amplifier 3083, so that even when the voltages of the two batteries are the same in a balanced state, the fifth operational amplifier 3082 and the sixth operational amplifier 3083 are still
  • the voltage difference of the bias voltage can be input, so that the op amp can be performed normally, and a small constant value will not be output.
  • the voltage difference input by the fifth operational amplifier 3082 and the sixth operational amplifier 3083 satisfies the following mathematical relationship:
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2 or the bias voltage of the second charging voltage Vbat2 on the second charging path, and the inverting input terminal of the fifth operational amplifier 3082 is used to input the first charging voltage The first charging voltage Vbat1 on the path or the bias voltage of the first charging voltage Vbat1, the output terminal of the fifth operational amplifier 3082 is used to output the first signal S1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1 or the bias voltage of the first charging voltage Vbat1, and the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage or the second charging voltage , the output terminal of the sixth operational amplifier 3083 is used to output the second signal S2.
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2 plus the first bias voltage Voff1, and the inverting input terminal of the fifth operational amplifier 3082 The terminal is used to input the first charging voltage Vbat1, and the output terminal of the fifth operational amplifier 3082 is used to output the first control voltage Vctrl1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1 plus the second bias voltage Voff2, the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2, and the sixth operational amplifier 3083 The output terminal of is used to output the second control voltage Vctrl2.
  • the fifth operational amplifier 3082, the first operational amplifier 306, and the first adjustment tube 302 form a negative feedback loop of the first operational amplifier 306, and the sixth operational amplifier 3083, the second operational amplifier 307, and the second adjustment tube 303 form the second operational amplifier. Put 307 in the negative feedback loop.
  • Vbat1 Vbat2 (ie in a balanced state)
  • the first operational amplifier 306 selects the first signal S1 and the first detection signal Ssns1 to differentiate to output the first control voltage Vctrl1
  • the second limit signal Slimit2 is greater than the signal output by the second operational amplifier 307, and the second operational amplifier 307 selects the second signal S2 and the second detection signal Ssns2 to differentiate to output the second control voltage Vctrl2.
  • A3 is the amplification factor of the third operational amplifier 309
  • A4 is the amplification factor of the fourth operational amplifier 310
  • A5 is the amplification factor of the fifth operational amplifier 3082
  • A6 is the amplification factor of the sixth operational amplifier 3083 .
  • Rsns1, A3, A5, and Voff1 can be determined from the expected Ichg1 in the equilibrium state, and Rsns2, A4, A6, and Voff2 can be determined from the expected Ichg2 in the equilibrium state.
  • the desired Ichg1 in the equilibrium state can be adjusted according to Rsns1, A3, A5, and Voff1
  • the desired Ichg2 in the equilibrium state can be adjusted according to Rsns2, A4, A6, and Voff2.
  • Vbat1 and Vbat2 are not the same (that is, in an unbalanced state), for example, if Vbat2+Voff1 ⁇ Vbat1, that is, the voltage input at the non-inverting input terminal of the fifth operational amplifier 3082 is smaller than the voltage input at the inverting input terminal, the fifth operational amplifier 3082 outputs
  • the first signal S1 is a small constant value.
  • the first detection signal Ssns1 which is proportional to the first charging current Ichg1 is also a small constant value. Therefore, the first charging current Ichg1 will be very small, and the boosting of the first battery 304 will be slow.
  • Vbat1 Vbat2 (that is, in a balanced state)
  • the first operational amplifier 306 selects the first limit signal Slimit1 and the first detection signal Ssns1 to differentiate to output the first control voltage Vctrl1
  • the second limit signal Slimit2 is smaller than the second signal S2
  • the second operational amplifier 307 selects the second limit signal Slimit2 and the second detection signal Ssns2 to differentiate to output the second control voltage Vctrl2.
  • A3 is the amplification factor of the third operational amplifier 309
  • A4 is the amplification factor of the fourth operational amplifier 310 .
  • Rsns1, A3 and Slimit1 can be determined according to the expected Ichg1 in the equilibrium state, and Rsns2, A4 and Slimit2 can be determined according to the expected Ichg2 in the equilibrium state.
  • the expected Ichg1 in equilibrium can be adjusted according to Rsns1, A3 and Slimit1
  • the expected Ichg2 in equilibrium can be adjusted according to Rsns2, A4 and Slimit2.
  • Vbat1 and Vbat2 are not the same (that is, in an unbalanced state), for example, if Vbat2+Voff1 ⁇ Vbat1, that is, the voltage input at the non-inverting input terminal of the fifth operational amplifier 3082 is smaller than the voltage input at the inverting input terminal, the fifth operational amplifier 3082 outputs
  • the first signal S1 is a small constant value.
  • the second detection signal Ssns2 which is proportional to the second charging current Ichg2 is also a small constant value. Therefore, the second charging current Ichg2 will be small, and the boosting of the first battery 304 will be slow.
  • the first offset voltage Voff1 depends on the offset voltage Vos1 of the first operational amplifier 306,
  • the second offset voltage Voff2 depends on the offset voltage Vos2 of the second operational amplifier 307 ,
  • the first offset voltage Voff1 may be equal to the second offset voltage Voff2, for example, both are 15mV.
  • the present application does not limit how to obtain the first offset voltage Voff1 and the second offset voltage Voff2.
  • the positive electrode of the second battery 305 can be coupled to the reference current generating circuit through the resistor R11, and the non-inverting input terminal of the fifth operational amplifier 3082 is coupled between the resistor R11 and the reference current generating circuit, and the reference current is
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2, and the inverting input terminal of the fifth operational amplifier 3082 is used to input the first charging voltage
  • the first offset voltage Voff1 is subtracted from Vbat1
  • the output terminal of the fifth operational amplifier 3082 is used to output the first control voltage Vctrl1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1
  • the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2 minus the second bias voltage Voff2, and the sixth operational amplifier 3083
  • the output terminal of is used to output the second control voltage Vctrl2.
  • the positive electrode of the first battery 304 can be coupled to the first reference current generating circuit through the resistor R11, and the inverting input terminal of the fifth operational amplifier 3082 is coupled between the resistor R11 and the first reference current generating circuit.
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2 plus the first bias voltage Voff1, and the inverting input terminal of the fifth operational amplifier 3082 The terminal is used to input the first charging voltage Vbat1, and the output terminal of the fifth operational amplifier 3082 is used to output the first control voltage Vctrl1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1, the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2 minus the second bias voltage Voff2, and the sixth operational amplifier 3083 The output terminal of is used to output the second control voltage Vctrl2.
  • the positive electrode of the second battery 305 can be coupled to the first reference current generating circuit through the resistor R11, and the non-inverting input terminal of the fifth operational amplifier 3082 is coupled between the resistor R11 and the first reference current generating circuit.
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2, and the inverting input terminal of the fifth operational amplifier 3082 is used to input the first charging voltage
  • the first offset voltage Voff1 is subtracted from Vbat1, and the output terminal of the fifth operational amplifier 3082 is used to output the first control voltage Vctrl1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1 plus the second bias voltage Voff2, the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2, and the sixth operational amplifier 3083
  • the output terminal of is used to output the second control voltage Vctrl2.
  • the positive electrode of the first battery 304 can be coupled to the first reference current generating circuit through the resistor R11, and the inverting input terminal of the fifth operational amplifier 3082 is coupled between the resistor R11 and the first reference current generating circuit.
  • the non-inverting input terminal of the fifth operational amplifier 3082 is used to input the second charging voltage Vbat2 plus the first bias voltage Voff1, and the inverting input terminal of the fifth operational amplifier 3082 The terminal is used to input the first charging voltage Vbat1 minus the second offset voltage Voff2, and the output terminal of the fifth operational amplifier 3082 is used to output the first control voltage Vctrl1.
  • the non-inverting input terminal of the sixth operational amplifier 3083 is used to input the first charging voltage Vbat1 plus the third bias voltage Voff3, and the inverting input terminal of the sixth operational amplifier 3083 is used to input the second charging voltage Vbat2 minus the fourth bias The voltage Voff4, the output terminal of the sixth operational amplifier 3083 is used to output the second control voltage Vctrl2.
  • the positive electrode of the second battery 305 can be coupled to the first reference current generating circuit and the non-inverting input terminal of the fifth operational amplifier 3082 through the resistor R11
  • the positive electrode of the first battery 304 can be coupled to the second battery 304 through the resistor R12
  • the reference current generates the current and the inverting input of the fifth operational amplifier 3082 .
