WO2022153539A1 - デマンド制御システム - Google Patents

デマンド制御システム Download PDF

Info

Publication number
WO2022153539A1
WO2022153539A1 PCT/JP2021/001495 JP2021001495W WO2022153539A1 WO 2022153539 A1 WO2022153539 A1 WO 2022153539A1 JP 2021001495 W JP2021001495 W JP 2021001495W WO 2022153539 A1 WO2022153539 A1 WO 2022153539A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
environmental information
control command
control system
demand
Prior art date
Application number
PCT/JP2021/001495
Other languages
English (en)
French (fr)
Inventor
誠 上泉
秋宏 小柴
忠昭 加瀬
Original Assignee
株式会社Social Area Networks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Social Area Networks filed Critical 株式会社Social Area Networks
Priority to JP2021534908A priority Critical patent/JP7085069B1/ja
Priority to KR1020237016866A priority patent/KR102607145B1/ko
Priority to PCT/JP2021/001495 priority patent/WO2022153539A1/ja
Publication of WO2022153539A1 publication Critical patent/WO2022153539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0252PM holding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a demand control system, and more particularly to a demand control system capable of monitoring the amount of power used in a building and adjusting the demand power.
  • the basic electricity rate is usually set based on the required electricity (also called demand electricity).
  • the power demand means the average power consumption per unit time period (usually set to 30 minutes), the power consumption is integrated from the start of the unit time, and the integrated power amount at the end of the unit time is the unit. Calculated by dividing by the time limit.
  • the basic electricity charge for electricity consumers is calculated based on the power demand that maximizes the power consumption of electricity consumers throughout the year. Since the basic charge can be reduced by keeping the maximum demand power low, various monitoring systems or control systems for monitoring the demand power have been developed.
  • Patent Document 1 as a demand control system, equipment related to power demand is controlled, power demand is calculated from the amount of power used, and the operation of the equipment so as not to exceed the target value. It is disclosed that the power consumption is reduced or the power consumption is reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a demand control system that simplifies wiring work and can be introduced at a lower cost.
  • the subject is a power measuring device that measures the electric energy of a load device and transmits the measured value of the electric energy, and a demand power from the measured value received from the power measuring device. Is calculated, it is determined whether or not the predicted value exceeds the target value, and when it is determined that the predicted value exceeds the target value, a monitoring device that transmits a control command and a monitoring device connected to the load device are connected to the monitoring.
  • a demand control system including an operation device that receives the control command from the device and operates the load device in response to the control command. The control command is transmitted and received by wireless communication, and the operation device is provided.
  • the control circuit receives a wireless communication unit that receives the control command from the monitoring device by wireless communication, and the received control command.
  • the power supply circuit includes a data storage unit for storing, a control unit for processing the control command, and a contact unit for operating the load device according to the instruction of the control unit, and the power supply circuit includes a solar cell panel and a secondary battery. And a charging unit for charging the secondary battery with a part of the generated electric energy of the solar cell panel, and the power supply circuit supplies the generated electric energy of the solar cell panel to the control circuit and has a surplus.
  • the electric power required for operating the operating device can be supplied from the solar cell or the secondary battery.
  • the operating device can receive the monitoring device and the control command via the wireless communication device. Wiring work for supplying power to the operating device and transmitting information can be simplified, and a demand control system can be introduced at a lower cost.
  • the operating device includes a primary battery, the power supply circuit cannot supply generated power from the solar cell panel, and the secondary battery has run out. In this case, it is preferable to supply power from the primary battery to the control circuit.
  • the control circuit for example, even if the solar cell cannot supply power due to continuous rain and the secondary battery runs out, it is possible to switch to the primary battery and supply power to the control circuit, and the operation device can be operated for a longer period of time. Can be made to.
  • the operating device has a magnet on the outer surface and is attached to the load device by the magnet.
  • the operating device can be attached to the load device more easily than, for example, when the operating device is screwed to the load device.
  • the operating device can be arranged at an appropriate position for the solar cell panel of the operating device to receive light.
  • the environment information measuring device which measures the environmental information of the room in which the load device is provided and transmits the measured environmental information to the monitoring device.
  • the monitoring device determines that the predicted value exceeds the target value, the monitoring device may transmit a control command based on the environmental information received from the environmental information measuring device.
  • the environmental information measuring device has a temperature sensor for measuring temperature and a humidity sensor for measuring humidity, and the environmental information includes the temperature sensor and the humidity. It is preferable to include the temperature and humidity information acquired by the sensor.
  • the demand control system can control the load device based on the temperature and humidity in the room.
  • the environmental information measuring device has an illuminance sensor for measuring illuminance or a carbon dioxide sensor for measuring the concentration of carbon dioxide
  • the environmental information is the illuminance sensor. It may include information on the illuminance measured by the sensor or the concentration of carbon dioxide measured by the carbon dioxide sensor.
  • the monitoring device can issue a control command based on the determination of whether or not the person exists. For example, if the illuminance in the room is below the specified value (off state), or if the concentration of carbon dioxide is below the specified value, it is judged that there are no people in the room (absence), and the load equipment is operated. Stop. If it is determined that there are people in the room, the load equipment is adjusted (for example, in the case of an air conditioner, the drive capacity of the outdoor unit is reduced) to reduce power consumption.
  • the environmental information measuring device has a beacon receiver for receiving a beacon signal, and the environmental information is information on the beacon signal received by the beacon receiver. May be included.
  • the wiring work for supplying electric power to the operating device and transmitting / receiving information can be simplified, and the demand control system can be introduced at a lower cost.
  • FIG. 1 is a configuration diagram showing the entire demand control system 1 provided in the building B.
  • the demand control system 1 includes an air conditioner 3 (load device) that adjusts temperature and humidity, a power measuring device 5 that measures the power amount of the entire building B including the air conditioner 3, and a monitoring device that monitors the power amount. It is composed of 10 and an operating device 20 that operates the air conditioner 3 by a control command from the monitoring device 10. Further, the room R on each floor is provided with an environmental information measuring device 30 for measuring temperature, humidity and the like.
  • the power measuring device 5, the operating device 20, the environmental information measuring device 30, and the monitoring device 10 are connected by a wired or wireless network so that information can be transmitted and received.
  • the monitoring device 10 is connected to an external network N such as the Internet, and can send and receive information to and from a remote administrator terminal 50.
  • the air conditioner 3 as a load device in the present embodiment is composed of an indoor unit 3a and an outdoor unit 3b.
  • the indoor unit 3a is installed inside each room R to adjust the temperature and humidity in the room.
  • the outdoor unit 3b is connected to the indoor unit 3a through a refrigerant pipe and an electric wire, and is installed outdoors.
  • the air conditioner 3 can change the power ON / OFF, the set temperature, the humidity, and the like by directly operating the indoor unit 3a. Further, the air conditioner 3 can adjust the power consumption by turning the power ON / OFF by the outdoor unit 3b. The amount of power used can also be adjusted by controlling the driving capacity of the outdoor unit 3b.
  • the air conditioner 3 is used as the load device, but this is an example, and the load device may be a lighting device, a refrigerating device, or a refrigerating device.
  • the electric power measuring device 5 can measure the electric energy of the entire building B.
  • the power measuring device 5 is a power meter capable of digitally measuring the amount of power, which is called a smart meter, and is installed in the power receiving device 40.
