WO2016110264A1 - 一种主动均衡的通用控制电路 - Google Patents

一种主动均衡的通用控制电路 Download PDF

Info

Publication number
WO2016110264A1
WO2016110264A1 PCT/CN2016/070424 CN2016070424W WO2016110264A1 WO 2016110264 A1 WO2016110264 A1 WO 2016110264A1 CN 2016070424 W CN2016070424 W CN 2016070424W WO 2016110264 A1 WO2016110264 A1 WO 2016110264A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
operational amplifier
voltage dividing
voltage
Prior art date
Application number
PCT/CN2016/070424
Other languages
English (en)
French (fr)
Inventor
奚淡基
黄永安
周逊伟
黄必亮
Original Assignee
杭州协能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州协能科技股份有限公司 filed Critical 杭州协能科技股份有限公司
Priority to US15/642,021 priority Critical patent/US10090684B2/en
Publication of WO2016110264A1 publication Critical patent/WO2016110264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries

Definitions

  • the invention relates to an active equalization universal control circuit.
  • the existing equalized power circuit generally uses a microprocessor to first sample all battery cell voltages, as shown in FIG. 1, and then calculate which battery cell capacities in the battery pack are relatively high relative to the average value, need to be discharged, and which relative average values are low. It needs to be charged, and finally controls the corresponding equalization circuit power switch, so that the unit battery with high capacity is discharged to the whole group of batteries, and the unit battery with low capacity is charged to the whole group of batteries. That is, the battery voltage is first sampled by the MCU, then the energy transfer direction of the battery is calculated, and finally the power switch is controlled for energy transfer.
  • the circuit is complex, requires MCU, the sampling needs to isolate the chip, the switch needs to drive the chip, the cost is high; the equalization algorithm is complex, the development cost is high; the battery needs to be researched quite, and the effect that different developers can achieve is also inconsistent.
  • the integrated circuit samples the battery voltage, and then calculates the capacity of the adjacent battery cells to determine the direction of energy transfer of the adjacent battery. Finally, the integrated circuit controls the power switch and performs energy transfer through the transformer.
  • This solution requires a dedicated integrated chip, which is costly, and has poor application flexibility and is difficult to modularize for different series of battery packs.
  • the battery voltage sampled by the dedicated integrated chip has a range limitation, and it is not suitable for the balance of the battery pack that controls the high voltage.
  • the invention provides an active control universal control circuit with low cost, good application flexibility and easy modularization.
  • An active equalization universal control circuit characterized by including voltages for adjacent battery packs a first sampling line and a second sampling line respectively sampled, and a first voltage dividing circuit composed of a fourth resistor and a fifth resistor connected in series is connected to the first sampling line, and the voltage dividing ends of the first voltage dividing circuit are respectively connected Providing a reference voltage to an input terminal of the first operational amplifier and the second operational amplifier, wherein the second sampling line is connected with a second component consisting of a first resistor, a second resistor and a third resistor a voltage dividing circuit, the voltage dividing end of the first resistor and the second resistor is connected to the other input end of the first operational amplifier, and the voltage dividing end of the second resistor and the third resistor is connected to the other input end of the second operational amplifier.
  • the output of the first operational amplifier is connected to an energy-sending circuit of the equalization power circuit, and the output of the second operational amplifier is connected to an energy-down transmission circuit of the equalization power circuit.
  • the control circuit of the present invention separately samples the voltages of adjacent battery packs, and after sampling, logically compares the voltages of the two operational amplifiers, and then outputs the energy to the energy uploading circuit by the first operational amplifier output energy, or
  • the second operational amplifier outputs an energy downlink signal to the energy transmission circuit to realize energy transmission between adjacent battery packs, and the function of the control circuit can be realized by using an ordinary operational amplifier, the cost is low, the application range is wide, and the module is easy to be modularized. It is easy to apply and is suitable for the control of a higher voltage battery pack equalization power circuit.
  • the first operational amplifier when each divided voltage of the second voltage dividing circuit is greater than a reference voltage, the first operational amplifier outputs a high level signal, and the second operational amplifier outputs a low level signal, when each of the second voltage dividing circuits When the divided voltage is less than the reference voltage, the first operational amplifier outputs a low level signal, and the second operational amplifier outputs a high level signal.
