WO2022153775A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2022153775A1
WO2022153775A1 PCT/JP2021/046438 JP2021046438W WO2022153775A1 WO 2022153775 A1 WO2022153775 A1 WO 2022153775A1 JP 2021046438 W JP2021046438 W JP 2021046438W WO 2022153775 A1 WO2022153775 A1 WO 2022153775A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
injection
sensor
value
specific sensor
Prior art date
Application number
PCT/JP2021/046438
Other languages
French (fr)
Japanese (ja)
Inventor
龍平 河野
翔平 佐々木
Original Assignee
ヤンマーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーホールディングス株式会社 filed Critical ヤンマーホールディングス株式会社
Priority to CN202180089339.1A priority Critical patent/CN116761935A/en
Publication of WO2022153775A1 publication Critical patent/WO2022153775A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an engine.
  • Patent Document 1 an engine that controls the fuel injection amount based on the output value of a sensor (for example, a water temperature sensor) has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 does not study at all the control of fuel injection when a specific sensor is abnormal.
  • the present invention has been made to solve the above problems, and an object of the present invention is to appropriately control fuel injection even when a specific sensor is abnormal, and to cause problems such as engine malfunction. It is an object of the present invention to provide an engine capable of reducing the possibility of occurrence.
  • the engine according to one aspect of the present invention is an engine provided with a fuel injection device that injects fuel into a combustion chamber, and includes an injection control unit that controls injection of the fuel by the fuel injection device based on injection parameters.
  • the injection control unit includes a sensor that outputs a value according to the operating state of the engine, and the injection control unit determines the output value of the specific sensor when the specific sensor included in the sensor is abnormal. Instead, a preset predetermined value is used, and the injection parameter is corrected based on the predetermined value.
  • NCD Nox Control Diagnosis
  • PCD Porate Control Diagnosis
  • FIG. 1 shows an example of a torque curve in each operation mode.
  • the operation mode is changed from the normal mode to the first mode (Low-level) after a predetermined time elapses from the error detection, and after the predetermined time elapses, the operation mode is changed from the first mode to the second mode. Control is performed to shift to the mode (Severe).
  • the maximum torque of the engine exceeds the value specified in each mode after the operation mode shifts to the first mode or the second mode, the above regulation cannot be properly satisfied.
  • the fuel injection control described later is performed to prevent the output of the engine from exceeding the specified value, that is, to reduce the malfunction of the engine. I am trying to do it.
  • FIG. 2 is an explanatory diagram schematically showing a schematic configuration of the engine 1 of the present embodiment.
  • FIG. 3 is a block diagram showing a configuration of a main part of the engine 1.
  • the engine 1 is, for example, a diesel engine, and is mounted on a work vehicle (work machine), an agricultural machine, a ship, or the like.
  • the engine 1 includes an intake pipe 4 and an intake manifold 5 as intake system members.
  • the intake pipe 4 sucks gas from the outside and supplies it to the intake manifold 5.
  • the intake manifold 5 divides the gas supplied from the intake pipe 4 into a number according to the number of cylinders (cylinders) (for example, four in FIG. 2) and supplies the gas to the cylinder head 6.
  • the cylinder head 6 has a cylinder head cover (not shown) that covers each cylinder, and an injector 7 (fuel injection device) provided corresponding to the combustion chamber 6a of each cylinder.
  • the injector 7 is controlled by an ECU (engine control unit) 9 and injects fuel stored at a high pressure in the common rail 8 into the combustion chamber 6a of each cylinder at a predetermined timing. That is, the engine 1 includes an injector 7 as a fuel injection device that injects fuel into the combustion chamber 6a.
  • Each cylinder is provided with a piston that slides back and forth in the combustion chamber 6a and rotates the crank shaft via a connecting rod (connecting rod).
  • An intake air temperature sensor 11 is attached to the intake manifold 5.
  • the intake air temperature sensor 11 detects the temperature of the gas in the intake manifold 5 and outputs it to the ECU 9.
  • the engine 1 includes an exhaust manifold 12, an exhaust pipe 13, and an exhaust gas purification device 14 as exhaust system members.
  • the exhaust manifold 12 collects the gases (exhaust gas) generated in the plurality of combustion chambers 6a. A part of the gas that has passed through the exhaust manifold 12 is supplied to the EGR device 18 via the EGR (Exhaust Gas Recirculation) pipe 17, and the remaining gas is supplied to the exhaust gas purification device 14 via the exhaust pipe 13.
  • EGR exhaust Gas Recirculation
  • the EGR device 18 is an exhaust gas recirculation device that returns a part of the exhaust gas discharged from the cylinder head 6 to the intake pipe 4, and includes an EGR cooler 19 and an EGR valve 20.
  • the EGR cooler 19 cools the exhaust gas.
  • the EGR device 18 changes the amount of exhaust gas supplied to the intake manifold 5 by adjusting the opening degree of the EGR valve 20. By mixing the exhaust gas with the gas taken into the intake manifold 5, the amount of oxygen in the gas taken in is reduced, so that the combustion temperature can be lowered. As a result, the generation of nitrogen oxides called NOx can be reduced, and exhaust gas regulations (emission regulations) can be met.
  • the opening degree of the EGR valve 20 is detected by an EGR valve opening degree sensor (not shown).
  • the ECU 9 shifts the operation mode of the engine 1 to the first mode or the second mode described above, assuming that an error has occurred in the above-mentioned NCD diagnosis, and power (torque) of the engine 1 , The number of revolutions) is gradually changed (decreased) by fuel injection control.
  • the exhaust gas purification device 14 is a device that purifies and discharges exhaust gas, and is also called a DPF.
  • the exhaust gas purification device 14 includes an oxidation catalyst 21 and a filter 22.
  • the oxidation catalyst 21 is a catalyst for oxidizing (combusting) unburned fuel, carbon monoxide, nitrogen monoxide, etc. contained in the exhaust gas, and is composed of platinum or the like.
  • the filter 22 is configured as, for example, a wall flow type filter, and collects PM (Particulate Matter) contained in the exhaust gas treated with the oxidation catalyst 21.
  • the engine 1 further includes a water temperature sensor 31 and an engine speed sensor 32.
  • the water temperature sensor 31 detects the temperature of the engine cooling water passing through the water jacket (not shown) provided in the cylinder head 6.
  • the engine cooling water circulates and flows between the water jacket and the radiator through the cooling water channel by driving the water pump.
  • the low-temperature engine cooling water cooled by the radiator passes through the water jacket to cool the engine body 1a including the cylinder head 6.
  • the engine rotation speed sensor 32 detects the rotation speed of the crank shaft of the engine 1 as the rotation speed of the engine 1. The information on the rotation speed detected by the engine rotation speed sensor 32 is output to the ECU 9.
  • the engine 1 of the present embodiment includes a sensor that outputs a value according to the operating state of the engine 1.
  • the engine 1 of the present embodiment includes a plurality of sensors.
  • the engine 1 may further have other sensors such as an atmospheric pressure sensor that detects atmospheric pressure.
  • the ECU 9 can recognize the altitude of the environment in which the engine 1 is used based on the detected atmospheric pressure, and can control the operating conditions of the engine 1 according to the recognized altitude.
  • the above-mentioned ECU 9 is a controller that controls the operation of each part of the engine 1.
  • the ECU 9 functions as an injection control unit that controls fuel injection by the injector 7 based on the injection parameters.
  • the above injection parameters include at least one of fuel injection amount, injection timing, and injection pressure.
  • the ECU 9 also has a function as a timekeeping unit for measuring time. Further, the ECU 9 also has a storage unit for storing an injection map, which will be described later, a control program of the ECU 9, and the like.
  • the water temperature sensor 31 that has a great influence on the fuel injection control is considered as a specific sensor, and the method of correcting the fuel injection timing and the like by the ECU 9 depends on whether or not an abnormality has occurred in the water temperature sensor 31. I try to change.
  • fuel injection control will be described more specifically.
  • FIG. 4 is an explanatory diagram schematically showing the concept of fuel injection control according to the present embodiment.
  • FIG. 5 is a flowchart showing a processing flow by fuel injection control according to the present embodiment.
