WO2022153388A1 - Electromagnetic wave absorber - Google Patents
Electromagnetic wave absorber Download PDFInfo
- Publication number
- WO2022153388A1 WO2022153388A1 PCT/JP2021/000805 JP2021000805W WO2022153388A1 WO 2022153388 A1 WO2022153388 A1 WO 2022153388A1 JP 2021000805 W JP2021000805 W JP 2021000805W WO 2022153388 A1 WO2022153388 A1 WO 2022153388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- metamaterial
- substrate
- wave absorber
- layer
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 102
- 239000000758 substrate Substances 0.000 claims abstract description 79
- 125000006850 spacer group Chemical group 0.000 claims abstract description 35
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 230000035699 permeability Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 238000010521 absorption reaction Methods 0.000 description 33
- 230000005684 electric field Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 240000004050 Pentaglottis sempervirens Species 0.000 description 3
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000724291 Tobacco streak virus Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- the present invention relates to an electromagnetic wave absorber that absorbs electromagnetic waves, and more particularly to an electromagnetic wave absorber used in high-frequency integrated circuit technology.
- the substrate 51 is made thinner and the high-density substrate is placed on the back surface of the IC chip 5.
- a through-substrate via (TSV) system is formed.
- the ground bounce is suppressed by connecting the ground plane in the IC chip to the ground 53 of the module using a via 52 or a bonding wire.
- Substrate resonance is blocked by thinning the substrate and forming high density ground vias through the substrate. The thickness of the thinned substrate, the diameter of the TSV, and the density of the TSV depend on the operating frequency of the IC circuit.
- the resistivity per unit area between the front surface and the back surface must be minimized in order to stabilize the ground potential of the IC chip.
- a smaller resistivity can be obtained by reducing the diameter of the vias, reducing the spacing between the vias, and reducing the thickness of the substrate.
- small vias are advantageous for improving the layout flexibility and packaging level of the IC.
- an absorbent material can be added to the IC chip instead of the high density TSV system in order to suppress the effects of ground bounce and substrate resonance and absorb the EM wave mode propagating through the substrate of the IC chip.
- Absorbers can effectively absorb or eliminate unwanted electromagnetic radiation or scattering and have potential in radar stealth techniques, EM shielding, and energy harvesting.
- the conventional absorber has a large thickness and weight, it is practically difficult to use it in a small IC chip for high-frequency electronic devices.
- the thinning of the substrate and the formation of the TSV system have the following problems with respect to the manufacture and design of the IC layout.
- the manufacture of the TSV system requires etching through the substrate, it is necessary to consider the mounting of the TSV on the back surface of the IC chip in the design of the IC layout. Since the size of the individual electrical components on the chip is much smaller than the diameter of the individual TSVs, the chip size must be significantly increased and at the same time the packaging level of the IC chip must be reduced.
- the production of TSV involves mounting an IC chip on a glass substrate using an epoxy adhesive, thinning the substrate using a polishing method, forming vias using reactive ion etching, and the back surface of the substrate. And requires a multi-step process that includes internal metallization of the via. This complex multi-step process significantly increases the cost and time of manufacturing high speed IC chips.
- the electromagnetic wave absorber according to the present invention is an electromagnetic wave absorber arranged on a substrate, and is provided with a metamaterial layer, a spacer layer, and a reflective thin film in this order. It is characterized by absorbing and suppressing the resonance mode of electromagnetic waves in the substrate.
- FIG. 1 is a schematic cross-sectional view of a semiconductor substrate for a high-speed electronic circuit including an electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 2A is a top view showing the configuration of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 2B is a top schematic showing the configuration of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 2C is a top view showing the configuration of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 3 is a bird's-eye view showing the configuration of a semiconductor substrate for a high-speed electronic circuit including an electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of a semiconductor substrate for a high-speed electronic circuit including an electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 2A is a top view showing the configuration of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 4A is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 4B is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 5 is a bird's-eye view showing the configuration of the Coplanar waveguide provided with the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 6 is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 7 is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 8 is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 9 is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the first embodiment of the present invention.
- FIG. 10 is a diagram for explaining the characteristics of the electromagnetic wave absorber according to the second embodiment of the present invention.
- FIG. 11 is a bird's-eye view showing the configuration of the Coplanar waveguide provided with the electromagnetic wave absorber according to the third embodiment of the present invention.
- FIG. 12 is a schematic cross-sectional view of a conventional semiconductor substrate for a high-speed electronic circuit.
- the electromagnetic wave absorber according to the present embodiment uses a metamaterial to absorb a wide range of electromagnetic wave modes radiated from a high-speed electronic circuit to a substrate.
- Metamaterials are artificial media that obtain their properties from embedded sub-wavelength structures that are arranged together in the same arrangement as atoms in ordinary materials, and obtain the desired values of permittivity and permeability in the measured frequency range. Show and manipulate electromagnetic (EM) waves.
- the electromagnetic properties of metamaterials are due to the dimensions, geometry, orientation and arrangement of the periodic structures of the circuit, as well as the material consisting of those structures.
- a typical structure of an electromagnetic wave absorber is a three-layer structure, the three-layer structure having an array of metal sub-wavelength structures on the front surface of a dielectric spacer and a metal grounding layer on the back surface.
- the metamaterial periodic structure on the front surface is involved in the electrical resonance response of the metamaterial absorber 10, and the coupling between the metal layer and the dielectric spacer layer on the back surface determines the magnetic resonance response.
- the "electromagnetic wave absorber” is also referred to as a "metamaterial absorber”.
- FIG. 1 shows a cross section of a semiconductor substrate for a high-speed electronic circuit including the electromagnetic wave absorber 10 according to the present embodiment.
- the electromagnetic wave absorber 10 has a three-layer structure using a metamaterial, and has a metamaterial layer 11 having a sub-wavelength metamaterial cell 111 periodically arranged on the back surface of a high-speed IC chip substrate 14, and an intermediate spacer layer 12. And the reflective thin film 13 of the lower layer.
- the electromagnetic wave generation source is provided in the substrate of the high-speed electronic circuit.
- the sub-wavelength metamaterial cell 111 is designed to resonate at a predetermined frequency.
- Metamaterial structures can be made from metals such as gold, copper and aluminum, as well as other highly conductive materials such as graphene or carbon nanotubes.
- the intermediate dielectric spacer layer 12 can be any type of dielectric material such as silicon-based dielectrics (silicon dioxide, silicon nitride) or polymers such as polyimide or benzocyclobutene (BCB).
- the thickness of the dielectric spacer 12 is adjusted with reference to the relative permittivity (dielectric constant) in order to enhance the absorption of electromagnetic waves by the metamaterial absorber 10.
- the lower reflective thin film 13 is composed of a metal, a metal alloy, and a compound thicker than the skin depth of the target radiation (incident electromagnetic wave) in order to block the transmission of the incident electromagnetic wave.
- the minimum thickness of the reflective thin film 13 can be obtained from the calculation of the epidermis depth ⁇ .
- ⁇ is the resistivity of the material used
- ⁇ r is the relative transmittance of the material used (usually equal to 1)
- f 0 is the EM wave.
- FIG. 2A-C shows an example of a metamaterial cell (unit cell) in the electromagnetic wave absorber 10 according to the present embodiment.
- the metamaterial cell 111 is composed of one layer of so-called asymmetric sectional resonator (ASR) structures having various shapes.
- ASR asymmetric sectional resonator
- the ASR is composed of four sections 112 with different characteristic sizes indicated by A1, A2, A3, and A4, and these sections 112 are combined to form a new metamaterial cell (unit cell) 111. ..
- the characteristic size of each section 112 is, for example, the width w, the gap g , the outer peripheral length li, etc. of each section 112, and is related to the respective resonance frequencies.
- a material (metal or the like) having a circular shape (ring or square or rectangle) having a width w is divided into four sections 112, and each section 112 has a gap (gap) g between its end faces. Placed in.
- the distances (outer circumference lengths) li ( l 1 to l 4 ) from the center of the metamaterial cell (hereinafter, also referred to as “ASR cell”) 111 to the outer circumference of each section 112 are arranged so as to be different.
- the width w and the gap g of each section 112 are the same.
- the center of the ASR cell 111 is an intersection of lines connecting the centers of the outer circumferences of the sections 112 facing each other in the cell 111.
- a material (metal or the like) having a circular shape (square or rectangle) having a width w is divided into four sections 112, and each section 112 is arranged at a gap (gap) g between the end faces thereof. ..
- the distances (outer circumference lengths) li ( l 1 to l 4 ) from the substantially center line of the ASR cell 111 to the outer circumference of each section 112 are arranged so as to be different.
- the width w and the gap g of each section 112 are the same.
- the substantially center line of the ASR cell 111 is a straight line parallel to any one outer circumference and passing through two opposing distances g.
- each section 112 has a slight difference, forming an asymmetric ASR cell 111.
- the width w and the gap g do not have to be the same. Further, it does not have to be four sections, but may be a plurality of sections.
- the asymmetric ASR cell 111 may be formed by the difference in the outer peripheral length li of each section 112.
- the asymmetric ASR cell 111 may be formed by the difference in the width w and the gap g of each section 112. good.
- the metamaterial cell 111 is composed of a plurality of sections 112, and the material having a shape in which each section 112 orbits is divided, and the characteristic size (width w, gap g,) of each section 112 is divided.
- the ASR cell 111 may be configured by the difference in the outer peripheral length li ), and as a result, the resonance frequency of each section 112 of the ASR cell 111 may be slightly different.
- the size of the ASR cell 111 may be 1/2 or less of the target radiation (incident electromagnetic wave).
- the characteristic size of each section 112 and the difference thereof may be set within a range satisfying the size of the cell 111.
- the size of the ASR cell 111 is about 0.5 mm or less, and the difference in characteristic size is 0.001 mm or more and 0.1 mm or less.
- each section 112 of the ASR cell 111 has slightly different values, and when combined, a wider band absorption characteristic is generated, which is very advantageous for absorption of various EM wave modes generated by a high-speed IC.
- the resonance frequency f R of the metamaterial can be expressed by the equation (2).
- L is the equivalent inductance
- C is the equivalent capacitance of the metamaterial cell 111.
- the equivalent inductance L and the capacitance C can be expressed by the equations (3) and (4), respectively.
- w is the width of the resonant element
- ⁇ 0 and ⁇ 0 are the permittivity and magnetic permeability of the free space
- li is the external dimension (length) of the section resonator
- a and b are numerical values. It is a factor.
- ⁇ r is the relative permittivity (permittivity)
- h is the thickness of the dielectric spacer layer.
- the gap between the section 112 of the ASR structure and the width w of each section 112 is also determined from the equations (2) to (4), and the resonance frequency of the ASR metamaterial is determined. Is proportional to the size of the section resonator associated with the outer length li of each section 112, as shown in equation (5).
- the effective permittivity ⁇ and magnetic permeability ⁇ of the metamaterial absorber 10 can be adjusted independently, and the impedance matches with the substrate 14 of the high-speed electric circuit. do.
- the metamaterial absorber 10 absorbs the EM wave mode due to coupling resonance.
- the metamaterial layer 11 has a structure that is strongly bonded to the electric component of the EM wave, but the combination of the spacer layer 12 and the reflective thin film 13 is strongly bonded to the magnetic component of the EM wave.
- FIG. 3 shows an example of a metamaterial cell (unit cell) obtained by simulation in the present embodiment.
- the metamaterial cell (unit cell) 111 is adjusted to 300 GHz, and a circular ASR metamaterial cell is used. Further, an indium phosphide (InP) substrate having a thick dielectric constant ⁇ r1 of 12.4 and a dielectric spacer layer having a dielectric constant ⁇ r2 of 8 and a thickness of 12.5 ⁇ m are used.
- InP indium phosphide
- the metamaterial absorber 10 is placed beneath the thick semiconductor substrate 14 to allow direct transmission of incident EM waves between the substrate 14 and the metamaterial absorber 10.
- a time domain solver was used with vertical incidence and appropriate periodic boundary conditions, and the electrical component of the EM wave along the x-axis was used.
- the reflection R ( ⁇ ) and transmission T ( ⁇ ) of the metamaterial cell 111 can be calculated by Eqs. (6) and (7), respectively, from the S parameters depending on the extraction frequency.