  • the positive electrode of the first battery 304 can be coupled to the third reference current generating circuit and the non-inverting input terminal of the sixth operational amplifier 3083 through the resistor R21, and the positive electrode of the second battery 305 can be coupled to the fourth reference current generating circuit and the fourth reference current generating circuit through the resistor R22.
  • the second reference current generating circuit and the fourth reference current generating circuit are also grounded.
  • the fifth operational amplifier The output first signal is a small constant value.
  • the first detection signal is also a small constant value. Therefore, the first detection signal is proportional to the first detection signal.
  • the charging current will also be small.
  • the second signal output by the sixth operational amplifier increases. According to the voltage following principle of the negative feedback loop of the operational amplifier, the second detection signal also increases, and the second charging current proportional to the second detection signal also increases.
  • the second charging voltage is increased more rapidly until the two batteries recover to the same voltage for charging, and the charging stop state can be achieved at the same time, thereby shortening the charging time of the two batteries being charged simultaneously.
  • the voltage drop VDROP across the two pass transistors can be minimized, thereby improving the charging efficiency.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池的充电电路(121)和电子设备(12),涉及电池充电领域,用于减小双电池的充电时间。该电路包括:电压调节电路(301)、第一调整管(302)、第二调整管(303)、第一运放(306)、第二运放(307)和全差分运放(3081);电压调节电路(301)通过第一调整管(302)向第一充电路径提供第一充电电流(Ichg1),通过第二调整管(303)向第二充电路径提供第二充电电流(Ichg2);全差分运放(3081)输入第一充电路径上的第一充电电压(Vbat1)和第二充电路径上的第二充电电压(Vbat2),输出第一信号(S1)和第二信号(S2);第一运放(306)输入第一信号(S1)和与第一充电电流(Ichg1)成正比的第一检测信号(Ssns1),向第一调整管(302)的栅极输出第一控制电压(Vctrl1)以调节第一充电电流(Ichg1);第二运放(307)输入第二信号(S2)和与第二充电电流(Ichg2)成正比的第二检测信号(Ssns2),向第二调整管(303)的栅极输出第二控制电压(Vctrl2)以调节第二充电电流(Ichg2)。

Description

电池的充电电路和电子设备 技术领域
本申请涉及电池充电领域,尤其涉及一种电池的充电电路和电子设备。
背景技术
目前有一些手机采用双电池充电电路来提升电池的充放电效率。双电池充电电路包括串充串放(即两个电池串行充电串行放电)、串充并放(即两个电池串行充电并行放电)和并充并放(即两个电池并行充电并行放电)等几种架构。其中,串充串放的结构简单,控制方便,但是放电损失大。串充并放需要改变双电池的形态,并且控制复杂。并充并放不需要改变双电池的形态,并且控制简单。
但是目前的并充并放对两个电池的匹配要求较高,当两个电池的容量不一致时,容易导致两个电池充电时的电压差过大,从而导致充电电流减小,充电时长增大,用户体验变差。并且,如果电池内阻较大,由于两个电池的电压差过大,还会导致系统电压纹波较大。
发明内容
本申请实施例提供一种电池的充电电路和电子设备,用于减小电池的充电时间。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种电池的充电电路,包括:电压调节电路、第一调整管、第二调整管、第一运放、第二运放和全差分运放;所述电压调节电路用于通过所述第一调整管向第一充电路径提供第一充电电流,还用于通过所述第二调整管向第二充电路径提供第二充电电流;所述全差分运放的同相输入端用于输入所述第一充电路径上的第一充电电压,所述全差分运放的反相输入端用于输入所述第二充电路径上的第二充电电压,所述全差分运放的反相输出端用于输出第一信号,所述全差分运放的同相输出端用于输出第二信号;所述第一运放的第一同相输入端用于输入所述第一信号,所述第一运放的反相输入端用于输入与所述第一充电电流成正比的第一检测信号,所述第一运放还用于向所述第一调整管的栅极输出第一控制电压以调节所述第一充电电流;所述第二运放的第一同相输入端用于输入所述第二信号,所述第二运放的反相输入端用于输入与所述第二充电电流成正比的第二检测信号,所述第二运放还用于向所述第二调整管的栅极输出第二控制电压以调节所述第二充电电流。
本申请实施例提供的电池的充电电路,包括两条充电路径,分别给两个电池充电。如果两个电池的电压相等,则全差分运放输出的第一信号和第二信号相等,根据运放的电压跟随原理,第一检测信号和第二检测信号相等,所以与第一检测信号成正比的第一充电电流和与第二检测信号成正比的第二充电电流保持平衡,使得两个电池在充电时保持电压相等。如果两个电池的电压不相等,例如如果第二充电电压大于第一充电电压,则全差分运放输出的第一信号大于第二信号,根据运放的电压跟随原理,第一检测信号大于第二检测信号,所以与第一检测信号成正比的第一充电电流增大,与第二检测信号成正比的第二充电电流减小,使得第一充电电压更快速升高,直至两个 电池恢复至相同的电压进行充电,可以同时达到停充状态,缩短双电池的充电时间。
在一种可能的实施方式中,第一运放还包括第二同相输入端,第一运放的第二同相输入端用于输入第一限制信号,第一运放还用于:选择第一限制信号和第一信号二者中的较小值,与第一检测信号进行差分放大,以输出第一控制电压。由于第一限制信号的存在,根据运放的负反馈环路的电压跟随原理,限制了第一检测信号最大等于第一限制信号,也就限制了第一充电电流的最大值,可以保护第一电池,防止第一充电电流过大造成第一电池损坏。
在一种可能的实施方式中,第二运放还包括第二同相输入端,第二运放的第二同相输入端用于输入第二限制信号,第二运放还用于:选择第二限制信号和第二信号二者中的较小值,与第二检测信号进行差分放大,以输出第二控制电压。由于第二限制信号的存在,根据运放的负反馈环路的电压跟随原理,限制了第二检测信号最大等于第二限制信号,也就限制了第二充电电流的最大值,可以保护第二电池,防止第二充电电流过大造成第二电池损坏。
在一种可能的实施方式中,还包括第三运放和第一电阻,第一电阻设置于第一充电电流的通路上,第三运放的正相输入端耦合至第一电阻的电压较高的一端,第三运放的反相输入端耦合至第一电阻的电压较低的一端,第三运放的输出端耦合至第一运放的反相输入端。该实施方式提供了如何获取与第一充电电流成正比的第一检测信号的一种可能方式。
在一种可能的实施方式中,还包括第四运放和第二电阻,第二电阻设置于第二充电电流的通路上,第四运放的正相输入端耦合至第二电阻的电压较高的一端,第四运放的反相输入端耦合至第二电阻的电压较低的一端,第四运放的输出端耦合至第二运放的反相输入端。该实施方式提供了如何获取与第二充电电流成正比的第二检测信号的一种可能方式。