  • a work vehicle for example, a hydraulic excavator
  • the ECU 9 determines whether or not an abnormality has occurred in the water temperature sensor 31 (S1). For example, when a predetermined time elapses from the start of the engine 1, the engine 1 becomes warm and the temperature of the engine cooling water rises. Therefore, the ECU 9 can determine that the water temperature sensor 31 is normal if the output value (temperature) of the water temperature sensor 31 is equal to or higher than the threshold value after a predetermined time has elapsed from the start of the engine 1, and is less than the threshold value. If so, it can be determined that the water temperature sensor 31 is abnormal. If the water temperature sensor 31 is abnormal, the ECU 9 cannot diagnose the NCD and therefore recognizes the NCD error at the same time. If the water temperature sensor 31 is abnormal, the start of diagnosis of PCD is not permitted.
  • the ECU 9 determines in S1 that the water temperature sensor 31 is normal (No in S1), the engine speed detected by the engine speed sensor 32, the indicated injection amount, and the injection map prepared in advance.
  • the injection parameter is determined based on (S2).
  • the indicated injection amount is an injection amount of fuel to be injected from the injector 7 (in multiple stages during one cycle), which is determined by the ECU 9 according to the opening degree of the accelerator stepped on by the operator who controls the work vehicle. When injecting, it means the total injection amount at each stage).
  • the maximum value of the indicated injection amount is a value that can realize the maximum value (100%) of the torque that can be output by the engine 1.
  • the opening degree of the accelerator is detected by an accelerator opening degree sensor (not shown) on the work vehicle side and input to the ECU 9.
  • the ECU 9 corrects the injection parameter determined in S2 based on the output value (temperature of the engine cooling water) of the normal water temperature sensor 31 (S3). For example, when the output value of the water temperature sensor 31 is a relatively low temperature, the ECU 9 advances the fuel injection timing by an amount corresponding to the output value in order to facilitate ignition in the combustion chamber 6a. A correction value (for example, several degrees in advance) is calculated, and the correction value is added to the injection timing determined in S2. This correction is also called “environmental correction”, and the above correction value is also called “environmental correction amount”.
  • the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S3 (S4).
  • S3 the injection parameters corrected in S3
  • the relationship between the engine speed and the torque for example, the torque curve in the normal mode shown in FIG. 1 can be obtained.
  • the ignition key of the work vehicle is turned off in S5
  • the fuel injection is stopped and a series of processing is completed. If the ignition key is not OFF, the process returns to S1 and the processing after S1 is continued. Will be.
  • the ECU 9 has not passed the first predetermined time (No in S6) and the second predetermined time (for example, 100 hours) after the occurrence of the abnormality of the water temperature sensor 31 (Yes in S7). , S8, and fuel injection control is performed in the first mode. Specifically, it is as follows.
  • the ECU 9 determines the injection parameters based on the engine speed and the indicated injection amount in the same manner as in S2.
  • the maximum torque (for example, 75% of the normal time) is defined by the injection map (maximum injection amount map) for the first mode.
  • the maximum injection amount map is composed of the engine speed and the output value of the water temperature sensor 31.
  • the ECU 9 uses a preset predetermined value (default value) instead of the output value of the water temperature sensor 31, and corrects the injection parameter determined in S8 based on the predetermined value (S9).
  • the above-mentioned predetermined value is a representative value representing a value output from the water temperature sensor 31 when the water temperature sensor 31 is normal. For example, in S9, each injection timing in the multi-stage injection of fuel is corrected based on the predetermined value.
  • the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S9 (S4).
  • S9 the injection parameters corrected in S9
  • the torque curve in the first mode shown in FIG. 1 can be obtained.
  • the torque in the torque curve indicates the maximum value of the torque that can be obtained in the first mode.
  • the ECU 9 determines the injection parameters based on the engine speed and the indicated injection amount in the same manner as in S2.
  • the maximum torque for example, 50% of the normal time
  • the maximum injection amount map is composed of the engine speed and the output value of the water temperature sensor 31.
  • the process shifts to S9, and the ECU 9 uses a predetermined value set in advance instead of the output value of the water temperature sensor 31, and corrects the injection parameter (for example, injection timing) determined in S10 based on the predetermined value. .. Then, the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S9 (S4).
  • the torque curve in the second mode shown in FIG. 1 can be obtained.
  • the torque in the torque curve indicates the maximum value of the torque that can be obtained in the second mode.
  • the output value of the water temperature sensor 31 also for other control modules of the work vehicle that are not related to the control of the engine 1. Is supplied, and if the water temperature sensor 31 is abnormal, a predetermined value (default value) is supplied. In this case, it is possible to reduce the possibility of malfunction due to an abnormality of the water temperature sensor 31 in the control module on the work vehicle side.
  • the ECU 9 can monitor whether or not the water temperature sensor 31 has recovered from the abnormal state based on the output value.
  • the ECU 9 as the injection control unit uses a preset predetermined value instead of the output value of the specific sensor.
  • the injection parameter is corrected based on the predetermined value (S9).
  • the ECU 9 corrects the injection parameter based on the output value of the specific sensor and controls the fuel injection based on the corrected injection parameter when the specific sensor is abnormal, the injection based on the incorrect output value is performed. There is a risk that problems such as malfunction of the engine 1 may occur due to parameter correction and erroneous injection control based on the injection parameters.
  • the injection parameter when a specific sensor is abnormal, the injection parameter is appropriately corrected based on the above-mentioned predetermined value instead of the erroneous output value. Therefore, fuel injection is performed based on the corrected injection parameter. Can be controlled appropriately.
  • the engine can be controlled by appropriately correcting the above-mentioned injection parameters and controlling the fuel injection based on the corrected injection parameters. It is possible to suppress the maximum torque of 1 to a specified value or less (75% or less or 50% or less of the normal maximum torque).
  • the ECU 9 corrects the injection parameter based on the presence or absence of the abnormality of the water temperature sensor 31. (S3, S9). That is, when a sensor other than the specific sensor is abnormal, the ECU 9 corrects the injection parameter based on the presence or absence of the abnormality of the specific sensor. In this case, it is possible to correct the injection parameters and control the fuel injection by emphasizing the presence or absence of abnormality in a specific sensor among the plurality of sensors.
  • the ECU 9 corrects the injection parameter based on the output value of the specific sensor (S3).
  • the engine 1 is driven by a normal torque curve (torque limiting) by correcting normal injection parameters based on the output value of the particular sensor to control fuel injection. Can be operated (without).
  • the ECU 9 constantly monitors the output value of the specific sensor, and when the specific sensor returns from the abnormality to the normal state, the injection parameter is corrected and the output value of the specific sensor is corrected based on the predetermined value. Return to the correction based on the value (S9, S5, S1, S3).
  • the ECU 9 can constantly monitor whether or not the specific sensor has returned from the abnormal state to the normal state based on the output value. Then, when the specific sensor returns to normal from the abnormality, the ECU 9 returns the correction of the injection parameter from the correction based on the predetermined value to the correction based on the output value of the specific sensor, thereby based on the output value. Normal fuel injection control can be restored.
  • the ECU 9 determines that the specific sensor is abnormal when the output value of the specific sensor is less than the threshold value after a predetermined time has elapsed from the start of the engine 1 (S1). As a result, it is possible to accurately determine whether or not a specific sensor is abnormal.
  • the specific sensor described above is a water temperature sensor 31 that detects the temperature of the cooling water of the engine.
  • the water temperature sensor 31 since the water temperature sensor 31 has a greater influence on the fuel injection control than the other sensors, when the specific sensor is the water temperature sensor 31, it is based on the output value or the predetermined value of the specific sensor.
  • the control of the present embodiment that corrects the injection parameters and reduces the malfunction of the engine 1 is very effective.
  • the above-mentioned predetermined value is a representative value of the output value when the specific sensor (water temperature sensor 31) is normal.
  • the injection parameter can be correctly corrected based on the above-mentioned predetermined value, and the fuel injection can be correctly controlled based on the corrected injection parameter.
  • a specific sensor is abnormal, it is possible to surely reduce the possibility that a malfunction such as a malfunction of the engine 1 will occur.
  • the above injection parameters include at least one of the fuel injection amount, injection timing, and injection pressure.
  • the ECU 9 injects fuel from the injector 7 at an appropriate injection amount, injection timing or injection pressure based on the corrected injection parameters, such as malfunction of the engine 1. It is possible to avoid the possibility that a problem will occur.
  • the fuel injection control described in the present embodiment can be applied even if the engine 1 is provided with a supercharger.
