WO2022152014A1 - 体外膜肺氧合器 - Google Patents

体外膜肺氧合器 Download PDF

Info

Publication number
WO2022152014A1
WO2022152014A1 PCT/CN2022/070238 CN2022070238W WO2022152014A1 WO 2022152014 A1 WO2022152014 A1 WO 2022152014A1 CN 2022070238 W CN2022070238 W CN 2022070238W WO 2022152014 A1 WO2022152014 A1 WO 2022152014A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
medium
channel
oxygenation
cavity
Prior art date
Application number
PCT/CN2022/070238
Other languages
English (en)
French (fr)
Inventor
吴婷婷
徐博翎
颜翊凡
颜凯歌
Original Assignee
苏州心擎医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州心擎医疗技术有限公司 filed Critical 苏州心擎医疗技术有限公司
Publication of WO2022152014A1 publication Critical patent/WO2022152014A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/369Temperature treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood

Definitions

  • the invention relates to an extracorporeal membrane oxygen supply device for assisting cardiopulmonary function, in particular to an extracorporeal membrane lung oxygenator.
  • Extracorporeal membrane oxygenation is an extracorporeal circulatory system with both cardiac and pulmonary auxiliary functions.
  • ECMO Extracorporeal membrane oxygenation
  • the blood is drained from the body to the outside of the body.
  • the oxygenated blood is perfused into the body by the pump to maintain the blood supply and oxygen supply to various organs of the body.
  • Long-term breathing and cardiac support allows patients to have adequate rest for their heart and lungs, and gain valuable time for further treatment and the recovery of heart and lung function.
  • the oxygenation function module and heat exchange function module of the existing membrane oxygenator are mostly independent, and the blood is oxygenated or heated respectively.
  • heat loss will occur; on the contrary, the gas exchange efficiency will be lost when blood flows through the heat exchange module after gas exchange. How to achieve the best heat and gas exchange efficiency when the membrane oxygenator works is one of the problems to be solved urgently.
  • the purpose of the present invention is to provide an extracorporeal membrane lung oxygenator, which can make the pressure of the oxygen-enriched gas and the temperature control medium evenly distributed, and achieve the best heat and gas exchange efficiency.
  • An extracorporeal membrane lung oxygenator comprising: a main casing, a first end cap arranged at one end of the main casing, and a second end cap arranged at the other end of the main casing, the main casing comprising : a central cavity for blood inflow, and a temperature control cavity and a gas exchange cavity spirally surrounding the central cavity; the temperature control cavity is provided with a temperature control assembly, and the gas exchange cavity is provided with a gas exchange cavity assembly; an annular space is formed between the temperature control cavity, the gas exchange cavity and the inner wall of the main casing; the first end cover is provided with a blood inflow channel communicating with the central cavity, and a spiral The temperature control medium outflow channel and the oxygenation medium outflow channel surround the blood inflow channel; the temperature control medium outflow channel is communicated with the temperature control cavity, and the oxygenation medium outflow channel is connected with the gas The exchange chamber is communicated; the second end cap is provided with a blood outflow channel communicating with the annular space, and a temperature control medium inflow channel and an
  • the medium flows forward and is pressed to the chamber that communicates with it. Among them, the medium is pressed into the corresponding chamber, which will cause the pressure of the medium to flow forward.
  • the extracorporeal membrane lung oxygenator designed the longitudinal cross-sectional area of the inflow channel to be tapered, wherein, along the inflow direction of the temperature control medium, or along the radial direction of the main casing, the In the direction from outside to inside, the longitudinal cross-sectional area of the temperature control medium flowing into the flow channel gradually decreases; along the inflow direction of the oxygenated medium, or in the direction from outside to inside along the radial direction of the main casing, the oxygenated medium flows into the flow channel.
  • the longitudinal cross-sectional area of the channel gradually decreases.
  • the medium that has suffered pressure loss in the later stage regains a high inflow pressure with the help of the constricted inflow channel.
  • a uniform pressure is formed throughout the inflow channel of the spiral structure as much as possible.
  • the uniformity of the medium in the temperature control cavity and the gas exchange cavity in the main body shell is ensured to the maximum extent, thereby improving the oxygenation effect.
  • FIG. 1 is a schematic diagram of the outer contour of an extracorporeal membrane lung oxygenator provided in an embodiment of the application;
  • FIG. 2 is a top view of an extracorporeal membrane lung oxygenator provided in an embodiment of the application
  • FIG. 3 is a cross-sectional view A-A of the extracorporeal membrane lung oxygenator provided in the first embodiment of the present application;
  • FIG. 4 is a schematic diagram of the first end cap of the extracorporeal membrane lung oxygenator provided in the first embodiment of the present application;
  • FIG. 5 is a top view of the first end cap of the extracorporeal membrane lung oxygenator provided in the first embodiment of the present application;
  • FIG. 6 is a bottom view of the first end cap of the extracorporeal membrane lung oxygenator provided in the first embodiment of the present application;
  • FIG. 7 is a top view of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application.
  • FIG. 8 is a cross-sectional view B-B of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application;
  • Fig. 9 is the semi-sectional schematic diagram of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application.
  • FIG. 10 is a schematic diagram of the first end cap of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application;
  • FIG. 11 is a front view of the first end cap of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application;
  • FIG. 12 is a top view of the first end cap of the extracorporeal membrane lung oxygenator provided in the second embodiment of the application;
  • FIG. 13 is a top view of the extracorporeal membrane lung oxygenator provided in the third embodiment of the application.
  • 15 is a schematic half-section schematic diagram of the extracorporeal membrane lung oxygenator provided in the third embodiment of the application.
  • 16 is a schematic diagram of the first end cap of the extracorporeal membrane lung oxygenator provided in the third embodiment of the application;
  • 17 is a front view of the first end cap of the extracorporeal membrane lung oxygenator provided in the third embodiment of the application;
  • 19 is a cross-sectional view of the first end cap of the extracorporeal membrane lung oxygenator provided in the third embodiment of the application;
  • FIG. 20 is a schematic diagram of the principle of the change of the cross section of the flow channel in the extracorporeal membrane oxygenator provided by the application.