- S 11 ( ⁇ ) is a reflection coefficient
- S 21 ( ⁇ ) is a transmission coefficient
- the absorption A ( ⁇ ) of the EM wave passing through the absorber is calculated by the equation (8).
- FIG. 4A shows an example of simulation of the absorption spectrum of the metamaterial absorber 10 at a frequency of 300 GHz.
- the absorption was calculated according to the equation (9) from the extraction reflectance coefficient S 11 ( ⁇ ) obtained from the simulation shown in FIG.
- the optimized absorber has a wideband absorption of 30 GHz and is observed between 285 GHz and 315 GHz.
- the wideband absorption width (30 GHz) was measured as a bandwidth for absorption of 90% or more, similarly to a normal wideband absorber.
- the absorption obtained by the simulation showed similar absorption for both the lateral electrical (TE) 102 and the lateral magnetic (TM) 101 polarization modes.
- the real part Re (z) 103 of the relative impedance is about 1 and the imaginary part Im (z) 104 is about 0 on average in the broadband frequency range observed in FIG. 4A.
- the Coplanar waveguide 20 having the metamaterial absorber 10 on the back surface is used to evaluate the optimized metamaterial cell shown in FIG. 3 in a more practical state.
- the structure of the coplanar waveguide 2 has waveguide ports 25 and 26 at one end and the other end of the waveguide 20, respectively, from the surface metal layer and the bottom ground layer. It is composed.
- the propagation direction of the electromagnetic radiation is different from the simulation of the metamaterial cell 111 because it is from the first waveguide port 25 to the second waveguide port 26.
- the bottom ground layer of the Coplanar waveguide 20 is replaced with the metamaterial absorber 20 designed as described above.
- the metamaterial layer 21 is added to the back surface of the substrate 24 together with the dielectric spacer layer 22.
- a reflective thin film 23 is added to the back surface (the lowest layer of the Coplanar waveguide 20).
- the reflective thin film 23 also serves as a grounding layer for the Coplanar waveguide 20.
- FIG. 6 shows the frequency dependent transmission coefficient S 21 ( ⁇ ) in three different Coplanar waveguide structures.
- the Coplanar waveguide 2 comprises an optimized structure of the metamaterial absorber 20.
- the metamaterial layer 21 is removed from the absorber 20 and has only the spacer dielectric layer 22 and the reflective thin film 23.
- the material of the spacer dielectric layer 22 is replaced with the same material as the substrate 24, and the case where the metamaterial layer 21 is included in the semiconductor substrate 24 is simulated.
- the absorber without the metamaterial layer does not affect the transmission of the EM wave mode. Therefore, typical EM wave Coplanar waveguide transmission occurs with minimal loss.
- the metamaterial absorber in which the dielectric spacer layer 22 was replaced with the same material as the substrate 24 (InP in the present embodiment) was used. Does not absorb EM wave mode.
- the orientation of the electric field toward the metamaterial cell 211 is different from the simulated single metamaterial cell 111 shown in FIG.
- the electric field vector E is parallel to the surface of the metamaterial absorber 10
- LC resonance is easily induced in the gap of the ASR structure.
- the electric field vector E is oriented perpendicular to the surface due to the structure of the waveguide and its operating principle.
- the vertical electric field E (the electric field having the electric field vector E) cannot be coupled to the metamaterial gap, so that resonance does not occur.
- the occurrence of resonance is observed due to a small additional frequency shift.
- the occurrence of resonance is suppressed by using the same material as the substrate 24 for the dielectric spacer 22 even though the same metamaterial layer 21 is included.
- the occurrence of resonance of the metamaterial absorber 20 is affected by additional factors.
- FIG. 7 shows the calculation results regarding the relationship between the position of the resonance peak of the metamaterial layer 21 and the change in the relative permittivity ⁇ r2 of the dielectric spacer layer 12 in the two different high-speed IC semiconductor substrates 24. Calculations were made for 204 when the dielectric constant ⁇ r1 of the semiconductor substrate 24 was 12.4 and 205 when the dielectric constant ⁇ r1 was 6. In the case of both of the two substrates, a shift of the resonance peak position to a lower frequency is observed by increasing the value of the relative permittivity ⁇ r2 of the dielectric spacer layer 22. The shift change is larger as the value of the relative permittivity ⁇ r1 is smaller.
- the shift of the resonance peak shown in FIG. 7 is caused by the electric field E passing through the waveguide having the metamaterial layer 21 arranged at the interface between the two dielectric materials having different dielectric constants.
- the electric flux density vector D is defined by the equation (11).
- ⁇ is the relative permittivity (dielectric constant) of the dielectric film
- E is the electric field vector
- the change of the electric field E occurs in the transmission at the dielectric boundary.
- the electrical flux vector D at vertical incidence is continuous across the dielectric boundary, there is a discontinuity in the combined electric field E related to the permittivity, and the combined electric field E is parallel to the horizontal plane or interface of the waveguide. It can be separated into an electric ( ET ) field mode of continuous tangential components and an electric field E ( EN ) of vertical components.
- the resonance peak intensity shows the minimum value.
- the relative permittivity ⁇ r1 of the substrate 24 is 12.4, while the relative permittivity ⁇ r2 of the spacer layer 22 is about 1 to 10 or about 15 to 20, and the peak intensity is high.
- the difference between the relative permittivity ⁇ r1 of the substrate 24 and the relative permittivity ⁇ r2 of the spacer layer 22 is about 2 or more and 11 or less, and the resonance peak intensity is high.
- the occurrence of the tangential electrical mode is limited and resonance in the metamaterial layer 21 is induced because there is no well-established dielectric interface. Not done.
- the shift of the resonance peak in the Coplanar waveguide 2 can be predicted, and additional adjustment of the metamaterial absorber 20 is facilitated in order to exhibit wideband absorption in the required frequency range. Can be done.
- the InP substrate parameters and their thickness are based on the values used in the actual InP high speed IC.
- the top layer of the Coplanar waveguide is a 2 ⁇ m thick gold thin film. The dimensions of the waveguide are determined by the total size of the metamaterial absorber 10 (3 x 7 cells) arranged on the back surface of the substrate 14, and are equal to 1.89 mm in length and 0.81 mm in width.
- the metamaterial absorber 10 is arranged on the back surface of the InP substrate 14.
- the metamaterial layer 11 is composed of a gold thin film having a thickness of 200 nm.
- the parameters are adjusted to obtain wideband absorption at 300 GHz.
- a gold thin film having a thickness of 200 nm is formed on the bottom surface of the spacer layer 12. The material is thick enough to block all transmissions for electromagnetic waves with frequencies above 150 GHz.
- FIG. 9 shows the electromagnetic wave mode propagating in the Coplanar waveguide in this embodiment with the InP / SiN waveguide 301 having no metamaterial layer, the InP / SiN waveguide 302 having the metamaterial layer 11, and the metamaterial layer 11.
- the result of calculation for the included InP / InP waveguide 303 is shown.
- the electric field mode is shown on the left and the magnetic field mode is shown on the right.
- the electromagnetic wave mode propagating through the Coplanar waveguide 302 in this embodiment is largely absorbed.
- the electromagnetic waves pass through the Coplanar waveguide having the metamaterial absorber 10 on the back surface and are gradually absorbed.
- the absorption of the electromagnetic wave mode is not observed.
- good suppression of the electromagnetic wave mode can be achieved by a simple process without forming a TSV, so that the mechanical strength of the substrate is increased and higher cost effectiveness is achieved. Further, since TSV is not required, the layout design becomes easy and the mounting level of the high-speed IC can be significantly increased.
- different parts of the metamaterial absorber 10 can be freely adjusted by changing the material in each layer, designing the metamaterial cell, and the thickness of each layer, so that it can be used for various frequency ranges and different material-based high-speed IC circuits. Can be adjusted.
- an active metamaterial absorber is used as the metamaterial absorber instead of the passive absorber used in the first embodiment.
- Resonance occurs when the electric field E of the incident electromagnetic wave is localized parallel to the gap of the metamaterial cell, and the gap acts as an equivalent capacitance according to equation (2).
- variable capacitor diode variable capacitor diode
- transistor a controllable variable capacitance
- the high absorption of the electromagnetic wave mode is shifted toward a different frequency range.
- a change in the centralized capacitance value C from 0fF to 5fF in the material absorber shifts the wideband absorption peak to a lower frequency.
- the center frequency of the metamaterial cell shifts from 300 GHz when C is 0 fF to 265 GHz when C is 5 fF.
- the absorption band for an absorption rate of 90% or more decreases from 30 GHz when C is 0 fF to about 20 GHz when C is 5 fF.
- the absorption peak can be shifted only to a low frequency, so if the maximum operating frequency is determined for the passive metamaterial absorber structure, the resonance frequency is actively adjusted in the frequency range below the maximum operating frequency. can.
- the active control of the absorption characteristics is achieved by the bias voltage control applied to the active component, when the high-speed IC can operate at various frequencies in a wide band, the active metamaterial absorber is adjusted to generate the resonance.
- the substrate mode can be suppressed.
- a single IC and metamaterial absorber that operates in a wider frequency range while achieving the same effect as in the first embodiment and increasing the degree of freedom of operation by applying a single design. Improve the cost-effectiveness of manufacturing.
- the metamaterial absorber is changed so as to increase the absorption of the substrate resonance mode in the IC chip.
- a single cell of a metamaterial absorber can absorb up to 100% of EM incident radiation of a wavelength, depending on the geometry of the resonant metamaterial cell. Therefore, the broadband properties of metamaterial absorbers are increased by the combination of different sized ASR cells (unit cells).
- FIG. 11 shows the Coplanar waveguide 40 including the electromagnetic wave absorber according to the present embodiment.
- an aggregate (group) 41 of metamaterial cells adjusted to slightly different resonance frequencies is connected. Since the metamaterial absorber 10 is formed on the entire back surface of the chip, the propagating EM wave is almost completely absorbed in a certain optimized frequency range.
- the size of the geometric shape of the metamaterials of each group (groups 1 to n) 41_1 to 41_n characteristic sizes, eg, g, w, l 1 to l 4 in FIG. 2A).
- wideband absorption characteristics can be obtained.
- aggregates of metamaterial cells having different characteristic sizes are arranged, and adjacent lines of metamaterial aggregates having shifted resonance frequencies are formed.
- This configuration increases the absorption bandwidth because the propagating EM wave mode is absorbed over a wide frequency range (one or more frequencies).
- the metamaterial absorber according to this embodiment has the same effect as that of the first embodiment and can operate in a wider frequency range.
- the electromagnetic wave absorber according to the fourth embodiment of the present invention includes an ASR structure having different resonance frequencies, and has a multi-layered laminated structure including a symmetric metamaterial cell.
- the metamaterial absorber realizes further wideband absorption by the synergistic effect of the characteristics of the ASR structure and the characteristics of the multi-layer structure of the metamaterial cell.
- the metamaterial absorber according to this embodiment has the same effect as that of the first embodiment and can operate in a wider frequency range.
- the present invention can be applied to high frequency integrated circuits.
- Electromagnetic wave absorber 11 Metamaterial layer 12 Spacer layer 13 Reflective thin film 14 Substrate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
An electromagnetic wave absorber (10) according to the present invention is provided to a substrate (14) and comprises a metamaterial layer (11), a spacer layer (12), and a reflective thin film (13), in this order. The electromagnetic wave absorber (10) absorbs and suppresses the resonance mode of electromagnetic waves in the substrate (14). The present invention can thus provide a small electromagnetic wave absorber that does not require a complicated production process.
Description
本発明は、電磁波を吸収する電磁波吸収体に関し、特に、高周波集積回路技術に用いられる電磁波吸収体に関する。
The present invention relates to an electromagnetic wave absorber that absorbs electromagnetic waves, and more particularly to an electromagnetic wave absorber used in high-frequency integrated circuit technology.