  • the engine of the present invention can be used for, for example, work vehicles, agricultural machinery, and the like.
  • Engine 6a Combustion chamber 7 Injector (fuel injection device) 9 ECU (injection control unit) 11 Intake temperature sensor 31 Water temperature sensor (specific sensor) 32 Engine speed sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

This engine comprises: a fuel injection device for injecting fuel into a combustion chamber; an injection control unit that controls injection of the fuel by the fuel injection device on the basis of an injection parameter; and sensors that output values corresponding to the operation state of the engine. When a specific sensor included in the sensors is abnormal, the injection control unit uses a predetermined value set in advance instead of the output value from the specific sensor and corrects the injection parameter on the basis of the predetermined value.

Description

エンジンengine
 本発明は、エンジンに関する。 The present invention relates to an engine.
 従来、センサ(例えば水温センサ)の出力値に基づいて燃料噴射量を制御するエンジンが提案されている(例えば特許文献1参照)。 Conventionally, an engine that controls the fuel injection amount based on the output value of a sensor (for example, a water temperature sensor) has been proposed (see, for example, Patent Document 1).
特開平2-136546号公報Japanese Unexamined Patent Publication No. 2-136546
 例えば、燃料の噴射制御に大きな影響を与える特定のセンサ(例えば水温センサ)が異常であるとき、そのセンサの出力値は、センサが正常な場合の出力値に対して誤った値となる。特定のセンサの誤った出力値が制御部に送られると、制御部は、誤った上記出力値に基づいて燃料の噴射を制御するため、エンジンの誤作動などの不具合が生じる虞がある。この点、特許文献1では、特定のセンサが異常であるときの燃料噴射の制御については、一切検討されていない。 For example, when a specific sensor (for example, a water temperature sensor) that has a great influence on fuel injection control is abnormal, the output value of the sensor becomes an erroneous value with respect to the output value when the sensor is normal. When an erroneous output value of a specific sensor is sent to the control unit, the control unit controls fuel injection based on the erroneous output value, which may cause a malfunction such as an engine malfunction. In this regard, Patent Document 1 does not study at all the control of fuel injection when a specific sensor is abnormal.
 本発明は、上記の問題点を解決するためになされたものであり、その目的は、特定のセンサが異常である場合でも、燃料の噴射を適切に制御して、エンジンの誤作動などの不具合が生じる虞を低減することができるエンジンを提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to appropriately control fuel injection even when a specific sensor is abnormal, and to cause problems such as engine malfunction. It is an object of the present invention to provide an engine capable of reducing the possibility of occurrence.
 本発明の一側面に係るエンジンは、燃焼室に燃料を噴射する燃料噴射装置を備えたエンジンであって、噴射パラメータに基づいて、前記燃料噴射装置による前記燃料の噴射を制御する噴射制御部と、前記エンジンの運転状態に応じた値を出力するセンサと、を備え、前記噴射制御部は、前記センサに含まれる特定のセンサが異常である場合には、前記特定のセンサの前記出力値の代わりに予め設定された所定値を用い、前記所定値に基づいて、前記噴射パラメータを補正する。 The engine according to one aspect of the present invention is an engine provided with a fuel injection device that injects fuel into a combustion chamber, and includes an injection control unit that controls injection of the fuel by the fuel injection device based on injection parameters. The injection control unit includes a sensor that outputs a value according to the operating state of the engine, and the injection control unit determines the output value of the specific sensor when the specific sensor included in the sensor is abnormal. Instead, a preset predetermined value is used, and the injection parameter is corrected based on the predetermined value.
 上記の構成によれば、特定のセンサが異常である場合でも、燃料の噴射を適切に制御して、エンジンの誤作動などの不具合が生じる虞を低減することができる。 According to the above configuration, even if a specific sensor is abnormal, it is possible to appropriately control the fuel injection and reduce the risk of malfunction such as engine malfunction.
エンジンの各動作モードでのトルクカーブの例を示すグラフである。It is a graph which shows the example of the torque curve in each operation mode of an engine. 本発明の実施形態に係るエンジンの概略の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the schematic structure of the engine which concerns on embodiment of this invention. 上記エンジンの主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the main part of the said engine. 上記実施形態における燃料の噴射制御の概念を模式的に示す説明図である。It is explanatory drawing which shows typically the concept of fuel injection control in the said embodiment. 上記噴射制御による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing by the said injection control.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
 〔1.課題についての補足〕
 まず、上記した従来技術の課題について説明を補足する。近年では、各国において、エンジンの排気ガスに関する規制が益々強化されてきている。そして、上記規制に適合するために、NCD(Nox  Control Diagnosis)またはPCD(Particulate  Control Diagnosis)の各診断を行う制御がなされている。なお、NCDとは、後述のEGR装置に関連する診断のことであり、PCDとは、後述するDPF(Diesel Particulate  Filter)に関連する診断のことである。
[1. Supplementary information on issues]
First, the description of the above-mentioned problems of the prior art will be supplemented. In recent years, regulations on engine exhaust gas have been tightened more and more in each country. Then, in order to comply with the above regulations, control is performed to perform each diagnosis of NCD (Nox Control Diagnosis) or PCD (Particulate Control Diagnosis). The NCD is a diagnosis related to the EGR device described later, and the PCD is a diagnosis related to the DPF (Diesel Particulate Filter) described later.
 例えば、特定のセンサに異常が生じ、NCDの診断においてエラーが発生すると、エンジンのパワー(トルク、回転数)を段階的に低下させる動作モードの制御が行われる。図1は、各動作モードでのトルクカーブの例を示している。NCDにおいてエラーが検出されると、エラー検出から所定時間経過後に、動作モードを通常モードから第1モード(Low-level)に移行させ、さらに所定時間経過後に、動作モードを第1モードから第2モード(Severe)に移行させる制御が行われる。動作モードが第1モードまたは第2モードに移行した後、エンジンの最大トルクがそれぞれのモードで規定される値を超えるとき、上記規制を適切に満足することができない。 For example, if an abnormality occurs in a specific sensor and an error occurs in the diagnosis of NCD, the operation mode in which the engine power (torque, rotation speed) is gradually reduced is controlled. FIG. 1 shows an example of a torque curve in each operation mode. When an error is detected in the NCD, the operation mode is changed from the normal mode to the first mode (Low-level) after a predetermined time elapses from the error detection, and after the predetermined time elapses, the operation mode is changed from the first mode to the second mode. Control is performed to shift to the mode (Severe). When the maximum torque of the engine exceeds the value specified in each mode after the operation mode shifts to the first mode or the second mode, the above regulation cannot be properly satisfied.
 そこで、本実施形態では、特定のセンサが異常である場合には、後述する燃料噴射制御を行うことにより、エンジンの出力が規定値を超えないようにする、つまり、エンジンの誤作動を低減するようにしている。 Therefore, in the present embodiment, when a specific sensor is abnormal, the fuel injection control described later is performed to prevent the output of the engine from exceeding the specified value, that is, to reduce the malfunction of the engine. I am trying to do it.
 〔2.エンジンの構成〕
 以下、本実施形態のエンジンの構成について説明する。図2は、本実施形態のエンジン1の概略の構成を模式的に示す説明図である。また、図3は、エンジン1の主要部の構成を示すブロック図である。エンジン1は、例えばディーゼルエンジンであり、作業車両(作業機械)、農業機械、船舶等に搭載される。
[2. Engine configuration]
Hereinafter, the configuration of the engine of this embodiment will be described. FIG. 2 is an explanatory diagram schematically showing a schematic configuration of the engine 1 of the present embodiment. Further, FIG. 3 is a block diagram showing a configuration of a main part of the engine 1. The engine 1 is, for example, a diesel engine, and is mounted on a work vehicle (work machine), an agricultural machine, a ship, or the like.
 エンジン1は、吸気系の部材として、吸気管4と、吸気マニホールド5と、を備える。吸気管4は、外部から気体を吸入して吸気マニホールド5に供給する。 The engine 1 includes an intake pipe 4 and an intake manifold 5 as intake system members. The intake pipe 4 sucks gas from the outside and supplies it to the intake manifold 5.