  • the power measuring device 5 is connected to the monitoring device 10 via a network, and transmits the measured value of the measured power consumption (electric power amount) to the monitoring device 10 as digital data.
  • the network used to transmit the measurements may be wired or wireless.
  • LPWA Low Power Wide Area wireless communication
  • the LPWA system is an international communication technology that realizes long-distance communication while suppressing power consumption as much as possible, and is a UNB (ultra narrow band) communication network with a transmission capacity of 100 bytes or less per transmission.
  • the LPWA method includes, for example, cellular LPWA, SIGFOX, or LoRaWAN. By adopting this communication method, it is possible to realize wireless communication of several kilometers.
  • transmission may be performed using wireless communication by Wifi (registered trademark) or BlueTooth (registered trademark).
  • the monitoring device 10 is a device that monitors the electric energy of the entire building B such as the air conditioner 3. When the predicted value of the required power calculated from the amount of power received from the power measuring device 5 is likely to exceed the target value, the monitoring device 10 issues a control command to the operating device 20 to reduce the operation of the air conditioner 3. I do.
  • the basic charge for contracted electricity with an electric power company is determined by the largest value of the maximum power demand generated in the past year. More specifically, the power demand is the average value of the power consumed in 30 minutes (see the graph on the left in FIG. 3A). This demand power is summarized monthly, and the maximum value of the monthly power demand is the maximum demand power (demand) of the month (see the graph in the center of FIG. 3A).
  • the contract power is determined based on the largest value of the maximum demand power generated in the past year (see the graph on the right in Fig. 3). Therefore, if a prominently high maximum demand power is recorded even for one month (for example, 1000 kW), the contract is made with the maximum demand power. Therefore, in other months when electricity is not used so much, a high basic charge will be paid.
  • the power demand is controlled to cut the peak so that the maximum power demand does not rise temporarily, and the basic charge is lowered by leveling the maximum power demand throughout the year. We are reducing electricity charges.
  • the monitoring device 10 calculates the demand power for each unit time period (30 minutes) from the electric energy, and when the predicted value of the demand power is likely to exceed the target value, a control command is given to the operation device 20. Is issued, the load equipment such as the air conditioner 3 is stopped, and the peak cut is executed. For example, the monitoring device 10 calculates the average power consumption (predicted value) when the air conditioner is used in the same manner after 15 minutes have passed. If the integrated power already used exceeds half of 1000 kW (target value), the predicted value may exceed the target value. The monitoring device 10 compares the predicted value with the target value and determines whether or not the predicted value exceeds the target value. When it is determined that the target value is exceeded, the monitoring device 10 transmits a control command for reducing the amount of power used to the operating device 20.
  • the control command is a signal instructing the operating device 20 to reduce the power load of the air conditioner 3, for example, a command to stop the operation of the air conditioner 3.
  • the control command is not limited to simply stopping the operation, but may be a command to reduce the driving ability of the outdoor unit 3b.
  • the output of the compressor or the like of the outdoor unit 3b that sends out cold air or the like is forcibly reduced. By reducing the output, it takes longer than usual for the room temperature to reach the set temperature of the air conditioner 3, but the amount of power used is reduced.
  • the monitoring device 10 monitors the amount of electric power used in the entire building B, and the presence of a person is detected in each room R by the environmental information measuring device 30 described later. ..
  • the environmental information measuring device 30 issues a control command to stop the air conditioner 3 in the room when it is determined that a person is absent.
  • the outdoor unit 3b connected to the indoor unit 3a in the room may be operated and a control command for lowering the driving ability thereof may be issued.
  • the control command is set according to the season, the outside air temperature, the temperature or humidity of the room R, and the presence or absence of a person in the room.
  • the monitoring device 10 is a communication device that transmits / receives information data to / from a CPU 11 as a data calculation / control processing device, a ROM / RAM 12 and an HDD 12A (or SSD) as a storage device, and other devices. It is a computer equipped with 13. Further, the monitoring device 10 has an input / output device 14 such as a keyboard and a monitor.
  • the storage device of the monitoring device 10 in addition to the main program that functions as a computer, a program that calculates a predicted value of power demand and compares it with a target value is stored. In addition, the received electric energy, environmental information, and the like are recorded in the storage device. When the stored program is executed by the CPU, the function of the monitoring device 10 is exhibited.
  • the monitoring device 10 includes a communication device 13 that communicates with another device via a wired or wireless network. Further, the monitoring device 10 includes a wireless communication device 13a for wirelessly transmitting and receiving data to and from the operating device 20.
  • the wireless communication device 13a can communicate by the LPWA wireless communication method. Further, the monitoring device 10 can also communicate by wire with the communication device 13, and can be connected to the administrator terminal 50 via the Internet. Therefore, the system administrator operates the demand control system 1 from a remote location by changing the formula when the monitoring device 10 obtains the predicted value, the content of the control command transmitted to the operating device 20, and various parameters. It is possible.
  • the operating device 20 is a device that controls the driving ability of the outdoor unit 3b.
  • the operating device 20 is connected to the outdoor unit 3b of the air conditioner 3 by wire, and is wirelessly connected to the monitoring device 10.
  • the operating device 20 operates the air conditioner 3 in response to a control command received from the monitoring device 10. For example, when a control command for stopping the air conditioner 3 is received from the monitoring device 10, the operating device 20 stops the air conditioner 3 by turning off the power of the outdoor unit 3b.
  • the operating device 20 operates the outdoor unit 3b so as to lower the output of the compressor in the outdoor unit 3b, for example.
  • the operation device 20 is a computer including a control circuit 21 and a power supply circuit 22 that supplies electric power to the control circuit 21.
  • the control circuit 21 is a wireless communication device 213 that transmits and receives information data between the CPU 211 (control unit) as a data calculation / control processing device, the RAM / ROM 212 (data storage unit) as a storage device, and the monitoring device 10 and the like. (Wireless communication unit) and contact circuit 214 (contact unit) for operating the air conditioner 3 are provided.
  • a program that processes a control command received from the monitoring device 10 is stored in addition to the main program that functions as a computer. When the stored program is executed by the CPU 211, the function of the operating device 20 is exhibited.
  • the operating device 20 includes a wireless communication device 213 that communicates with the monitoring device 10 or the inspector's mobile terminal via the wireless network.
  • the operation device 20 includes a wireless communication unit capable of communicating with the monitoring device 10 in an LPWA manner so as to transmit and receive information data.
  • the wireless communication unit may be a wireless LAN module such as WiFi (registered trademark).
  • the operation device 20 includes a Bluetooth (registered trademark) unit as a wireless communication device 213 in addition to the LPWA type wireless communication unit.
  • the system administrator can connect a mobile terminal such as a smartphone and the operation device 20 by Bluetooth (registered trademark) to check or change the setting information of the operation device 20.
  • Bluetooth registered trademark
  • the contact circuit 214 of the operating device 20 is composed of four contacts, and the operating device 20 can operate the air conditioner 3 (more specifically, the outdoor unit 3b) by relay control based on the control command. ing.
  • the number of contacts in the contact circuit is not limited to four, and may be increased or decreased as necessary.
  • the power supply circuit 22 is a device that supplies power to the control circuit 21, that is, the CPU 211, the RAM / ROM 212, the wireless communication device 213, and the contact circuit 214, and is a solar battery panel 221 and a charging circuit 222 (charging unit). , A lithium ion secondary battery 223 (secondary battery), and a lithium primary battery 224 (primary battery).
  • the solar cell panel 221 is a panel for generating electricity with sunlight. Further, the charging circuit 222 is a device that charges a part of the electric power generated by the solar cell panel 221 into the lithium ion secondary battery 223.
  • the lithium ion secondary battery 223 is a storage battery, which can be used repeatedly by charging.