  • the first operational amplifier outputs a low level signal
  • the second operational amplifier outputs a low level signal. At this time, the energy uploading circuit and the energy transmitting circuit of the equalized power circuit do not work.
  • the resistance of the first resistor and the resistance of the third resistor are much larger than the resistance of the second resistor.
  • the function of the second resistor in the second voltage dividing circuit is to prevent the equalizing circuit from transmitting energy back and forth, causing part of the energy loss in the circuit, causing waste of energy, and making the two divided voltages in the second voltage dividing circuit nearly equal.
  • the voltage dividing ratio of the first voltage dividing circuit is greater than a voltage dividing ratio of the voltage dividing end of the second resistor and the third resistor connection and smaller than a voltage dividing ratio of the voltage dividing end of the first resistor and the second resistor.
  • a voltage follower is disposed on the voltage dividing end of the first voltage dividing circuit for increasing the driving capability of the reference voltage to prevent interference or being biased by the load behind. If the voltage sampled by the first sampling line is not large and is within the input voltage range of the op amp, then the first voltage dividing circuit and voltage follower are no longer needed because the battery itself is a strong one. source.
  • the invention has the beneficial effects of being suitable for the control of the battery pack equalization power circuit with higher voltage; using the ordinary operational amplifier as the main component of the control circuit, the cost is relatively low; the adaptability is wide, buck, boost, flyback, and forward circuits are applicable; Modular, cost reduction and ease of application.
  • 1 is a structural circuit diagram of a conventional equalization power circuit.
  • FIG. 2 is another structural circuit diagram of a conventional equalization power circuit.
  • Figure 3 is a block diagram of the circuit of the present invention.
  • Figure 4 is a schematic view showing the structure of use of the present invention.
  • the voltage dividing terminal m connected to the resistor R 1 and the second resistor R 2 is connected to the other input terminal of the first operational amplifier U 1
  • the voltage dividing terminal n connected to the third resistor R 2 and the third resistor R 3 is connected to the second terminal
  • the other input terminal of the U 2 is connected, and the output end of the first operational amplifier U 1 is connected to the energy uploading circuit 2 of the equalization power circuit, and the output of the second operational amplifier U 2 and the energy of the equalized power circuit
  • the circuit 3 is connected, (the problem of this sentence is the same as that stated in the claims).
  • the control circuit according to the present invention by a voltage of the battery 4 adjacent sample separately, after the discharge voltage of a logic operation by comparing the two sampled transported by the first operational amplifier U 1 output energy signal to the energy upload circuit upload 2, or the second operational amplifier U 2 outputs an energy downlink signal to the energy transmission circuit 3 to realize energy transmission between adjacent battery packs 4, and the function of the control circuit 1 can be realized by using an ordinary operational amplifier.
  • the resistance of the first resistor R 1 and the resistance of the third resistor R 3 are much larger than the resistance of the second resistor R 2 , that is, R 1 ′ R 2 , R 3 ′ R 2 .
  • the function of the second resistor R 2 in the second voltage dividing circuit is to prevent the equalizing circuit from transmitting energy back and forth, resulting in partial energy loss in the circuit, resulting in waste of energy, and at the same time making the two divided voltages Vm in the second voltage dividing circuit It is nearly equal to Vn.
  • the voltage dividing device U 3 is disposed on the voltage dividing end p of the first voltage dividing circuit of the embodiment to increase the driving capability of the reference voltage to prevent interference or to be biased by the rear load. If the voltage sampled by the first sampling line 11 is not large and is within the input voltage range of the selected op amp, then the first voltage dividing circuit and the voltage follower U 3 are no longer needed because the battery itself is a Very strong source.
  • the control circuit 1 compares the voltage value of V A with the voltage value of V B - V A to determine the magnitude of the voltage of the two battery packs 4, and if V A is low, V A ⁇ 1/2 V B , When V A passes the voltage division of the fourth resistor R4 and the fifth resistor R5 to obtain a reference voltage Vref, V B is divided by the first resistor R1, the second resistor R2 and the third resistor R3 to obtain Vm and Vn, due to the dead zone.