高周波集積回路(IC)技術において、動作速度が1/10ギガヘルツを超えると、2つの悪影響が現れる。第1の影響では、寄生インダクタンスと容量を持つフィードバック回路は、振動を誘起し、グランドバウンスと呼ばれる高周波ICの接地電位の不安定性を引き起こす。グランドバウンスは、信号応答にピークとディップを発生させ、群遅延を劣化させる。第2の影響は、ミリ波帯域幅で始まる基板共振である。ICを伝搬する信号の波長がチップのサイズに近づくと、付加的な電磁(EM)波モードが基板に容易に放射され、EM波信号のエネルギー分散による回路動作の発振と劣化を引き起こす。
In high frequency integrated circuit (IC) technology, if the operating speed exceeds 1/10 GHz, two adverse effects will appear. In the first effect, the feedback circuit with parasitic inductance and capacitance induces vibration, causing instability of the ground potential of the high frequency IC called ground bounce. Grand bounce causes peaks and dips in the signal response, degrading group delay. The second effect is the substrate resonance starting at the millimeter wave bandwidth. When the wavelength of the signal propagating in the IC approaches the size of the chip, an additional electromagnetic (EM) wave mode is easily radiated to the substrate, causing oscillation and deterioration of circuit operation due to energy distribution of the EM wave signal.
グランドバウンスと基板共振の影響を最小化し、サブミリメートル波長での高速ICの安定した動作を確保するために、図12に示すように、基板51の薄型化とICチップ5の裏面に高密度基板貫通ビア(through-substrate via、TSV)システムが形成される。
In order to minimize the effects of ground bounce and substrate resonance and ensure stable operation of the high-speed IC at submillimeter wavelengths, as shown in FIG. 12, the substrate 51 is made thinner and the high-density substrate is placed on the back surface of the IC chip 5. A through-substrate via (TSV) system is formed.
ICチップ内のグランドプレーンをビア52やボンディングワイヤを用いてモジュールのグランド53に接続することにより、グランドバウンスを抑制する。基板共振は、基板の薄型化および基板を通る高密度の接地ビアの形成によって遮断される。薄型化された基板の厚さ、TSVの直径およびTSVの密度はIC回路の動作周波数に依存する。
The ground bounce is suppressed by connecting the ground plane in the IC chip to the ground 53 of the module using a via 52 or a bonding wire. Substrate resonance is blocked by thinning the substrate and forming high density ground vias through the substrate. The thickness of the thinned substrate, the diameter of the TSV, and the density of the TSV depend on the operating frequency of the IC circuit.
一般的に使用される金属化ビアシステムでは、ICチップの接地電位を安定させるために、表面と裏面との間の単位面積当たりの抵抗率を最小化しなければならない。ビアの直径を小さくし、ビア間の間隔を小さくし、基板の厚さを薄くすることにより、より小さい抵抗率を得ることができる。また、小さなビアは、ICのレイアウトの柔軟性およびパッケージングレベルを改善するために有利である。
In a commonly used metallized via system, the resistivity per unit area between the front surface and the back surface must be minimized in order to stabilize the ground potential of the IC chip. A smaller resistivity can be obtained by reducing the diameter of the vias, reducing the spacing between the vias, and reducing the thickness of the substrate. Also, small vias are advantageous for improving the layout flexibility and packaging level of the IC.
一般に、グランドバウンスおよび基板共振の影響を抑制し、ICチップの基板を通って伝搬するEM波モードを吸収するために、高密度TSVシステムの代わりに吸収材料をICチップに加えることができる。吸収体は、望ましくない電磁放射または散乱を効果的に吸収または除去することができ、レーダステルス技術、EM遮蔽、およびエネルギーハーベスティングにおいて潜在能力を有する。
In general, an absorbent material can be added to the IC chip instead of the high density TSV system in order to suppress the effects of ground bounce and substrate resonance and absorb the EM wave mode propagating through the substrate of the IC chip. Absorbers can effectively absorb or eliminate unwanted electromagnetic radiation or scattering and have potential in radar stealth techniques, EM shielding, and energy harvesting.
しかしながら、従来の吸収体は、厚さ及び重量が大きいので、高周波電子機器用の小型ICチップに用いることは、実用上困難であった。
However, since the conventional absorber has a large thickness and weight, it is practically difficult to use it in a small IC chip for high-frequency electronic devices.
以上のように、高速ICで発生する基板共振やグランドバウンスを抑制するためには、基板の厚みを薄くし、基板裏面に高密度TSVを作製する必要がある。
As described above, in order to suppress the substrate resonance and ground bounce generated in the high-speed IC, it is necessary to reduce the thickness of the substrate and prepare a high-density TSV on the back surface of the substrate.
しかしながら、基板の薄型化およびTSVシステムの形成は、ICレイアウトの製造および設計に関して、以下の問題を有する。
However, the thinning of the substrate and the formation of the TSV system have the following problems with respect to the manufacture and design of the IC layout.
第1に、TSVシステムの製造は、基板を貫通してエッチングすることを必要とするので、ICレイアウトの設計において、ICチップの裏面におけるTSVの実装を考慮する必要がある。チップ上の個々の電気部品のサイズは、個々のTSVの直径よりもはるかに小さいので、チップサイズを大幅に増加させ、同時にICチップのパッケージングレベルを低下させなければならない。
First, since the manufacture of the TSV system requires etching through the substrate, it is necessary to consider the mounting of the TSV on the back surface of the IC chip in the design of the IC layout. Since the size of the individual electrical components on the chip is much smaller than the diameter of the individual TSVs, the chip size must be significantly increased and at the same time the packaging level of the IC chip must be reduced.
第2に、TSVの製造は、エポキシ系接着剤を用いたガラス基板上へのICチップの実装、研磨法を用いた基板の薄型化、反応性イオンエッチングを用いたビアの形成、基板の裏面およびビアの内部のメタライゼーションを含む多段階プロセスを必要とする。この複雑な多段階プロセスは、高速ICチップの製造のコストおよび時間を著しく増大させる。
Second, the production of TSV involves mounting an IC chip on a glass substrate using an epoxy adhesive, thinning the substrate using a polishing method, forming vias using reactive ion etching, and the back surface of the substrate. And requires a multi-step process that includes internal metallization of the via. This complex multi-step process significantly increases the cost and time of manufacturing high speed IC chips.
第3に、TSVシステムの作製にはビアホールの直径の精密な制御が必要である。このことは、望ましくないEM波モードの抑制に重要である。ここで、TSV直径を正確に制御するためには、イオン反応性エッチング過程で非常に高いエッチング選択性が必要である。
Third, precise control of the diameter of the via hole is required to fabricate the TSV system. This is important for suppressing unwanted EM wave modes. Here, in order to accurately control the TSV diameter, very high etching selectivity is required in the ion reactive etching process.
第4に、ICチップをガラス上に実装するために一般的に使用される接着剤は、高温で劣化するため、イオン反応性エッチングプロセス中の基板温度の制御も必須であり、考慮しなければならない。この場合、接着剤が劣化し、裏面加工後の薄型ICチップのガラスからの取り外しがスムーズに行えず、機械的応力による破壊を受けやすくなる。
Fourth, since adhesives commonly used for mounting IC chips on glass deteriorate at high temperatures, it is essential to control the substrate temperature during the ion-reactive etching process, which must be taken into consideration. It doesn't become. In this case, the adhesive deteriorates, the thin IC chip after the back surface processing cannot be smoothly removed from the glass, and the thin IC chip is easily broken by mechanical stress.
第5に、TSVの直径が減少すると、マイクロローディング効果によりエッチング速度が減少し、サブミリ波で顕著になる。したがって、動作周波数範囲の増加に伴い、エッチングパラメータの調整が不可欠となり、製造の全体時間が増加する。
Fifth, when the diameter of the TSV decreases, the etching rate decreases due to the microloading effect, which becomes remarkable in the submillimeter wave. Therefore, as the operating frequency range increases, it becomes essential to adjust the etching parameters, and the overall manufacturing time increases.
第6に、TSVの形成後、基板の裏面およびビアの内部のメタライゼーションが必要である。典型的には、数マイクロメートル厚の電気めっき金属と、無関係なシード層を除去するための反応性イオンエッチングによる処理が行われる。
Sixth, after forming the TSV, it is necessary to metallize the back surface of the substrate and the inside of the via. Typically, electroplated metal with a thickness of a few micrometers is treated by reactive ion etching to remove unrelated seed layers.
以上のように、高速ICで発生する基板共振やグランドバウンスの抑制において、基板厚さの低減および基板裏面の高密度TSVの作製のためには、ICチップのレイアウト設計やTSVの作製上の問題がある。
As described above, in suppressing substrate resonance and ground bounce generated in high-speed ICs, problems in IC chip layout design and TSV fabrication are required for reducing the substrate thickness and producing high-density TSVs on the back surface of the substrate. There is.
上述したような課題を解決するために、本発明に係る電磁波吸収体は、基板に配置される電磁波吸収体であって、順に、メタマテリアル層と、スペーサ層と、反射薄膜とを備え、前記基板内の電磁波の共振モードを吸収して抑制することを特徴とする。
In order to solve the above-mentioned problems, the electromagnetic wave absorber according to the present invention is an electromagnetic wave absorber arranged on a substrate, and is provided with a metamaterial layer, a spacer layer, and a reflective thin film in this order. It is characterized by absorbing and suppressing the resonance mode of electromagnetic waves in the substrate.
本発明によれば、複雑な作製プロセスを必要としない小型の電磁波吸収体を提供できる。
According to the present invention, it is possible to provide a small electromagnetic wave absorber that does not require a complicated manufacturing process.
<第1の実施の形態>
本発明の第1の実施の形態に係る電磁波吸収体について図1~図8を参照して説明する。 <First Embodiment>
The electromagnetic wave absorber according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 8.
本発明の第1の実施の形態に係る電磁波吸収体について図1~図8を参照して説明する。 <First Embodiment>
The electromagnetic wave absorber according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 8.
<電磁波吸収体の構成>
本実施の形態に係る電磁波吸収体は、メタマテリアルを用いて、高速電子回路から基板に放射される広範囲の電磁波モードを吸収する。以下、本発明の原理及び構成について、図面を参照しながら詳細に説明する。この説明は、本発明の可能な実施のいくつかの詳細な例を提供するが、これらの詳細は、例示的であり、本発明の範囲を限定するものではないことに留意されたい。 <Structure of electromagnetic wave absorber>
The electromagnetic wave absorber according to the present embodiment uses a metamaterial to absorb a wide range of electromagnetic wave modes radiated from a high-speed electronic circuit to a substrate. Hereinafter, the principle and configuration of the present invention will be described in detail with reference to the drawings. It should be noted that this description provides some detailed examples of possible implementations of the invention, but these details are exemplary and do not limit the scope of the invention.
本実施の形態に係る電磁波吸収体は、メタマテリアルを用いて、高速電子回路から基板に放射される広範囲の電磁波モードを吸収する。以下、本発明の原理及び構成について、図面を参照しながら詳細に説明する。この説明は、本発明の可能な実施のいくつかの詳細な例を提供するが、これらの詳細は、例示的であり、本発明の範囲を限定するものではないことに留意されたい。 <Structure of electromagnetic wave absorber>
The electromagnetic wave absorber according to the present embodiment uses a metamaterial to absorb a wide range of electromagnetic wave modes radiated from a high-speed electronic circuit to a substrate. Hereinafter, the principle and configuration of the present invention will be described in detail with reference to the drawings. It should be noted that this description provides some detailed examples of possible implementations of the invention, but these details are exemplary and do not limit the scope of the invention.
メタマテリアルは人工媒質であり、通常の材料中の原子と同様の配置にともに配置された埋め込みサブ波長構造からその特性を取得し、測定された周波数範囲で誘電率と透磁率の所望の値を示し、電磁(EM)波を操作する。メタマテリアルの電磁気的性質は、回路の周期的構造の寸法、幾何学、方向および配置、ならびにそれらの構造からなる材料に起因する。
Metamaterials are artificial media that obtain their properties from embedded sub-wavelength structures that are arranged together in the same arrangement as atoms in ordinary materials, and obtain the desired values of permittivity and permeability in the measured frequency range. Show and manipulate electromagnetic (EM) waves. The electromagnetic properties of metamaterials are due to the dimensions, geometry, orientation and arrangement of the periodic structures of the circuit, as well as the material consisting of those structures.