在一种可能的实施方式中,第一信号、第二信号、第一检测信号和第二检测信号为电压信号。第一信号、第二信号、第一检测信号和第二检测信号还可以为电流信号,本申请不作限定。
第二方面,提供了一种电池的充电电路,包括:电压调节电路、第一电池、第二电池、第一调整管、第二调整管、第一运放、第二运放、第五运放和第六运放;电压调节电路用于通过第一调整管向第一电池所在的第一充电路径提供第一充电电流,还用于通过第二调整管向第二电池所在的第二充电路径提供第二充电电流;第五运放的同相输入端用于输入第二充电路径上的第二充电电压或第二充电电压的偏置电压,第五运放的反相输入端用于输入第一充电路径上的第一充电电压或第一充电电压的偏置电压,第五运放的输出端用于输出第一信号;第六运放的同相输入端用于输入第一充电电压或第一充电电压的偏置电压,第六运放的反相输入端用于输入第二充电电压或第二充电电压的偏置电压,第六运放的输出端用于输出第二信号;第一运放的第一同相输入端用于输入第一信号,第一运放的反相输入端用于输入与第一充电电流成正比的第一检测信号,第一运放还用于向第一调整管的栅极输出第一控制电压以调节第一充电电流;第二运放的第一同相输入端用于输入第二信号,第二运放的反相输入端用于输入成正比第二充电电流成正比的第二检测信号,第一运放还用于向第二调整管的 栅极输出第二控制电压以调节第二充电电流。
本申请实施例提供的电池的充电电路,如果两个电池的电压相等,则全差分运放输出的第一信号和第二信号相等,根据运放的电压跟随原理,第一检测信号和第二检测信号相等,所以与第一检测信号成正比的第一充电电流和与第二检测信号成正比的第二充电电流保持平衡,使得两个电池在充电时保持电压相等。如果两个电池的电压不相等,例如如果第二充电电压大于第一充电电压,则全差分运放输出的第一信号大于第二信号,根据运放的电压跟随原理,第一检测信号大于第二检测信号,所以与第一检测信号成正比的第一充电电流增大,与第二检测信号成正比的第二充电电流减小,使得第一充电电压更快速升高,直至两个电池恢复至相同的电压进行充电,可以同时达到停充状态,缩短双电池的充电时间。
在一种可能的实施方式中,第五运放的同相输入端用于输入第二充电电压加上第一偏置电压,第五运放的反相输入端用于输入第一充电电压。该实施方式提供了如何获取第一充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第五运放的同相输入端用于输入第二充电电压,第五运放的反相输入端用于输入第一充电电压减去第一偏置电压。该实施方式提供了如何获取第一充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第六运放的同相输入端用于输入第一充电电压加上第二偏置电压,第六运放的反相输入端用于输入第二充电电压。该实施方式提供了如何获取第二充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第六运放的同相输入端用于输入第一充电电压,第六运放的反相输入端用于输入第二充电电压减去第二偏置电压。该实施方式提供了如何获取第二充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第五运放的同相输入端用于输入第二充电电压加上第一偏置电压,第五运放的反相输入端用于输入第一充电电压减去第二偏置电压。该实施方式提供了如何获取第一充电电压的偏置电压以及第二充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第六运放的同相输入端用于输入第一充电电压加上第三偏置电压,第六运放的反相输入端用于输入第二充电电压减去第四偏置电压。该实施方式提供了如何获取第一充电电压的偏置电压以及第二充电电压的偏置电压的一种可能方式。
在一种可能的实施方式中,第一运放还包括第二同相输入端,第一运放的第二同相输入端用于输入第一限制信号,第一运放还用于:选择第一限制信号和第一信号二者中的较小值,与第一检测信号进行差分放大,以输出第一控制电压。由于第一限制信号的存在,根据运放的负反馈环路的电压跟随原理,限制了第一检测信号最大等于第一限制信号,也就限制了第一充电电流的最大值,可以保护第一电池,防止第一充电电流过大造成第一电池损坏。
在一种可能的实施方式中,第二运放还包括第二同相输入端,第二运放的第二同相输入端用于输入第二限制信号,第二运放还用于:选择第二限制信号和第二信号二者中的较小值,与第二检测信号进行差分放大,以输出第二控制电压。由于第二限制 信号的存在,根据运放的负反馈环路的电压跟随原理,限制了第二检测信号最大等于第二限制信号,也就限制了第二充电电流的最大值,可以保护第二电池,防止第二充电电流过大造成第二电池损坏。
在一种可能的实施方式中,还包括第三运放和第一电阻,第一电阻设置于第一充电电流的通路上,第三运放的正相输入端耦合至第一电阻的电压较高的一端,第三运放的反相输入端耦合至第一电阻的电压较低的一端,第三运放的输出端耦合至第一运放的反相输入端。该实施方式提供了如何获取与第一充电电流成正比的第一检测信号的一种可能方式。
在一种可能的实施方式中,还包括第四运放和第二电阻,第二电阻设置于第二充电电流的通路上,第四运放的正相输入端耦合至第二电阻的电压较高的一端,第四运放的反相输入端耦合至第二电阻的电压较低的一端,第四运放的输出端耦合至第二运放的反相输入端。该实施方式提供了如何获取与第二充电电流成正比的第二检测信号的一种可能方式。
在一种可能的实施方式中,第一信号、第二信号、第一检测信号和第二检测信号为电压信号。第一信号、第二信号、第一检测信号和第二检测信号还可以为电流信号,本申请不作限定。
第三方面,提供了一种电子设备,包括如第一方面至第二方面及其任一实施方式所述的电池的充电电路和工作电路,电池的充电电路用于为工作电路供电。
第三方面的技术效果参照第一方面及第二方面的技术效果,在此不再重复。
附图说明
图1为本申请实施例提供的一种包括电池的充电电路的电子设备的结构示意图一;
图2为本申请实施例提供的一种包括电池的充电电路的电子设备的结构示意图二;
图3为本申请实施例提供的一种包括电池的充电电路的电子设备的结构示意图三;
图4为本申请实施例提供的一种包括电池的充电电路的电子设备的结构示意图四;
图5为本申请实施例提供的一种电池的充电电路的结构示意图一;
图6为本申请实施例提供的一种电池的充电电路的结构示意图二;
图7为本申请实施例提供的一种电池的充电电路的结构示意图三;
图8为本申请实施例提供的一种电池的充电电路的结构示意图四;
图9为本申请实施例提供的一种电池的充电电路的结构示意图五;
图10为本申请实施例提供的一种电池的充电电路的结构示意图六;
图11为本申请实施例提供的一种电池的充电电路的结构示意图七。
具体实施方式
接上文所描述的,首先针对几种并充并放的电池的充电电路进行说明。
如图1所示,本申请实施例提供了一种包括电池的充电电路的电子设备,该电子设备12包括电池的充电电路121和工作电路122。
在充电时,电源适配器11通过交流直流转换将市电转换为直流电来为电池的充电电路121中的电池供电;在正常工作时,电池的充电电路121向工作电路122供电。其中,工作电路122包括处理器、存储器、通信接口等,不作限定。
电池的充电电路121包括第一充电芯片1211、第二充电芯片1212、第一电池1213 和第二电池1214。
电源适配器11通过第一充电芯片1211向第一电池1213充电,电源适配器11还通过第二充电芯片1212向第二电池1214充电,即两个充电芯片分别独立控制一个电池的充电。虽然该电池的充电电路的结构简单,控制方便,但是当两个电池的容量不一致时,容易导致两个电池充电时的电压差过大,从而导致总的充电电流减小,充电时长增大,用户体验变差。并且,如果电池内阻较大,由于两个电池的电压差过大,还会导致系统电压纹波较大。
如图2所示,在图1的基础上,本申请实施例提供了另一种包括电池的充电电路的电子设备,电池的充电电路121中还可以包括微控制单元(micro-controller unit,MCU)1215,MCU 1215通过控制两个充电芯片分别调整对应的电池的充电电压,来减小两个电池的电压差,提高充电效率。但是这种电池的充电电路的硬件成本高,并且MCU的控制逻辑复杂。
为此,本申请实施例提供了另一种包括电池的充电电路的电子设备,通过模拟电路实现比较两个电池的电压,对于电压低的电池增加其充电电流,直到两个电池以相同的电压进行充电,可以提高充电效率。
如图3所示,电子设备12包括电池的充电电路121和工作电路122。工作电路122可以包括处理器、存储器、通信接口等消耗电能的器件,具体不作限定。
在电子设备12充电时,电源适配器11通过电池的充电电路121对两个电池充电;在电子设备12正常工作时,电池的充电电路121(中的电池)还用于为工作电路122供电。
电池的充电电路121包括:电压调节电路301、第一调整管302、第二调整管303、第一电池304、第二电池305、第一运放306、第二运放307和运放电路308。在其他可选的实施例中,还可以包括第三运放309、第四运放310、第一电阻Rsns1、第二电阻Rsns2。另外,图中的Rbat1是第一电池304的等效电阻,Rbat2是第二电池305的等效电阻。