 吸気マニホールド5は、吸気管4から供給された気体をシリンダ(気筒)数に応じた数(例えば図2では4つ)に分けてシリンダヘッド6へ供給する。シリンダヘッド6は、各シリンダを覆うシリンダヘッドカバー(図示せず)と、各シリンダの燃焼室6aに対応して設けられるインジェクタ7(燃料噴射装置)とを有する。インジェクタ7は、ECU(エンジンコントロールユニット)9によって制御され、コモンレール8に高圧で蓄えられた燃料を、所定のタイミングで各シリンダの燃焼室6aに噴射する。すなわち、エンジン1は、燃焼室6aに燃料を噴射する燃料噴射装置としてのインジェクタ7を備える。各シリンダには、燃焼室6a内を往復摺動し、コンロッド(連結棒)を介してクランク軸を回転させるピストンが設けられている。 The intake manifold 5 divides the gas supplied from the intake pipe 4 into a number according to the number of cylinders (cylinders) (for example, four in FIG. 2) and supplies the gas to the cylinder head 6. The cylinder head 6 has a cylinder head cover (not shown) that covers each cylinder, and an injector 7 (fuel injection device) provided corresponding to the combustion chamber 6a of each cylinder. The injector 7 is controlled by an ECU (engine control unit) 9 and injects fuel stored at a high pressure in the common rail 8 into the combustion chamber 6a of each cylinder at a predetermined timing. That is, the engine 1 includes an injector 7 as a fuel injection device that injects fuel into the combustion chamber 6a. Each cylinder is provided with a piston that slides back and forth in the combustion chamber 6a and rotates the crank shaft via a connecting rod (connecting rod).
 吸気マニホールド5には、吸気温度センサ11が取り付けられている。吸気温度センサ11は、吸気マニホールド5内の気体の温度を検出してECU9へ出力する。 An intake air temperature sensor 11 is attached to the intake manifold 5. The intake air temperature sensor 11 detects the temperature of the gas in the intake manifold 5 and outputs it to the ECU 9.
 エンジン1は、排気系の部材として、排気マニホールド12と、排気管13と、排気ガス浄化装置14と、を備える。 The engine 1 includes an exhaust manifold 12, an exhaust pipe 13, and an exhaust gas purification device 14 as exhaust system members.
 排気マニホールド12は、複数の燃焼室6aで発生した気体(排気ガス)をまとめる。排気マニホールド12を通過した気体は、一部がEGR(Exhaust  Gas Recirculation)管17を介してEGR装置18へ供給され、残りの気体は排気管13を介して排気ガス浄化装置14へ供給される。 The exhaust manifold 12 collects the gases (exhaust gas) generated in the plurality of combustion chambers 6a. A part of the gas that has passed through the exhaust manifold 12 is supplied to the EGR device 18 via the EGR (Exhaust Gas Recirculation) pipe 17, and the remaining gas is supplied to the exhaust gas purification device 14 via the exhaust pipe 13.
 EGR装置18は、シリンダヘッド6から排出される排気ガスの一部を吸気管4に戻す排気ガス再循環装置であり、EGRクーラ19と、EGRバルブ20と、を備える。EGRクーラ19は排気ガスを冷却する。EGR装置18は、EGRバルブ20の開度を調整することにより、吸気マニホールド5に供給される排気ガスの量を変化させる。吸気マニホールド5に吸気される気体に排気ガスを混ぜることにより、吸気される気体中の酸素量が少なくなるため、燃焼温度を下げることができる。これにより、NOxと呼ばれる窒素酸化物の発生を減らすことができ、排ガス規制(エミッション規制)に対応することができる。EGRバルブ20の開度は、EGRバルブ開度センサ(図示せず)によって検知される。 The EGR device 18 is an exhaust gas recirculation device that returns a part of the exhaust gas discharged from the cylinder head 6 to the intake pipe 4, and includes an EGR cooler 19 and an EGR valve 20. The EGR cooler 19 cools the exhaust gas. The EGR device 18 changes the amount of exhaust gas supplied to the intake manifold 5 by adjusting the opening degree of the EGR valve 20. By mixing the exhaust gas with the gas taken into the intake manifold 5, the amount of oxygen in the gas taken in is reduced, so that the combustion temperature can be lowered. As a result, the generation of nitrogen oxides called NOx can be reduced, and exhaust gas regulations (emission regulations) can be met. The opening degree of the EGR valve 20 is detected by an EGR valve opening degree sensor (not shown).
 ECU9は、EGR装置18に関する異常が発生した場合、上述したNCDの診断においてエラーが発生したとして、エンジン1の動作モードを上述した第1モードまたは第2モードに移行させ、エンジン1のパワー(トルク、回転数)を段階的に推移(低下)させる燃料噴射制御を行う。 When an abnormality occurs in the EGR device 18, the ECU 9 shifts the operation mode of the engine 1 to the first mode or the second mode described above, assuming that an error has occurred in the above-mentioned NCD diagnosis, and power (torque) of the engine 1 , The number of revolutions) is gradually changed (decreased) by fuel injection control.
 排気ガス浄化装置14は、排気ガスを浄化して排出する装置であり、DPFとも呼ばれる。排気ガス浄化装置14は、酸化触媒21と、フィルタ22と、を備える。酸化触媒21は、排気ガスに含まれる未燃燃料、一酸化炭素、一酸化窒素等を酸化(燃焼)するための触媒であり、白金等で構成される。フィルタ22は、例えばウォールフロー型のフィルタとして構成されており、酸化触媒21で処理された排気ガスに含まれるPM(Particulate  Matter、粒子状物質)を捕集する。 The exhaust gas purification device 14 is a device that purifies and discharges exhaust gas, and is also called a DPF. The exhaust gas purification device 14 includes an oxidation catalyst 21 and a filter 22. The oxidation catalyst 21 is a catalyst for oxidizing (combusting) unburned fuel, carbon monoxide, nitrogen monoxide, etc. contained in the exhaust gas, and is composed of platinum or the like. The filter 22 is configured as, for example, a wall flow type filter, and collects PM (Particulate Matter) contained in the exhaust gas treated with the oxidation catalyst 21.
 エンジン1は、図3に示すように、水温センサ31と、エンジン回転数センサ32と、をさらに備える。水温センサ31は、シリンダヘッド6に設けられたウォータジャケット(図示せず)内を通るエンジン冷却水の温度を検知する。エンジン冷却水は、水ポンプの駆動により、ウォータジャケットとラジエータとの間を、冷却水路を介して循環して流れる。ラジエータで冷却された低温のエンジン冷却水がウォータジャケットを通ることにより、シリンダヘッド6を含むエンジン本体1aが冷却される。 As shown in FIG. 3, the engine 1 further includes a water temperature sensor 31 and an engine speed sensor 32. The water temperature sensor 31 detects the temperature of the engine cooling water passing through the water jacket (not shown) provided in the cylinder head 6. The engine cooling water circulates and flows between the water jacket and the radiator through the cooling water channel by driving the water pump. The low-temperature engine cooling water cooled by the radiator passes through the water jacket to cool the engine body 1a including the cylinder head 6.
 エンジン回転数センサ32は、エンジン1のクランク軸の回転数を、エンジン1の回転数として検出する。エンジン回転数センサ32で検出された回転数の情報は、ECU9に出力される。 The engine rotation speed sensor 32 detects the rotation speed of the crank shaft of the engine 1 as the rotation speed of the engine 1. The information on the rotation speed detected by the engine rotation speed sensor 32 is output to the ECU 9.
 上述した各センサ(吸気温度センサ11、水温センサ31、エンジン回転数センサ32など)は、それぞれの検知対象を検知して、エンジン1の運転状態に応じた値をECU9に出力する。すなわち、本実施形態のエンジン1は、エンジン1の運転状態に応じた値を出力するセンサを備える。特に、本実施形態のエンジン1は、センサを複数備える。 Each of the above-mentioned sensors (intake air temperature sensor 11, water temperature sensor 31, engine speed sensor 32, etc.) detects each detection target and outputs a value according to the operating state of the engine 1 to the ECU 9. That is, the engine 1 of the present embodiment includes a sensor that outputs a value according to the operating state of the engine 1. In particular, the engine 1 of the present embodiment includes a plurality of sensors.