正確な設計により、メタマテリアルは広い範囲の周波数の電磁波吸収体として適用できる。ここで、吸収波長と帯域幅は、メタマテリアルセルの設計を変えることにより調整できる。電磁波吸収体の典型的な構造は、3層構造からなり、その3層構造は誘電体スペーサの表面に金属サブ波長構造のアレイを有し、裏面に金属接地層を有する。ここで、表面のメタマテリアル周期構造はメタマテリアル吸収体10の電気共振応答に関与し、裏面の金属層と誘電体スペーサ層の結合が磁気共振応答を決定する。以下、「電磁波吸収体」を「メタマテリアル吸収体」ともいう。
With accurate design, metamaterials can be applied as electromagnetic wave absorbers in a wide range of frequencies. Here, the absorption wavelength and bandwidth can be adjusted by changing the design of the metamaterial cell. A typical structure of an electromagnetic wave absorber is a three-layer structure, the three-layer structure having an array of metal sub-wavelength structures on the front surface of a dielectric spacer and a metal grounding layer on the back surface. Here, the metamaterial periodic structure on the front surface is involved in the electrical resonance response of the metamaterial absorber 10, and the coupling between the metal layer and the dielectric spacer layer on the back surface determines the magnetic resonance response. Hereinafter, the "electromagnetic wave absorber" is also referred to as a "metamaterial absorber".
図1は、本実施の形態に係る電磁波吸収体10を備える高速電子回路用の半導体基板の断面を示す。電磁波吸収体10は、メタマテリアルを用いた3層構造を有し、高速ICチップ基板14の裏面に周期的に配置されるサブ波長メタマテリアルセル111を有するメタマテリアル層11と、中間スペーサ層12と、下層の反射薄膜13とを備える。ここで、高速電子回路の基板内に電磁波の発生源を有する。
FIG. 1 shows a cross section of a semiconductor substrate for a high-speed electronic circuit including the electromagnetic wave absorber 10 according to the present embodiment. The electromagnetic wave absorber 10 has a three-layer structure using a metamaterial, and has a metamaterial layer 11 having a sub-wavelength metamaterial cell 111 periodically arranged on the back surface of a high-speed IC chip substrate 14, and an intermediate spacer layer 12. And the reflective thin film 13 of the lower layer. Here, the electromagnetic wave generation source is provided in the substrate of the high-speed electronic circuit.
サブ波長メタマテリアルセル111は、所定の周波数で共振するように設計される。
The sub-wavelength metamaterial cell 111 is designed to resonate at a predetermined frequency.
メタマテリアル構造は、金、銅およびアルミニウムのような金属、ならびにグラフェンまたはカーボンナノチューブのような他の高導電性材料から作製することができる。
Metamaterial structures can be made from metals such as gold, copper and aluminum, as well as other highly conductive materials such as graphene or carbon nanotubes.
中間誘電体スペーサ層12は、シリコン系誘電体(二酸化ケイ素、窒化ケイ素)のような任意のタイプの誘電体材料、またはポリイミドまたはベンゾシクロブテン(BCB)のようなポリマーとすることができる。誘電体スペーサ12の厚さは、メタマテリアル吸収体10による電磁波の吸収を高めるために、比誘電率(誘電率)を基準として調整される。
The intermediate dielectric spacer layer 12 can be any type of dielectric material such as silicon-based dielectrics (silicon dioxide, silicon nitride) or polymers such as polyimide or benzocyclobutene (BCB). The thickness of the dielectric spacer 12 is adjusted with reference to the relative permittivity (dielectric constant) in order to enhance the absorption of electromagnetic waves by the metamaterial absorber 10.
下層の反射薄膜13は、入射電磁波の透過を阻止するために、ターゲット放射線(入射電磁波)の表皮深さよりも厚い金属、金属合金、および化合物から構成される。反射薄膜13の最小厚さは、表皮深さδの計算から得ることができる。
The lower reflective thin film 13 is composed of a metal, a metal alloy, and a compound thicker than the skin depth of the target radiation (incident electromagnetic wave) in order to block the transmission of the incident electromagnetic wave. The minimum thickness of the reflective thin film 13 can be obtained from the calculation of the epidermis depth δ.
ρは使用材料の抵抗率、μ0は自由空間の透過率(μ0=4π・10-7)、μrは使用材料の相対的な透過率(通常1に等しい)、f0はEM波の周波数である。例えば、ρ=2.24μΩ・cm、μr=1の金薄膜を300GHz周波数で使用すると、表皮深さは0.138μmである。したがって、下層の反射薄膜13は、この値よりも厚くなければならない。
ρ is the resistivity of the material used, μ 0 is the transmittance in free space (μ 0 = 4π ・10-7 ), μ r is the relative transmittance of the material used (usually equal to 1), and f 0 is the EM wave. Frequency. For example, when a gold thin film having ρ = 2.24 μΩ · cm and μ r = 1 is used at a frequency of 300 GHz, the skin depth is 0.138 μm. Therefore, the underlying reflective thin film 13 must be thicker than this value.
図2A-Cに、本実施の形態に係る電磁波吸収体10におけるメタマテリアルセル(単位セル)の例を示す。一般に、本実施の形態では、メタマテリアルセル111は、様々な形状のいわゆる非対称セクション共振器(asymmetric sectional resonator、ASR)構造の一層から構成される。
FIG. 2A-C shows an example of a metamaterial cell (unit cell) in the electromagnetic wave absorber 10 according to the present embodiment. Generally, in this embodiment, the metamaterial cell 111 is composed of one layer of so-called asymmetric sectional resonator (ASR) structures having various shapes.
例えば、ASRは、A1、A2、A3、およびA4で示される異なる特性サイズを有する4つのセクション112から構成され、これらのセクション112を組み合わせて、新しいメタマテリアルセル(単位セル)111が形成される。ここで、各セクション112の特性サイズは、例えば、各セクション112の幅w、ギャップg、外周長さli等であり、それぞれの共振周波数に関係する。
For example, the ASR is composed of four sections 112 with different characteristic sizes indicated by A1, A2, A3, and A4, and these sections 112 are combined to form a new metamaterial cell (unit cell) 111. .. Here, the characteristic size of each section 112 is, for example, the width w, the gap g , the outer peripheral length li, etc. of each section 112, and is related to the respective resonance frequencies.
例えば、図2A、Cでは、幅wの周回する形状(リングまたは正方形あるいは長方形)の材料(金属など)が4つのセクション112に分割され、各セクション112がそれぞれの端面同士の間隔(ギャップ)gで配置される。このとき、メタマテリアルセル(以下、「ASRセル」ともいう)111の中心から各セクション112の外周までの距離(外周長さ)li(l1~l4)が異なるように配置される。ここで、各セクション112の幅wとギャップgは同一である。また、ASRセル111の中心は、セル111において対向するセクション112の外周の中心を結ぶ線の交点である。
For example, in FIGS. 2A and 2C, a material (metal or the like) having a circular shape (ring or square or rectangle) having a width w is divided into four sections 112, and each section 112 has a gap (gap) g between its end faces. Placed in. At this time, the distances (outer circumference lengths) li ( l 1 to l 4 ) from the center of the metamaterial cell (hereinafter, also referred to as “ASR cell”) 111 to the outer circumference of each section 112 are arranged so as to be different. Here, the width w and the gap g of each section 112 are the same. Further, the center of the ASR cell 111 is an intersection of lines connecting the centers of the outer circumferences of the sections 112 facing each other in the cell 111.
また、図2Bでは、幅wの周回する形状(正方形または長方形)の材料(金属など)が4つのセクション112に分割され、各セクション112がそれぞれの端面同士の間隔(ギャップ)gで配置される。このとき、ASRセル111の略中心線から各セクション112の外周までの距離(外周長さ)li(l1~l4)が異なるように配置される。ここで、各セクション112の幅wとギャップgは同一である。また、ASRセル111の略中心線は、任意の一の外周に平行であり、対向する2つの間隔gを通る直線である。
Further, in FIG. 2B, a material (metal or the like) having a circular shape (square or rectangle) having a width w is divided into four sections 112, and each section 112 is arranged at a gap (gap) g between the end faces thereof. .. At this time, the distances (outer circumference lengths) li ( l 1 to l 4 ) from the substantially center line of the ASR cell 111 to the outer circumference of each section 112 are arranged so as to be different. Here, the width w and the gap g of each section 112 are the same. Further, the substantially center line of the ASR cell 111 is a straight line parallel to any one outer circumference and passing through two opposing distances g.
このように、各セクション112の外周長さliが若干の差を有し、非対称なASRセル111を構成する。
As described above, the outer peripheral length li of each section 112 has a slight difference, forming an asymmetric ASR cell 111.
ここで、幅wとギャップgは同一でなくてもよい。また、4つのセクションでなくても、複数のセクションであればよい。
Here, the width w and the gap g do not have to be the same. Further, it does not have to be four sections, but may be a plurality of sections.
また、各セクション112の外周長さliの差により非対称なASRセル111を構成する例を示したが、各セクション112の幅wとギャップgの差により非対称なASRセル111を構成してもよい。
Further, although an example in which the asymmetric ASR cell 111 is formed by the difference in the outer peripheral length li of each section 112 is shown, the asymmetric ASR cell 111 may be formed by the difference in the width w and the gap g of each section 112. good.
本実施の形態では、メタマテリアルセル111が、複数のセクション112から構成され、各セクション112が周回する形状の材料を分割されたものであり、各セクション112の特性サイズ(幅w、ギャップg、外周長さli)の差により、ASRセル111が構成されればよく、その結果、ASRセル111の各セクション112の共振周波数がわずかに異ればよい。
In the present embodiment, the metamaterial cell 111 is composed of a plurality of sections 112, and the material having a shape in which each section 112 orbits is divided, and the characteristic size (width w, gap g,) of each section 112 is divided. The ASR cell 111 may be configured by the difference in the outer peripheral length li ), and as a result, the resonance frequency of each section 112 of the ASR cell 111 may be slightly different.
ここで、ASRセル111の大きさは、ターゲット放射線(入射電磁波)の1/2以下であればよい。各セクション112の特性サイズおよびその差は、このセル111の大きさを満たす範囲で設定されればよい。例えば、入射電磁波がミリ波である場合には、ASRセル111のサイズは0.5mm以下程度であり、特性サイズの差は0.001mm以上0.1mm以下であることが望ましい。
Here, the size of the ASR cell 111 may be 1/2 or less of the target radiation (incident electromagnetic wave). The characteristic size of each section 112 and the difference thereof may be set within a range satisfying the size of the cell 111. For example, when the incident electromagnetic wave is a millimeter wave, it is desirable that the size of the ASR cell 111 is about 0.5 mm or less, and the difference in characteristic size is 0.001 mm or more and 0.1 mm or less.
ASRセル111の各セクション112の共振周波数はわずかに異なる値を有し、結合するとより広帯域の吸収特性を発生し、高速ICで発生する各種EM波モードの吸収に非常に有利である。
The resonance frequencies of each section 112 of the ASR cell 111 have slightly different values, and when combined, a wider band absorption characteristic is generated, which is very advantageous for absorption of various EM wave modes generated by a high-speed IC.
初めに、所望の共振周波数範囲を達成するために、図2A-Cに示すASRメタマテリアルセル111の形状、寸法、セル111の周期、および配置のスタイルを調整する。メタマテリアルの共振周波数fRは、式(2)で表すことができる。
First, the shape, dimensions, period of the cells 111, and placement style of the ASR metamaterial cells 111 shown in FIGS. 2A-C are adjusted to achieve the desired resonance frequency range. The resonance frequency f R of the metamaterial can be expressed by the equation (2).
ここで、Lは等価インダクタンスであり、Cはメタマテリアルセル111の等価キャパシタンスである。
等価インダクタンスLと容量Cは、それぞれ式(3)、式(4)で表すことができる。 Here, L is the equivalent inductance and C is the equivalent capacitance of themetamaterial cell 111.
The equivalent inductance L and the capacitance C can be expressed by the equations (3) and (4), respectively.
等価インダクタンスLと容量Cは、それぞれ式(3)、式(4)で表すことができる。 Here, L is the equivalent inductance and C is the equivalent capacitance of the
The equivalent inductance L and the capacitance C can be expressed by the equations (3) and (4), respectively.