  • the secondary battery used is not limited to the lithium ion secondary battery 223, and may be another secondary battery such as a lithium ion polymer secondary battery or a nickel / hydrogen storage battery.
  • the power supply circuit 22 is composed of the solar cell panel 221 and the lithium ion secondary battery 223, it is possible to install the operating device 20 without performing electrical wiring work to supply power. ing.
  • the power supply circuit 22 includes a lithium primary battery 224 as a backup power source.
  • the power supply circuit supplies power from the lithium primary battery 224 to the control circuit 21.
  • the lithium primary battery 224 is a chemical battery that can only discharge DC power and can be replaced.
  • the primary battery may be a dry cell such as a manganese dry cell or an alkaline manganese dry cell. Even when the power from the lithium ion secondary battery 223 is insufficient, the power can be supplied to the control circuit 21 from the lithium primary battery 224, and the operating device 20 can be continuously operated for a longer period of time. ..
  • FIGS. 4A and 4B The appearance of the operating device 20 is shown in FIGS. 4A and 4B.
  • FIG. 4A is a plan view of the operating device 20 as viewed from above
  • FIG. 4B is a side view of the operating device 20 as viewed from the side.
  • the operating device 20 has a housing 20a formed in a square pyramid, and inside the housing 20a, a control circuit 21, a charging circuit 222, a lithium ion secondary battery 223, and a lithium primary battery 224 are housed.
  • a cable 25 for connecting to the air conditioner 3 extends from the side portion of the housing 20a.
  • the solar cell panel 221 is arranged on the upper surface 20b of the housing 20a.
  • a plate-shaped magnet 24 is provided on the bottom surface 20c of the housing 20a, and by using the magnet 24, it can be detachably attached to the housing of the outdoor unit 3b.
  • a strong magnet such as a neodymium magnet may be used.
  • the operating device 20 can be attached more easily than when it is screwed to the outdoor unit 3b. Further, since it can be easily removed, it is easy to replace the operating device 20 and the lithium primary battery 224.
  • a process in which the power supply circuit 22 supplies electric power to the control circuit 21 will be described with reference to FIG.
  • the solar cell panel 221 generates electricity (S101).
  • the power supply circuit 22 supplies the control circuit 21 with the power generated by the solar cell panel 221 (S103).
  • S104 it is determined whether or not there is surplus power (S104).
  • the power supply circuit 22 charges the lithium ion secondary battery 223 with surplus power by the charging circuit 222 (S105).
  • the solar cell panel 221 does not generate electricity, so that sufficient power cannot be supplied to the control circuit 21 (No in S102). Therefore, it is determined to supply the lithium ion secondary battery 223 (S106).
  • the power supply circuit 22 supplies the power charged in the lithium ion secondary battery 223 to the control circuit 21 (S107).
  • the power is supplied to the control circuit 21 from the lithium primary battery 224 (S108). ).
  • the demand control system 1 includes an environmental information measuring device 30.
  • the environmental information measuring device 30 is a device that measures the environmental information of the room R in which the air conditioner 3 is installed and transmits the measured environmental information data to the monitoring device 10 via the network.
  • the environmental information measuring device 30 includes a CPU 31 as a data calculation / control processing device, a ROM / RAM 32 as a storage device, a communication device 33 for transmitting / receiving information data, and a sensor for measuring environmental information. 34 and a power supply device 35 are provided.
  • the environmental information measuring device 30 is a computer, and the ROM / RAM 32, which is a storage device, transmits the measured value of the environmental information acquired by the sensor 34 to the monitoring device 10 in addition to the main program that functions as a computer.
  • the program etc. for this is stored. When the stored program is executed by the CPU 31, the function of the environmental information measuring device 30 is exhibited.
  • the environmental information measuring device 30 can be connected to the network by wire or wirelessly via the communication device 33. Further, when connecting to the wireless network by the wireless communication device 33a, the LPWA type wireless communication may be used as in the monitoring device 10. In addition, wireless communication may be used by Wifi (registered trademark) or BlueTooth (registered trademark). By connecting the environmental information measuring device 30 and the monitoring device 10 via a wireless network, it is not necessary to carry out communication wiring work for installing a LAN cable or the like for a wired connection. Further, by connecting to a mobile terminal such as a smartphone according to the short-range wireless communication standard of Bluetooth (registered trademark), the system administrator can see the setting information of the environmental information measuring device 30 and the like.
  • a mobile terminal such as a smartphone according to the short-range wireless communication standard of Bluetooth (registered trademark)
  • the environment information measuring device 30 may include a USB (Universal Serial Bus) terminal, and by connecting the USB terminal to a USB port of a personal computer or the like, the environmental information stored in the storage device may be transmitted and received to and from the personal computer or the like. Further, this USB terminal may be used as the power supply device 35. That is, the electric power for operating the environmental information measuring device 30 is acquired via the USB terminal. For example, power is obtained from an outlet by using a charger having a USB port.
  • the power supply device 35 of the environmental information measuring device 30 may be a primary battery such as an alkaline battery or a lithium battery, a secondary battery such as a NiCd battery, a NiMH battery, or a Li battery, an AC adapter, or the like.
  • the sensor 34 includes a temperature sensor 34a for measuring temperature, a humidity sensor 34b for measuring humidity, an illuminance sensor 34c for measuring illuminance, and a carbon dioxide sensor 34d for measuring the concentration of carbon dioxide.
  • the environmental information measuring device 30 measures the temperature and humidity using the temperature sensor 34a and the humidity sensor 34b, and transmits the temperature and humidity information to the monitoring device 10.
  • the monitoring device 10 can grasp the temperature / humidity of each room R and issue a control command in consideration of the temperature / humidity. For example, when the indoor temperature is significantly lower or higher than the outside air temperature, the power load can be reduced by issuing a control command so that the indoor temperature is close to the outside air temperature. Further, by measuring the temperature and humidity after issuing the control command, it is possible to confirm whether or not the air conditioner 3 is normally controlled by the operating device 20.
  • the environmental information measuring device 30 may be installed not only indoors but also outside the room R to measure the outside air temperature or humidity.
  • the environmental information measuring device 30 measures the indoor illuminance and the carbon dioxide concentration by using the illuminance sensor 34c and the carbon dioxide sensor 34d, and transmits the illuminance and carbon dioxide concentration information to the monitoring device 10.
  • the monitoring device 10 can determine, for example, whether or not the lighting is on. If the illuminance is low, there is a high possibility that there are no people in the room because the lights are not on. Therefore, even if the air conditioner 3 is stopped, the influence is small, and the monitoring device 10 can reduce the amount of power used by issuing a control command to stop the air conditioner 3 in a room having low illuminance.
  • the monitoring device 10 reduces the amount of power used by turning off the power of the air conditioner 3 in the room where the absence is determined, and issuing a control command to lower the driving ability of the outdoor unit 3b in the room R where a person is detected. Is possible.
  • the environmental information measuring device 30 may further include a beacon receiver 36.
  • a beacon receiver 36 When the user of the building B always carries the beacon oscillator 37, it can be determined from the beacon signal whether or not there is a user in the vicinity of the environmental information measuring device 30. Since human detection can be directly determined by the presence or absence of a beacon signal instead of indirectly determining human detection such as illuminance and carbon dioxide concentration, control commands can be issued more accurately.
  • the demand control system 1 of the present embodiment has been described above with reference to the drawings.
  • the demand control system 1 has a power supply circuit 22 provided with a solar cell panel 221 for operating an operation device 20 for operating an air conditioner 3 which is a load device. Further, the operating device 20 and the monitoring device 10 are connected by a wireless network. Therefore, the wiring work for electric power and communication is simplified, and the demand control system 1 can be introduced at a lower cost.
  • the above embodiment is merely an example for facilitating the understanding of the present invention, and does not limit the present invention.
  • the present invention can be modified and improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Food Science & Technology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