 その他、エンジン1は、大気圧を検知する大気圧センサなど、他のセンサをさらに有していてもよい。大気圧センサを備えることにより、ECU9は、検知した大気圧に基づいて、エンジン1が使用される環境の高度を認識し、認識した高度に応じてエンジン1の運転条件を制御することができる。 In addition, the engine 1 may further have other sensors such as an atmospheric pressure sensor that detects atmospheric pressure. By providing the atmospheric pressure sensor, the ECU 9 can recognize the altitude of the environment in which the engine 1 is used based on the detected atmospheric pressure, and can control the operating conditions of the engine 1 according to the recognized altitude.
 上述したECU9は、エンジン1の各部の動作を制御するコントローラである。特に、本実施形態では、ECU9は、噴射パラメータに基づいて、インジェクタ7による燃料の噴射を制御する噴射制御部として機能する。上記の噴射パラメータは、燃料の噴射量、噴射時期、噴射圧の少なくともいずれかを含む。また、ECU9は、時間を計時する計時部としての機能も有する。さらに、ECU9は、後述する噴射マップや、ECU9の制御プログラムなどを記憶する記憶部も有する。 The above-mentioned ECU 9 is a controller that controls the operation of each part of the engine 1. In particular, in the present embodiment, the ECU 9 functions as an injection control unit that controls fuel injection by the injector 7 based on the injection parameters. The above injection parameters include at least one of fuel injection amount, injection timing, and injection pressure. The ECU 9 also has a function as a timekeeping unit for measuring time. Further, the ECU 9 also has a storage unit for storing an injection map, which will be described later, a control program of the ECU 9, and the like.
 ところで、エンジン1が低温状態であり、エンジン冷却水が低温であると、エンジン1が始動しにくいため、インジェクタ7が多段階で燃料を噴射するときの噴射時期などを微調整することが必要となる。したがって、エンジン冷却水の温度は、燃料の噴射制御に与える影響が大きいと言える。 By the way, when the engine 1 is in a low temperature state and the engine cooling water is at a low temperature, it is difficult to start the engine 1, so it is necessary to finely adjust the injection timing when the injector 7 injects fuel in multiple stages. Become. Therefore, it can be said that the temperature of the engine cooling water has a great influence on the fuel injection control.
 そこで、本実施形態では、燃料の噴射制御に大きな影響を与える水温センサ31を特定のセンサとして考え、この水温センサ31に異常が生じたか否かによって、ECU9による燃料の噴射時期等の補正の仕方を変えるようにしている。以下、燃料の噴射制御について、より具体的に説明する。 Therefore, in the present embodiment, the water temperature sensor 31 that has a great influence on the fuel injection control is considered as a specific sensor, and the method of correcting the fuel injection timing and the like by the ECU 9 depends on whether or not an abnormality has occurred in the water temperature sensor 31. I try to change. Hereinafter, fuel injection control will be described more specifically.
 〔3.燃料噴射制御のフロー〕
 図4は、本実施形態の燃料の噴射制御の概念を模式的に示す説明図である。また、図5は、本実施形態の燃料の噴射制御による処理の流れを示すフローチャートである。ここでは例として、本実施形態のエンジン1を搭載した作業車両(例えば油圧ショベル)によって作業を行う場合の燃料噴射制御を考える。
[3. Fuel injection control flow]
FIG. 4 is an explanatory diagram schematically showing the concept of fuel injection control according to the present embodiment. Further, FIG. 5 is a flowchart showing a processing flow by fuel injection control according to the present embodiment. Here, as an example, consider fuel injection control when the work is performed by a work vehicle (for example, a hydraulic excavator) equipped with the engine 1 of the present embodiment.
 まず、ECU9は、水温センサ31に異常が生じているか否かを判断する(S1)。例えば、エンジン1の始動開始から所定時間が経過すれば、エンジン1は暖まった状態となり、エンジン冷却水の温度は上がる。したがって、ECU9は、エンジン1の始動開始から所定時間が経過した後、水温センサ31の出力値(温度)が閾値以上であれば、水温センサ31が正常であると判断することができ、閾値未満であれば、水温センサ31が異常であると判断することができる。なお、水温センサ31が異常である場合、ECU9は、NCDの診断を行うことができないため、NCDエラーを同時に認識する。なお、水温センサ31が異常である場合、PCDの診断開始も許可されない。 First, the ECU 9 determines whether or not an abnormality has occurred in the water temperature sensor 31 (S1). For example, when a predetermined time elapses from the start of the engine 1, the engine 1 becomes warm and the temperature of the engine cooling water rises. Therefore, the ECU 9 can determine that the water temperature sensor 31 is normal if the output value (temperature) of the water temperature sensor 31 is equal to or higher than the threshold value after a predetermined time has elapsed from the start of the engine 1, and is less than the threshold value. If so, it can be determined that the water temperature sensor 31 is abnormal. If the water temperature sensor 31 is abnormal, the ECU 9 cannot diagnose the NCD and therefore recognizes the NCD error at the same time. If the water temperature sensor 31 is abnormal, the start of diagnosis of PCD is not permitted.
 ECU9は、S1にて、水温センサ31が正常であると判断した場合(S1にてNo)、エンジン回転数センサ32によって検出されたエンジン回転数と、指示噴射量と、予め用意された噴射マップとに基づいて、噴射パラメータを決定する(S2)。 When the ECU 9 determines in S1 that the water temperature sensor 31 is normal (No in S1), the engine speed detected by the engine speed sensor 32, the indicated injection amount, and the injection map prepared in advance. The injection parameter is determined based on (S2).
 ここで、指示噴射量とは、作業車両を操縦するオペレータによって踏み込まれたアクセルの開度に応じてECU9が決定する、インジェクタ7から噴射させるべき燃料の噴射量(1サイクルの間に多段階で噴射を行う場合は各段階での噴射量のトータル)のことである。なお、指示噴射量の最大値は、エンジン1が出力可能なトルクの最大値(100%)を実現可能な値である。上記アクセルの開度は、作業車両側のアクセル開度センサ(図示せず)によって検知され、ECU9に入力される。 Here, the indicated injection amount is an injection amount of fuel to be injected from the injector 7 (in multiple stages during one cycle), which is determined by the ECU 9 according to the opening degree of the accelerator stepped on by the operator who controls the work vehicle. When injecting, it means the total injection amount at each stage). The maximum value of the indicated injection amount is a value that can realize the maximum value (100%) of the torque that can be output by the engine 1. The opening degree of the accelerator is detected by an accelerator opening degree sensor (not shown) on the work vehicle side and input to the ECU 9.
 次に、ECU9は、S2で決定した噴射パラメータを、正常な水温センサ31の出力値(エンジン冷却水の温度)に基づいて補正する(S3)。例えば、水温センサ31の出力値が比較的低い温度であったとき、ECU9は、燃焼室6a内での点火をしやすくするために、上記出力値に応じた量だけ、燃料の噴射時期を早める補正値(例えば進角で数度)を演算し、上記補正値をS2で決定した噴射時期に合算する補正を行う。この補正は「環境補正」とも呼ばれ、上記の補正値は「環境補正量」とも呼ばれる。 Next, the ECU 9 corrects the injection parameter determined in S2 based on the output value (temperature of the engine cooling water) of the normal water temperature sensor 31 (S3). For example, when the output value of the water temperature sensor 31 is a relatively low temperature, the ECU 9 advances the fuel injection timing by an amount corresponding to the output value in order to facilitate ignition in the combustion chamber 6a. A correction value (for example, several degrees in advance) is calculated, and the correction value is added to the injection timing determined in S2. This correction is also called "environmental correction", and the above correction value is also called "environmental correction amount".
 続いて、ECU9は、S3で補正した噴射パラメータでインジェクタ7から燃料を多段階で噴射させる(S4)。これにより、エンジン回転数とトルクの関係として、例えば図1で示した、通常モードでのトルクカーブが得られる。その後、S5にて、作業車両のイグニションキーをOFFにすれば、燃料噴射を止めて一連の処理を終了し、イグニションキーがOFFでなければ、S1に戻り、S1以降の処理が継続して行われる。 Subsequently, the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S3 (S4). As a result, as the relationship between the engine speed and the torque, for example, the torque curve in the normal mode shown in FIG. 1 can be obtained. After that, if the ignition key of the work vehicle is turned off in S5, the fuel injection is stopped and a series of processing is completed. If the ignition key is not OFF, the process returns to S1 and the processing after S1 is continued. Will be.