电压调节电路301可以通过第一调整管302向第一电池304所在的第一充电路径提供第一充电电流Ichg1,还用于通过第二调整管303向第二电池304所在的第二充电路径提供第二充电电流Ichg2。
其中,电压调节电路301可以是直流-直流变换电路(例如BUCK电路)或直流-直流变换芯片(例如BUCK芯片)等进行直流电压变换的电路,本申请不作限定。第一调整管302和第二调整管303可以是金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)等通过电压控制电流的器件。
运放电路308用于输入第一充电路径上的第一充电电压Vbat1和第二充电路径上的第二充电电压Vbat2;向第一运放306输出第一信号S1,向第二运放307输出第二信号S2;其中,第二充电电压Vbat2相对第一充电电压Vbat1的电压差,与第一信号S1成正比;第一充电电压Vbat1相对第二充电电压Vbat2的电压差,与第二信号S2成正比。后面会结合图5-图10来说明运放电路308的几种可能结构。
运放的工作原理是:运放的同相输入端和反相输入端的信号(例如电压或电流) 之差乘以运放的放大系数即为运放输出的信号(例如电压或电流)。本申请涉及的“信号”可以为电压或电流,可以以信号为电压为例,但并不限定于此。
第一运放306包括第一同相输入端和反相输入端。第一运放306的第一同相输入端用于输入第一信号S1,第一运放306的反相输入端用于输入与第一充电电流Ichg1成正比的第一检测信号Ssns1,第一运放306还用于向第一调整管302的栅极输出第一控制电压Vctrl1以调节第一充电电流Ichg1。第一控制电压Vctrl1等于第一信号S1与第一检测信号Ssns1之差乘以第一运放306的放大系数。
可以通过第三运放309和第一电阻Rsns1来获取与第一充电电流Ichg1成正比的第一检测信号Ssns1。第一电阻Rsns1设置于第一充电电流Ichg1的通路(例如第一调整管302与第一电池304之间的通路)上,第三运放309的正相输入端耦合至第一电阻Rsns1的电压较高的一端(例如与第一调整管302耦合的一端),第三运放309的反相输入端耦合至第一电阻Rsns1的电压较低的一端(例如与第一电池304耦合的一端),第三运放309的输出端耦合至第一运放306的反相输入端。则第一检测信号Ssns1=Rsns1*Ichg1*A3,即第一检测信号Ssns1与第一充电电流Ichg1成正比,其中,A3为第三运放309的放大系数。
本申请不限定采集第一检测信号Ssns1的具体电路,图中示出的是一种可能的实施方式,但并不意在限定。
第二运放307包括第一同相输入端和反相输入端。第二运放307的第一同相输入端用于输入第二信号S2,第二运放307的反相输入端用于输入与第二充电电流Ichg2成正比的第二检测信号Ssns2,第二运放307还用于向第二调整管303的栅极输出第二控制电压Vctrl2以调节第二充电电流Ichg2。第二控制电压Vctrl2等于第二信号S2与第二检测信号Ssns2之差乘以第二运放307的放大系数。
可以通过第四运放310和第二电阻Rsns2来获取与第二充电电流Ichg2成正比的第二检测信号Ssns2。第二电阻Rsns2设置于第二充电电流Ichg2的通路(例如第二调整管303与第二电池305之间的通路)上,第四运放310的正相输入端耦合至第二电阻Rsns2的电压较高的一端(例如与第二调整管303耦合的一端),第四运放310的反相输入端耦合至第二电阻Rsns2的电压较低的一端(例如与第二电池305耦合的一端),第四运放310的输出端耦合至第二运放307的反相输入端。则第二检测信号Ssns2=Rsns2*Ichg2*A4,即第二检测信号Ssns2与第二充电电流Ichg2成正比,其中,A4为第四运放310的放大系数。
本申请不限定采集第二检测信号Ssns2的具体电路,图中示出的是一种可能的实施方式,但并不意在限定。
第一信号S1、第二信号S2、第一检测信号Ssns1和第二检测信号Ssns2可以为电压信号或电流信号。本申请以电压信号为例,但并不意在限定于此。
运放电路308、第一运放306、第一调整管302形成第一运放306的负反馈环路,运放电路308、第二运放307、第二调整管303形成第二运放307的负反馈环路。
运放的负反馈环路的电压跟随原理是:运放的输出耦合至运放的反相输入端,则运放的输出(即反相输入端的输入)会跟随运放的同相输入端的输入。即第一检测信号Ssns1等于第一信号S1,则有S1=Ssns1=Rsns1*Ichg1*A3;第二检测信号Ssns2等 于第一信号S2,则有S2=Ssns2=Rsns2*Ichg2*A4。
上述电池的充电电路的工作原理是:
假设在平衡状态下,两个电池在进行充电时的电压相等,则运放电路输出的第一信号S1和第二信号S2相同,则有第一检测信号Ssns1等于第二检测信号Ssns2,假设Rsns2=Rsns1,A3=A4,则有Ichg1=Ichg2,即第一充电电流Ichg1和第二充电电流Ichg2相等。如果两个电池的电压不相等,例如如果第二充电电压大于第一充电电压,则运放电路输出的第一信号S1大于第二信号S2,根据运放的负反馈环路的电压跟随原理,使得第一检测信号Ssns1大于第二检测信号Ssns2,与第一检测信号Ssns1成正比的第一充电电流Ichg1会增大,与第二检测信号Ssns2成正比的第二充电电流Ichg2会减小,假设Rsns2=Rsns1,A3=A4,则有Ichg1>Ichg2,使得第一充电电压更快速升高,直至两个电池以相同的电压进行稳定充电,可以同时达到停充状态,缩短双电池并充的充电时间。另外,通过保持两个电池的电压一致,可以实现两个调整管上的电压降VDROP最小化,从而提高充电效率。
在其他可选的实施例中,如图4所示,第一运放306还可以包括第二同相输入端,第一运放306的第二同相输入端用于输入第一限制信号Slimit1,第一运放306还用于:选择第一同相输入端和第二同相输入端输入的较小值,与反相输入端输入的信号进行差分放大,以输出第一控制电压Vctrl1。即第一运放306选择第一限制信号Slimit1和第一信号S1二者中的较小值,与第一检测信号Ssns1进行差分,以输出第一控制电压Vctrl1。由于第一限制信号Slimit1的存在,根据运放的负反馈环路的电压跟随原理,限制了第一检测信号Ssns1最大等于第一限制信号Slimit1,也就限制了第一充电电流Ichg1的最大值,可以保护第一电池304,防止第一充电电流Ichg1过大造成第一电池304损坏。
在其他可选的实施例中,如图4所示,第二运放307还可以包括第二同相输入端,第二运放307的第二同相输入端用于输入第二限制信号Slimit2,第二运放307还用于:选择第一同相输入端和第二同相输入端输入的较小值,与反相输入端输入的信号进行差分放大,以输出第二控制电压Vctrl2。即第二运放307选择第二限制信号Slimit2和第二信号S2二者中的较小值,与第二检测信号Ssns2进行差分,以输出第二控制电压Vctrl2。由于第二限制信号Slimit2的存在,根据运放的负反馈环路的电压跟随原理,限制了第二检测信号Ssns2最大等于第二限制信号Slimit2,也就限制了第二充电电流Ichg2的最大值,可以保护第二电池305,防止第二充电电流过大Ichg2造成第二电池305损坏。
第一限制信号Slimit1和第二限制信号Slimit2可以通过基准信号生成电路(例如基准电压生成电路、基准电流生成电路)来得到,本申请对基准信号生成电路的结构不作限定。第一限制信号Slimit1和第二限制信号Slimit2可以为电压信号和电流信号。本申请以电压信号为例,但并不意在限定于此。
下面以图4的电池的充电电路121为例对运放电路308的可能结构进行说明:
在一种可能的实施方式中,如图5所示,运放电路308包括全差分运放3081;全差分运放3081的同相输入端IN+用于输入第一充电电压Vbat1;全差分运放3081的反相输入端IN-用于输入第二充电电压Vbat2;全差分运放3081的反相输出端OUT-用于 输出第一信号S1;全差分运放3081的同相输出端OUT+用于输出第二信号S2。全差分运放3081的共模输入端COM用于输入参考电压Vref。参考电压Vref可以通过基准信号生成电路来得到,基准信号生成电路的结构不作限定。
全差分运放3081的同相输出端OUT+输出的第二信号S2=Vref+A(Vbat1-Vbat2)/2。全差分运放3081的反相输出端OUT-输出的第一信号S1=Vref-A(Vbat1-Vbat2)/2,其中,A为全差分运放3081的放大系数。特别地,以第一信号S1和第二信号S2为电压为例,如果Vbat1=Vbat2,则S1=S2=Vref。
全差分运放3081、第一运放306、第一调整管302形成第一运放306的负反馈环路,全差分运放3081、第二运放307、第二调整管303形成第二运放307的负反馈环路。