配線工事を不要にし、より安価に導入可能なデマンド制御システムを提供する。 本発明のデマンド制御システム1は、負荷機器3の電力量を測定する電力測定装置5と、需要電力の予測値を算出し、予測値が目標値を越えると判定した場合に制御指令を送信する監視装置10と、制御指令に応答して負荷機器を操作する操作装置20と、を備えるデマンド制御システムであって、制御指令は無線通信により送受信されており、操作装置は、制御回路21と、制御回路に電力を供給する電源回路22とを有し、制御回路は、監視装置から制御指令を無線通信により受信する無線通信部213と、受信した制御指令を記憶するデータ記憶部212と、制御指令を処理する制御部211と、制御部の指示により負荷機器を操作する接点部214と、を有し、電源回路は、太陽電池パネル211と、二次電池223と、太陽電池パネルの発電電力の一部を二次電池に充電する充電部222とを、有し、電源回路は、太陽電池パネルの発電電力を制御回路に供給し、余剰電力を二次電池に充電し、太陽電池パネルから発電電力を供給できない場合、二次電池から制御回路に電力を供給する。

Description

デマンド制御システム
 本発明は、デマンド制御システムに係り、特に、建物で使用される電力量を監視して需要電力を調整可能なデマンド制御システムに関する。
 工場又はビル等で使用する電力について電力会社と契約する場合、電気料金の基本料金は、通常、需要電力(デマンド電力とも呼ばれる)に基づいて設定されている。需要電力は、単位時限(通常30分に設定される)あたりの平均消費電力を意味しており、単位時限の開始時点から消費電力量を積算し、単位時限の終了時点における積算電力量を単位時限で除することにより算出される。
 電力需要家に対する電力基本料金は、電力需要家の消費電力が年間を通じて最大となる需要電力に基づいて計算される。この最大となる需要電力を低く抑えることにより、基本料金を安価にすることができることから、需要電力を監視する監視システム又は制御システムが種々開発されている。
 特許文献1には、デマンド制御システムとして、需要電力に関係する設備機器を制御対象として、使用された電力量から需要電力を算出し、目標値を越えないように設備機器に対して、その動作を停止させるか又は消費電力を低減させるようにするものが開示されている。
特開2011-193639号公報
 従来、このようなデマンド制御システムを、既存の施設に導入する場合、電力の測定装置、使用した電力量を監視する監視装置、空調機等の設備機器を制御する操作装置等を新たに設ける必要がある。更に、それらの装置に電力を供給したり、装置同士が通信したりできるよう配線工事を行わなくてはならない。
 特に、空調機は室外機が建物の屋外に設置されていることから、操作装置を室外機の近くに設置するための電気配線工事費及び通信用配線工事費が高くついていた。この配線工事にコストがかかることが、電力需要家がデマンド制御システムの導入をためらう要因の一つとなっていた。
 本発明は、上記の課題に鑑みてなされたものであり、配線工事を簡素化し、より安価に導入可能なデマンド制御システムを提供することにある。
 前記課題は、本発明のデマンド制御システムによれば、負荷機器の電力量を測定し、前記電力量の測定値を送信する電力測定装置と、該電力測定装置から受信した前記測定値から需要電力の予測値を算出し、前記予測値が目標値を越えるか否かを判定すると共に、目標値を越えると判定した場合に制御指令を送信する監視装置と、前記負荷機器に接続され、前記監視装置から前記制御指令を受信し、前記制御指令に応答して前記負荷機器を操作する操作装置と、を備えるデマンド制御システムであって、前記制御指令は無線通信により送受信されており、前記操作装置は、制御回路と、該制御回路に電力を供給する電源回路とを有し、前記制御回路は、前記監視装置から前記制御指令を無線通信により受信する無線通信部と、受信した前記制御指令を記憶するデータ記憶部と、前記制御指令を処理する制御部と、該制御部の指示により前記負荷機器を操作する接点部と、を有し、前記電源回路は、太陽電池パネルと、二次電池と、前記太陽電池パネルの発電電力の一部を前記二次電池に充電する充電部と、を有し、前記電源回路は、前記太陽電池パネルの前記発電電力を前記制御回路に供給し、余剰電力を前記二次電池に充電し、前記太陽電池パネルから前記発電電力を供給できない場合、前記二次電池から前記制御回路に電力を供給することにより解決される。
 上記の構成によれば、操作装置の稼働に必要な電力を太陽電池又は二次電池から供給することができる。また、操作装置は、無線通信装置を介して監視装置と制御指令を受信することができる。操作装置に電力を供給したり情報を送信したりするための配線工事が簡素化され、より安価にデマンド制御システムを導入することができる。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記操作装置は一次電池を備え、前記電源回路は、前記太陽電池パネルから発電電力を供給できず且つ前記二次電池が電池切れした場合に、前記一次電池から前記制御回路に電力を供給するとよい。
 上記構成により、例えば雨天が続き太陽電池から給電できず且つ二次電池も電池切れになった場合でも、一次電池に切り替えて制御回路に電力を供給することができ、より長期間操作装置を稼働させることができる。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記操作装置は外面に磁石を有し、前記負荷機器に対して前記磁石により取り付けられるとよい。
 上記構成により、例えば操作装置を負荷機器にねじ止めする場合よりも、操作装置を負荷機器に対して容易に取り付けることが可能になる。また、操作装置の太陽電池パネルが受光するのに適切な位置に、操作装置を配置させることができる。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記負荷機器が設けられた部屋の環境情報を測定し、測定した前記環境情報を前記監視装置に送信する環境情報測定装置を備え、前記監視装置は、前記予測値が前記目標値を越えると判定した場合、前記環境情報測定装置から受信した環境情報に基づいた制御指令を送信するとよい。
 上記構成により、環境情報の測定結果に基づいて負荷機器を制御することが可能になる。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記環境情報測定装置は温度を測定する温度センサ及び湿度を測定する湿度センサを有し、前記環境情報は、前記温度センサ及び前記湿度センサにより取得した温度及び湿度の情報を含むとよい。
 上記構成により、デマンド制御システムは、室内の温度及び湿度に基づいて負荷機器を制御することが可能になる。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記環境情報測定装置は照度を測定する照度センサ又は二酸化炭素の濃度を測定する二酸化炭素センサを有し、前記環境情報は前記照度センサが測定した照度又は前記二酸化炭素センサが測定した二酸化炭素の濃度の情報を含むとよい。
 上記構成により、人と存在しているか否かの判断に基づいて、監視装置は制御指令を出すことができる。例えば室内の照度が所定値以下(消灯状態)であった場合、又は、二酸化炭素の濃度が所定値以下であった場合、部屋に人がいない(不在)と判断して、負荷機器の動作を停止する。室内に人がいると判断した場合は、負荷機器を調整(例えば空調機の場合、室外機の駆動能力を下げる)して消費電力の低減を図る。
 また、本発明のデマンド制御システムについて好適な構成を述べると、前記環境情報測定装置はビーコン信号を受信するビーコン受信機を有し、前記環境情報は前記ビーコン受信機が受信した前記ビーコン信号の情報を含むとよい。
 上記構成により、ビーコン信号を受信することで、室内に人がいることを検知できるため、ビーコン信号を受信しない場合、部屋に人が不在であると判断して、負荷機器の動作を停止させることができる。また、ビーコン信号を受信した場合、人がいると判断して、負荷機器を調整して、消費電力の低減を図ることができる。
 本発明のデマンド制御システムによれば、操作装置に電力を供給したり情報を送受信したりするための配線工事が簡素化され、より安価にデマンド制御システムを導入することができる。
本実施形態のデマンド制御システム全体を示す構成図である。 監視装置のハードウェア構成を示す図である。 操作装置のハードウェア構成を示す図である。 環境情報測定装置のハードウェア構成を示す図である。 デマンド制御システムを導入しなかった場合の需要電力を示す説明である。 デマンド制御システムを用いた場合の需要電力を示す説明図である。 操作装置を上方からみた上面図である。 操作装置を側方から見た側面図である。 操作装置の電源回路により電力を供給する処理を示すフロー図である。
 <<デマンド制御システム>>
 以下、本発明の実施形態について図を用いて説明する。図1は、建物B内に設けられたデマンド制御システム1の全体を示す構成図である。
 デマンド制御システム1は、温度や湿度を調整する空調機3(負荷機器)と、空調機3等を含むの建物B全体の電力量を測定する電力測定装置5と、電力量を監視する監視装置10と、監視装置10からの制御指令により空調機3を操作する操作装置20とから構成される。また、各階の部屋Rには温度及び湿度等を測定する環境情報測定装置30が設けられている。
 電力測定装置5、操作装置20、環境情報測定装置30、及び監視装置10は有線又は無線のネットワークで接続されており情報の送受信が可能になっている。監視装置10は、インターネット等の外部のネットワークNと接続されており、遠隔地の管理者用端末50と情報を送受信することができる。
 <<負荷機器>>