 ECU9は、S1にて、水温センサ31が異常であると判断した場合でも(S1にてYes)、異常の発生から第1所定時間(例えば36時間)が経過していなければ(S6でYes)、第1モードへの移行(エンジン1のパワーダウン)による作業の不都合を回避すべく、動作モードを第1モードに移行させず、上述したS2以降の処理を実行する。 Even if the ECU 9 determines in S1 that the water temperature sensor 31 is abnormal (Yes in S1), if the first predetermined time (for example, 36 hours) has not elapsed since the occurrence of the abnormality (Yes in S6). , In order to avoid the inconvenience of work due to the shift to the first mode (power down of the engine 1), the above-described S2 and subsequent processes are executed without shifting the operation mode to the first mode.
 一方、ECU9は、水温センサ31の異常の発生から第1所定時間が経過した後で(S6でNo)、かつ、第2所定時間(例えば100時間)を経過していなければ(S7でYes)、S8に移行して、第1モードによる燃料噴射制御を行う。具体的には、以下の通りである。 On the other hand, the ECU 9 has not passed the first predetermined time (No in S6) and the second predetermined time (for example, 100 hours) after the occurrence of the abnormality of the water temperature sensor 31 (Yes in S7). , S8, and fuel injection control is performed in the first mode. Specifically, it is as follows.
 S8では、ECU9は、S2と同様にして、エンジン回転数と、指示噴射量とに基づいて、噴射パラメータを決定する。ここで、第1モード用の噴射マップ(最大噴射量マップ)によって最大トルク(通常時の例えば75%)が定義される。上記最大噴射量マップは、エンジン回転数と水温センサ31の出力値とによって構成される。 In S8, the ECU 9 determines the injection parameters based on the engine speed and the indicated injection amount in the same manner as in S2. Here, the maximum torque (for example, 75% of the normal time) is defined by the injection map (maximum injection amount map) for the first mode. The maximum injection amount map is composed of the engine speed and the output value of the water temperature sensor 31.
 次に、ECU9は、水温センサ31の出力値の代わりに、予め設定された所定値(デフォルト値)を用い、その所定値に基づいて、S8で決定した噴射パラメータを補正する(S9)。上記の所定値は、水温センサ31が正常であるときに水温センサ31から出力される値を代表する代表値である。例えば、S9では、燃料の多段噴射における各噴射時期が上記所定値に基づいて補正される。 Next, the ECU 9 uses a preset predetermined value (default value) instead of the output value of the water temperature sensor 31, and corrects the injection parameter determined in S8 based on the predetermined value (S9). The above-mentioned predetermined value is a representative value representing a value output from the water temperature sensor 31 when the water temperature sensor 31 is normal. For example, in S9, each injection timing in the multi-stage injection of fuel is corrected based on the predetermined value.
 続いて、ECU9は、S9で補正した噴射パラメータでインジェクタ7から燃料を多段階で噴射させる(S4)。これにより、エンジン回転数とトルクの関係として、例えば図1で示した、第1モードでのトルクカーブが得られる。なお、上記トルクカーブにおけるトルクは、第1モードで取り得るトルクの最大値を示す。その後、S5にて、作業車両のイグニションキーをOFFにすれば、燃料噴射を止めて一連の処理を終了し、イグニションキーがOFFでなければ、S1に戻り、S1以降の処理が継続して行われる。 Subsequently, the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S9 (S4). As a result, as the relationship between the engine speed and the torque, for example, the torque curve in the first mode shown in FIG. 1 can be obtained. The torque in the torque curve indicates the maximum value of the torque that can be obtained in the first mode. After that, if the ignition key of the work vehicle is turned off in S5, the fuel injection is stopped and a series of processing is completed. If the ignition key is not OFF, the process returns to S1 and the processing after S1 is continued. Will be.
 また、上述したS7において、ECU9は、水温センサ31の異常の発生から第2所定時間が経過していると判断した場合(S7でNo)、S10に移行して、第2モードによる燃料噴射制御を行う。具体的には、以下の通りである。 Further, in S7 described above, when the ECU 9 determines that the second predetermined time has elapsed from the occurrence of the abnormality of the water temperature sensor 31 (No in S7), the ECU 9 shifts to S10 and performs fuel injection control by the second mode. I do. Specifically, it is as follows.
 S10では、ECU9は、S2と同様にして、エンジン回転数と、指示噴射量に基づいて、噴射パラメータを決定する。ここで、第2モード用の噴射マップ(最大噴射量マップ)によって最大トルク(通常時の例えば50%)が定義される。上記最大噴射量マップは、エンジン回転数と水温センサ31の出力値とによって構成される。 In S10, the ECU 9 determines the injection parameters based on the engine speed and the indicated injection amount in the same manner as in S2. Here, the maximum torque (for example, 50% of the normal time) is defined by the injection map (maximum injection amount map) for the second mode. The maximum injection amount map is composed of the engine speed and the output value of the water temperature sensor 31.
 その後、S9に移行し、ECU9は、水温センサ31の出力値の代わりに、予め設定された所定値を用い、その所定値に基づいて、S10で決定した噴射パラメータ(例えば噴射時期)を補正する。そして、ECU9は、S9で補正した噴射パラメータでインジェクタ7から燃料を多段階で噴射させる(S4)。これにより、エンジン回転数とトルクの関係として、例えば図1で示した、第2モードでのトルクカーブが得られる。なお、上記トルクカーブにおけるトルクは、第2モードで取り得るトルクの最大値を示す。その後、S5にて、作業車両のイグニションキーをOFFにすれば、燃料噴射を止めて一連の処理を終了し、イグニションキーがOFFでなければ、S1に戻り、S1以降の処理が継続して行われる。 After that, the process shifts to S9, and the ECU 9 uses a predetermined value set in advance instead of the output value of the water temperature sensor 31, and corrects the injection parameter (for example, injection timing) determined in S10 based on the predetermined value. .. Then, the ECU 9 injects fuel from the injector 7 in multiple stages with the injection parameters corrected in S9 (S4). As a result, as the relationship between the engine speed and the torque, for example, the torque curve in the second mode shown in FIG. 1 can be obtained. The torque in the torque curve indicates the maximum value of the torque that can be obtained in the second mode. After that, if the ignition key of the work vehicle is turned off in S5, the fuel injection is stopped and a series of processing is completed. If the ignition key is not OFF, the process returns to S1 and the processing after S1 is continued. Will be.
 S5の後、必要に応じてS1に戻ることにより、水温センサ31が異常状態であったために、例えばS1、S6、S7、S10、S9、S4,S5の順に処理を行った後、水温センサ31が正常状態に復帰した場合に、S1、S2、S3、S4、S5の順に処理を行うことができる。つまり、水温センサ31が異常状態から正常状態に戻った場合に、噴射パラメータの補正は、所定値に基づく補正(S9)から、正常な水温センサ31の出力値に基づく補正(S3)に戻る。 Since the water temperature sensor 31 was in an abnormal state by returning to S1 as needed after S5, for example, processing was performed in the order of S1, S6, S7, S10, S9, S4, S5, and then the water temperature sensor 31. When is returned to the normal state, processing can be performed in the order of S1, S2, S3, S4, S5. That is, when the water temperature sensor 31 returns from the abnormal state to the normal state, the correction of the injection parameter returns from the correction based on the predetermined value (S9) to the correction based on the output value of the normal water temperature sensor 31 (S3).
 なお、本実施形態では、図4に示すように、作業車両が有する、エンジン1の制御に関連しない他の制御モジュールに対しても、水温センサ31が正常であれば、水温センサ31の出力値が供給され、水温センサ31が異常であれば、所定値(デフォルト値)が供給される。この場合、作業車両側の制御モジュールにおいて、水温センサ31の異常による誤作動が生じる虞を低減することができる。 In the present embodiment, as shown in FIG. 4, if the water temperature sensor 31 is normal, the output value of the water temperature sensor 31 also for other control modules of the work vehicle that are not related to the control of the engine 1. Is supplied, and if the water temperature sensor 31 is abnormal, a predetermined value (default value) is supplied. In this case, it is possible to reduce the possibility of malfunction due to an abnormality of the water temperature sensor 31 in the control module on the work vehicle side.