  • Main housing 11. First end cap; 111. Blood inflow channel; 112. Temperature control medium outflow channel; 113. Oxygenation medium outflow channel; 1120, Temperature control medium outflow interface; 1130, Oxygenation 114, inner plate; 115, partition plate; 12, second end cap; 121, blood outflow channel; 1220, temperature control medium inflow interface; 1230, oxygenation medium inflow interface; 10, central cavity; 13. Temperature control cavity; 14. Gas exchange cavity; 2. Temperature control assembly; 3. Gas exchange assembly; 4. Annular space; 47. Guiding structure.
  • the extracorporeal membrane lung oxygenator provided in the embodiments of the specification of the present application may include: a main casing 1 , a first end cover 11 disposed at one end of the main casing 1 , and a main casing 1 .
  • the second end cap 12 at the other end of the body 1, the main housing 1 includes: a central cavity 10 for blood to flow in, a temperature control cavity 13 and a gas exchange cavity 14 spirally surrounding the central cavity 10; the temperature control cavity 13 A temperature control component 2 is arranged inside, and a gas exchange component 3 is arranged in the gas exchange cavity 14; an annular space 4 is formed between the temperature control cavity 13, the gas exchange cavity 14 and the inner wall of the main casing 1; the first end cover 11 is provided with an annular space 4.
  • a blood inflow channel 111 communicating with the central cavity 10, and a temperature control medium outflow channel 112 and an oxygenation medium outflow channel 113 spirally surrounding the blood inflow channel 111; the temperature control medium outflow channel 112 and the temperature control chamber 13
  • the oxygenation medium outflow channel 113 communicates with the gas exchange chamber 14;
  • the second end cap 12 is provided with a blood outflow channel 121 in communication with the annular space 4, and a temperature control medium inflow channel spirally surrounding the blood inflow channel 111 and the oxygenation medium flow into the flow channel;
  • the blood outflow flow channel 121 is communicated with the annular space 4,
  • the temperature control medium inflow channel is communicated with the temperature control chamber 13, and the oxygenation medium inflow channel is communicated with the gas exchange chamber 14;
  • the flow cross-sectional area of the temperature control medium flowing into the flow channel gradually decreases; along the flow direction of the oxygenated medium, the flow cross-sectional area of the oxygenated medium flowing into the flow channel gradually decreases.
  • the main casing 1 can be a hollow cylinder, and three cavities with different functions can be formed in the main casing, which are a central cavity 10 for circulating blood, and a central cavity 10 for circulating temperature control medium.
  • the cavities are isolated from each other by a sealing structure to avoid blood contamination.
  • the central cavity 10 may be approximately located at the position of the central axis of the main casing 1 .
  • the temperature control cavity 13 and the gas exchange cavity 14 spirally surround the central cavity 10 .
  • the temperature control cavity 13 and the gas exchange cavity 14 respectively have a spiral involute structure.
  • the temperature control cavity 13 and the gas exchange cavity 14 respectively have a spiral involute structure as an example. Expand the introduction.
  • the temperature control cavity 13 and the gas exchange cavity 14 have opposite inner ends and outer ends respectively.
  • the inner ends of the temperature control cavity 13 and the gas exchange cavity 14 are in contact with the outer wall of the central cavity 10.
  • the temperature control cavity 13 and the gas exchange cavity 14 The respective outer ends are spaced apart from the inner wall of the main casing 1 to form an annular space 4 .
  • the annular space 4 communicates the central cavity 10 with the blood outflow channel 121 of the second end cap 12 .
  • the hypoxic blood entering through the blood inflow channel 111 can flow into the central cavity 10 from top to bottom, and then radially diverges through the temperature control cavity 13 and the gas exchange cavity 14 , and then passes through the annular space 4 and flows out from the blood outflow channel 121 .
  • the temperature control cavity 13 is provided with a temperature control component 2, and the temperature control component 2 includes a temperature control fiber membrane and a temperature control medium (eg, warm water, etc.) filled in the temperature control fiber membrane.
  • the gas exchange chamber 14 is provided with a gas exchange component 3, and the gas exchange component 3 includes an oxygenated fiber membrane and an oxygenated medium (eg, oxygen, etc.) filled in the oxygenated fiber membrane.
  • a first end cap 11 and a second end cap 12 are respectively provided at both ends of the main casing 1 , wherein the first end cap 11 can be an upper end cap, and the second end cap 12 can be a lower end cap.
  • the upper end cap flows in, and after oxygenation, flows out from the lower end cap; the temperature control medium and oxygenation medium flow in from the lower end cap and flow out from the upper end cap.
  • the flow direction of the hypoxic blood in the central cavity 10 of the extracorporeal membrane oxygenator is opposite to the flow direction of the heat exchange medium in the temperature control fiber membrane.
  • the flow direction of the oxygen-deficient blood in the central lumen 10 is opposite to the flow direction of the oxygen-enriched gas in the oxygenated fiber membrane.
  • first end cap 11 and the second end cap 12 can also be interchanged, that is, the first end cap 11 can also be a lower end cap, the second end cap 12 can be an upper end cap, and the flow direction of the fluid is also Adaptive adjustment is possible.
  • first end cap 11 is the upper end cap and the second end cap 12 is the lower end cap.
  • the medium and the oxygenated medium flow in from the lower end cap and flow out from the upper end cap for illustration, and other cases can be referred to by analogy, and this application will not expand them one by one.
  • the first end cap 11 (upper end cap) may be a circular cap as a whole, and the side facing the main casing 1 is provided with a blood inflow channel 111 located approximately at the central axis position, and two surrounding blood flow channels 111 .
  • a flow channel with a spiral involute structure is respectively: the temperature control medium outflow channel 112 and the oxygenation medium outflow channel 113 .
  • the temperature control medium outflow channel 112 and the oxygenation medium outflow channel 113 are independent of each other and not communicated with each other.
  • the blood inflow channel 111 is communicated with the central cavity 10; the temperature control medium outflow channel 112 and the oxygenation medium outflow channel 113 are in a spiral involute structure, and the inner end is connected with the blood inflow channel 111; the temperature control medium outflow channel 112 communicates with the temperature control chamber 13 , and the oxygenated medium outflow channel 113 communicates with the gas exchange chamber 14 .
  • the cross-sectional shape of the temperature control medium outflow channel 112 is the same as that of the temperature control chamber 13
  • the cross-sectional shape of the oxygenation medium outflow channel 113 is the same as that of the gas exchange chamber 14 .