ここで、wは共振素子の幅であり、ε0およびμ0は自由空間の誘電率および透磁率であり、liはセクション共振器の外形寸法(長さ)であり、aおよびbは数値因子である。εrは比誘電率(誘電率)、hは誘電体スペーサ層の厚さである。
Here, w is the width of the resonant element, ε 0 and μ 0 are the permittivity and magnetic permeability of the free space, li is the external dimension (length) of the section resonator, and a and b are numerical values. It is a factor. ε r is the relative permittivity (permittivity), and h is the thickness of the dielectric spacer layer.
誘電性スペーサ12の材料が選択されると、式(2)~式(4)から、ASR構造のセクション112と各セクション112の幅wとの間のギャップも決定され、ASRメタマテリアルの共振周波数は、式(5)に示されるように、各セクション112の外形長liに関連するセクション共振器のサイズに比例する。
When the material of the dielectric spacer 12 is selected, the gap between the section 112 of the ASR structure and the width w of each section 112 is also determined from the equations (2) to (4), and the resonance frequency of the ASR metamaterial is determined. Is proportional to the size of the section resonator associated with the outer length li of each section 112, as shown in equation (5).
ASR構造の幾何学的形状と誘電体スペーサ12の厚さを変えることにより、メタマテリアル吸収体10の実効誘電率εと透磁率μを独立して調整でき、高速電気回路の基板14とインピーダンス整合する。EM放射がASR構造に入射すると、メタマテリアル吸収体10は結合共振によるEM波モードを吸収する。メタマテリアル吸収体10では、メタマテリアル層11はEM波の電気成分に強く結合する構造であるが、スペーサ層12と反射薄膜13の組合せはEM波の磁気成分に強く結合する。
By changing the geometric shape of the ASR structure and the thickness of the dielectric spacer 12, the effective permittivity ε and magnetic permeability μ of the metamaterial absorber 10 can be adjusted independently, and the impedance matches with the substrate 14 of the high-speed electric circuit. do. When the EM radiation enters the ASR structure, the metamaterial absorber 10 absorbs the EM wave mode due to coupling resonance. In the metamaterial absorber 10, the metamaterial layer 11 has a structure that is strongly bonded to the electric component of the EM wave, but the combination of the spacer layer 12 and the reflective thin film 13 is strongly bonded to the magnetic component of the EM wave.
図3は、本実施の形態においてシミュレーションにより得られたメタマテリアルセル(単位セル)の一例を示す。このメタマテリアルセル(単位セル)111は300GHzに調整され、円形ASRメタマテリアルセルが用いられる。また、厚い誘電率εr1が12.4であるリン化インジウム(InP)基板と、誘電率εr2が8で厚さが12.5μmである誘電体スペーサ層が用いられる。
FIG. 3 shows an example of a metamaterial cell (unit cell) obtained by simulation in the present embodiment. The metamaterial cell (unit cell) 111 is adjusted to 300 GHz, and a circular ASR metamaterial cell is used. Further, an indium phosphide (InP) substrate having a thick dielectric constant ε r1 of 12.4 and a dielectric spacer layer having a dielectric constant ε r2 of 8 and a thickness of 12.5 μm are used.
図3において、メタマテリアル吸収体10は、厚い半導体基板14の下に配置され、基板14とメタマテリアル吸収体10との間の入射EM波の直接透過を可能にする。メタマテリアルセル111のシミュレーションでは、垂直入射と適切な周期的境界条件で時間領域ソルバーを用い、x軸に沿ったEM波の電気成分を用いた。
In FIG. 3, the metamaterial absorber 10 is placed beneath the thick semiconductor substrate 14 to allow direct transmission of incident EM waves between the substrate 14 and the metamaterial absorber 10. In the simulation of the metamaterial cell 111, a time domain solver was used with vertical incidence and appropriate periodic boundary conditions, and the electrical component of the EM wave along the x-axis was used.
メタマテリアルセル111の反射R(ω)および透過T(ω)は、抽出周波数に依存するSパラメータから、それぞれ式(6)、式(7)計算できる。
The reflection R (ω) and transmission T (ω) of the metamaterial cell 111 can be calculated by Eqs. (6) and (7), respectively, from the S parameters depending on the extraction frequency.
ここで、S11(ω)は反射係数、S21(ω)は透過係数である。
Here, S 11 (ω) is a reflection coefficient, and S 21 (ω) is a transmission coefficient.
吸収装置を通過するEM波の吸収A(ω)は、式(8)で計算される。
The absorption A (ω) of the EM wave passing through the absorber is calculated by the equation (8).
式(1)に示す表皮深さδよりも厚い反射薄膜13によって透過が除去され、測定された全周波数範囲における透過の値が0であるので、吸収を表す式(8)は、式(9)で単純化される。
Since the transmission is removed by the reflective thin film 13 thicker than the skin depth δ shown in the formula (1) and the transmission value in the entire measured frequency range is 0, the formula (8) representing absorption is the formula (9). ) Simplifies.
図4Aは、周波数300GHzにおけるメタマテリアル吸収体10の吸収スペクトルのシミュレーションの例を示す。ここで、吸収は、図3に示すシミュレーションから得られた抽出反射係数S11(ω)から、式(9)に従って計算された。
FIG. 4A shows an example of simulation of the absorption spectrum of the metamaterial absorber 10 at a frequency of 300 GHz. Here, the absorption was calculated according to the equation (9) from the extraction reflectance coefficient S 11 (ω) obtained from the simulation shown in FIG.
最適化された吸収体は、30GHzの広帯域吸収を有し、285GHz~315GHzの間で観測される。ここで、広帯域吸収幅(30GHz)は、通常の広帯域吸収体同様に、90%以上の吸収に対して帯域幅として測定された。さらに、ASRセル111のほぼ対称な設計により、シミュレートにより得られる吸収は、横方向電気(TE)102および横方向磁気(TM)101の偏光モードの両方に対して同様の吸収を示した。
The optimized absorber has a wideband absorption of 30 GHz and is observed between 285 GHz and 315 GHz. Here, the wideband absorption width (30 GHz) was measured as a bandwidth for absorption of 90% or more, similarly to a normal wideband absorber. Moreover, due to the nearly symmetrical design of the ASR cell 111, the absorption obtained by the simulation showed similar absorption for both the lateral electrical (TE) 102 and the lateral magnetic (TM) 101 polarization modes.
図4Bに示すように、メタマテリアル吸収体構造と高速回路の半導体基板14との間のインピーダンス整合により、非常に高い吸収が達成された。実効インピーダンスは、図4のシミュレーションより得られる抽出反射係数S11(ω)に基づいて、S21(ω)=0として、式(10)に従って計算される。
As shown in FIG. 4B, very high absorption was achieved by impedance matching between the metamaterial absorber structure and the semiconductor substrate 14 of the high speed circuit. The effective impedance is calculated according to the equation (10) with S 21 (ω) = 0 based on the extraction reflectance coefficient S 11 (ω) obtained from the simulation of FIG.
図4Bでは、図4Aで観測される広帯域周波数範囲において平均して、相対インピーダンスの実部Re(z)103は約1であり、虚部Im(z)104は約0である。良好なインピーダンス整合が得られた場合、Zin(ω)=ZS=1であるので、本実施の形態に係るメタマテリアル吸収体10の入力インピーダンス(Zin)は、広帯域周波数範囲において基板14のインピーダンス(ZS)にほぼ一致する。したがって、本実施の形態に係るメタマテリアル吸収体10の吸収率はほぼ100%である。
In FIG. 4B, the real part Re (z) 103 of the relative impedance is about 1 and the imaginary part Im (z) 104 is about 0 on average in the broadband frequency range observed in FIG. 4A. When good impedance matching is obtained, Z in (ω) = Z S = 1, so that the input impedance (Z in ) of the metamaterial absorber 10 according to the present embodiment is the substrate 14 in the wide band frequency range. It almost matches the impedance (Z S ) of. Therefore, the absorption rate of the metamaterial absorber 10 according to the present embodiment is approximately 100%.
図5に示すように、背面にメタマテリアル吸収体10を備えるコプレーナ導波路20が、図3に示す最適化されたメタマテリアルセルをより実用に近い状態で評価するために用いられる。
As shown in FIG. 5, the Coplanar waveguide 20 having the metamaterial absorber 10 on the back surface is used to evaluate the optimized metamaterial cell shown in FIG. 3 in a more practical state.
典型的には、コプレーナ導波路2の構造は、導波路20の一方の端部と他方の端部にそれぞれ導波路ポート(wave port)25、26を有し、表面金属層および底面接地層から構成される。コプレーナ導波路2において、電磁放射の伝搬方向は、第1の導波路ポート25から第2の導波路ポート26であるため、メタマテリアルセル111のシミュレーションと比較して異なる。メタマテリアル吸収体10を試験するために、コプレーナ導波路20の底面接地層を、前述の通り設計されたメタマテリアル吸収体20で置き換える。メタマテリアル層21は、誘電体スペーサ層22とともに基板24の裏面に追加される。さらに、その裏面(コプレーナ導波路20の最下層)に反射薄膜23が追加される。反射薄膜23は、コプレーナ導波路20の接地層としても働く。
Typically, the structure of the coplanar waveguide 2 has waveguide ports 25 and 26 at one end and the other end of the waveguide 20, respectively, from the surface metal layer and the bottom ground layer. It is composed. In the Coplanar waveguide 2, the propagation direction of the electromagnetic radiation is different from the simulation of the metamaterial cell 111 because it is from the first waveguide port 25 to the second waveguide port 26. To test the metamaterial absorber 10, the bottom ground layer of the Coplanar waveguide 20 is replaced with the metamaterial absorber 20 designed as described above. The metamaterial layer 21 is added to the back surface of the substrate 24 together with the dielectric spacer layer 22. Further, a reflective thin film 23 is added to the back surface (the lowest layer of the Coplanar waveguide 20). The reflective thin film 23 also serves as a grounding layer for the Coplanar waveguide 20.
<電磁波吸収体の特性>
図6に、3つの異なるコプレーナ導波路構造における、周波数依存透過係数S21(ω)を示す。第1のケース201では、コプレーナ導波路2はメタマテリアル吸収体20の最適化構造を備えている。第2のケース202では、メタマテリアル層21が吸収体20から除去され、スペーサ誘電体層22と反射薄膜23のみを有する。第3のケース203では、スペーサ誘電体層22の材料を基板24と同じ材料で置き換えて、半導体基板24にメタマテリアル層21が包含される場合をシミュレートした。 <Characteristics of electromagnetic wave absorber>
FIG. 6 shows the frequency dependent transmission coefficient S 21 (ω) in three different Coplanar waveguide structures. In the first case 201, theCoplanar waveguide 2 comprises an optimized structure of the metamaterial absorber 20. In the second case 202, the metamaterial layer 21 is removed from the absorber 20 and has only the spacer dielectric layer 22 and the reflective thin film 23. In the third case 203, the material of the spacer dielectric layer 22 is replaced with the same material as the substrate 24, and the case where the metamaterial layer 21 is included in the semiconductor substrate 24 is simulated.
図6に、3つの異なるコプレーナ導波路構造における、周波数依存透過係数S21(ω)を示す。第1のケース201では、コプレーナ導波路2はメタマテリアル吸収体20の最適化構造を備えている。第2のケース202では、メタマテリアル層21が吸収体20から除去され、スペーサ誘電体層22と反射薄膜23のみを有する。第3のケース203では、スペーサ誘電体層22の材料を基板24と同じ材料で置き換えて、半導体基板24にメタマテリアル層21が包含される場合をシミュレートした。 <Characteristics of electromagnetic wave absorber>
FIG. 6 shows the frequency dependent transmission coefficient S 21 (ω) in three different Coplanar waveguide structures. In the first case 201, the
第1のケース201では、高強度の共振ピークが観測され、導波路を透過した電磁波が、ある周波数領域で吸収されることが確認された。
In the first case 201, a high-intensity resonance peak was observed, and it was confirmed that the electromagnetic wave transmitted through the waveguide was absorbed in a certain frequency region.