 また、水温センサ31が異常であるか正常であるかに関係なく、水温センサ31の出力値は常時ECU9によって監視される。これにより、ECU9は、上記出力値に基づいて、水温センサ31が異常状態から復帰したかどうかを監視することができる。 Further, regardless of whether the water temperature sensor 31 is abnormal or normal, the output value of the water temperature sensor 31 is constantly monitored by the ECU 9. As a result, the ECU 9 can monitor whether or not the water temperature sensor 31 has recovered from the abnormal state based on the output value.
 以上のように、噴射制御部としてのECU9は、センサに含まれる特定のセンサ(例えば水温センサ31)が異常である場合には、特定のセンサの出力値の代わりに予め設定された所定値を用い、所定値に基づいて、噴射パラメータを補正する(S9)。 As described above, when the specific sensor (for example, the water temperature sensor 31) included in the sensor is abnormal, the ECU 9 as the injection control unit uses a preset predetermined value instead of the output value of the specific sensor. The injection parameter is corrected based on the predetermined value (S9).
 特定のセンサが異常である場合に、ECU9がその特定のセンサの出力値に基づいて噴射パラメータを補正し、補正後の噴射パラメータに基づいて燃料の噴射を制御すると、誤った出力値に基づく噴射パラメータの補正、および上記噴射パラメータに基づく誤った噴射制御が行われて、エンジン1の誤作動などの不具合が生じる虞がある。 If the ECU 9 corrects the injection parameter based on the output value of the specific sensor and controls the fuel injection based on the corrected injection parameter when the specific sensor is abnormal, the injection based on the incorrect output value is performed. There is a risk that problems such as malfunction of the engine 1 may occur due to parameter correction and erroneous injection control based on the injection parameters.
 本実施形態では、特定のセンサが異常である場合に、誤った出力値の代わりに上記所定値に基づいて噴射パラメータが適切に補正されるため、補正後の噴射パラメータに基づいて、燃料の噴射を適切に制御することができる。これにより、特定のセンサが異常である場合でも、エンジン1の誤作動などの不具合が生じる虞を低減することができる。例えば、特定のセンサが異常であるために動作モードが第1モードまたは第2モードに移行した場合でも、上記した噴射パラメータの適切な補正および補正後の噴射パラメータに基づく燃料の噴射制御により、エンジン1の最大トルクを規定値以下(通常の最大トルクの75%以下または50%以下)に抑えることが可能となる。 In the present embodiment, when a specific sensor is abnormal, the injection parameter is appropriately corrected based on the above-mentioned predetermined value instead of the erroneous output value. Therefore, fuel injection is performed based on the corrected injection parameter. Can be controlled appropriately. As a result, even if a specific sensor is abnormal, it is possible to reduce the possibility that a malfunction such as a malfunction of the engine 1 will occur. For example, even if the operation mode shifts to the first mode or the second mode due to an abnormality of a specific sensor, the engine can be controlled by appropriately correcting the above-mentioned injection parameters and controlling the fuel injection based on the corrected injection parameters. It is possible to suppress the maximum torque of 1 to a specified value or less (75% or less or 50% or less of the normal maximum torque).
 ところで、本実施形態では、複数のセンサのうち、吸気温度センサ11など、水温センサ31以外のセンサが異常であっても、ECU9は、水温センサ31の異常の有無に基づいて噴射パラメータを補正する(S3、S9)。すなわち、ECU9は、特定のセンサ以外のセンサが異常である場合には、特定のセンサの異常の有無に基づいて、噴射パラメータを補正する。この場合、複数のセンサの中でも特定のセンサの異常の有無を重視して、噴射パラメータの補正および燃料の噴射制御を行うことができる。 By the way, in the present embodiment, even if a sensor other than the water temperature sensor 31 such as the intake air temperature sensor 11 is abnormal among the plurality of sensors, the ECU 9 corrects the injection parameter based on the presence or absence of the abnormality of the water temperature sensor 31. (S3, S9). That is, when a sensor other than the specific sensor is abnormal, the ECU 9 corrects the injection parameter based on the presence or absence of the abnormality of the specific sensor. In this case, it is possible to correct the injection parameters and control the fuel injection by emphasizing the presence or absence of abnormality in a specific sensor among the plurality of sensors.
 本実施形態では、ECU9は、特定のセンサが正常である場合に、特定のセンサの出力値に基づいて、噴射パラメータを補正する(S3)。特定のセンサが正常である場合には、特定のセンサの出力値に基づく通常の噴射パラメータの補正を行って燃料噴射を制御することにより、エンジン1を通常のトルクカーブで(トルクを制限することなく)動作させることができる。 In the present embodiment, when the specific sensor is normal, the ECU 9 corrects the injection parameter based on the output value of the specific sensor (S3). When a particular sensor is normal, the engine 1 is driven by a normal torque curve (torque limiting) by correcting normal injection parameters based on the output value of the particular sensor to control fuel injection. Can be operated (without).
 本実施形態では、ECU9は、特定のセンサの出力値を常時監視し、特定のセンサが異常から正常に戻った場合には、噴射パラメータの補正を、所定値に基づく補正から特定のセンサの出力値に基づく補正に戻す(S9、S5、S1、S3)。 In the present embodiment, the ECU 9 constantly monitors the output value of the specific sensor, and when the specific sensor returns from the abnormality to the normal state, the injection parameter is corrected and the output value of the specific sensor is corrected based on the predetermined value. Return to the correction based on the value (S9, S5, S1, S3).
 ECU9は、特定のセンサの出力値を常時監視することにより、上記出力値に基づいて、特定のセンサが異常状態から正常状態に戻ったか否かを常時監視することができる。そして、ECU9は、特定のセンサが異常から正常に戻った場合には、噴射パラメータの補正を、所定値に基づく補正から特定のセンサの出力値に基づく補正に戻すことにより、上記出力値に基づく通常の燃料噴射制御を復帰させることができる。 By constantly monitoring the output value of the specific sensor, the ECU 9 can constantly monitor whether or not the specific sensor has returned from the abnormal state to the normal state based on the output value. Then, when the specific sensor returns to normal from the abnormality, the ECU 9 returns the correction of the injection parameter from the correction based on the predetermined value to the correction based on the output value of the specific sensor, thereby based on the output value. Normal fuel injection control can be restored.
 また、ECU9は、エンジン1の始動開始から所定時間が経過した後、特定のセンサの出力値が閾値未満である場合に、特定のセンサが異常であると判断する(S1)。これにより、特定のセンサが異常であるか否かの判断を精度よく行うことができる。 Further, the ECU 9 determines that the specific sensor is abnormal when the output value of the specific sensor is less than the threshold value after a predetermined time has elapsed from the start of the engine 1 (S1). As a result, it is possible to accurately determine whether or not a specific sensor is abnormal.
 また、上述した特定のセンサは、エンジンの冷却水の温度を検知する水温センサ31である。上述したように、水温センサ31は他のセンサに比べて燃料の噴射制御に与える影響が大きいため、特定のセンサが水温センサ31である場合には、特定のセンサの出力値または所定値に基づく噴射パラメータの補正を行ってエンジン1の誤作動を低減する本実施形態の制御が非常に有効となる。 Further, the specific sensor described above is a water temperature sensor 31 that detects the temperature of the cooling water of the engine. As described above, since the water temperature sensor 31 has a greater influence on the fuel injection control than the other sensors, when the specific sensor is the water temperature sensor 31, it is based on the output value or the predetermined value of the specific sensor. The control of the present embodiment that corrects the injection parameters and reduces the malfunction of the engine 1 is very effective.
 また、上記した所定値は、特定のセンサ(水温センサ31)が正常であるときの出力値の代表値である。これにより、特定のセンサに異常がある場合でも、上記所定値に基づいて噴射パラメータを正しく補正することができ、補正後の噴射パラメータに基づいて、燃料の噴射を正しく制御することができる。その結果、特定のセンサが異常である場合でも、エンジン1の誤作動などの不具合が生じる虞を確実に低減することができる。 Further, the above-mentioned predetermined value is a representative value of the output value when the specific sensor (water temperature sensor 31) is normal. As a result, even if there is an abnormality in the specific sensor, the injection parameter can be correctly corrected based on the above-mentioned predetermined value, and the fuel injection can be correctly controlled based on the corrected injection parameter. As a result, even if a specific sensor is abnormal, it is possible to surely reduce the possibility that a malfunction such as a malfunction of the engine 1 will occur.