  • the temperature control medium outflow channel 112 can be directly connected with the temperature control chamber 13, and the oxygenation medium outflow channel 113 can be directly connected with the gas exchange chamber 14.
  • the corresponding communication between the flow channel and the cavity can be realized reliably and quickly, and on the other hand, it is also beneficial to ensure a better sealing effect.
  • the outer end of the temperature control medium outflow channel 112 is provided with a temperature control medium outflow port 1120 for the temperature control medium to flow out.
  • the outer end of the oxygenation medium outflow channel 113 is provided with an oxygenation medium outflow port 1130 for supplying the oxygenation medium to flow out.
  • the second end cover 12 (lower end cover) is a circular cover as a whole, and the side facing the main casing 1 is provided with a blood outflow channel 121 located approximately at the central axis, and two surrounding blood flow channels 121 .
  • the above two flow channels with spiral involute structures are respectively: the temperature control medium inflow channel and the oxygenation medium inflow channel.
  • the temperature control medium inflow channel and the oxygenation medium inflow channel are independent of each other and are not connected to each other.
  • the blood outflow channel 121 is communicated with the annular space 4; the temperature control medium inflow channel and the oxygenation medium inflow channel have a spiral involute structure, and the inner end is connected with the blood outflow channel 121; the temperature control medium inflow channel is connected with the temperature control medium inflow channel.
  • the control chamber 13 is communicated, and the oxygenated medium inflow channel is communicated with the gas exchange chamber 14 .
  • the cross-sectional shape of the temperature control medium flowing into the flow channel is the same as the cross-sectional shape of the temperature control cavity 13 .
  • the cross-sectional shape of the oxygenated medium inflow channel is the same as the cross-sectional shape of the gas exchange chamber 14 .
  • the outer end of the temperature control medium inflow channel is provided with a temperature control medium inflow interface 1220 for the inflow of the temperature control medium.
  • An oxygenation medium inflow port 1230 is provided at the outer end of the oxygenation medium outflow channel 113 for supplying the oxygenation medium inflow.
  • the longitudinal cross-sectional area of the temperature control medium flowing into the flow channel gradually decreases; along the inflow direction of the oxygenated medium, or Along the radial direction of the main casing 1 from the outside to the inside, the longitudinal cross-sectional area of the oxygenated medium flowing into the flow channel gradually decreases.
  • the medium flows forward and is pressed to the chamber that communicates with it. Among them, the medium is pressed into the corresponding chamber, which will cause the pressure of the medium to flow forward.
  • the extracorporeal membrane lung oxygenator designed the longitudinal cross-sectional area of the inflow channel to be tapered.
  • the inflow channel effect regains the high inflow pressure.
  • a uniform pressure is formed throughout the inflow channel of the spiral structure as much as possible.
  • the uniformity of the medium in the temperature control cavity 13 and the gas exchange cavity 14 in the main body shell is ensured to the maximum extent, thereby improving the oxygenation effect.
  • the gradual reduction of the flow cross-sectional area of the temperature control medium flow channel and the oxygenation medium flow channel can be achieved in many different ways. The following will describe in detail with reference to different drawings.
  • the width of the temperature control medium flow channel remains unchanged, and the height gradually decreases .
  • the width of the oxygenation medium flow channel remains unchanged, and the height gradually decreases.
  • the height of the temperature control medium flow channel is different. change, the width gradually decreases. Similarly, along the radial direction of the main casing 1 from outside to inside, the width of the oxygenation medium flow channel remains unchanged, and the height gradually decreases.
  • first end cap 11 and the second end cap 12 can be interchanged up and down according to the actual product design.
  • first end cap 11 is mainly used as an example to describe its specific structure.
  • the structure of the two end caps 12 can be referred to the first end cap 11 by analogy, and will not be described in detail in this application.
  • the first end cover 11 in the vortex shape can realize uniform distribution of gas and hydraulic pressure, optimize the use of gas and liquid sources, and improve gas exchange and heat exchange efficiency.
  • the first end cover 11 may include: an inner plate 114 facing the main casing 1 and connected to the main casing 1, an outer plate facing away from the main casing 1 and opposite to the inner plate 114, a device A spiral partition 115 between the inner plate 114 and the outer plate; when the height gradually decreases, the inner plate 114 is a flat plate structure, and the outer plate is an inner concave plate structure.
  • the partition plate 115 cooperates with the inner plate 114 and the outer plate to define an inflow channel.
  • the width of the flow channel is the distance between two adjacent partition plates 115 on the inner plate member 114 ; the height of the flow channel is the height of the partition plate 115 .
  • the plate (that is, the inner plate 114 ) of the first end cover 11 facing the main casing 1 is: A flat plate-like structure, while the plate (ie, the outer plate) of the first end cover 11 facing away from the main casing 1 is a concave plate-like structure.
  • the above-mentioned structural design of the first end cover 11 takes into account the fluid communication relationship between the inner plate 114 and the structure in the main body shell, and it is advantageous for assembly when it is in a straight shape.
  • the outer plate is concave, which can reduce the height of the flow channel.
  • variable section of the runner design principle of the variable section of the runner is as follows:
  • FIG. 20 An inflow channel in FIG. 20 is used as an example for description.
  • the flow direction of the medium is indicated by the arrow.
  • the cross-sectional areas of the two cross-section micro-elements are A1 and A2, respectively, and the flow rates of the medium flowing through the two cross-section micro-elements are v1 and v2, respectively.
  • the medium flows from the upstream section element A1 to the downstream section element A2, and the pressure drop due to the friction loss of the flow channel is:
  • the runner length L can be calculated from the length of the vortex line:
  • the effect of increasing the fluid pressure or making up for the pressure drop can be achieved by reducing the cross-sectional area of the flow channel.
  • the end cap of the extracorporeal membrane oxygenator is in a vortex shape, and the blood flow direction of the oxygenation module is opposite to the flow direction of warm water and oxygen-enriched gas to ensure the best heat and gas exchange efficiency.
  • the blood inlet and outlet directions can be exchanged, but the inlet and outlet directions of warm water and oxygen-enriched gas need to be exchanged at the same time to ensure the best heat and gas exchange efficiency.
  • the inlet and outlet of the temperature control medium/oxygenation medium may enter radially along a tangential line , can also enter in the axial direction.