Abstract

一种主动均衡的通用控制电路包括对相邻的电池组(4)的电压分别采样的第一采样线(11)和第二采样线(12)。第一采样线上连接有由第四电阻(R4)与第五电阻(R5)串接组成的第一分压电路,第一分压电路的分压端(p)均与第一运放(U1)和第二运放(U2)的一个输入端连接给其提供一个参考电压(ref)。第二采样线上连接有由第一电阻(R1)、第二电阻(R2)和第三电阻(R3)串接组成的第二分压电路,第一电阻与第二电阻连接的分压端(m)与第一运放的另一输入端连接,第二电阻与第三电阻连接的分压端(n)与第二运放的另一输入端连接。第一运放的输出端与均衡功率电路的能量上传电路连接(2),。第二运放的输出端与均衡功率电路的能量下传电路(3)连接。该通用控制电路成本低,易于模块化并且便于应用。

Description

一种主动均衡的通用控制电路 技术领域
本发明涉及一种主动均衡的通用控制电路。
背景技术
现有的均衡功率电路一般是采用微处理器先采样所有电池单元电压,如图1所示,再计算出电池组中哪些电池单元容量相对平均值偏高,需要放电,哪些相对平均值偏低,需要充电,最后控制对应的均衡电路功率开关,使容量偏高的单元电池向整组电池放电,容量偏低的单元电池由整组电池向其充电。即先通过MCU采样电池电压,再计算电池能量转移方向,最后控制功率开关进行能量转移。该电路复杂,需要MCU,采样需要隔离芯片,开关需要驱动芯片,成本高;均衡算法复杂,开发成本高;需对电池有相当的研究,不同的开发者,能达到的效果也不一致。
也有是通过均衡专用集成电路,采样、均衡分时进行,否则会相互干扰。如图2所示,首先集成电路采样电池电压,再通过计算得出相邻的电池单元容量的高低,确定相邻电池能量转移的方向,最后集成电路控制功率开关,通过变压器进行能量转移。该方案需要专用集成芯片,成本高,对不同串数的电池组,应用灵活性差,难以模块化。而且专用集成芯片采样的电池电压有范围限制,不适用控制高电压的电池组的均衡。
发明内容
本发明提供了一种成本低、应用灵活性好、易于模块化的主动均衡的通用控制电路。
本发明采用的技术方案是:
一种主动均衡的通用控制电路,其特征在于:包括对相邻的电池组的电压 分别采样的第一采样线和第二采样线,所述第一采样线上连接有由第四电阻与第五电阻串接组成的第一分压电路,第一分压电路的分压端均与第一运放和第二运放的一个输入端连接给其提供一个参考电压,所述第二采样线上连接有由第一电阻、第二电阻和第三电阻串接组成的第二分压电路,第一电阻与第二电阻连接的分压端与第一运放的另一输入端连接,第二电阻与第三电阻连接的分压端与第二运放的另一输入端连接,所述第一运放的输出端与均衡功率电路的能量上传电路连接,所述第二运放的输出端与均衡功率电路的能量下传电路连接。本发明的控制电路通过对相邻的电池组的电压进行分别采样,采样后通过两个运放对电压进行逻辑运算比较后,由第一运放输出能量上传信号给能量上传电路,或是由第二运放输出能量下传信号给能量下传电路,实现相邻电池组之间的能量传输,使用普通的运放即可实现控制电路的功能,成本低,适用范围广,易于模块化,便于应用,而且适用于电压较高的电池组均衡功率电路的控制。
进一步,当第二分压电路的各分压电压大于参考电压时,所述第一运放输出高电平信号,所述第二运放输出低电平信号,当第二分压电路的各分压电压小于参考电压时,所述第一运放输出低电平信号,所述第二运放输出高电平信号。
进一步,当第二分压电路的各分压电压与参考电压接近相等或相等时,所述第一运放输出低电平信号,所述第二运放输出低电平信号。此时均衡功率电路的能量上传电路和能量下传电路均不工作。