 本実施形態における負荷機器としての空調機3は、室内機3aと室外機3bとから構成される。室内機3aは、各部屋Rの内部に設置され室内の温度や湿度を調整する。室外機3bは、室内機3aと冷媒配管及び電線を通じて接続されており、屋外に設置されている。空調機3は、室内機3aを直接操作することにより電源のON/OFF、設定温度又は湿度等を変更することが可能である。また、空調機3は、室外機3bにより、電源のON/OFFして、使用電力を調整することができる。また、室外機3bの駆動能力を制御することによっても使用電力量を調整することができる。例えば、室外機3bのコンプレッサ等の出力を絞ることにより、設定温度にまで室内の温度が達する到達時間を遅らせて、それにより使用電力を減らすことができる。その結果として室内の温度が上下する場合がある。なお、本実形態では負荷機器として空調機3を用いているが、これは一例であり、負荷機器は照明器具、冷凍装置又は冷蔵装置であってもよい。
 <<電力測定装置>>
 上述したように電力測定装置5は建物B全体の電力量を測定することが可能となっている。電力測定装置5は、電力量をデジタルで測定可能な電力メータで、スマートメータと呼ばれるものであり、受電装置40内に設置される。電力測定装置5は、監視装置10とネットワークで接続されており、測定した電力の消費量(電力量)の測定値をデジタルデータとして監視装置10に送信する。測定値の送信に用いられるネットワークは有線でも無線であってもよい。
 無線ネットワークを用いる場合、LPWA(Low Power Wide Area)方式の無線通信を使用してもよい。LPWA方式は、なるべく消費電力を抑えて遠距離通信を実現する国際的な通信技術であり、1回当たりの伝送容量が100バイト以下のUNB(ウルトラナローバンド)通信ネットワークである。LPWA方式として、例えば、セルラLPWA、SIGFOX、又はLoRaWANがある。この通信方式を採用することで、数キロメートル程度の無線通信を実現することが可能である。また、Wifi(登録商標)又はBlueTooth(登録商標)による無線通信を用いて送信してもよい。
 <<監視装置>>
 監視装置10は、空調機3等の建物B全体の電力量を監視する装置である。監視装置10は、電力測定装置5から受信した電力量から算出した需要電力の予測値が目標値を越えそうな場合に、操作装置20に制御指令を出して、空調機3の稼働を下げることを行う。
 ここで、図3A及び図3Bを用いて、デマンド制御システム1による電力料金削減効果について説明する。
 電力会社との契約電力の基本料金は、過去一年間で発生した最大需要電力で最も大きい値によって定められている。
 より詳しく説明すると、需要電力は、30分間に消費された電力の平均値である(図3Aの左のグラフ参照)。この需要電力は月毎にまとめられ、ひと月の需要電力の最大値がその月の最大需要電力(デマンド)となる(図3Aの中央のグラフ参照)。契約電力は、過去一年間で発生した最大需要電力のうち最も大きい値を基準として定められる(図3の右のグラフ参照)。そのため、ひと月でも突出して高い最大需要電力を記録した場合(例えば1000kw)、その最大需要電力で契約することとなる。そのため、電力をそれほど使用しない他の月では割高な基本料金を支払うこととなる。
 デマンド制御システム1を用いることで、一時的に最大需要電力が高くならないよう、需要電力を制御してピークカットを行い、年間を通じて最大需要電力の平準化を行うことで基本料金を下げ、それにより電力料金の削減を行っている。
 具体的には、監視装置10が電力量から単位時限(30分)毎の需要電力を算出しており、この需要電力の予測値が、目標値を越えそうな場合、操作装置20に制御指令を出し、空調機3等の負荷機器を停止させて、ピークカットを実行する。
 例えば、監視装置10は、15分経った時点で、同じように空調機を使用した場合の平均消費電力(予測値)を算出する。既に使用している積算電力が1000kW(目標値)の半分を超えている場合、予測値が目標値を超える可能性がある。監視装置10は、予測値と目標値とを比較して、予測値が目標値を越えるか否かを判定する。目標値を越えると判定した場合、監視装置10は、操作装置20に、使用電力量を下げる制御指令を送信する。
 制御指令は、空調機3による電力負荷を下げることを操作装置20に指示する信号であり、例えば空調機3の動作を停止させる命令である。また、制御指令は、単に動作を停止させるものに限らず、室外機3bの駆動能力を下げるものであってもよい。例えば、冷風等を送り出す室外機3bのコンプレッサ等の出力を強制的に絞るようにする。出力が絞られることにより、室内の温度が空調機3の設定温度に達する時間(到達時間)が通常よりかかるようになるものの使用電力量は削減されるようになる。
 また、図1に示すように、監視装置10は、建物B全体で使用される電力量を監視しており、後述する環境情報測定装置30により、各部屋Rにおいて人の存在を検知している。環境情報測定装置30により、人が不在であると判定した場合にその部屋の空調機3を停止させる制御指令を出す。人を検知した場合、その部屋の室内機3aとつながる室外機3bを操作し、その駆動能力を下げる制御指令を出してもよい。
 このように、制御指令は、季節、外気温、部屋Rの温度又は湿度、室内の人の有無によって設定される。
 監視装置10は、図2Aに示すように、データの演算・制御処理装置としてCPU11、記憶装置としてROM・RAM12及びHDD12A(又はSSD)、及び、他の装置との情報データの送受信を行う通信装置13を備えたコンピュータである。また、監視装置10は、キーボードやモニタ等の入出力装置14を有する。監視装置10の記憶装置には、コンピュータとして必要な機能を果たすメインプログラムに加えて、需要電力の予測値を算出したり、目標値と比較したりするプログラムが記憶されている。また、記憶装置には受信した電力量及び環境情報等が記録される。記憶されたプログラムがCPUによって実行されることにより、監視装置10の機能が発揮される。
 監視装置10は、有線又は無線のネットワークを経由して他の装置と通信する通信装置13を備えている。また、監視装置10は、操作装置20と無線によりデータを送受信するために、無線通信装置13aを備えている。無線通信装置13aは、LPWA方式の無線通信方式で通信可能である。また、監視装置10は、通信装置13により有線でも通信可能であり、インターネットを経由して管理者用端末50と接続することができる。そのため、システムの管理者は、監視装置10が予測値を求める際の式や、操作装置20に送信する制御指令の内容、各種パラメータを変更することで、デマンド制御システム1を遠隔地から運用することが可能になっている。
 <<操作装置>>
 操作装置20は、室外機3bの駆動能力を制御する装置である。操作装置20は、空調機3の室外機3bと有線により接続され、監視装置10と無線により接続される。操作装置20は、監視装置10から受信した制御指令に応答して、空調機3を操作する。例えば、監視装置10から、空調機3を停止する制御指令を受信した場合、操作装置20は室外機3bの電源をOFFにすることで、空調機3を停止させる。空調機3の駆動能力を下げる制御指令を受信した場合、操作装置20は、例えば室外機3b内のコンプレッサの出力を下げるよう室外機3bを操作する。
 操作装置20は、図2Bに示すように、制御回路21と制御回路21に電力を供給する電源回路22から構成されるコンピュータである。制御回路21は、データの演算・制御処理装置としてCPU211(制御部)と、記憶装置としてのRAM・ROM212(データ記憶部)と、監視装置10等との情報データの送受信を行う無線通信装置213(無線通信部)と、空調機3を操作する接点回路214(接点部)とを備える。
 操作装置20の記憶装置には、コンピュータとして必要な機能を果たすメインプログラムに加えて、監視装置10から受信した制御指令を処理するプログラムが記憶されている。記憶されたプログラムがCPU211によって実行されることにより、操作装置20の機能が発揮される。
 操作装置20は、無線ネットワークを経由して監視装置10又は検査員の携帯端末と通信する無線通信装置213を備えている。無線通信装置213として、操作装置20は、監視装置10と情報データを送受信するようLPWA方式で通信可能な無線通信ユニットを備えている。なお、この無線通信ユニットは、WiFi(登録商標)等の無線LANモジュールであってもよい。
 また、操作装置20は、LPWA方式の無線通信ユニットとは別に、無線通信装置213としてBluetooth(登録商標)ユニットを備えている。システムの管理者は、Bluetooth(登録商標)により、スマートフォン等の携帯端末と操作装置20とを接続して、操作装置20の設定情報を確認したり変更したりすることができる。携帯端末と操作装置20とを無線通信により接続することで、ケーブル等の接続手段を用意することなく、データの授受を簡単に行うことができる。
 操作装置20の接点回路214は4つの接点から構成されており、操作装置20は制御指令に基づきリレー制御することにより、空調機3(より詳しくは室外機3b)を操作することが可能になっている。なお、接点回路の接点数は4つに限定されるものではなく、必要に応じて増減される。
 電源回路22は、上述のように制御回路21、すなわちCPU211、RAM・ROM212、無線通信装置213、接点回路214に電力を供給する装置であり、太陽電池パネル221と、充電回路222(充電部)と、リチウムイオン二次電池223(二次電池)と、リチウム一次電池224(一次電池)とから構成される。
 太陽電池パネル221は、太陽光で発電を行うためのパネルである。また、充電回路222は、太陽電池パネル221による発電電力の一部をリチウムイオン二次電池223に充電する装置である。
 リチウムイオン二次電池223は、蓄電池であり、充電することにより繰り返し使用することができる電池である。使用する二次電池は、リチウムイオン二次電池223に限定されず、リチウムイオンポリマー二次電池、ニッケル・水素蓄電池等、他の二次電池であってもよい。