  • the temperature control medium inflow port 1220 and the oxygenation medium inflow port 1230 extend along the tangential direction of the outer circle of the first end cover 11
  • the temperature control medium inflow port 1220 and the oxygenation medium inflow port 1230 are along the tangential direction of the outer circle of the first end cover 12 .
  • the turbulent flow effect generated when the fluid flows can be reduced as much as possible, thereby helping to ensure the stability of the pressure in the cavity and obtaining a better oxygenation effect.
  • the temperature control component 2 may include: a temperature control fiber membrane and a temperature control medium filled in the temperature control fiber membrane, and the gas exchange component 3 includes an oxygenated fiber membrane and a temperature control medium filled in the oxygenated fiber
  • the oxygenated medium in the membrane, the temperature control chamber 13 and the gas exchange chamber 14 are arranged symmetrically about the central axis of the main casing 1 .
  • the temperature control cavity 13 and the gas exchange cavity 14 are arranged symmetrically with respect to the central axis of the main casing 1, they form interleaved heat exchange and gas exchange modules, which are conducive to uniform temperature control and oxygenation of blood, and can ensure that blood The uniformity of the flow reduces the dead zone of the flow field.
  • both the temperature control fiber membrane and the oxygenated fiber membrane are set in a stacking and winding method.
  • the number of inflow/outflow channels is equal.
  • the number of layers of the temperature-controlled fiber membrane may be one or more layers, and similarly, the number of layers of the oxygenated fiber membrane may also be one or more layers.
  • the preparation method of the temperature control assembly 2 and the gas exchange assembly 3 is as follows: stacking one or more layers of temperature control fiber membranes and one or more layers of oxygenated fiber membranes together, the layers of the two fiber membranes are The sum of the numbers remains unchanged, but the stacking and winding method of the temperature-controlled fiber membrane and the oxygenated fiber membrane can be adjusted arbitrarily.
  • the number of temperature control fiber membranes is equal to the number of layers of temperature control medium inflow/outflow channels, and the number of oxygenated fiber membranes is equal to the number of oxygenation medium inflow/outflow channels.
  • the temperature control medium inflow/outflow channel and oxygenation medium inflow/outflow channel shown in the drawings in this specification are all one, and the corresponding temperature control medium inflow/outflow interface and oxygenation medium inflow/outflow interface There is also one, so the minimum number of interfaces can be set, and the structure of the oxygenator can be simplified.