如果Vbat1=Vbat2(即在平衡状态下),假设第一限制信号Slimit1大于第一信号S1,第一运放306选择第一信号S1与第一检测信号Ssns1进行差分,以输出第一控制电压Vctrl1;第二限制信号Slimit2大于第二信号S2,第二运放307选择第二信号S2与第二检测信号Ssns2进行差分,以输出第二控制电压Vctrl2。根据运放的负反馈环路的电压跟随原理,在平衡状态下,S1=Ssns1,S2=Ssns2。而S1=S2=Vref,Ssns1=Rsns1*Ichg1*A3,Ssns2=Rsns2*Ichg2*A4。所以有Vref=Rsns1*Ichg1*A3=Rsns2*Ichg2*A4,其中,A3为第三运放309的放大系数,A4为第四运放310的放大系数。
因此,可以根据平衡状态下的期望的Ichg1、Rsns1和A3确定参考电压Vref的大小,或者,根据平衡状态下的期望的Ichg2、Rsns2和A4确定参考电压Vref的大小。或者,可以根据Rsns1、A3和Vref来调节平衡状态下的期望的Ichg1,可以根据Rsns2、A4和Vref来调节平衡状态下的期望的Ichg2。
需要说明的是,在一种可能的实施方式中,如果A3=A4,Rsns1=Rsns2,则平衡状态下有Ichg1=Ichg2,Vbat1=Vbat2。这可以适用于两个电池容量相同的场景,使得两个电池以相同电流进行充电并保持电压相同。在另一种可能的实施方式中,由于在平衡状态下,Rsns1*Ichg1*A3=Rsns2*Ichg2*A4始终成立,如果通过调节A3、A4、Rsns1和Rsns2,使得Ichg1和Ichg2不同,仍能保证Vbat1=Vbat2。这可以适用于两个电池容量不同的场景,使得容量大的电池其充电电流更大,仍能保证两个电池的电压相同。
如果Vbat1和Vbat2不相同(即非平衡状态下),例如如果Vbat2>Vbat1,则全差分运放3081的同相输出端OUT+输出的第二信号S2<Vref,全差分运放3081的反相输出端OUT-输出的第一信号S1>Vref,即S2<S1。根据运放的负反馈环路的电压跟随原理,则有Ssns2<Ssns1,因此与第一检测信号Ssns1成正比的第一充电电流Ich1增大,与第二检测信号Ssns2成正比的第二充电电流Ich2减小,使得第一充电电压Vbat1更快速升高,直至恢复至Vbat2=Vbat1,即恢复至平衡状态。
通过以上分析可知,对于图4的电池的充电电路,如果两个电池的电压相等,则全差分运放输出的第一信号和第二信号相等,根据运放的电压跟随原理,第一检测信号和第二检测信号相等,所以与第一检测信号成正比的第一充电电流和与第二检测信号成正比的第二充电电流保持平衡,使得两个电池在充电时保持电压相等。如果两个电池的电压不相等,例如如果第二充电电压大于第一充电电压,则全差分运放输出的 第一信号大于第二信号,根据运放的电压跟随原理,第一检测信号大于第二检测信号,所以与第一检测信号成正比的第一充电电流增大,与第二检测信号成正比的第二充电电流减小,使得第一充电电压更快速升高,直至两个电池恢复至相同的电压进行充电,可以同时达到停充状态,缩短双电池并充的充电时间。另外,通过保持两个电池的电压一致,可以实现两个调整管上的电压降VDROP最小化,从而提高充电效率。
在另一种可能的实施方式中,如图6-图10所示,运放电路308包括第五运放3082和第六运放3083。
在如图6中,第五运放3082的同相输入端用于输入第二充电电压Vbat2,第五运放3082的反相输入端用于输入第一充电电压Vbat1,第五运放3082的输出端用于输出第一信号S1。第六运放3083的同相输入端用于输入第一充电电压Vbat1,第六运放3083的反相输入端用于输入第二充电电压Vbat2,第六运放3083的输出端用于输出第二信号S2。
第五运放3082、第一运放306、第一调整管302形成第一运放306的负反馈环路,第六运放3083、第二运放307、第二调整管303形成第二运放307的负反馈环路。
该电池的充电电路121的工作原理如下:
假设第一运放306和第二运放307的放大系数相同,第三运放309和第四运放310的放大系数相同,第一电阻Rsns1和第二电阻Rsns2相同。以初始状态下,第一充电电流Ichg1和第二充电电流Ichg2相等(例如均为1A)为例,即与第一充电电流Ichg1成正比的第一检测信号Ssns1,以及,与第二充电电流Ichg2成正比的第二检测信号Ssns2相等。
如果Vbat1=Vbat2(即平衡状态下),即第五运放3082输入的电压差为零,则第五运放3082输出的第一信号S1为一不确定的恒定值(可能很大也可能很小),如果第一信号S1为一很小的恒定值,根据运放的负反馈环路的电压跟随原理,第一检测信号Ssns1也为一很小的恒定值,则会造成第一充电电流Ichg1很少,延长第一电池304的充电时间。同理,如果第二信号S2为一很小的恒定值时,根据负反馈环路的电压跟随原理,使得与第二充电电流Ichg2成正比的第二检测信号Ssns2也为一很小的恒定值,则会造成第二充电电流Ichg2很小,延长第二电池305的充电时间。
如果Vbat1和Vbat2不相同(即非平衡状态下),例如如果Vbat2>Vbat1,则第五运放3082输出的第一信号S1增大,第六运放3083由于同相输入端输入电压小于反相输入端输入电压,所以第六运放3083输出的第二信号S2为一很小的恒定值,根据运放的负反馈环路的电压跟随原理,使得与第二充电电流Ichg2成正比的第二检测信号Ssns2也为一很小的恒定值,则会造成第二充电电流Ichg2很小,延长第二电池305的充电时间。第一运放306的同相输入端和反相输入端输入的信号之差大于第二运放307的同相输入端和反相输入端输入的信号差,使得第一运放306输出的第一控制电压Vctrl1大于第二运放307输出的第二控制电压Vctrl1,因此第一调整管302流过的第一充电电流Ich1大于第二调整管303流过的第二充电电流Ich2,使得第一充电电压Vbat1更快速升高,直至Vbat2=Vbat1,即恢复至平衡状态,但是由于第二电池305的影响这个时间会很长。
因此,为了防止在平衡状态下两个电池的充电电流都过小而延长充电时间,本申 请实施例提供了如图7-图10所示的运放电路308,通过在第五运放3082和第六运放3083输入的两个电池之间的电压差的基础上增加一个偏置电压,使得即使在平衡状态下两个电池的电压相同时,第五运放3082和第六运放3083仍能输入偏置电压大小的压差,从而能正常进行运放,不会输出一很小的恒定值。第五运放3082和第六运放3083输入的电压差在数学关系上满足如下关系:
第五运放3082的同相输入端用于输入第二充电路径上的第二充电电压Vbat2或第二充电电压Vbat2的偏置电压,第五运放3082的反相输入端用于输入第一充电路径上的第一充电电压Vbat1或第一充电电压Vbat1的偏置电压,第五运放3082的输出端用于输出第一信号S1。
第六运放3083的同相输入端用于输入第一充电电压Vbat1或第一充电电压Vbat1的偏置电压,第六运放3083的反相输入端用于输入第二充电电压或第二充电电压的偏置电压,第六运放3083的输出端用于输出第二信号S2。
可以通过多种实施方式来实现上述电路:
在一种可能的实施方式中,如图7所示,第五运放3082的同相输入端用于输入第二充电电压Vbat2加上第一偏置电压Voff1,第五运放3082的反相输入端用于输入第一充电电压Vbat1,第五运放3082的输出端用于输出第一控制电压Vctrl1。第六运放3083的同相输入端用于输入第一充电电压Vbat1加上第二偏置电压Voff2,第六运放3083的反相输入端用于输入第二充电电压Vbat2,第六运放3083的输出端用于输出第二控制电压Vctrl2。
第五运放3082、第一运放306、第一调整管302形成第一运放306的负反馈环路,第六运放3083、第二运放307、第二调整管303形成第二运放307的负反馈环路。
如果Vbat1=Vbat2(即在平衡状态下),假设第一限制信号Slimit1大于第一信号S1,第一运放306选择第一信号S1与第一检测信号Ssns1进行差分,以输出第一控制电压Vctrl1;第二限制信号Slimit2大于第二运放307输出的信号,第二运放307选择第二信号S2与第二检测信号Ssns2进行差分,以输出第二控制电压Vctrl2。则根据运放的负反馈环路的电压跟随原理,在平衡状态下,S1=Ssns1=Rsns1*Ichg1*A3,S2=Ssns2=Rsns2*Ichg2*A4,而S1=A5*Voff1,S2=A6*Voff2,所以有A5*Voff1=Rsns1*Ichg1*A3,A6*Voff2=Rsns2*Ichg2*A4。其中,A3为第三运放309的放大系数,A4为第四运放310的放大系数,A5为第五运放3082的放大系数,A6为第六运放3083的放大系数。
因此,可以根据平衡状态下的期望的Ichg1确定Rsns1、A3、A5和Voff1,根据平衡状态下的期望的Ichg2确定Rsns2、A4、A6和Voff2。或者,可以根据Rsns1、A3、A5和Voff1来调节平衡状态下的期望的Ichg1,根据Rsns2、A4、A6和Voff2来调节平衡状态下的期望的Ichg2。