第2のケース202では、メタマテリアル層を有しない吸収体は、EM波モードの透過に影響しない。したがって、典型的なEM波のコプレーナ導波路伝送が最小の損失で生じる。
In the second case 202, the absorber without the metamaterial layer does not affect the transmission of the EM wave mode. Therefore, typical EM wave Coplanar waveguide transmission occurs with minimal loss.
第3のケース203では、平坦な伝送特性が測定された周波数範囲で観測されたので、誘電体スペーサ層22を基板24と同じ材料(本実施の形態ではInP)で置換したメタマテリアル吸収体はEM波モードを吸収しない。
In the third case 203, since the flat transmission characteristics were observed in the measured frequency range, the metamaterial absorber in which the dielectric spacer layer 22 was replaced with the same material as the substrate 24 (InP in the present embodiment) was used. Does not absorb EM wave mode.
最適化されたメタマテリアル吸収体構造の動作において受ける影響について、以下に説明する。
The effects on the operation of the optimized metamaterial absorber structure will be explained below.
コプレーナ導波路2では、メタマテリアルセル211に向かう電場の配向は、図3に示すシミュレートした単一メタマテリアルセル111とは異なる。図3に示す単一メタマテリアルセル111では、電場ベクトルEは、メタマテリアル吸収体10の表面に平行であるため、ASR構造の間隙にLC共振が容易に誘起される。
In the Coplanar waveguide 2, the orientation of the electric field toward the metamaterial cell 211 is different from the simulated single metamaterial cell 111 shown in FIG. In the single metamaterial cell 111 shown in FIG. 3, since the electric field vector E is parallel to the surface of the metamaterial absorber 10, LC resonance is easily induced in the gap of the ASR structure.
一方、コプレーナ導波路では、導波路の構造とその動作原理により、電場ベクトルEが表面に垂直に配向する。
On the other hand, in the Coplanar waveguide, the electric field vector E is oriented perpendicular to the surface due to the structure of the waveguide and its operating principle.
通常、電場ベクトルEがメタマテリアルの表面に向かって垂直に配向する場合、垂直な電場E(電場ベクトルEを有する電場)はメタマテリアルギャップに結合できないので、共振は発生しない。しかしながら、図6に示すように、小さな付加的な周波数シフトにより共振の発生が観測される。
Normally, when the electric field vector E is oriented vertically toward the surface of the metamaterial, the vertical electric field E (the electric field having the electric field vector E) cannot be coupled to the metamaterial gap, so that resonance does not occur. However, as shown in FIG. 6, the occurrence of resonance is observed due to a small additional frequency shift.
また、上述の第3のケースでは、同じメタマテリアル層21が含まれているにもかかわらず、誘電体スペーサ22の材料を基板24と同じ材料とすることにより、共振発生が抑制される。
Further, in the above-mentioned third case, the occurrence of resonance is suppressed by using the same material as the substrate 24 for the dielectric spacer 22 even though the same metamaterial layer 21 is included.
このように、本実施の形態におけるコプレーナ導波路2では、メタマテリアル吸収体20の共振の発生は、追加の要因によって影響を受ける。
As described above, in the Coplanar waveguide 2 in the present embodiment, the occurrence of resonance of the metamaterial absorber 20 is affected by additional factors.
式(3)および式(4)から、共振周波数は基板24の比誘電率εrに比例するので、異なる比誘電率値を有する種々の基板24における共振ピークのシフトを明確に取得することができる。
From equations (3) and (4), since the resonance frequency is proportional to the relative permittivity ε r of the substrate 24, it is possible to clearly obtain the shift of the resonance peak in various substrates 24 having different relative permittivity values. can.
図7は、2つの異なる高速IC半導体基板24における、メタマテリアル層21の共振ピークの位置と誘電体スペーサ層12の比誘電率εr2の変化との関係に関する計算結果を示す。半導体基板24の誘電率εr1が12.4の場合204と誘電率εr1が6の場合205について計算した。2つの基板両方の場合において、誘電体スペーサ層22の比誘電率εr2の値を増加させることによって、共振ピーク位置のより低い周波数へのシフトが観察される。シフト変化は比誘電率εr1の値が小さい基板ほど大きい。
FIG. 7 shows the calculation results regarding the relationship between the position of the resonance peak of the metamaterial layer 21 and the change in the relative permittivity ε r2 of the dielectric spacer layer 12 in the two different high-speed IC semiconductor substrates 24. Calculations were made for 204 when the dielectric constant ε r1 of the semiconductor substrate 24 was 12.4 and 205 when the dielectric constant ε r1 was 6. In the case of both of the two substrates, a shift of the resonance peak position to a lower frequency is observed by increasing the value of the relative permittivity ε r2 of the dielectric spacer layer 22. The shift change is larger as the value of the relative permittivity ε r1 is smaller.
図6に示す結果では、メタマテリアル層21の除去またはスペーサ層22の材料の基板24材料への置換により、共振ピークが観測されない。したがって、共振ピークの発生と透過EM波の吸収には、メタマテリアル層21とスペーサ層22が必要である。
In the results shown in FIG. 6, no resonance peak is observed due to the removal of the metamaterial layer 21 or the replacement of the spacer layer 22 with the substrate 24 material. Therefore, the metamaterial layer 21 and the spacer layer 22 are required for the generation of the resonance peak and the absorption of the transmitted EM wave.
図7に示す共振ピークのシフトは、異なる誘電率を有する2つの誘電体材料の界面に配置されたメタマテリアル層21を有する導波路を、電場Eが透過することに起因する。
The shift of the resonance peak shown in FIG. 7 is caused by the electric field E passing through the waveguide having the metamaterial layer 21 arranged at the interface between the two dielectric materials having different dielectric constants.
共振ピークのシフトを説明するために、初めに、電場下の二つの異なる誘電体間の界面を考える。導波管内を伝搬するEM波に対して、電場Eは、上層および下層金属層に対して垂直に配向され、電気束密度Dを生成する。電気束密度ベクトルDは、式(11)で定義される。
To explain the shift of the resonance peak, first consider the interface between two different dielectrics under an electric field. For the EM wave propagating in the waveguide, the electric field E is oriented perpendicular to the upper and lower metal layers to generate the electric flux density D. The electric flux density vector D is defined by the equation (11).
ここで、εは誘電体膜の比誘電率(誘電率)であり、Eは電場ベクトルである。
Here, ε is the relative permittivity (dielectric constant) of the dielectric film, and E is the electric field vector.
基板24とスペーサ層22の界面が、誘電率の異なる二つの材料で構成されている場合、電場Eの変化は誘電体境界での透過において起こる。
When the interface between the substrate 24 and the spacer layer 22 is composed of two materials having different dielectric constants, the change of the electric field E occurs in the transmission at the dielectric boundary.
垂直入射での電気磁束ベクトルDは、誘電体境界を横切って連続しているので、誘電率に関連する合成電場Eの不連続性が生じ、合成電場Eは、導波路の水平面すなわち界面に平行な連続する接線成分の電気(ET)場モードと、垂直成分の電場E(EN)とに分離することができる。
Since the electrical flux vector D at vertical incidence is continuous across the dielectric boundary, there is a discontinuity in the combined electric field E related to the permittivity, and the combined electric field E is parallel to the horizontal plane or interface of the waveguide. It can be separated into an electric ( ET ) field mode of continuous tangential components and an electric field E ( EN ) of vertical components.
電場ETの向きはメタマテリアルセル211の面内にあるので、メタマテリアル間隙(ギャップ)における共振が誘導される。
Since the direction of the electric field ET is in the plane of the metamaterial cell 211, resonance in the metamaterial gap is induced.
さらに、接線方向の電場ETのモードの発生は、誘電率の変化とこれらの誘電体における電場Eの伝搬に強く依存するので、εr1とεr2との差による共振シフトが観測される。
Further, since the generation of the mode of the electric field ET in the tangential direction strongly depends on the change of the permittivity and the propagation of the electric field E in these dielectrics, the resonance shift due to the difference between ε r1 and ε r2 is observed.
また、誘電率の差が大きいほど電場伝搬の差が大きくなり、電場ベクトルEの方向の変化が大きくなることが観測され、より強い接線方向の電場成分が発生する。その結果、共振ピークの強度が増大し、吸収が強くなる。
It is also observed that the larger the difference in permittivity, the larger the difference in electric field propagation, and the larger the change in the direction of the electric field vector E, and the stronger the electric field component in the tangential direction is generated. As a result, the intensity of the resonance peak increases and the absorption becomes stronger.
図8に、基板(εr1=12.4)24における共振ピーク強度のスペーサ層22の比誘電率(εr2)依存性を示す。スペーサ層22の比誘電率εr2が12.4程度すなわち基板24の比誘電率εr1と同程度のとき、共振ピーク強度は最小値を示す。換言すれば、基板24の比誘電率εr1とスペーサ層22の比誘電率εr2との差が大きいほど、高いピーク強度が観測される。
FIG. 8 shows the relative permittivity (ε r2 ) dependence of the spacer layer 22 of the resonance peak intensity on the substrate (ε r1 = 12.4) 24. When the relative permittivity ε r2 of the spacer layer 22 is about 12.4, that is, about the same as the relative permittivity ε r1 of the substrate 24, the resonance peak intensity shows the minimum value. In other words, the larger the difference between the relative permittivity ε r1 of the substrate 24 and the relative permittivity ε r2 of the spacer layer 22, the higher the peak intensity is observed.
例えば、基板24の比誘電率εr1が12.4に対して、スペーサ層22の比誘電率εr2が1~10程度または15~20程度で、ピーク強度が高い。換言すれば、基板24の比誘電率εr1とスペーサ層22の比誘電率εr2との差が2以上11以下程度で共振ピーク強度が高い。
For example, the relative permittivity ε r1 of the substrate 24 is 12.4, while the relative permittivity ε r2 of the spacer layer 22 is about 1 to 10 or about 15 to 20, and the peak intensity is high. In other words, the difference between the relative permittivity ε r1 of the substrate 24 and the relative permittivity ε r2 of the spacer layer 22 is about 2 or more and 11 or less, and the resonance peak intensity is high.
このように、基板24とスペーサ層22の材料が同一または類似している場合、十分に確立された誘電体界面がないため、接線電気モードの発生は制限され、メタマテリアル層21における共振は誘発されない。
Thus, when the materials of the substrate 24 and the spacer layer 22 are the same or similar, the occurrence of the tangential electrical mode is limited and resonance in the metamaterial layer 21 is induced because there is no well-established dielectric interface. Not done.
以上のように、誘電体界面を設計することにより、コプレーナ導波路2における共振ピークのシフトを予測でき、必要な周波数範囲で広帯域吸収を示すためにメタマテリアル吸収体20の付加的な調整を容易に行うことができる。
As described above, by designing the dielectric interface, the shift of the resonance peak in the Coplanar waveguide 2 can be predicted, and additional adjustment of the metamaterial absorber 20 is facilitated in order to exhibit wideband absorption in the required frequency range. Can be done.
<第1の実施例>
本発明の第一の実施例として、高速ICを想定したInP基板コプレーナ導波路に、第1の実施の形態に係るメタマテリアル吸収体10を適用する一例を説明する。 <First Example>
As a first embodiment of the present invention, an example in which themetamaterial absorber 10 according to the first embodiment is applied to the InP substrate Coplanar waveguide assuming a high-speed IC will be described.
本発明の第一の実施例として、高速ICを想定したInP基板コプレーナ導波路に、第1の実施の形態に係るメタマテリアル吸収体10を適用する一例を説明する。 <First Example>
As a first embodiment of the present invention, an example in which the
シミュレーションしたデバイスにおいて、InP基板14の比誘電率はεr1=12.4、基板14の厚さはts=55μmである。InP基板パラメータとその厚さは、実際のInP高速ICで用いられる値に基づいている。コプレーナ導波路の最上層は、2μm厚の金からなる薄膜である。導波路の寸法は、基板14の裏面に配置するメタマテリアル吸収体10(3×7セル)の全サイズによって決まり、長さ1.89mm、幅0.81mmに等しい。
In the simulated device, the relative permittivity of the InP substrate 14 is ε r1 = 12.4, and the thickness of the substrate 14 is ts = 55 μm. The InP substrate parameters and their thickness are based on the values used in the actual InP high speed IC. The top layer of the Coplanar waveguide is a 2 μm thick gold thin film. The dimensions of the waveguide are determined by the total size of the metamaterial absorber 10 (3 x 7 cells) arranged on the back surface of the substrate 14, and are equal to 1.89 mm in length and 0.81 mm in width.