进一步,第一电阻的阻值和第三电阻的阻值远大于第二电阻的阻值。第二分压电路中的第二电阻的作用是防止均衡电路一直来回传送能量,导致部分能量损耗在电路中,造成能源浪费,同时使得第二分压电路中的两个分压电压接近相等。
进一步,第一分压电路的分压比例大于第二电阻与第三电阻连接的分压端的分压比例且小于第一电阻与第二电阻连接的分压端的分压比例。
进一步,所述第一分压电路的分压端上设置有电压跟随器,用来增大参考电压的驱动能力,防止受干扰或被后边的负载拉偏。如果第一采样电线采样的电压不大,并且在被选用运放的输入电压范围内,那么,此处的第一分压电路和电压跟随器就不再需要,因为电池本身就是一个很强的源。
本发明的有益效果:适用于电压较高的电池组均衡功率电路的控制;使用普通运放作为控制电路主要器件,成本比较低;适应范围广,buck、boost、flyback、forward电路都适用;易于模块化,降低成本和便于应用。
附图说明
图1是现有的均衡功率电路的一种结构电路图。
图2是现有的均衡功率电路的另一种结构电路图。
图3是本发明的电路原理框图。
图4是本发明的使用结构示意图。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
参照图3、图4,一种主动均衡的通用控制电路,包括对相邻的电池组4的电压分别采样的第一采样线11和第二采样线12,所述第一采样线11上连接有由第四电阻R4与第五电阻R5串接组成的第一分压电路,第一分压电路的分压端p均与第一运放U1和第二运放U2的一个输入端连接给其提供一个参考电压,所述第二采样线12上连接有由第一电阻R1、第二电阻R2和第三电阻R3串接组成的第二分压电路,第一电阻R1与第二电阻R2连接的分压端m与第一运放U1的 另一输入端连接,第二电阻R2与第三电阻R3连接的分压端n与第二运放U2的另一输入端连接,所述第一运放U1的输出端与均衡功率电路的能量上传电路2连接,所述第二运放U2的输出端与均衡功率电路的能量下传电路3连接,(这句话的问题同权利要求书中标注的一样)。本发明的控制电路1通过对相邻的电池组4的电压进行分别采样,采样后通过两个运放对电压进行逻辑运算比较后,由第一运放U1输出能量上传信号给能量上传电路2,或是由第二运放U2输出能量下传信号给能量下传电路3,实现相邻电池组4之间的能量传输,使用普通的运放即可实现控制电路1的功能,成本低,适用范围广,易于模块化,便于应用,而且适用于电压较高的电池组均衡功率电路的控制。
本实施例当第二分压电路的各分压电压Vm和Vn大于参考电压Vref时,所述第一运放U1输出高电平信号,所述第二运放U2输出低电平信号,当第二分压电路的各分压电压Vm和Vn小于参考电压Vref时,所述第一运放U1输出低电平信号,所述第二运放U2输出高电平信号。
本实施例当第二分压电路的各分压电压Vm和Vn与参考电压Vref接近相等或相等时,所述第一运放U1输出低电平信号,所述第二运放U2输出低电平信号。此时均衡功率电路的能量上传电路2和能量下传电路3均不工作。
本实施例第一电阻R1的阻值和第三电阻R3的阻值远大于第二电阻R2的阻值,即R1》R2,R3》R2。第二分压电路中的第二电阻R2的作用是防止均衡电路一直来回传送能量,导致部分能量损耗在电路中,造成能源浪费,同时使得第二分压电路中的两个分压电压Vm和Vn接近相等。