  • this specification does not exclude the situation that the number of temperature control fiber membranes and the number of oxygenated fiber membranes is greater than one layer, that is, it does not exclude that the temperature control medium inflow/outflow channel and the oxygenation medium inflow/outflow channel are more than one.
  • the temperature-controlled fiber membranes and the number of oxygenated fiber membranes can be stacked in a predetermined order, such as the order of sequentially spaced arrangement, or other orders. Overlap, the arrangement relationship between the two is not specifically limited in this application.
  • the extracorporeal membrane lung oxygenator of the embodiment of the present application further includes a guide structure 47 .
  • the guide structure 47 is rod-shaped.
  • the upper end of the guide structure 47 is a tapered portion.
  • the guiding structure 47 is inserted into the central cavity 10 .
  • the guiding structure 47 is used for evenly shunting the hypoxic blood entering the central cavity 10 to the surrounding through its tapered portion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

一种体外膜肺氧合器,包括:主壳体(1)、设置在主壳体两端(1)的第一端盖(11)和第二端盖(12),主壳体(1)包括:用于供血液流入的中心腔(10)、以及螺旋环绕在中心腔(10)外的温控腔(13)和气体交换腔(14);温控腔(13)、气体交换腔(14)与主壳体(1)的内壁之间形成有环形空间(4);第一端盖(11)设有与中心腔(10)连通的血液流入流道(111),以及螺旋环绕血液流入流道(111)的温控介质流出流道(112)和氧合介质流出流道(113);第二端盖(12)设有与环形空间(4)连通的血液流出流道(121),以及螺旋环绕血液流出流道(121)的温控介质流入流道和氧合介质流入流道;温控介质流入流道的流通截面积逐渐减小;氧合介质流入流道的流通截面积逐渐减小,使得富氧气体与温控介质压力均匀分布,实现最佳的热与气体交换效率。

Description

体外膜肺氧合器
交叉参考相关引用
本申请要求专利申请号为202110057774.8、申请日为2021.01.15、发明创造名称为“血液氧合器”,以及专利申请号为202110605575.6、申请日为2021.05.31、发明创造名称为“体外膜肺氧合器”的中国发明专利的优先权,上述申请参考并入本文。
技术领域
本发明涉及一种辅助心肺功能的体外膜供氧装置,特别涉及一种体外膜肺氧合器。
背景技术
体外膜肺氧合(extracorporeal membrane oxygenation,ECMO)是同时具有心、肺辅助功能的体外循环系统。通过动静脉插管,将血液从体内引流到体外,经膜肺氧合后,再由泵将氧合血灌注入体内,维持机体各器官的供血和供氧,对严重的心肺功能衰竭患者进行较长时间呼吸心脏支持,使患者心肺得以充分的休息,为进一步治疗和心、肺功能的恢复赢得宝贵的时间。
现有膜肺氧合器的氧合功能模块与热交换功能模块大多独立,血液先后分别氧合或加热。当血液流经热交换模块后流经氧合模块的同时会产生热量的流失;反之血液经过气体交换后流经热交换模块的同时会产生气体交换效率的损失。如何在膜肺氧合器工作时实现最佳的热与气体交换效率是目前亟待解决的问题之一。
发明内容
本发明的目的是提供一种体外膜肺氧合器,能使得富氧气体与温控介质压力均匀分布,实现最佳的热与气体交换效率。
本发明的上述目的可采用下列技术方案来实现:
一种体外膜肺氧合器,包括:主壳体、设置在所述主壳体一端的第一端盖和设置在所述主壳体另一端的第二端盖,所述主壳体包括:用于供血液流入的中心腔、以及螺旋环绕在所述中心腔外的温控腔和气体交换腔;所述温控腔内设置有温控组件,所述气体交换腔内设置有气体交换组件;所述温控腔、所述气体交换腔与所述主壳体的内壁之间 形成有环形空间;所述第一端盖设有与所述中心腔连通的血液流入流道,以及螺旋环绕所述血液流入流道的温控介质流出流道和氧合介质流出流道;所述温控介质流出流道与所述温控腔连通,所述氧合介质流出流道与所述气体交换腔连通;所述第二端盖设有与所述环形空间连通的血液流出流道,以及螺旋环绕所述血液流入流道的温控介质流入流道和氧合介质流入流道;所述血液流出流道与所述环形空间连通,所述温控介质流入流道与所述温控腔连通,所述氧合介质流入流道与所述气体交换腔连通;沿所述温控介质的流动方向上,所述温控介质流入流道的流通截面积逐渐减小;沿所述氧合介质的流动方向上,所述氧合介质流入流道的流通截面积逐渐减小。
本申请提供的体外膜肺氧合器的有益效果是:
介质在流入过程中,同时存在两个方向的分流或阻力,即:介质一边向前流动,一边被压向与之连通的腔室。其中,介质被压入对应的腔室,会导致介质向前流动的压力出现损失。
为弥补这部分损失,本申请所提供的体外膜肺氧合器将流入流道的纵截面面积设计成渐缩式,其中,沿温控介质的流入方向,或者沿主壳体的径向由外至内的方向上,温控介质流入流道的纵截面面积逐渐减小;沿氧合介质的流入方向,或者沿主壳体的径向由外至内的方向上,氧合介质流入流道的纵截面面积逐渐减小。
依据伯努利流体定律,后段已经出现压力损失的介质借助缩的流入流道作用重新获得高的流入压力。以此,使得介质在整个流入过程中,尽量在螺旋形构造的流入流道的各处形成均匀的压力。如此,最大限度的保证主体壳体内的温控腔和气体交换腔内介质的均匀程度,进而提高氧合效果。
附图说明
图1为本申请实施方式中所提供的体外膜肺氧合器的外轮廓示意图;
图2为本申请实施方式中所提供的体外膜肺氧合器的俯视图;
图3为本申请为第一个实施方式中所提供的体外膜肺氧合器A-A剖视图;
图4为本申请为第一个实施方式中所提供的体外膜肺氧合器第一端盖的示意图;
图5为本申请为第一个实施方式中所提供的体外膜肺氧合器第一端盖的俯视图;