 電源回路22が、太陽電池パネル221とリチウムイオン二次電池223とにより構成されているため、電源を供給するために電気配線工事をしなくても、操作装置20を設置することが可能になっている。
 また、日中の照度が不足している場合、例えば曇りや雨の日が数日続いた場合、太陽電池パネル221が発電できず、且つ、リチウムイオン二次電池223からも電力を供給できなくなる可能性がある。そのため、電源回路22は、リチウム一次電池224をバックアップ電源として備えている。電源回路は、リチウムイオン二次電池223からの電力が不足する場合、リチウム一次電池224から電力を制御回路21に供給する。
 リチウム一次電池224は、直流電力の放電のみができる化学電池であり、交換することが可能になっている。一次電池は、マンガン乾電池・アルカリマンガン乾電池等の乾電池であってもよい。
 リチウムイオン二次電池223からの電力が不足する場合であっても、リチウム一次電池224から電力を制御回路21に供給することができ、より長い期間連続して操作装置20を稼働させることができる。
 図4A及び図4Bに操作装置20の外観を示す。図4Aは上方から見た操作装置20の平面図、図4Bは、操作装置20を側方から見た側面図である。操作装置20は、図4Bに示すように四角錐台に形成された筐体20aを有し、筐体20aの内部に、制御回路21、充電回路222、リチウムイオン二次電池223、リチウム一次電池224が収容されている。筐体20aの側部から、空調機3と接続するためのケーブル25が延びている。
 また、操作装置20では、筐体20aの上面20bに太陽電池パネル221が配置されている。また、筐体20aの底面20cに板状の磁石24が設けられていて、磁石24を用いることにより室外機3bの筐体に着脱可能に取り付けることが可能になっている。磁石として、ネオジム磁石等の強力磁石が用いられてもよい。
 操作装置20を室外機3bにねじ止めする場合よりも容易に取り付けることができる。また、容易に取り外しすることができるため、操作装置20の交換やリチウム一次電池224の交換も容易である。
 図5を用いて、電源回路22が制御回路21に電力を供給する処理について説明する。
 日中において、太陽電池パネル221により発電する(S101)。このとき、制御回路21が動作するのに充分な電力を供給可能か否か判断する(S102)。充分な電力を供給可能である場合(S102でYes)、電源回路22は、制御回路21に太陽電池パネル221による発電電力を制御回路21に供給する(S103)。このとき、余剰電力が有るか否かを判断する(S104)。余剰電力がある場合、電源回路22は充電回路222により、リチウムイオン二次電池223に余剰電力を充電する(S105)。
 夜間においては、太陽電池パネル221により発電は行われないため、制御回路21に充分な電力を供給することができない(S102でNo)。そのため、リチウムイオン二次電池223で供給することを判断する(S106)。供給することが可能である場合(S106でYes)、電源回路22は、リチウムイオン二次電池223に充電された電力を制御回路21に供給する(S107)。
 太陽電池パネル221から発電電力を供給できず且つリチウムイオン二次電池からも充分な電力を供給することができない場合(S106でNo)、リチウム一次電池224から電力を制御回路21に供給する(S108)。
 <<環境情報測定装置>>
 デマンド制御システム1は、環境情報測定装置30を備えている。環境情報測定装置30は、空調機3が設置された部屋Rの環境情報を測定し、測定した環境情報のデータを監視装置10にネットワーク経由で送信する装置である。
 環境情報測定装置30は、図2Cに示すように、データの演算・制御処理装置としてのCPU31と、記憶装置としてのROM・RAM32、情報データの送受信を行う通信装置33、環境情報を測定するセンサ34及び電源装置35を備える。
 環境情報測定装置30はコンピュータであり、記憶装置であるROM・RAM32には、コンピュータとして必要な機能を果たすメインプログラムの他、センサ34により取得した環境情報の測定値を、監視装置10に送信するためのプログラム等が記憶されている。記憶されているプログラムがCPU31によって実行されることにより、環境情報測定装置30の機能が発揮される。
 環境情報測定装置30は、通信装置33を介して有線又は無線でネットワークに接続することが可能である。また、無線通信装置33aにより無線ネットワークに接続する場合、監視装置10と同様にLPWA方式の無線通信を使用してもよい。また、Wifi(登録商標)又はBlueTooth(登録商標)により無線通信を用いてもよい。無線ネットワークにより、環境情報測定装置30と監視装置10とを接続することで、有線接続するためのLANケーブル等を設置する通信用配線工事しなくてもよくなる。
 また、スマートフォン等の携帯端末とBlueTooth(登録商標)の近距離無線通信の規格により接続することで、システムの管理者は環境情報測定装置30の設定情報等を見ることができる。
 環境情報測定装置30は、USB(Universal Serial Bus)端子を備えて、USB端子をパソコン等のUSBポートに接続することにより、記憶装置に記憶された環境情報をパソコン等と送受信してもよい。
 また、このUSB端子を電源装置35として利用してもよい。すなわち、環境情報測定装置30を稼働させる電力をUSB端子経由で取得する。例えば、USBポートを有する充電器を利用することでコンセントから電力を取得する。環境情報測定装置30の電源装置35は、アルカリ電池やリチウム電池などの一次電池、NiCd電池やNiMH電池、Li電池などの二次電池、ACアダプタ等であってもよい。
 センサ34は、温度を測定する温度センサ34a、湿度を測定する湿度センサ34b、照度を測定する照度センサ34c及び二酸化炭素の濃度を測定する二酸化炭素センサ34dを有する。
 環境情報測定装置30は温度センサ34a及び湿度センサ34bを用いて温度と湿度とを測定し、温度と湿度の情報を監視装置10に送信する。監視装置10は、各部屋Rの温度・湿度を把握することができ、温度・湿度を考慮した制御指令を出すことができる。例えば、外気温よりも室内の温度が大幅に低い又は高い場合、室内の温度が外気温に近くなるように制御指令を出すことで、電力負荷を下げることができる。また、制御指令を出した後の、温度・湿度を計測することにより、空調機3が操作装置20により正常に制御されたか否かを確認することができる。なお、環境情報測定装置30は室内だけでなく、部屋Rの外に設置され、外部の気温又は湿度を測定してもよい。
 また、環境情報測定装置30は、照度センサ34c及び二酸化炭素センサ34dを用いて、室内の照度と二酸化炭素の濃度とを測定し、照度及び二酸化炭素濃度の情報を監視装置10に送信する。監視装置10は、照度を把握することにより、例えば、照明がついているか否かを判断することができる。照度が低い場合は照明がついていないため、部屋に人がいない可能性が高い。そのため、空調機3を停止しても影響が少なく、監視装置10は、照度が低い部屋の空調機3の停止させる制御指令を出すことで使用電力量を下げることができる。
 二酸化炭素濃度も同様に、測定された二酸化炭素濃度が低い場合は、部屋に人がいないと判定することができる。また、二酸化炭素濃度が増加した場合、部屋に人がいると判定することができる。そのため、監視装置10は、不在判定をした部屋では、空調機3の電源を落とし、人を検知した部屋Rでは室外機3bの駆動能力を下げる制御指令を出すことで、使用電力量を下げることが可能となる。
 また、環境情報測定装置30はビーコン受信機36を更に備えてもよい。建物Bの利用者がビーコン発振器37を常に携帯している場合、環境情報測定装置30の近辺に利用者がいるか否かをビーコン信号により判定することができる。照度や二酸化炭素濃度のように、人の検知を間接的に判断するのではなく、ビーコン信号の有無により人の検知を直接判定できることから、より正確に制御指令を出すことができる。
 以上、図を用いて本実施形態のデマンド制御システム1について説明した。デマンド制御システム1では、負荷機器である空調機3を操作する操作装置20を稼働させるために太陽電池パネル221を備えた電源回路22を有している。また、操作装置20と監視装置10を無線ネットワークにより接続している。そのため、電力や通信のための配線工事が簡素化され、デマンド制御システム1をより安価に導入することが可能となる。
 なお、上記の実施形態は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
1  デマンド制御システム
N  ネットワーク
3  空調機(負荷機器)
 3a  室内機
 3b  室外機
5  電力測定装置
10  監視装置
11  CPU
12  ROM・RAM
12A HDD
13  通信装置
 13a  無線通信装置
14  入出力装置
20  操作装置
 20a  筐体
 20b  上面
 20c  底面
21  制御回路
211  CPU(制御部)
212  ROM・RAM(データ記憶部)
213  無線通信装置(無線通信部)
214  接点回路(接点部)
22  電源回路
221  太陽電池パネル
222  充電回路(充電部)
223  リチウムイオン二次電池(二次電池)
224  リチウム一次電池(一次電池)
24  磁石
25  ケーブル
30  環境情報測定装置
31  CPU
32  ROM・RAM
33  通信装置
 33a  無線通信装置
34  センサ
 34a  温度センサ
 34b  湿度センサ
 34c  照度センサ
 34d  二酸化炭素センサ
35  電源装置
36  ビーコン受信機
37  ビーコン発振器
40  受電装置
50  管理者用端末