本实施例第一分压电路的分压比例大于第二电阻R2与第三电阻R3连接的分压端的分压比例且小于第一电阻R1与第二电阻R2连接的分压端的分压比例,即R3/(R1+R2+R3)<R5/(R4+R5)<(R2+R3)/(R1+R2+R3)。
本实施例所述第一分压电路的分压端p上设置有电压跟随器U3,用来增大 参考电压的驱动能力,防止受干扰或被后边的负载拉偏。如果第一采样电线11采样的电压不大,并且在被选用运放的输入电压范围内,那么,此处的第一分压电路和电压跟随器U3就不再需要,因为电池本身就是一个很强的源。
本发明的工作原理:
均衡电路的功率部分,由能量上传电路2和能量下传电路3两部分组成,能量上传电路2和能量下传电路3是BUCK拓扑结构、boost拓扑结构、反激拓扑结构或正激拓扑结构,使得适用范围广,具体类型可根据实际的功率、电压等级等需要选择。比如功率较小,电压较低,可选用buck、boost电路;功率中等,电压较高,可选用反激电路;功率较大,电压也较高,则可选用forward、推挽等电路。从正端往下,上电池组中能量向下电池组转移称为能量下传,下电池组中能量向上电池组转移称为能量上传。
控制电路首先经第一采样线11采样下电池组的高电压值VA,经过第一分压电路中的第四电阻R4和第五电阻R5的分压得到一个参考电压Vref,该参考电压作为第一运放U1和第二运放U2的参考值。
再第二采样线12采样上电池组的高电压值,即B点电压VB,通过电阻第二分压电路的第一电阻R1、第二电阻R2、第三电阻R3分压得到Vm和Vn,Vm和Vn分别作为能量上传电路和能量下传电路的输出电压采样信号,两个分别与Vref做比较,产生的误差信号作为两个电路输出电压的误差信号,并经补偿(G)后引入到能量上传电路和能量下传电路的控制芯片的补偿脚,如38xx系列的comp脚,从而实现对功率回路的控制。控制电路1对功率回路的控制是通过对控制芯片补偿脚的控制实现的,所以运算放大器输出的控制信号电流能力远大于comp脚本身的电流能力时,才可以对comp脚做有效的控制。即外部补偿电路override内部的补偿环路。
假设两电池组很均衡即VB≈2VA时,设置电阻R1、R2和R3分压,使得Vm等于或略大于Vref,Vn等于或略小于Vref,此时输出的上传能量以及下传能量控制信号都为低,该信号将均衡电路控制芯片的环路补偿comp脚拉低,电路不工作。控制电路中能量上传和下传逻辑上是反向的,不能同时工作。均衡电路上电后,控制电路1比较VA的电压值和VB-VA的电压值,判断两个电池组4电压的大小,若VA较低,VA<1/2VB,此时由VA通过第四电阻R4和第五电阻R5的分压得到一个参考电压Vref,VB通过第一电阻R1、第二电阻R2和第三电阻R3分压得到Vm和Vn,由于死区第二电阻R2,所以Vn略小于Vm,这防止均衡电路一直来回传送能量,因为VA<1/2VB,所以Vm>Vref,Vn>Vref,第一运放U1、第二运放U2经过逻辑运算后,第一运放U1输出低电平,第二运放U2输出高电平,即输出能量下传信号给给能量下传电路3的控制芯片comp脚,均衡功率电路开始工作,能量开始由上电池组向下电池组转移。若VB-VA较低,VA>1/2VB,同样VA通过第四电阻R4和第五电阻R5的分压得到Vref,VB通过第一电阻R1、第二电阻R2和第三电阻R3分压得到Vm和Vn,因为VA>1/2VB,所以Vm<Vref,Vn<Vref,第一运放U1、第二运放U2经过逻辑运算后,第一运放U1输出高电平,第二运放U2输出低电平,即输出能量上传信号给能量上传电路2的控制芯片comp脚,均衡功率电路开始工作,能量开始由下电池组向上电池组转移。