图6为本申请为第一个实施方式中所提供的体外膜肺氧合器第一端盖的仰视图;
图7为本申请第二个实施方式中所提供的体外膜肺氧合器的俯视图;
图8为本申请第二个实施方式中所提供的体外膜肺氧合器B-B剖视图;
图9为本申请第二个实施方式中所提供的体外膜肺氧合器半剖示意图;
图10为本申请第二个实施方式中所提供的体外膜肺氧合器第一端盖的示意图;
图11为本申请第二个实施方式中所提供的体外膜肺氧合器第一端盖的主视图;
图12为本申请第二个实施方式中所提供的体外膜肺氧合器第一端盖的俯视图;
图13为本申请第三个实施方式中所提供的体外膜肺氧合器的俯视图;
图14为本申请第三个实施方式中所提供的体外膜肺氧合器C-C剖视图;
图15为本申请第三个实施方式中所提供的体外膜肺氧合器半剖示意图;
图16为本申请第三个实施方式中所提供的体外膜肺氧合器第一端盖的示意图;
图17为本申请第三个实施方式中所提供的体外膜肺氧合器第一端盖的主视图;
图18为本申请第三个实施方式中所提供的体外膜肺氧合器第一端盖的俯视图;
图19为本申请第三个实施方式中所提供的体外膜肺氧合器第一端盖的剖视图;
图20为本申请所提供的体外膜肺氧合器内流道横截面变化的原理示意图。
附图标记说明:
1、主壳体;11、第一端盖;111、血液流入流道;112、温控介质流出流道;113、氧合介质流出流道;1120、温控介质流出接口;1130、氧合介质流出接口;114、内板件;115、隔板;12、第二端盖;121、血液流出流道;1220、温控介质流入接口;1230、氧合介质流入接口;10、中心腔;13、温控腔;14、气体交换腔;2、温控组件;3、气体交换组件;4、环形空间;47、导引结构。
具体实施方式
请参阅图1至图19,本申请说明书实施方式中提供的体外膜肺氧合器,其可以包括:主壳体1、设置在主壳体1一端的第一端盖11和设置在主壳体1另一端的第二端盖12,主壳体1包括:用于供血液流入的中心腔10、以及螺旋环绕在中心腔10外的温控腔13和气体交换腔14;温控腔13内设置有温控组件2,气体交换腔14内设置有气体交换组件3;温控腔13、气体交换腔14与主壳体1的内壁之间形成有环形空间4;第一端盖11设有与中心腔10连通的血液流入流道111,以及螺旋环绕血液流入流道111的温控介质流出流道112和氧合介质流出流道113;温控介质流出流道112与温控腔13连通,氧合介质流出流道113与气体交换腔14连通;第二端盖12设有与环形空间4连通的血液流 出流道121,以及螺旋环绕血液流入流道111的温控介质流入流道和氧合介质流入流道;血液流出流道121与环形空间4连通,温控介质流入流道与温控腔13连通,氧合介质流入流道与气体交换腔14连通;沿温控介质的流动方向上,温控介质流入流道的流通截面积逐渐减小;沿氧合介质的流动方向上,氧合介质流入流道的流通截面积逐渐减小。
如图2和图3所示,该主壳体1可以为中空的圆柱体,在该主体壳内可以形成有三个不同功能的腔体,分别为流通血液的中心腔10、流通温控介质的温控腔13和流通富氧气体的气体交换腔14。腔体之间利用密封结构相互隔离,以避免造成血液污染。其中,该中心腔10可以大致位于主壳体1的中心轴位置。温控腔13和气体交换腔14螺旋环绕在中心腔10外。
具体的,温控腔13、气体交换腔14分别呈螺旋渐开构造,在本说明书的实施方式和附图中,主要以该温控腔13、气体交换腔14分别呈螺旋渐开构造为例进行展开介绍。
温控腔13和气体交换腔14分别具有相对的内端和外端,温控腔13和气体交换腔14各自的内端与中心腔10的外壁相接触,温控腔13和气体交换腔14各自的外端与主壳体1的内壁间隔设置,形成环形空间4。该环形空间4将中心腔10和第二端盖12的血液流出流道121相连通。通过血液流入流道111进入的缺氧血液能够自上而下流入中心腔10,接着径向发散经过温控腔13、气体交换腔14后,经过环形空间4,从血液流出流道121流出。
温控腔13中设有温控组件2,温控组件2包括温控纤维膜和充盈在温控纤维膜中的温控介质(例如,温水等)。气体交换腔14中设有气体交换组件3,气体交换组件3包括氧合纤维膜和充盈在氧合纤维膜中的氧合介质(例如,氧气等)。
在该主壳体1的两端分别设置有第一端盖11和第二端盖12,其中,该第一端盖11可以为上端盖,该第二端盖12可以为下端盖,血液自上端盖流入,经氧合后,从下端盖流出;温控介质和氧合介质自下端盖流入,从上端盖流出。
整体上,为了保证较佳的换热效率,体外膜肺氧合器的缺氧血液的在中心腔10的流动方向与换热介质在温控纤维膜内的流动方向相反。为了保证最佳气体交换效率,缺氧血液的在中心腔10的流动方向与富氧气体在氧合纤维膜内的流动方向相反。
需要说明的是:血液的流入流出、温控介质/氧合介质的流入流出方向,可与上述相反。上述设计的目的是为了方便与泵的连接,因此,实际中不限定必须从上端进血液、下端进热水/氧气。
其中,该第一端盖11和第二端盖12的上下关系也可以互换,即该第一端盖11也可 以为下端盖,该第二端盖12可以为上端盖,流体的流向也可以作适应性调整。在本申请的实施方式和附图中,主要以该第一端盖11为上端盖、第二端盖12为下端盖,血液自上端盖流入,经氧合后,从下端盖流出;温控介质和氧合介质自下端盖流入,从上端盖流出进行举例说明,其他情况可以进行类比参照,本申请在此不再一一展开。
在本实施方式中,第一端盖11(上端盖)可以整体呈圆形盖体,其朝向主壳体1一侧设有大致位于中心轴位置的血液流入流道111、环绕血液的两个呈螺旋渐开构造的流道。具体的,上述两个呈螺旋渐开构造的流道分别为:温控介质流出流道112和氧合介质流出流道113。温控介质流出流道112和氧合介质流出流道113相互独立,互不连通。其中,血液流入流道111与中心腔10连通;温控介质流出流道112和氧合介质流出流道113呈螺旋渐开构造,内端与血液流入流道111连接;温控介质流出流道112与温控腔13连通,氧合介质流出流道113与气体交换腔14连通。
温控介质流出流道112的横截面形状与温控腔13的横截面形状相同,氧合介质流出流道113的横截面形状与气体交换腔14的横截面形状相同。当该第一端盖11与主壳体1装配时,温控介质流出流道112能与温控腔13直接对接,氧合介质流出流道113能与气体交换腔14直接对接,一方面可以可靠快捷地实现流道与腔体之间的对应连通,另一方面也有利于保证较佳的密封效果。
温控介质流出流道112的外端设有温控介质流出接口1120,用于供温控介质流出。氧合介质流出流道113的外端设有氧合介质流出接口1130,用于供氧合介质流出。
在本实施方式中,第二端盖12(下端盖)整体呈圆形盖体,其朝向主壳体1一侧设有大致位于中心轴位置的血液流出流道121、环绕血液的两个呈螺旋渐开构造的流道。具体的,上述两个呈螺旋渐开构造的流道分别为:温控介质流入流道和氧合介质流入流道。温控介质流入流道和氧合介质流入流道相互独立,互不连通。其中,血液流出流道121与环形空间4连通;温控介质流入流道和氧合介质流入流道呈螺旋渐开构造,内端与血液流出流道121连接;温控介质流入流道与温控腔13连通,氧合介质流入流道与气体交换腔14连通。