需要说明的是,在一种可能的实施方式中,如果A3=A4,Rsns1=Rsns2,A5=A6,Voff1=Voff2,则平衡状态下有Ichg1=Ichg2,Vbat1=Vbat2。这可以适用于两个电池容量相同的场景,使得两个电池以相同电流进行充电并保持电压相同。在另一种可能的实施方式中,如果通过调节A3、A4、Rsns1、Rsns2、A5、A6,Voff1和Voff2,使得Ichg1和Ichg2不同,仍能保证Vbat1=Vbat2。这可以适用于两个电池容量不同的场景, 使得容量大的电池其充电电流更大,仍能保证两个电池的电压相同。
如果Vbat1和Vbat2不相同(即非平衡状态下),例如如果Vbat2+Voff1<Vbat1,即第五运放3082的同相输入端输入的电压小于反相输入端输入的电压,第五运放3082输出的第一信号S1为一很小的恒定值,根据运放的负反馈环路的电压跟随原理,使得与第一充电电流Ichg1成正比的第一检测信号Ssns1也为一很小的恒定值,因此第一充电电流Ichg1会很小,第一电池304的升压会很慢。第六运放3083的同相输入端和反相输入端的电压差Vbat1+Voff2-Vbat2>Vbat2+Voff1+Voff2-Vbat2=Voff1+Voff2,使得第六运放3083输出的第二信号S2增大,根据运放的负反馈环路的电压跟随原理,使得与第二充电电流Ichg2成正比的第二检测信号Ssns2也增大,因此第二充电电流Ichg2会大于第一充电电流Ich1,使得第二充电电压Vbat2更快速升高,直至Vbat2=Vbat1。
如果Vbat1=Vbat2(即在平衡状态下),假设第一限制信号Slimit1小于第一信号S1,第一运放306选择第一限制信号Slimit1与第一检测信号Ssns1进行差分,以输出第一控制电压Vctrl1;第二限制信号Slimit2小于第二信号S2,第二运放307选择第二限制信号Slimit2与第二检测信号Ssns2进行差分,以输出第二控制电压Vctrl2。根据运放的负反馈环路的电压跟随原理,在平衡状态下,Slimit1=Ssns1=Rsns1*Ichg1*A3,Slimit2=Ssns2=Rsns2*Ichg2*A4。其中,A3为第三运放309的放大系数,A4为第四运放310的放大系数。
因此,可以根据平衡状态下的期望的Ichg1确定Rsns1、A3和Slimit1,根据平衡状态下的期望的Ichg2确定Rsns2、A4和Slimit2。或者,可以根据Rsns1、A3和Slimit1来调节平衡状态下的期望的Ichg1,根据Rsns2、A4和Slimit2来调节平衡状态下的期望的Ichg2。
需要说明的是,在一种可能的实施方式中,如果A3=A4,Rsns1=Rsns2,Slimit1=Slimit2,则平衡状态下有Ichg1=Ichg2,Vbat1=Vbat2。这可以适用于两个电池容量相同的场景,使得两个电池以相同电流进行充电并保持电压相同。在另一种可能的实施方式中,如果通过调节A3、A4、Rsns1、Rsns2、Slimit1和Slimit2,使得Ichg1和Ichg2不同,仍能保证Vbat1=Vbat2。这可以适用于两个电池容量不同的场景,使得容量大的电池其充电电流更大,仍能保证两个电池的电压相同。
如果Vbat1和Vbat2不相同(即非平衡状态下),例如如果Vbat2+Voff1<Vbat1,即第五运放3082的同相输入端输入的电压小于反相输入端输入的电压,第五运放3082输出的第一信号S1为一很小的恒定值,根据运放的负反馈环路的电压跟随原理,使得与第二充电电流Ichg2成正比的第二检测信号Ssns2也为一很小的恒定值,因此第二充电电流Ichg2会很小,第一电池304的升压会很慢。第六运放3083的同相输入端和反相输入端的电压差Vbat1+Voff2-Vbat2>Vbat2+Voff1+Voff2-Vbat2=Voff1+Voff2,使得第六运放3083输出的第二信号S2增大,但是由于第二运放307仍选择第二限制信号Slimit2与第二检测信号Ssns2进行差分,所以第二信号S2增大无影响,根据运放的负反馈环路的电压跟随原理,第二检测信号Ssns2仍跟随第二限制信号Slimit2,使得第二充电电流Ichg2保持不变,因此第二充电电流Ichg2还是会大于第一充电电流Ich1,使得第二充电电压Vbat2更快速升高,直至Vbat2=Vbat1。
第一偏置电压Voff1取决于第一运放306的失调电压Vos1,|Vos1|<=Voff1<=|Vos1|+ΔV1,其中,ΔV1一般可以为几个毫伏。同理,第二偏置电压Voff2取决于第二运放307的失调电压Vos2,|Vos2|<=Voff2<=|Vos1|+ΔV2,其中,ΔV2一般可以为几个毫伏。第一运放306和第二运放307相同时,第一偏置电压Voff1可以等于第二偏置电压Voff2,例如均为15mV。
本申请不限定第一偏置电压Voff1和第二偏置电压Voff2的获取方式。示例性的,如图7所示,第二电池305的正极可以通过电阻R11耦合至基准电流生成电路,第五运放3082的同相输入端耦合在电阻R11和基准电流生成电路之间,基准电流生成电路产生流过电阻R11的恒定电流Ioff1,则第一偏置电压Voff1=R11*Ioff1。第一电池304的正极可以通过电阻R21耦合至基准电流生成电路,第六运放3083的同相输入端耦合在电阻R21和基准电流生成电路之间,基准电流生成电路产生流过电阻R21的恒定电流Ioff2,则第二偏置电压Voff2=R21*Ioff2。
在一种可能的实施方式中,如图8所示,第五运放3082的同相输入端用于输入第二充电电压Vbat2,第五运放3082的反相输入端用于输入第一充电电压Vbat1减去第一偏置电压Voff1,第五运放3082的输出端用于输出第一控制电压Vctrl1。第六运放3083的同相输入端用于输入第一充电电压Vbat1,第六运放3083的反相输入端用于输入第二充电电压Vbat2减去第二偏置电压Voff2,第六运放3083的输出端用于输出第二控制电压Vctrl2。
图8所示电路与图7区别在于第一偏置电压Voff1和第二偏置电压Voff2的获取方式,其他内容参照图7描述。如图8所示,第一电池304的正极可以通过电阻R11耦合至第一基准电流生成电路,第五运放3082的反相输入端耦合在电阻R11和第一基准电流生成电路之间,第一基准电流生成电路还接地,第一基准电流生成电路产生流过电阻R11的恒定电流Ioff1,则第一偏置电压Voff1=R11*Ioff1。第二电池305的正极可以通过电阻R21耦合至第二基准电流生成电路,第六运放3083的反相输入端耦合在电阻R21和第二基准电流生成电路之间,第二基准电流生成电路还接地,第二基准电流生成电路产生流过电阻R21的恒定电流Ioff2,则第二偏置电压Voff2=R21*Ioff2。
在一种可能的实施方式中,如图9所示,第五运放3082的同相输入端用于输入第二充电电压Vbat2加上第一偏置电压Voff1,第五运放3082的反相输入端用于输入第一充电电压Vbat1,第五运放3082的输出端用于输出第一控制电压Vctrl1。第六运放3083的同相输入端用于输入第一充电电压Vbat1,第六运放3083的反相输入端用于输入第二充电电压Vbat2减去第二偏置电压Voff2,第六运放3083的输出端用于输出第二控制电压Vctrl2。
图9所示电路与图7区别在于第一偏置电压Voff1和第二偏置电压Voff2的获取方式,其他内容参照图7描述。如图9所示,第二电池305的正极可以通过电阻R11耦合至第一基准电流生成电路,第五运放3082的正相输入端耦合在电阻R11和第一基准电流生成电路之间,第一基准电流生成电路产生流过电阻R11的恒定电流Ioff1,则第一偏置电压Voff1=R11*Ioff1。第二电池305的正极可以通过电阻R21耦合至第二基准电流生成电路,第六运放3083的反相输入端耦合在电阻R21和第二基准电流生 成电路之间,第二基准电流生成电路还接地,第二基准电流生成电路产生流过电阻R21的恒定电流Ioff2,则第二偏置电压Voff2=R21*Ioff2。
在一种可能的实施方式中,如图10所示,第五运放3082的同相输入端用于输入第二充电电压Vbat2,第五运放3082的反相输入端用于输入第一充电电压Vbat1减去第一偏置电压Voff1,第五运放3082的输出端用于输出第一控制电压Vctrl1。第六运放3083的同相输入端用于输入第一充电电压Vbat1加上第二偏置电压Voff2,第六运放3083的反相输入端用于输入第二充电电压Vbat2,第六运放3083的输出端用于输出第二控制电压Vctrl2。
图10所示电路与图7区别在于第一偏置电压Voff1和第二偏置电压Voff2的获取方式,其他内容参照图7描述。如图10所示,第一电池304的正极可以通过电阻R11耦合至第一基准电流生成电路,第五运放3082的反相输入端耦合在电阻R11和第一基准电流生成电路之间,第一基准电流生成电路还接地,第一基准电流生成电路产生流过电阻R11的恒定电流Ioff1,则第一偏置电压Voff1=R11*Ioff1。第二电池305的正极可以通过电阻R21耦合至第二基准电流生成电路,第六运放3083的正相输入端耦合在电阻R21和第二基准电流生成电路之间,第二基准电流生成电路产生流过电阻R21的恒定电流Ioff2,则第二偏置电压Voff2=R21*Ioff2。