Claims (6)

  1. 一种主动均衡的通用控制电路,其特征在于:包括对相邻的电池组的电压分别采样的第一采样线和第二采样线,所述第一采样线上连接有由第四电阻与第五电阻串接组成的第一分压电路,第一分压电路的分压端均与第一运放和第二运放的一个输入端连接给其提供一个参考电压,所述第二采样线上连接有由第一电阻、第二电阻和第三电阻串接组成的第二分压电路,第一电阻与第二电阻连接的分压端与第一运放的另一输入端连接,第二电阻与第三电阻连接的分压端与第二运放的另一输入端连接,所述第一运放的输出端与均衡功率电路的能量上传电路连接,所述第二运放的输出端与均衡功率电路的能量下传电路连接。
  2. 如权利要求1所述的主动均衡的通用控制电路,其特征在于:当第二分压电路的各分压电压大于参考电压时,所述第一运放输出高电平信号,所述第二运放输出低电平信号,当第二分压电路的各分压电压小于参考电压时,所述第一运放输出低电平信号,所述第二运放输出高电平信号。
  3. 如权利要求1所述的主动均衡的通用控制电路,其特征在于:当第二分压电路的各分压电压与参考电压接近相等或相等时,所述第一运放输出低电平信号,所述第二运放输出低电平信号。
  4. 如权利要求1所述的主动均衡的通用控制电路,其特征在于:第一电阻的阻值和第三电阻的阻值远大于第二电阻的阻值。
  5. 如权利要求1所述的主动均衡的通用控制电路,其特征在于:第一分压电路的分压比例大于第二电阻与第三电阻连接的分压端的分压比例且小于第一电阻与第二电阻连接的分压端的分压比例。
  6. 如权利要求1~5之一所述的主动均衡的通用控制电路,其特征在于:所述第一分压电路的分压端上设置有电压跟随器。
PCT/CN2016/070424 2015-01-07 2016-01-07 一种主动均衡的通用控制电路 WO2016110264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/642,021 US10090684B2 (en) 2015-01-07 2016-01-07 General control circuit for active balance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510005881.0A CN104617612B (zh) 2015-01-07 2015-01-07 一种主动均衡的通用控制电路
CN201510005881.0 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016110264A1 true WO2016110264A1 (zh) 2016-07-14

Family

ID=53151949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070424 WO2016110264A1 (zh) 2015-01-07 2016-01-07 一种主动均衡的通用控制电路

Country Status (3)