温控介质流入流道的横截面形状与温控腔13的横截面形状相同。氧合介质流入流道的横截面形状与气体交换腔14的横截面形状相同。当该第二端盖12与主壳体装配时,温控介质流入流道能与温控腔13直接对接,氧合介质流入流道能与气体交换腔14直接对接,一方面可以可靠快捷地实现流道与腔体之间的对应连通,另一方面也有利于保证较佳的密封效果。
温控介质流入流道的外端设有温控介质流入接口1220,用于供温控介质流入。氧合介质流出流道113的外端设有氧合介质流入接口1230,用于供氧合介质流入。
其中,沿温控介质的流入方向,或者沿主壳体1的径向由外至内的方向上,温控介质流入流道的纵截面面积逐渐减小;沿氧合介质的流入方向,或者沿主壳体1的径向由外至内的方向上,氧合介质流入流道的纵截面面积逐渐减小。
介质在流入过程中,同时存在两个方向的分流或阻力,即:介质一边向前流动,一边被压向与之连通的腔室。其中,介质被压入对应的腔室,会导致介质向前流动的压力出现损失。
为弥补这部分损失,本申请所提供的体外膜肺氧合器将流入流道的纵截面面积设计成渐缩式,依据伯努利流体定律,后段已经出现压力损失的介质借助渐缩的流入流道作用重新获得高的流入压力。以此,使得介质在整个流入过程中,尽量在螺旋形构造的流入流道的各处形成均匀的压力。如此,最大限度的保证主体壳体内的温控腔13和气体交换腔14内介质的均匀程度,进而提高氧合效果。
具体的,温控介质流道、氧合介质流道的流通截面积逐渐减小可以通过多种不同的方式实现。以下将结合不同的附图详细展开说明。
如图3、图4、图5、图6所示,在第一个实施方式中,沿主壳体1的径向由外至内,温控介质流道的宽度不变,高度逐渐减小。同样的,沿主壳体1的径向由外至内,氧合介质流道的宽度不变,高度逐渐减小。
如图7、图8、图9、图10、图11、图12所示,在第二个实施方式中,沿主壳体1的径向由外至内,温控介质流道的高度不变,宽度逐渐减小。同样的,沿主壳体1的径向由外至内,氧合介质流道的宽度不变,高度逐渐减小。
如图13、图14、图15、图16、图17、图18、图19所示,在第三个实施方式中,沿主壳体1的径向由外至内,温控介质流道的高度和宽度均逐渐减小。沿主壳体1的径向由外至内,氧合介质流道的高度和宽度均逐渐减小。
在本说明书中,该第一端盖11、第二端盖12的位置可以根据实际的产品设计将上下互换,在此,主要以第一端盖11为例,展开描述其具体结构,第二端盖12的结构可以类比参照该第一端盖11,本申请在此不再详述。
整体上,该呈涡旋形状的第一端盖11,能够实现气、液压力均匀分布,优化气、液源使用,提高气体交换和热交换效率。
具体的,该第一端盖11可以包括:面对主壳体1且与主壳体1连接的内板件114、 背对主壳体1并与内板件114相对的外板件、设在内板件114与外板件之间的呈螺旋形的隔板115件;当高度逐渐减小时,内板件114呈平板结构,外板件呈内凹板结构。
其中,该隔板115件与内板件114外板件相配合限定出流入流道。其中,该流道的宽度为内板件114上相邻两个隔板115件的间距;该流道的高度为该隔板115件的高度。
其中,在涉及流道高度逐渐减小的实施方式中(上述第一实施方式和第三实施方式),第一端盖11面对主壳体1的板件(也就是内板件114)为平直的板状结构,而第一端盖11背对主壳体1的板件(也就是外板件)呈内凹的板状结构。上述第一端盖11的结构设计,考虑到内板件114与主体壳体中的结构产生流体连通关系,当呈平直状时有利于装配。而外板件内凹,能够实现流道高度的递减。
进一步的,上述截面积按照下述公式变化:
Figure PCTCN2022070238-appb-000001
上述公式中:沿流体流动方向划分任意两个截面微元,该两个截面微元的截面面积分别为A 1、A 2,介质流过该两个截面微元的流量分别为Q 1、Q 2;R为螺旋渐开构造的最外层轮廓的半径;r为螺旋渐开构造的最内层轮廓的半径;f D为达西摩擦因子;P为螺旋渐开构造流道的宽度。
其中,流道变截面设计原理如下:
以图20中一个流入流道为例进行说明。在该流入流道中,介质的流动方向如箭头所示。沿流动方向划分任意两个截面微元,该两个截面微元的截面面积分别为A1、A2,介质流过该两个截面微元的流速分别为v1、v2。
根据Darcy-Weisbach定律,介质由上游截面微元A1流动至下游截面微元A2,因流道摩擦损失而产生的压降为:
Figure PCTCN2022070238-appb-000002
ρ–流体密度
D–特征直径
f D–达西摩擦因子
v–截面平均流速
L–流道长度
其中,流道截面为非圆形时,流道直径大致为
Figure PCTCN2022070238-appb-000003
则上游截面微元A1至下游截面微元A2之间的特征直径:
Figure PCTCN2022070238-appb-000004
A–流道截面积
截面平均流速v可为:v=(v 1+v 2)/2
流道长度L可由涡状线长度计算得到:
Figure PCTCN2022070238-appb-000005
综上:
Figure PCTCN2022070238-appb-000006
为弥补流道因粘滞摩擦损耗产生的压降,由伯努利定理:
Figure PCTCN2022070238-appb-000007
可得通过降低流道截面积达到提升流体压力或弥补压降的效果。
g–重力加速度
h-流体所处高度(从某参考点计)
P–流体所受压强强度
流体介质所处高度h不变。依据上述原理,在上游截面微元A1和下游截面微元A2处的伯努利方程如下:
Figure PCTCN2022070238-appb-000008
Figure PCTCN2022070238-appb-000009
由公式(4-1)-(4-2)可得:
Figure PCTCN2022070238-appb-000010
Figure PCTCN2022070238-appb-000011
根据流速公式v=Q/A,公式(5)进一步进化为:
Figure PCTCN2022070238-appb-000012
联立公式(3)、(6)
Figure PCTCN2022070238-appb-000013
进一步把v1、v2进行转换:
Figure PCTCN2022070238-appb-000014
Figure PCTCN2022070238-appb-000015
Figure PCTCN2022070238-appb-000016
Figure PCTCN2022070238-appb-000017
Figure PCTCN2022070238-appb-000018
在本说明书所例举的实施方式中,体外膜氧合器的端盖呈现涡旋形状,氧合模块的血液流向与温水、富氧气体流向相反,以保证最佳热与气体交换效率。其中,血液进出口方向可以交换,但需同时交换温水和富氧气体进出口方向,以保证最佳热与气体交换效率。
其中,温控介质/氧合介质的流道出入口(温控介质流出接口1120、氧合介质流出接口1130/温控介质流入接口1220、氧合介质流入接口1230)可以是径向沿着切线进入,也可以沿轴向进入。