在一种可能的实施方式中,如图11所示,第五运放3082的同相输入端用于输入第二充电电压Vbat2加上第一偏置电压Voff1,第五运放3082的反相输入端用于输入第一充电电压Vbat1减去第二偏置电压Voff2,第五运放3082的输出端用于输出第一控制电压Vctrl1。第六运放3083的同相输入端用于输入第一充电电压Vbat1加上第三偏置电压Voff3,第六运放3083的反相输入端用于输入第二充电电压Vbat2减去第四偏置电压Voff4,第六运放3083的输出端用于输出第二控制电压Vctrl2。
图11所示电路与图7区别在于第一偏置电压Voff1、第二偏置电压Voff2、第三偏置电压Voff3、第四偏置电压Voff4的获取方式,其他内容参照图7描述。如图11所示,第二电池305的正极可以通过电阻R11耦合至第一基准电流生成电路以及第五运放3082的正相输入端,第一电池304的正极可以通过电阻R12耦合至第二基准电流生成电流以及第五运放3082的反相输入端。第一电池304的正极可以通过电阻R21耦合至第三基准电流生成电路以及第六运放3083的正相输入端,第二电池305的正极可以通过电阻R22耦合至第四基准电流生成电路以及第六运放3083的反相输入端。第二基准电流生成电路和第四基准电流生成电路还接地。第一基准电流生成电路产生流过电阻R11的恒定电流Ioff1,则第一偏置电压Voff1=R11*Ioff1。第二基准电流生成电路产生流过电阻R12的恒定电流Ioff2,则第二偏置电压Voff2=R12*Ioff2。第三基准电流生成电路产生流过电阻R21的恒定电流Ioff3,则第三偏置电压Voff3=R21*Ioff3。第四基准电流生成电路产生流过电阻R22的恒定电流Ioff4,则第四偏置电压Voff4=R22*Ioff4。
通过以上分析可知,对于图7-图10的电池的充电电路,如果两个电池的电压不相等,例如如果第一充电电压大于第二充电电压加上第一偏置电压,则第五运放输出的第一信号为一很小的恒定值,根据运放的负反馈环路的电压跟随原理,第一检测信号也为一很小的恒定值,因此与第一检测信号成正比的第一充电电流也会很小。而第六 运放输出的第二信号增大,根据运放的负反馈环路的电压跟随原理,第二检测信号也增大,与第二检测信号成正比的第二充电电流也增大,使得第二充电电压更快速升高,直至两个电池恢复至相同的电压进行充电,可以同时达到停充状态,缩短双电池并充的充电时间。另外,通过保持两个电池的电压一致,可以实现两个调整管上的电压降VDROP最小化,从而提高充电效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种电池的充电电路,其特征在于,包括:电压调节电路、第一调整管、第二调整管、第一运放、第二运放和全差分运放;
    所述电压调节电路用于通过所述第一调整管向第一充电路径提供第一充电电流,还用于通过所述第二调整管向第二充电路径提供第二充电电流;
    所述全差分运放的同相输入端用于输入所述第一充电路径上的第一充电电压,所述全差分运放的反相输入端用于输入所述第二充电路径上的第二充电电压,所述全差分运放的反相输出端用于输出第一信号,所述全差分运放的同相输出端用于输出第二信号;
    所述第一运放的第一同相输入端用于输入所述第一信号,所述第一运放的反相输入端用于输入与所述第一充电电流成正比的第一检测信号,所述第一运放还用于向所述第一调整管的栅极输出第一控制电压以调节所述第一充电电流;
    所述第二运放的第一同相输入端用于输入所述第二信号,所述第二运放的反相输入端用于输入与所述第二充电电流成正比的第二检测信号,所述第二运放还用于向所述第二调整管的栅极输出第二控制电压以调节所述第二充电电流。
  2. 根据权利要求1所述的充电电路,其特征在于,
    所述第一运放还包括第二同相输入端,所述第一运放的第二同相输入端用于输入第一限制信号,所述第一运放还用于:选择所述第一限制信号和所述第一信号二者中的较小值,与所述第一检测信号进行差分放大,以输出所述第一控制电压。
  3. 根据权利要求1-2任一项所述的充电电路,其特征在于,
    所述第二运放还包括第二同相输入端,所述第二运放的第二同相输入端用于输入第二限制信号,所述第二运放还用于:选择所述第二限制信号和所述第二信号二者中的较小值,与所述第二检测信号进行差分放大,以输出所述第二控制电压。
  4. 根据权利要求1-3任一项所述的充电电路,其特征在于,还包括第三运放和第一电阻,所述第一电阻设置于所述第一充电电流的通路上,所述第三运放的正相输入端耦合至所述第一电阻的电压较高的一端,所述第三运放的反相输入端耦合至所述第一电阻的电压较低的一端,所述第三运放的输出端耦合至所述第一运放的反相输入端。
  5. 根据权利要求1-4任一项所述的充电电路,其特征在于,还包括第四运放和第二电阻,所述第二电阻设置于所述第二充电电流的通路上,所述第四运放的正相输入端耦合至所述第二电阻的电压较高的一端,所述第四运放的反相输入端耦合至所述第二电阻的电压较低的一端,所述第四运放的输出端耦合至所述第二运放的反相输入端。
  6. 根据权利要求1-5任一项所述的充电电路,其特征在于,所述第一信号、所述第二信号、所述第一检测信号和所述第二检测信号为电压信号。
  7. 一种电池的充电电路,其特征在于,包括:电压调节电路、第一调整管、第二调整管、第一运放、第二运放、第五运放和第六运放;
    所述电压调节电路用于通过所述第一调整管向第一充电路径提供第一充电电流,还用于通过所述第二调整管向第二充电路径提供第二充电电流;
    所述第五运放的同相输入端用于输入所述第二充电路径上的第二充电电压或所述第二充电电压的偏置电压,所述第五运放的反相输入端用于输入所述第一充电路径上 的第一充电电压或所述第一充电电压的偏置电压,所述第五运放的输出端用于输出第一信号;
    所述第六运放的同相输入端用于输入所述第一充电电压或所述第一充电电压的偏置电压,所述第六运放的反相输入端用于输入所述第二充电电压或所述第二充电电压的偏置电压,所述第六运放的输出端用于输出第二信号;
    所述第一运放的第一同相输入端用于输入所述第一信号,所述第一运放的反相输入端用于输入与所述第一充电电流成正比的第一检测信号,所述第一运放还用于向所述第一调整管的栅极输出第一控制电压以调节所述第一充电电流;
    所述第二运放的第一同相输入端用于输入所述第二信号,所述第二运放的反相输入端用于输入成正比所述第二充电电流成正比的第二检测信号,所述第一运放还用于向所述第二调整管的栅极输出第二控制电压以调节所述第二充电电流。
  8. 根据权利要求7所述的充电电路,其特征在于,
    所述第五运放的同相输入端用于输入所述第二充电电压加上第一偏置电压,所述第五运放的反相输入端用于输入所述第一充电电压。
  9. 根据权利要求7所述的充电电路,其特征在于,
    所述第五运放的同相输入端用于输入所述第二充电电压,所述第五运放的反相输入端用于输入所述第一充电电压减去第一偏置电压。
  10. 根据权利要求7-9任一项所述的充电电路,其特征在于,
    所述第六运放的同相输入端用于输入所述第一充电电压加上第二偏置电压,所述第六运放的反相输入端用于输入所述第二充电电压。
  11. 根据权利要求7-9任一项所述的充电电路,其特征在于,
    所述第六运放的同相输入端用于输入所述第一充电电压,所述第六运放的反相输入端用于输入所述第二充电电压减去第二偏置电压。
  12. 根据权利要求7-11任一项所述的充电电路,其特征在于,
    所述第一运放还包括第二同相输入端,所述第一运放的第二同相输入端用于输入第一限制信号,所述第一运放还用于:选择所述第一限制信号和所述第一信号二者中的较小值,与所述第一检测信号进行差分放大,以输出所述第一控制电压。
  13. 根据权利要求7-12任一项所述的充电电路,其特征在于,
    所述第二运放还包括第二同相输入端,所述第二运放的第二同相输入端用于输入第二限制信号,所述第二运放还用于:选择所述第二限制信号和所述第二信号二者中的较小值,与所述第二检测信号进行差分放大,以输出所述第二控制电压。
  14. 根据权利要求7-13任一项所述的充电电路,其特征在于,还包括第三运放和第一电阻,所述第一电阻设置于所述第一充电电流的通路上,所述第三运放的正相输入端耦合至所述第一电阻的电压较高的一端,所述第三运放的反相输入端耦合至所述第一电阻的电压较低的一端,所述第三运放的输出端耦合至所述第一运放的反相输入端。
  15. 根据权利要求7-14任一项所述的充电电路,其特征在于,还包括第四运放和第二电阻,所述第二电阻设置于所述第二充电电流的通路上,所述第四运放的正相输入端耦合至所述第二电阻的电压较高的一端,所述第四运放的反相输入端耦合至所述 第二电阻的电压较低的一端,所述第四运放的输出端耦合至所述第二运放的反相输入端。
  16. 根据权利要求7-15任一项所述的充电电路,其特征在于,所述第一信号、所述第二信号、所述第一检测信号和所述第二检测信号为电压信号。
  17. 一种电子设备,其特征在于,包括如权利要求1-16任一项所述的电池的充电电路和工作电路,所述电池的充电电路用于为所述工作电路供电。