Country Link
US (1) US10090684B2 (zh)
CN (1) CN104617612B (zh)
WO (1) WO2016110264A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617612B (zh) * 2015-01-07 2017-01-04 杭州协能科技股份有限公司 一种主动均衡的通用控制电路
CN105552455A (zh) * 2015-10-31 2016-05-04 芜湖宏景电子股份有限公司 一种锂离子电池组的主动均衡模块
CN106549454A (zh) * 2016-12-15 2017-03-29 深圳晶福源科技股份有限公司 一种电压采样与电量均衡共线的电池管理系统和管理方法
CN108306349A (zh) * 2017-01-13 2018-07-20 宁德时代新能源科技股份有限公司 电池均衡采样方法
CN109613447A (zh) * 2018-12-26 2019-04-12 苏州易美新思新能源科技有限公司 一种自均衡电池电压采样电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001870A (en) * 2008-06-20 2010-01-01 Grand Gem Semiconductor Co Ltd The battery charging controller and battery module thereof
CN101877496A (zh) * 2010-02-26 2010-11-03 刘青峰 电池单元自动均衡的系统和方法
CN202014116U (zh) * 2011-03-31 2011-10-19 杭州高特电子设备有限公司 电池组自动均衡电路
CN103516030A (zh) * 2013-10-21 2014-01-15 南车株洲电力机车有限公司 一种电压均衡装置及方法
CN103855762A (zh) * 2013-12-17 2014-06-11 北京建筑大学 一种适用于无线传感器的锂离子电池组能量管理系统
CN104617612A (zh) * 2015-01-07 2015-05-13 杭州协能科技有限公司 一种主动均衡的通用控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773159A (en) * 1995-07-18 1998-06-30 Beard; Paul Multicell configuration for lithium cells or the like
CN100358212C (zh) * 2005-04-05 2007-12-26 苏州星恒电源有限公司 电池均衡电路
CN101192756A (zh) * 2006-12-02 2008-06-04 比亚迪股份有限公司 二次电池的均衡充放电保护电路和方法
CN201185352Y (zh) * 2008-04-03 2009-01-21 杨出发 电压平衡电路
JP5593849B2 (ja) * 2009-06-12 2014-09-24 日産自動車株式会社 組電池の監視装置
DE102011002452A1 (de) * 2011-01-05 2012-07-05 Sb Limotive Company Ltd. Batterie mit autonomem Cell-Balancing
DE102012201359A1 (de) * 2012-01-31 2013-08-01 Robert Bosch Gmbh Batteriesystem, Kraftfahrzeug mit einem solchen Batteriesystem sowie ein Verfahren zum Balancieren der Batteriezellen eines Batteriesystems
US9525298B1 (en) * 2014-10-28 2016-12-20 Microsemi Storage Solutions (U.S.), Inc. Method and system for voltage balancing of multiple rechargeable energy storage devices
CN204361734U (zh) * 2015-01-07 2015-05-27 杭州协能科技有限公司 一种主动均衡的通用控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001870A (en) * 2008-06-20 2010-01-01 Grand Gem Semiconductor Co Ltd The battery charging controller and battery module thereof
CN101877496A (zh) * 2010-02-26 2010-11-03 刘青峰 电池单元自动均衡的系统和方法
CN202014116U (zh) * 2011-03-31 2011-10-19 杭州高特电子设备有限公司 电池组自动均衡电路
CN103516030A (zh) * 2013-10-21 2014-01-15 南车株洲电力机车有限公司 一种电压均衡装置及方法
CN103855762A (zh) * 2013-12-17 2014-06-11 北京建筑大学 一种适用于无线传感器的锂离子电池组能量管理系统
CN104617612A (zh) * 2015-01-07 2015-05-13 杭州协能科技有限公司 一种主动均衡的通用控制电路

Also Published As

Publication number Publication date
CN104617612A (zh) 2015-05-13
CN104617612B (zh) 2017-01-04
US20180019599A1 (en) 2018-01-18
US10090684B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2016110264A1 (zh) 一种主动均衡的通用控制电路
CN101499671B (zh) 电池电压转换系统、方法及电池管理系统
CN2914448Y (zh) 电压转换器电路和电池组
US11909317B2 (en) Efficient use of energy in a switching power converter
TWI445279B (zh) 電池充電器數位控制電路及方法與電池充電器系統
US20140203780A1 (en) System and method for active charge and discharge current balancing in multiple parallel-connected battery packs
US7679343B2 (en) Power supply system and method for controlling output voltage
TWI585421B (zh) 電流感測模組及應用其之電源轉換裝置與電子裝置
CN105356742B (zh) 一种高效率电荷泵
CN202018614U (zh) 大功率高速线性调整恒流源
JP6943668B2 (ja) 電子機器
TW201717509A (zh) 電池系統與其控制方法
KR20100073973A (ko) 온도보상제어기능을 갖는 전력시스템
TWI479293B (zh) 多通道之定電壓定電流轉換控制電路及其裝置
CN201007805Y (zh) 一种数字式可调恒流恒压源
KR102236017B1 (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
CN104716916A (zh) 电流控制装置与信号转换装置
CN109842301A (zh) 一种电流控制电路及其控制方法
CN106253676A (zh) 一种恒压型开关电源实现恒流输出特性的控制线路结构
CN204361734U (zh) 一种主动均衡的通用控制电路
CN206164176U (zh) 一种电池充电控制电路
JPWO2013001683A1 (ja) 電圧計測用マルチプレクサおよびそれを備えた電圧計測器
US20190013693A1 (en) Power apparatus operating method, power apparatus, and power apparatus management system
KR101988089B1 (ko) 출력 가변 회로 및 이를 이용한 컨버터 제어기
CN108616147A (zh) 一种无人机及其太阳能供电电路与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15642021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16734924

Country of ref document: EP

Kind code of ref document: A1