Claims (7)

  1.  負荷機器の電力量を測定し、前記電力量の測定値を送信する電力測定装置と、
     該電力測定装置から受信した前記測定値から需要電力の予測値を算出し、前記予測値が目標値を越えるか否かを判定すると共に、目標値を越えると判定した場合に制御指令を送信する監視装置と、
     前記負荷機器に接続され、前記監視装置から前記制御指令を受信し、前記制御指令に応答して前記負荷機器を操作する操作装置と、を備えるデマンド制御システムであって、
     前記制御指令は無線通信により送受信されており、
     前記操作装置は、
      制御回路と、該制御回路に電力を供給する電源回路と、を有し、
      前記制御回路は、
      前記監視装置から前記制御指令を無線通信により受信する無線通信部と、
      受信した前記制御指令を記憶するデータ記憶部と、
      前記制御指令を処理する制御部と、
      該制御部の指示により前記負荷機器を操作する接点部と、を有し、
      前記電源回路は、
      太陽電池パネルと、二次電池と、前記太陽電池パネルの発電電力の一部を前記二次電池に充電する充電部と、を有し、
      前記電源回路は、前記太陽電池パネルの前記発電電力を前記制御回路に供給し、余剰電力を前記二次電池に充電し、
      前記太陽電池パネルから前記発電電力を供給できない場合、前記二次電池から前記制御回路に電力を供給することを特徴とするデマンド制御システム。
  2.  前記操作装置は一次電池を備え、前記電源回路は、前記太陽電池パネルから発電電力を供給できず且つ前記二次電池が電池切れした場合に、前記一次電池から前記制御回路に電力を供給することを特徴とする請求項1に記載のデマンド制御システム。
  3.  前記操作装置は外面に磁石を有し、前記負荷機器に対して前記磁石により取り付けられることを特徴とする請求項1又は2に記載のデマンド制御システム。
  4.  前記負荷機器が設けられた部屋の環境情報を測定し、測定した前記環境情報を前記監視装置に送信する環境情報測定装置を備え、
     前記監視装置は、前記予測値が前記目標値を越えると判定した場合、前記環境情報測定装置から受信した前記環境情報に基づいた制御指令を送信することを特徴とする請求項1から3のいずれか一項に記載のデマンド制御システム。
  5.  前記環境情報測定装置は温度を測定する温度センサ及び湿度を測定する湿度センサを有し、前記環境情報は、前記温度センサ及び前記湿度センサにより取得した温度及び湿度の情報を含むことを特徴とする請求項4に記載のデマンド制御システム。
  6.  前記環境情報測定装置は照度を測定する照度センサ又は二酸化炭素の濃度を測定する二酸化炭素センサを有し、前記環境情報は前記照度センサが測定した照度又は前記二酸化炭素センサが測定した二酸化炭素の濃度の情報を含むことを特徴とする請求項4又は5に記載のデマンド制御システム。
  7.  前記環境情報測定装置はビーコン信号を受信するビーコン受信機を有し、前記環境情報は前記ビーコン受信機が受信した前記ビーコン信号の情報を含むことを特徴とする請求項4から6のいずれか一項に記載のデマンド制御システム。
PCT/JP2021/001495 2021-01-18 2021-01-18 デマンド制御システム WO2022153539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021534908A JP7085069B1 (ja) 2021-01-18 2021-01-18 デマンド制御システム
KR1020237016866A KR102607145B1 (ko) 2021-01-18 2021-01-18 디맨드 제어 시스템
PCT/JP2021/001495 WO2022153539A1 (ja) 2021-01-18 2021-01-18 デマンド制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001495 WO2022153539A1 (ja) 2021-01-18 2021-01-18 デマンド制御システム