 また、上記の噴射パラメータは、燃料の噴射量、噴射時期、噴射圧の少なくともいずれかを含む。ECU9は、これらの少なくともいずれかを補正することにより、補正後の噴射パラメータに基づいて、インジェクタ7から適切な噴射量、噴射時期または噴射圧力で燃料を噴射させて、エンジン1の誤作動などの不具合が生じる虞を回避することができる。 Further, the above injection parameters include at least one of the fuel injection amount, injection timing, and injection pressure. By correcting at least one of these, the ECU 9 injects fuel from the injector 7 at an appropriate injection amount, injection timing or injection pressure based on the corrected injection parameters, such as malfunction of the engine 1. It is possible to avoid the possibility that a problem will occur.
 なお、本実施形態のエンジン1は、過給機を備えていないが、過給機を備えた構成であっても、本実施形態で説明した燃料の噴射制御を適用することができる。 Although the engine 1 of the present embodiment is not provided with a supercharger, the fuel injection control described in the present embodiment can be applied even if the engine 1 is provided with a supercharger.
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で拡張または変更して実施することができる。 Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to this, and can be extended or modified within a range that does not deviate from the gist of the invention.
 本発明のエンジンは、例えば作業車両、農業機械などに利用可能である。 The engine of the present invention can be used for, for example, work vehicles, agricultural machinery, and the like.
   1   エンジン
   6a  燃焼室
   7   インジェクタ(燃料噴射装置)
   9   ECU(噴射制御部)
  11   吸気温度センサ
  31   水温センサ(特定のセンサ)
  32   エンジン回転数センサ
1 Engine 6a Combustion chamber 7 Injector (fuel injection device)
9 ECU (injection control unit)
11 Intake temperature sensor 31 Water temperature sensor (specific sensor)
32 Engine speed sensor

Claims (6)

  1.  燃焼室に燃料を噴射する燃料噴射装置を備えたエンジンであって、
     噴射パラメータに基づいて、前記燃料噴射装置による前記燃料の噴射を制御する噴射制御部と、
     前記エンジンの運転状態に応じた値を出力するセンサと、を備え、
     前記噴射制御部は、前記センサに含まれる特定のセンサが異常である場合には、前記特定のセンサの前記出力値の代わりに予め設定された所定値を用い、前記所定値に基づいて、前記噴射パラメータを補正する、エンジン。
    An engine equipped with a fuel injection device that injects fuel into the combustion chamber.
    An injection control unit that controls the injection of the fuel by the fuel injection device based on the injection parameters.
    A sensor that outputs a value according to the operating state of the engine is provided.
    When the specific sensor included in the sensor is abnormal, the injection control unit uses a predetermined value set in advance instead of the output value of the specific sensor, and the injection control unit uses the predetermined value based on the predetermined value. An engine that corrects injection parameters.
  2.  前記噴射制御部は、前記特定のセンサが正常である場合に、前記特定のセンサの前記出力値に基づいて、前記噴射パラメータを補正する、請求項1に記載のエンジン。 The engine according to claim 1, wherein the injection control unit corrects the injection parameter based on the output value of the specific sensor when the specific sensor is normal.
  3.  前記噴射制御部は、前記特定のセンサの前記出力値を常時監視し、前記特定のセンサが異常から正常に戻った場合には、前記噴射パラメータの補正を、前記所定値に基づく補正から前記特定のセンサの前記出力値に基づく補正に戻す、請求項1または2に記載のエンジン。 The injection control unit constantly monitors the output value of the specific sensor, and when the specific sensor returns to normal from an abnormality, the injection parameter is corrected from the correction based on the predetermined value. The engine according to claim 1 or 2, which returns to the correction based on the output value of the sensor.
  4.  前記噴射制御部は、前記エンジンの始動開始から所定時間が経過した後、前記特定のセンサの前記出力値が閾値未満である場合に、前記特定のセンサが異常であると判断する、請求項1から3のいずれかに記載のエンジン。 The injection control unit determines that the specific sensor is abnormal when the output value of the specific sensor is less than the threshold value after a predetermined time has elapsed from the start of the engine. The engine described in any of 3 to 3.
  5.  前記特定のセンサは、前記エンジンの冷却水の温度を検知する水温センサである、請求項1から4のいずれかに記載のエンジン。 The engine according to any one of claims 1 to 4, wherein the specific sensor is a water temperature sensor that detects the temperature of the cooling water of the engine.
  6.  前記所定値は、前記特定のセンサが正常であるときに出力される値を代表する代表値である、請求項1から5のいずれかに記載のエンジン。 The engine according to any one of claims 1 to 5, wherein the predetermined value is a representative value representing a value output when the specific sensor is normal.
PCT/JP2021/046438 2021-01-18 2021-12-16 Engine WO2022153775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180089339.1A CN116761935A (en) 2021-01-18 2021-12-16 Engine with a motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005620 2021-01-18
JP2021005620A JP2022110305A (en) 2021-01-18 2021-01-18 engine

Publications (1)

Publication Number Publication Date
WO2022153775A1 true WO2022153775A1 (en) 2022-07-21

Family

ID=82447171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046438 WO2022153775A1 (en) 2021-01-18 2021-12-16 Engine

Country Status (3)

Country Link
JP (1) JP2022110305A (en)
CN (1) CN116761935A (en)
WO (1) WO2022153775A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441642A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fail safe system operating during failure in operation of water temperature sensor
JPH08326590A (en) * 1995-06-01 1996-12-10 Nissan Motor Co Ltd Fail safe system at failure of coolant temperature sensor in internal combustion engine
JPH0942038A (en) * 1995-07-26 1997-02-10 Yamaha Motor Co Ltd Method and device for controlling internal combustion engine
JP2014118828A (en) * 2012-12-13 2014-06-30 Hino Motors Ltd Backup system for water temperature sensor
JP2014214681A (en) * 2013-04-25 2014-11-17 ダイハツ工業株式会社 Control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441642A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fail safe system operating during failure in operation of water temperature sensor
JPH08326590A (en) * 1995-06-01 1996-12-10 Nissan Motor Co Ltd Fail safe system at failure of coolant temperature sensor in internal combustion engine
JPH0942038A (en) * 1995-07-26 1997-02-10 Yamaha Motor Co Ltd Method and device for controlling internal combustion engine
JP2014118828A (en) * 2012-12-13 2014-06-30 Hino Motors Ltd Backup system for water temperature sensor
JP2014214681A (en) * 2013-04-25 2014-11-17 ダイハツ工業株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
CN116761935A (en) 2023-09-15
JP2022110305A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
US7631552B2 (en) Method of verifying component functionality on EGR and air systems
JP4770742B2 (en) Engine fuel injection control device and combustion device
US6311482B1 (en) Air-fuel ratio control apparatus for internal combustion engines
EP2128407B1 (en) Egr controller for internal combustion engine
EP1998033B1 (en) Engine controller
US20080103684A1 (en) Diagnosis Method for an Exhaust Gas Post-Treatment System
EP2559888A1 (en) Controller for internal combustion engine
JP2006132524A (en) Engine control system
JP2004003430A (en) Diagnostic apparatus for engine
JP4525793B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for fuel system
JP2006316746A (en) Exhaust emission control device for internal combustion engine
JP2008274836A (en) Failure diagnostic device for intake air flow rate sensor
JP3846381B2 (en) Abnormality diagnosis device for exhaust gas recirculation system
EP2116711B1 (en) Malfunction diagnostic device and malfunction diagnostic method for fuel system
WO2022153775A1 (en) Engine
US7308354B2 (en) Method of controlling elements used to execute elementary functions of an internal combustion engine
US8261604B2 (en) Abnormality determination device and method for internal combustion engine
JP2009270510A (en) Device and method for diagnosing abnormality of fuel system
JP4530069B2 (en) Fuel injection control device
EP2594771A1 (en) Engine control device
CN110857666B (en) System and method for enhancing engine component diagnostic robustness using compensation learning strategy
EP3942170B1 (en) A method and a control system for controlling an internal combustion engine
JP2600521B2 (en) Failure diagnosis device for exhaust gas recirculation control device
JP2009030566A (en) Failure diagnostic device of fuel injection device
JPH11247701A (en) Fail-safe control in failures of intake air pressure sensor of engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089339.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919663

Country of ref document: EP

Kind code of ref document: A1