メタマテリアル吸収体10がInP基板14の裏面に配置される。メタマテリアル層11は200nm厚の金薄膜で構成される。ASRセル111のパラメータにおいて、各セクション112の半径がl1=0.126mm、l2=0.116mm、l3=0.129mm、l4=0.119mmである。幅w=0.045mm、ギャップサイズg=0.018mm、セル周期サイズa=0.27mmである。パラメータは300GHzで広帯域吸収を得るように調整される。スペーサ層12はεr2=8の窒化シリコン膜であり厚さは12.5μmである。最後に、スペーサ層12の底面に、厚さ200nmの金の薄膜が形成される。材料は、150GHzを超える周波数を有する電磁波のためのすべての伝送をブロックするのに十分な厚さを有する。
The metamaterial absorber 10 is arranged on the back surface of the InP substrate 14. The metamaterial layer 11 is composed of a gold thin film having a thickness of 200 nm. In the parameters of the ASR cell 111, the radii of each section 112 are l 1 = 0.126 mm, l 2 = 0.116 mm, l 3 = 0.129 mm, l 4 = 0.119 mm. The width w = 0.045 mm, the gap size g = 0.018 mm, and the cell cycle size a = 0.27 mm. The parameters are adjusted to obtain wideband absorption at 300 GHz. The spacer layer 12 is a silicon nitride film having ε r2 = 8 and has a thickness of 12.5 μm. Finally, a gold thin film having a thickness of 200 nm is formed on the bottom surface of the spacer layer 12. The material is thick enough to block all transmissions for electromagnetic waves with frequencies above 150 GHz.
以下、本実施例の効果について説明する。図9に、本実施例におけるコプレーナ導波路を伝搬する電磁波モードを、メタマテリアル層を有さないInP/SiN導波路301、メタマテリアル層11を有するInP/SiN導波路302、メタマテリアル層11を有するInP/InP導波路303について計算した結果を示す。図中左に電場モード、右に磁場モードを示す。
The effects of this embodiment will be described below. FIG. 9 shows the electromagnetic wave mode propagating in the Coplanar waveguide in this embodiment with the InP / SiN waveguide 301 having no metamaterial layer, the InP / SiN waveguide 302 having the metamaterial layer 11, and the metamaterial layer 11. The result of calculation for the included InP / InP waveguide 303 is shown. The electric field mode is shown on the left and the magnetic field mode is shown on the right.
図9に示すように、本実施例におけるコプレーナ導波路302を伝搬する電磁波モードは大きく吸収される。電磁波は、メタマテリアル吸収体10を裏面に有するコプレーナ導波路を通過して徐々に吸収される。メタマテリアル層がない場合301やスペーサ層12に同じ誘電体材料を用いた場合303には、電磁波モードの吸収は観測されない。
As shown in FIG. 9, the electromagnetic wave mode propagating through the Coplanar waveguide 302 in this embodiment is largely absorbed. The electromagnetic waves pass through the Coplanar waveguide having the metamaterial absorber 10 on the back surface and are gradually absorbed. In the case where there is no metamaterial layer 301 and when the same dielectric material is used for the spacer layer 12, the absorption of the electromagnetic wave mode is not observed.
本実施例によれば、基板共振およびグランドバウンスの良好な抑制と、IC回路素子の複雑な多段階プロセスおよびより小さいパッケージングとの間のトレードオフを緩和できる。
According to this embodiment, the trade-off between good suppression of substrate resonance and ground bounce and complex multi-step process of IC circuit elements and smaller packaging can be mitigated.
このように、本実施例によれば、TSVを形成することなく簡単なプロセスで電磁波モードの良好な抑制を達成できるので、基板の機械的強度が増し、より高い費用効果が達成される。また、TSVを必要としないため、レイアウト設計が容易になり、高速ICの実装レベルを大幅に高めることができる。
As described above, according to this embodiment, good suppression of the electromagnetic wave mode can be achieved by a simple process without forming a TSV, so that the mechanical strength of the substrate is increased and higher cost effectiveness is achieved. Further, since TSV is not required, the layout design becomes easy and the mounting level of the high-speed IC can be significantly increased.
さらに、メタマテリアル吸収体10の異なる部分を、各層における材料の変化、メタマテリアルセルの設計、各層の厚さによって自由に調整できるので、様々な周波数範囲および異なる材料ベースの高速IC回路に対して調整できる。
Furthermore, different parts of the metamaterial absorber 10 can be freely adjusted by changing the material in each layer, designing the metamaterial cell, and the thickness of each layer, so that it can be used for various frequency ranges and different material-based high-speed IC circuits. Can be adjusted.
<第2の実施例>
本発明の第2の実施例に係る電磁波吸収体において、メタマテリアル吸収体には、第1の実施の形態で用いた受動吸収体ではなく、能動的なメタマテリアル吸収体を用いる。 <Second Example>
In the electromagnetic wave absorber according to the second embodiment of the present invention, an active metamaterial absorber is used as the metamaterial absorber instead of the passive absorber used in the first embodiment.
本発明の第2の実施例に係る電磁波吸収体において、メタマテリアル吸収体には、第1の実施の形態で用いた受動吸収体ではなく、能動的なメタマテリアル吸収体を用いる。 <Second Example>
In the electromagnetic wave absorber according to the second embodiment of the present invention, an active metamaterial absorber is used as the metamaterial absorber instead of the passive absorber used in the first embodiment.
入射電磁波の電場Eがメタマテリアルセルのギャップに平行に局在しているときに共振が発生し、そのギャップは式(2)に従って等価キャパシタンスとして働く。
Resonance occurs when the electric field E of the incident electromagnetic wave is localized parallel to the gap of the metamaterial cell, and the gap acts as an equivalent capacitance according to equation (2).
そこで、メタマテリアルセルにおけるセクション間のギャップ領域に、制御可能な可変キャパシタンスとして、可変キャパシタダイオード(バラクタ)またはトランジスタを追加することにより、メタマテリアルの共振周波数が変化させ、能動的に調整できる。
Therefore, by adding a variable capacitor diode (varicap) or a transistor as a controllable variable capacitance to the gap region between sections in the metamaterial cell, the resonance frequency of the metamaterial can be changed and actively adjusted.
図10に示すように、本実施例に係るメタマテリアル吸収体において、電磁波モードの高吸収は、異なる周波数範囲に向かってシフトされる。タマテリアル吸収体における集中キャパシタンス値Cの0fF~5fFの変化は、広帯域吸収ピークを低周波数へシフトさせる。メタマテリアルセルの中心周波数は、Cが0fFのときの300GHzからCが5fFのときの265GHzにシフトする。
As shown in FIG. 10, in the metamaterial absorber according to this embodiment, the high absorption of the electromagnetic wave mode is shifted toward a different frequency range. A change in the centralized capacitance value C from 0fF to 5fF in the material absorber shifts the wideband absorption peak to a lower frequency. The center frequency of the metamaterial cell shifts from 300 GHz when C is 0 fF to 265 GHz when C is 5 fF.
さらに、90%以上の吸収率に対する吸収帯は、Cが0fFのときの30GHzからCが5fFのときの約20GHzに減少する。本実施例では、吸収ピークは低周波数にのみシフトできるので、受動的メタマテリアル吸収体構造に対して最大動作周波数を決めれば、その最大動作周波数以下の周波数範囲で、共振周波数を能動的に調整できる。
Furthermore, the absorption band for an absorption rate of 90% or more decreases from 30 GHz when C is 0 fF to about 20 GHz when C is 5 fF. In this embodiment, the absorption peak can be shifted only to a low frequency, so if the maximum operating frequency is determined for the passive metamaterial absorber structure, the resonance frequency is actively adjusted in the frequency range below the maximum operating frequency. can.
吸収特性の能動制御は能動部品に印加されるバイアス電圧制御によって達成されるので、高速ICが広帯域で種々の周波数で動作可能な場合には、能動メタマテリアル吸収体を調整して、発生する共振基板モードを抑制することができる。
Since the active control of the absorption characteristics is achieved by the bias voltage control applied to the active component, when the high-speed IC can operate at various frequencies in a wide band, the active metamaterial absorber is adjusted to generate the resonance. The substrate mode can be suppressed.
本実施例によれば、第1の実施例と同様の効果を奏するとともに、単一の設計の適用による動作の自由度を増大させ、より広い周波数範囲で動作する単一ICおよびメタマテリアル吸収体の製造の費用効果を向上させる。
According to this embodiment, a single IC and metamaterial absorber that operates in a wider frequency range while achieving the same effect as in the first embodiment and increasing the degree of freedom of operation by applying a single design. Improve the cost-effectiveness of manufacturing.
<第3の実施例>
本発明の第3の実施例に係る電磁波吸収体では、ICチップ内の基板共振モードの吸収を増加させるようにメタマテリアル吸収体を変更する。メタマテリアル吸収体の単一セルは、共振メタマテリアルセルの幾何学的形状に依存して、ある波長のEM入射放射線の最大100%を吸収することができる。したがって、メタマテリアル吸収体の広帯域特性は、異なるサイズのASRセル(単位セル)の組合せにより増加される。 <Third Example>
In the electromagnetic wave absorber according to the third embodiment of the present invention, the metamaterial absorber is changed so as to increase the absorption of the substrate resonance mode in the IC chip. A single cell of a metamaterial absorber can absorb up to 100% of EM incident radiation of a wavelength, depending on the geometry of the resonant metamaterial cell. Therefore, the broadband properties of metamaterial absorbers are increased by the combination of different sized ASR cells (unit cells).
本発明の第3の実施例に係る電磁波吸収体では、ICチップ内の基板共振モードの吸収を増加させるようにメタマテリアル吸収体を変更する。メタマテリアル吸収体の単一セルは、共振メタマテリアルセルの幾何学的形状に依存して、ある波長のEM入射放射線の最大100%を吸収することができる。したがって、メタマテリアル吸収体の広帯域特性は、異なるサイズのASRセル(単位セル)の組合せにより増加される。 <Third Example>
In the electromagnetic wave absorber according to the third embodiment of the present invention, the metamaterial absorber is changed so as to increase the absorption of the substrate resonance mode in the IC chip. A single cell of a metamaterial absorber can absorb up to 100% of EM incident radiation of a wavelength, depending on the geometry of the resonant metamaterial cell. Therefore, the broadband properties of metamaterial absorbers are increased by the combination of different sized ASR cells (unit cells).
図11に、本実施例に係る電磁波吸収体を備えるコプレーナ導波路40を示す。本実施の形態に係る電磁波吸収体では、わずかに異なる共振周波数に調整されたメタマテリアルセルの集合体(グループ)41が連結されている。メタマテリアル吸収体10はチップの裏面全体に形成されるので、伝搬するEM波はある最適化周波数範囲でほぼ完全に吸収される。各グループ(第1群~第n群)41_1~41_nのメタマテリアルの幾何学的形状のサイズ(特性サイズ、例えば、図2Aのg、w、l1~l4)を徐々に変化させることによって、共振周波数fRi(i=1~n)の小さなシフトが得られる。その結果、広帯域吸収特性が得られる。
FIG. 11 shows the Coplanar waveguide 40 including the electromagnetic wave absorber according to the present embodiment. In the electromagnetic wave absorber according to the present embodiment, an aggregate (group) 41 of metamaterial cells adjusted to slightly different resonance frequencies is connected. Since the metamaterial absorber 10 is formed on the entire back surface of the chip, the propagating EM wave is almost completely absorbed in a certain optimized frequency range. By gradually changing the size of the geometric shape of the metamaterials of each group (groups 1 to n) 41_1 to 41_n (characteristic sizes, eg, g, w, l 1 to l 4 in FIG. 2A). , A small shift of resonance frequency f Ri (i = 1 to n) is obtained. As a result, wideband absorption characteristics can be obtained.