Publications (1)

Publication Number Publication Date
WO2022153539A1 true WO2022153539A1 (ja) 2022-07-21

Family

ID=82019133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001495 WO2022153539A1 (ja) 2021-01-18 2021-01-18 デマンド制御システム

Country Status (3)

Country Link
JP (1) JP7085069B1 (ja)
KR (1) KR102607145B1 (ja)
WO (1) WO2022153539A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118168125B (zh) * 2024-05-16 2024-07-19 湖南大学 一种应对需求响应的空调控制方法、装置、空调和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010519A (ja) * 2000-06-16 2002-01-11 Nippon Denki Information Technology Kk 遠隔装置における電源方式
JP2012195988A (ja) * 2011-03-14 2012-10-11 Omron Corp 需給電力制御装置およびその制御方法、並びに制御プログラム
WO2015099158A1 (ja) * 2013-12-27 2015-07-02 株式会社フジクラ 蓄電システム、及び蓄電方法
JP2017103846A (ja) * 2015-11-30 2017-06-08 株式会社 日立産業制御ソリューションズ 電力デマンド管理装置および電力デマンド管理方法
WO2017221411A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 制御装置、電力管理システム、充放電の制御方法及びプログラム
JP2019033597A (ja) * 2017-08-08 2019-02-28 株式会社フジクラ 電源装置および電源装置の制御方法
JP2019139311A (ja) * 2018-02-06 2019-08-22 日鉄テックスエンジ株式会社 通信装置、及び、給電装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206714A (ja) * 2009-03-05 2010-09-16 Panasonic Electric Works Co Ltd 機器制御システム
JP5406006B2 (ja) * 2009-12-24 2014-02-05 東京瓦斯株式会社 人数推定装置及び人数推定方法
JP5450184B2 (ja) 2010-03-15 2014-03-26 株式会社東芝 デマンド制御装置、デマンド制御方法、およびデマンド制御用プログラム
JP5930803B2 (ja) * 2012-03-30 2016-06-08 日立アプライアンス株式会社 空調制御システム、および、空調制御方法
JP5964136B2 (ja) * 2012-05-25 2016-08-03 河村電器産業株式会社 無線デマンド制御システム
JP2014107762A (ja) * 2012-11-28 2014-06-09 Panasonic Corp センサデータ収集システム
JP6326281B2 (ja) * 2014-05-07 2018-05-16 人吉アサノ電機株式会社 デマンドコントロールユニット、電力デマンドの管理プログラム、電力デマンドの管理システムおよび電力デマンドの管理方法
JP6815303B2 (ja) * 2017-10-31 2021-01-20 日立グローバルライフソリューションズ株式会社 空調予約システム及び室内機のカバー
JP6502563B1 (ja) * 2018-08-17 2019-04-17 株式会社エコライフエンジニアリング 負荷制御システム
JP7259183B2 (ja) * 2019-02-27 2023-04-18 株式会社ダイヘン 電力管理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010519A (ja) * 2000-06-16 2002-01-11 Nippon Denki Information Technology Kk 遠隔装置における電源方式
JP2012195988A (ja) * 2011-03-14 2012-10-11 Omron Corp 需給電力制御装置およびその制御方法、並びに制御プログラム
WO2015099158A1 (ja) * 2013-12-27 2015-07-02 株式会社フジクラ 蓄電システム、及び蓄電方法
JP2017103846A (ja) * 2015-11-30 2017-06-08 株式会社 日立産業制御ソリューションズ 電力デマンド管理装置および電力デマンド管理方法
WO2017221411A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 制御装置、電力管理システム、充放電の制御方法及びプログラム
JP2019033597A (ja) * 2017-08-08 2019-02-28 株式会社フジクラ 電源装置および電源装置の制御方法
JP2019139311A (ja) * 2018-02-06 2019-08-22 日鉄テックスエンジ株式会社 通信装置、及び、給電装置

Also Published As

Publication number Publication date
JP7085069B1 (ja) 2022-06-15
KR102607145B1 (ko) 2023-11-30
JPWO2022153539A1 (ja) 2022-07-21
KR20230076869A (ko) 2023-05-31

Similar Documents

Publication Publication Date Title
US11951863B2 (en) Method and apparatus for management of current load to an electric vehicle charging station in a residence
CN108475930B (zh) 供电装置以及控制装置
US9620990B2 (en) Electricity supply management device
US9083547B2 (en) Home appliance and method of operating the same
WO2011055196A1 (ja) 配電システム
US20110260691A1 (en) Battery controller, battery control method and program
US20120235625A1 (en) Energy storage system
WO2012008392A1 (ja) 住宅用エネルギー管理システム
JP2009159730A (ja) 直流配電システム
KR101943152B1 (ko) 전력을 분배하여 충전을 제어하고 전력재판매가 가능한 전력제어시스템
JP2013055730A (ja) 無線電力動作型機器
WO2013042308A1 (ja) 電力調整装置及び電力調整方法
EP2849302B1 (en) Energy management device, energy management method and program
WO2022153539A1 (ja) デマンド制御システム
JP4293367B2 (ja) 自律分散制御型蓄電システム
KR102159057B1 (ko) 태양광 발전 시스템
KR20170062269A (ko) 환경 센서 장치 및 환경 제어 시스템
KR101690459B1 (ko) 지하철 ddc의 전원 공급 및 제어 시스템
JP7033688B1 (ja) 電力制御装置
KR102022647B1 (ko) 연산부를 포함하는 배터리 충전시스템
KR101731336B1 (ko) 무선센서모듈의 에너지 하베스팅을 위한 스마트 전력관리장치와 스마트 전력관리방법
KR20180104875A (ko) 지하철 ddc의 전원 공급 및 제어 시스템
CN105356592A (zh) 一种不断电系统的智能供电装置以及方法
JP7046243B1 (ja) 電子ブレーカ
KR20200122592A (ko) 비상 전원을 제공하기 위한 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021534908

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237016866

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919432

Country of ref document: EP

Kind code of ref document: A1