PCT/CN2021/073140 2021-01-21 2021-01-21 电池的充电电路和电子设备 WO2022155856A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/073140 WO2022155856A1 (zh) 2021-01-21 2021-01-21 电池的充电电路和电子设备
CN202180084864.4A CN116670965A (zh) 2021-01-21 2021-01-21 电池的充电电路和电子设备
EP21920258.7A EP4270719A4 (en) 2021-01-21 2021-01-21 BATTERY CHARGING CIRCUIT AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073140 WO2022155856A1 (zh) 2021-01-21 2021-01-21 电池的充电电路和电子设备

Publications (1)

Publication Number Publication Date
WO2022155856A1 true WO2022155856A1 (zh) 2022-07-28

Family

ID=82548292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073140 WO2022155856A1 (zh) 2021-01-21 2021-01-21 电池的充电电路和电子设备

Country Status (3)

Country Link
EP (1) EP4270719A4 (zh)
CN (1) CN116670965A (zh)
WO (1) WO2022155856A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2859895Y (zh) * 2005-12-06 2007-01-17 天津华云自控股份有限公司 蓄电池并联充电控制电路
US20070085523A1 (en) * 2005-04-07 2007-04-19 Texas Instruments Deutschland Gmbh Dc-dc converter
CN107947291A (zh) * 2017-12-21 2018-04-20 沈阳贝特瑞科技有限公司 一种蓄电池充放电管理系统
CN109038716A (zh) * 2018-07-23 2018-12-18 周建秀 一种车载电池快速充电电路
CN212012133U (zh) * 2020-03-12 2020-11-24 深圳市无限动力发展有限公司 多节锂电池串联保护电路及移动设备
CN212114857U (zh) * 2020-06-12 2020-12-08 江苏谊和电子有限公司 一种双电池包轮流切换的充电电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064521B2 (en) * 2001-08-17 2006-06-20 O2Micro International Limited Charging circuit for parallel charging in multiple battery systems
JP6908842B2 (ja) * 2017-07-14 2021-07-28 ミツミ電機株式会社 二次電池保護回路、二次電池保護集積回路及び電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070085523A1 (en) * 2005-04-07 2007-04-19 Texas Instruments Deutschland Gmbh Dc-dc converter
CN2859895Y (zh) * 2005-12-06 2007-01-17 天津华云自控股份有限公司 蓄电池并联充电控制电路
CN107947291A (zh) * 2017-12-21 2018-04-20 沈阳贝特瑞科技有限公司 一种蓄电池充放电管理系统
CN109038716A (zh) * 2018-07-23 2018-12-18 周建秀 一种车载电池快速充电电路
CN212012133U (zh) * 2020-03-12 2020-11-24 深圳市无限动力发展有限公司 多节锂电池串联保护电路及移动设备
CN212114857U (zh) * 2020-06-12 2020-12-08 江苏谊和电子有限公司 一种双电池包轮流切换的充电电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270719A4 *

Also Published As

Publication number Publication date
EP4270719A1 (en) 2023-11-01
CN116670965A (zh) 2023-08-29
EP4270719A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US9735600B2 (en) Method for limiting battery discharging current in battery charger and discharger circuit
US10714947B2 (en) Systems and methods for controlling battery current
US20140203780A1 (en) System and method for active charge and discharge current balancing in multiple parallel-connected battery packs
US9935467B2 (en) Power supply system, electronic device, and electricity distribution method of electronic device
US7701173B2 (en) Charging and power supply for mobile devices
JP2020058220A (ja) 非対称デュアルバッテリシステムのための平衡充電及び放電制御
CN108964457B (zh) 用于电子装置的高效电池充电器的实施方案
US7679343B2 (en) Power supply system and method for controlling output voltage
JP3968228B2 (ja) レギュレータ回路
TW201631432A (zh) 用於決定配接器電流限制的系統和方法
JP2012213320A (ja) チャージポンプ回路およびその動作方法
US20110134674A1 (en) Active rectifier and method for energy harvesting power management circuit
US9618540B2 (en) Current sensing module and power conversion apparatus and electronic apparatus using the same
CN106787716B (zh) 单电感器多输出dc-dc转换器
US20060033474A1 (en) USB battery charger
KR102236017B1 (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
CN108964447B (zh) 电力转换器及对具有电力转换器的电源适配器充电的方法
US20220140621A1 (en) Charging integrated circuit for charging battery device and electronic device including the same
TWI472122B (zh) 電流調節系統
CN103383581A (zh) 一种具暂态响应增强机制的电压调节装置
WO2016110264A1 (zh) 一种主动均衡的通用控制电路
TWI490506B (zh) 用於確定電流的電路和方法
WO2022155856A1 (zh) 电池的充电电路和电子设备
WO2022037540A1 (zh) 无线充电装置和电子设备
TW201109877A (en) Low dropout regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084864.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021920258

Country of ref document: EP

Effective date: 20230726

NENP Non-entry into the national phase

Ref country code: DE