このように、本実施例では、特性サイズが異なるメタマテリアルセルの集合体が配置され、シフトされた共振周波数を有するメタマテリアル集合体の隣接するラインが形成される。この構成により、伝搬するEM波モードが広い周波数範囲(一つ以上の周波数)で吸収されるため、吸収帯域幅が増加する。
As described above, in this embodiment, aggregates of metamaterial cells having different characteristic sizes are arranged, and adjacent lines of metamaterial aggregates having shifted resonance frequencies are formed. This configuration increases the absorption bandwidth because the propagating EM wave mode is absorbed over a wide frequency range (one or more frequencies).
本実施例に係るメタマテリアル吸収体は、第1の実施例と同様の効果を奏し、より広い周波数範囲で動作できる。
The metamaterial absorber according to this embodiment has the same effect as that of the first embodiment and can operate in a wider frequency range.
<第4の実施例>
本発明の第4の実施例に係る電磁波吸収体は、異なる共振周波数を有するASR構造を含み、対称メタマテリアルセルを含む多層の積層構造を備える。 <Fourth Example>
The electromagnetic wave absorber according to the fourth embodiment of the present invention includes an ASR structure having different resonance frequencies, and has a multi-layered laminated structure including a symmetric metamaterial cell.
本発明の第4の実施例に係る電磁波吸収体は、異なる共振周波数を有するASR構造を含み、対称メタマテリアルセルを含む多層の積層構造を備える。 <Fourth Example>
The electromagnetic wave absorber according to the fourth embodiment of the present invention includes an ASR structure having different resonance frequencies, and has a multi-layered laminated structure including a symmetric metamaterial cell.
この構成により、それぞれのメタマテリアルセルまたはメタマテリアルセルの集合体の吸収特性が合成され、吸収特性の帯域幅は増加する。すなわち、ICにおける基板共振モードの広帯域吸収を向上させる。
With this configuration, the absorption characteristics of each metamaterial cell or aggregate of metamaterial cells are combined, and the bandwidth of the absorption characteristics increases. That is, the wideband absorption of the substrate resonance mode in the IC is improved.
メタマテリアル吸収体は、ASR構造の特徴とメタマテリアルセルの多層構造の特徴との相乗効果により、さらなる広帯域吸収を実現する。
The metamaterial absorber realizes further wideband absorption by the synergistic effect of the characteristics of the ASR structure and the characteristics of the multi-layer structure of the metamaterial cell.
本実施例に係るメタマテリアル吸収体は、第1の実施例と同様の効果を奏し、より広い周波数範囲で動作できる。
The metamaterial absorber according to this embodiment has the same effect as that of the first embodiment and can operate in a wider frequency range.
本発明の実施の形態では、吸収体の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。吸収体の機能を発揮し効果を奏するものであればよい。
In the embodiment of the present invention, examples of the structure, dimensions, materials, etc. of each component are shown in the structure of the absorber, the manufacturing method, and the like, but the present invention is not limited to this. Anything that exerts the function of the absorber and exerts an effect may be used.
本発明は、高周波集積回路に適用することができる。
The present invention can be applied to high frequency integrated circuits.
10 電磁波吸収体
11 メタマテリアル層
12 スペーサ層
13 反射薄膜
14 基板 10Electromagnetic wave absorber 11 Metamaterial layer 12 Spacer layer 13 Reflective thin film 14 Substrate
11 メタマテリアル層
12 スペーサ層
13 反射薄膜
14 基板 10
Claims (9)
- 基板に配置される電磁波吸収体であって、
順に、メタマテリアル層と、スペーサ層と、反射薄膜とを備え、
前記基板内の電磁波の共振モードを吸収して抑制する電磁波吸収体。 An electromagnetic wave absorber placed on a substrate
A metamaterial layer, a spacer layer, and a reflective thin film are provided in this order.
An electromagnetic wave absorber that absorbs and suppresses the resonance mode of electromagnetic waves in the substrate. - 前記メタマテリアル層が、複数のサブ波長構造のメタマテリアルセルを備え、
前記メタマテリアルセルが、周期的に配置され、所定の周波数で共振するように設計され、
前記メタマテリアルセルの構造および周期が、入射する電磁波の波長によって決定される
ことを特徴とする請求項1に記載の電磁波吸収体。 The metamaterial layer includes metamaterial cells having a plurality of sub-wavelength structures.
The metamaterial cells are arranged periodically and designed to resonate at a predetermined frequency.
The electromagnetic wave absorber according to claim 1, wherein the structure and period of the metamaterial cell are determined by the wavelength of the incident electromagnetic wave. - 前記メタマテリアルセルが、異なる特性サイズを有する複数のセクションから構成され、
前記複数のセクションが非対称に配置される
ことを特徴とする請求項2に記載の電磁波吸収体。 The metamaterial cell is composed of a plurality of sections having different characteristic sizes.
The electromagnetic wave absorber according to claim 2, wherein the plurality of sections are arranged asymmetrically. - 前記メタマテリアル層の実効誘電率及び透磁率が、前記メタマテリアル層のインピーダンスを前記基板のインピーダンスに整合させ、前記電磁波の共振モードを吸収させるように調整される
ことを特徴とする請求項1から請求項3のいずれか一項に記載の電磁波吸収体。 From claim 1, the effective dielectric constant and magnetic permeability of the metamaterial layer are adjusted so as to match the impedance of the metamaterial layer with the impedance of the substrate and absorb the resonance mode of the electromagnetic wave. The electromagnetic wave absorber according to any one of claim 3. - 前記メタマテリアル層が、前記電磁波の電気成分に結合し、
前記スペーサ層と前記反射薄膜とが、前記電磁波の磁気成分と結合する
ことを特徴とする請求項1から請求項4のいずれか一項に記載の電磁波吸収体。 The metamaterial layer binds to the electrical component of the electromagnetic wave and
The electromagnetic wave absorber according to any one of claims 1 to 4, wherein the spacer layer and the reflective thin film are bonded to a magnetic component of the electromagnetic wave. - 前記スペーサ層の比誘電率と前記基板の比誘電率との差が2以上11以下である
ことを特徴とする請求項1から請求項5のいずれか一項に記載の電磁波吸収体。 The electromagnetic wave absorber according to any one of claims 1 to 5, wherein the difference between the relative permittivity of the spacer layer and the relative permittivity of the substrate is 2 or more and 11 or less. - 前記反射薄膜は、前記電磁波の表皮深さよりも厚い
ことを特徴とする請求項1から請求項6のいずれか一項に記載の電磁波吸収体。 The electromagnetic wave absorber according to any one of claims 1 to 6, wherein the reflective thin film is thicker than the skin depth of the electromagnetic wave. - 前記電磁波は、高速電子回路の基板内に発生源がある
ことを特徴とする請求項1から請求項7のいずれか一項に記載の電磁波吸収体。 The electromagnetic wave absorber according to any one of claims 1 to 7, wherein the electromagnetic wave has a source in a substrate of a high-speed electronic circuit. - 請求項1から請求項8のいずれか一項に記載の電磁波吸収体
を備える高速電子回路。 A high-speed electronic circuit comprising the electromagnetic wave absorber according to any one of claims 1 to 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/000805 WO2022153388A1 (en) | 2021-01-13 | 2021-01-13 | Electromagnetic wave absorber |
JP2022574905A JPWO2022153388A1 (en) | 2021-01-13 | 2021-01-13 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/000805 WO2022153388A1 (en) | 2021-01-13 | 2021-01-13 | Electromagnetic wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022153388A1 true WO2022153388A1 (en) | 2022-07-21 |
Family
ID=82446996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/000805 WO2022153388A1 (en) | 2021-01-13 | 2021-01-13 | Electromagnetic wave absorber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022153388A1 (en) |
WO (1) | WO2022153388A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117360026A (en) * | 2023-12-07 | 2024-01-09 | 迈默智塔(无锡)科技有限公司 | Composite material with sound insulation and electromagnetic prevention functions for building |
WO2024157610A1 (en) * | 2023-01-25 | 2024-08-02 | 株式会社ジャパンディスプレイ | Radio wave reflection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163674A (en) * | 2013-02-21 | 2014-09-08 | Seiko Epson Corp | Terahertz wave detection apparatus, camera, imaging device, and measuring device |
JP2015231070A (en) * | 2014-06-03 | 2015-12-21 | 日本電信電話株式会社 | Radio wave absorber |
WO2016031547A1 (en) * | 2014-08-29 | 2016-03-03 | 国立研究開発法人物質・材料研究機構 | Electromagnetic wave absorbing/radiating material, method for manufacturing same, and infrared source |
JP2016197097A (en) * | 2015-04-02 | 2016-11-24 | パロ アルト リサーチ センター インコーポレイテッド | Thermal sensor with infrared absorption membrane including metamaterial structure |
WO2019127938A1 (en) * | 2017-12-29 | 2019-07-04 | 深圳光启尖端技术有限责任公司 | Controllable wave-absorbing metamaterial |
-
2021
- 2021-01-13 JP JP2022574905A patent/JPWO2022153388A1/ja active Pending
- 2021-01-13 WO PCT/JP2021/000805 patent/WO2022153388A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163674A (en) * | 2013-02-21 | 2014-09-08 | Seiko Epson Corp | Terahertz wave detection apparatus, camera, imaging device, and measuring device |
JP2015231070A (en) * | 2014-06-03 | 2015-12-21 | 日本電信電話株式会社 | Radio wave absorber |
WO2016031547A1 (en) * | 2014-08-29 | 2016-03-03 | 国立研究開発法人物質・材料研究機構 | Electromagnetic wave absorbing/radiating material, method for manufacturing same, and infrared source |
JP2016197097A (en) * | 2015-04-02 | 2016-11-24 | パロ アルト リサーチ センター インコーポレイテッド | Thermal sensor with infrared absorption membrane including metamaterial structure |
WO2019127938A1 (en) * | 2017-12-29 | 2019-07-04 | 深圳光启尖端技术有限责任公司 | Controllable wave-absorbing metamaterial |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024157610A1 (en) * | 2023-01-25 | 2024-08-02 | 株式会社ジャパンディスプレイ | Radio wave reflection device |
CN117360026A (en) * | 2023-12-07 | 2024-01-09 | 迈默智塔(无锡)科技有限公司 | Composite material with sound insulation and electromagnetic prevention functions for building |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022153388A1 (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522042B2 (en) | Structure, printed circuit board, antenna, transmission line waveguide converter, array antenna, electronic device | |
US8193973B2 (en) | Multilayer metamaterial isolator | |
US6674347B1 (en) | Multi-layer substrate suppressing an unwanted transmission mode | |
Shen et al. | An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water | |
WO2022153388A1 (en) | Electromagnetic wave absorber | |
US20200303799A1 (en) | Vertical transitions for microwave and millimeter wave communications systems having multi-layer substrates | |
US20080290959A1 (en) | Millimeter wave integrated circuit interconnection scheme | |
JPH03165058A (en) | Semiconductor device | |
JPWO2009107684A1 (en) | Artificial medium | |
US20070242360A1 (en) | Tunable negative refractive index composite | |
US8373072B2 (en) | Printed circuit board | |
Wi et al. | Package-level integrated LTCC antenna for RF package application | |
Cheema et al. | Antenna-on-Chip: Design, Challenges, and Opportunities | |
WO2011152054A1 (en) | Wiring board and electronic device | |
JP5297432B2 (en) | Transmission line and transmission device | |
Guo et al. | Compact CEBG filter for high-frequency applications with low insertion loss | |
JP2014120543A (en) | Common mode filter | |
Nguyen et al. | Design of compact EBG structure for array antenna application | |
CN115037273A (en) | Terahertz ferroelectric resonator | |
JP4913875B2 (en) | Coplanar track | |
WO2023017775A1 (en) | Waveguide element | |
WO2023228456A1 (en) | Mode conversion device | |
JP7138257B1 (en) | waveguide element | |
JP7189374B2 (en) | high frequency device | |
KR102569509B1 (en) | Compressed-in-length waveguide matamaterial resonator and waveguide bandpass filter with 3d printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21919284 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022574905 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21919284 Country of ref document: EP Kind code of ref document: A1 |