当温控介质流出接口1120、氧合介质流出接口1130沿着第一端盖11的外圆的切线方向延伸,温控介质流入接口1220、氧合介质流入接口1230沿着第二端盖12的外圆的切线方向延伸时,能够尽可能地减少流体流动时产生的紊流效应,从而有利于保证腔体内压力的稳定,有利于获得较佳的氧合效果。
在本说明书所例举的实施方式中,温控组件2可以包括:温控纤维膜和充盈在温控纤维膜中的温控介质,气体交换组件3包括氧合纤维膜和充盈在氧合纤维膜中的氧合介质,温控腔13和气体交换腔14关于主壳体1的中心轴呈中心对称设置。当该温控腔13和气体交换腔14关于主壳体1的中心轴呈中心对称设置时,构成相互交错的热交换和气体交换模块,有利于均匀温控、氧合血液,且能保证血液流动的均匀性,减少流场死区。
进一步的,温控纤维膜与氧合纤维膜均采用层叠卷绕方式设置,温控纤维膜的数量与温控介质流入/流出流道的层数量相等,氧合纤维膜的数量与氧合介质流入/流出流道的数量相等。
在本说明书中,温控纤维膜的层数可以是一层或多层,同样,氧合纤维膜的层数也可以是一层或多层。其中,温控组件2和气体交换组件3的制备方法为:将一层或多层的温控纤维膜与一层或多层的氧合纤维膜的叠置在一起,两个纤维膜的层数总和不变,但温控纤维膜与氧合纤维膜的层叠卷绕方式可以是任意调整的。
温控纤维膜的数量与温控介质流入/流出流道的层数量相等,氧合纤维膜的数量与氧合介质流入/流出流道的数量相等。
本说明书中的附图中所示出的温控介质流入/流出流道和氧合介质流入/流出流道都是1个,相应的温控介质流入/流出接口和氧合介质流入/流出接口也是1个,如此,可以设置最少个数的接口,简化氧合器的结构。
当然,本说明书中并不排除温控纤维膜的数量、氧合纤维膜的数量大于一层的情况,即不排除温控介质流入/流出流道和氧合介质流入/流出流道大于一个的情况。当温控纤维膜的数量、氧合纤维膜的数量为多层时,该温控纤维膜、氧合纤维膜可以按照预定的顺序,例如依次间隔排布的顺序叠置,也可以为其他顺序叠置,两者之间的排布关系本申请并不作具体的限定。
进一步地,本申请实施方式的体外膜肺氧合器还包括导引结构47。例如如图3所示,该导引结构47为杆状。该导引结构47的上端为锥形部。该导引结构47穿设于中心腔10内。该导引结构47用于将进入中心腔10的缺氧血液经过其锥形部向四周均匀分流。

Claims (10)

  1. 一种体外膜肺氧合器,其特征在于,包括:主壳体、设置在所述主壳体一端的第一端盖和设置在所述主壳体另一端的第二端盖,
    所述主壳体包括:用于供血液流入的中心腔、以及螺旋环绕在所述中心腔外的温控腔和气体交换腔;所述温控腔内设置有温控组件,所述气体交换腔内设置有气体交换组件;所述温控腔、所述气体交换腔与所述主壳体的内壁之间形成有环形空间;
    所述第一端盖设有与所述中心腔连通的血液流入流道,以及螺旋环绕所述血液流入流道的温控介质流出流道和氧合介质流出流道;所述温控介质流出流道与所述温控腔连通,所述氧合介质流出流道与所述气体交换腔连通;
    所述第二端盖设有与所述环形空间连通的血液流出流道,以及螺旋环绕所述血液流入流道的温控介质流入流道和氧合介质流入流道;所述血液流出流道与所述环形空间连通,所述温控介质流入流道与所述温控腔连通,所述氧合介质流入流道与所述气体交换腔连通;
    沿所述温控介质的流动方向上,所述温控介质流入流道的流通截面积逐渐减小;沿所述氧合介质的流动方向上,所述氧合介质流入流道的流通截面积逐渐减小。
  2. 根据权利要求1所述的体外膜肺氧合器,其特征在于,所述温控腔、所述气体交换腔分别呈螺旋渐开构造,所述温控腔和所述气体交换腔分别具有相对的内端和外端,所述内端与所述中心腔的外壁相接触,所述外端与所述主壳体的内壁间隔设置,形成所述环形空间。
  3. 根据权利要求1所述的体外膜肺氧合器,其特征在于,所述温控介质流出流道和所述氧合介质流出流道呈螺旋渐开构造,所述温控介质流出流道的横截面形状与所述温控腔的横截面形状相同,所述氧合介质流出流道的横截面形状与所述气体交换腔的横截面形状相同;和/或,
    所述温控介质流入流道和所述氧合介质流入流道呈螺旋渐开构造,所述温控介质流入流道的横截面形状与所述温控腔的横截面形状相同,所述氧合介质流入流道的横截面形状与所述气体交换腔的横截面形状相同。
  4. 根据权利要求3所述的体外膜肺氧合器,其特征在于,所述温控介质流道的流通截面积逐渐减小包括:
    沿所述主壳体的径向由外至内,所述温控介质流道的宽度不变,高度逐渐减小;
    或者,
    沿所述主壳体的径向由外至内,所述温控介质流道的高度不变,宽度逐渐减小;
    亦或者,
    沿所述主壳体的径向由外至内,所述温控介质流道的高度和宽度均逐渐减小。
  5. 根据权利要求3所述的体外膜肺氧合器,其特征在于,所述氧合介质流道的流通截面积逐渐减小包括:
    沿所述主壳体的径向由外至内,所述氧合介质流道的宽度不变,高度逐渐减小;
    或者,
    沿所述主壳体的径向由外至内,所述氧合介质流道的高度不变,宽度逐渐减小;
    亦或者,
    沿所述主壳体的径向由外至内,所述氧合介质流道的高度和宽度均逐渐减小。
  6. 根据权利要求4或5所述的体外膜肺氧合器,其特征在于,所述第一端盖和/或所述第二端盖包括:面对所述主壳体且与所述主壳体连接的内板件、背对所述主壳体并与所述内板件相对的外板件、设在所述内板件与所述外板件之间的呈螺旋形的隔板件;当所述高度逐渐减小时,所述内板件呈平板结构,所述外板件呈内凹板结构。
  7. 根据权利要求3所述的体外膜肺氧合器,其特征在于,所述温控介质流出流道的外端设有温控介质流出接口,用于供温控介质流出;所述氧合介质流出流道的外端设有氧合介质流出接口,用于供氧合介质流出;
    所述温控介质流入流道的外端设有温控介质流入接口,用于供温控介质流入;所述氧合介质流出流道的外端设有氧合介质流入接口,用于供氧合介质流入;
    所述温控介质流出接口、氧合介质流出接口沿着所述第一端盖的外圆的切线方向延伸,所述温控介质流入接口、氧合介质流入接口沿着所述第二端盖的外圆的切线方向延伸。
  8. 根据权利要求2所述的体外膜肺氧合器,其特征在于,所述温控组件包括温控纤维膜和充盈在所述温控纤维膜中的温控介质,所述气体交换组件包括氧合纤维膜和充盈在所述氧合纤维膜中的氧合介质;所述温控腔和所述气体交换腔关于所述主壳体的中心轴呈中心对称设置。
  9. 根据权利要求8所述的体外膜肺氧合器,其特征在于,所述温控纤维膜与所述氧合纤维膜均采用层叠卷绕方式设置,所述温控纤维膜的数量与所述温控介质流入流道或所述温控介质流出流道的层数量相等,所述氧合纤维膜的数量与所述氧合介质流入流道或所述氧合介质流出流道的数量相等。
  10. 根据权利要求1所述的体外膜肺氧合器,其特征在于,所述截面积按照下述公式变化:
    Figure PCTCN2022070238-appb-100001
    上述公式中:沿流体流动方向划分任意两个截面微元,该两个截面微元的截面面积分别为A 1、A 2,介质流过该两个截面微元的流量分别为Q 1、Q 2;R为螺旋渐开构造的最外层轮廓的半径;r为螺旋渐开构造的最内层轮廓的半径;f D为达西摩擦因子;P为螺旋渐开构造流道的宽度。
PCT/CN2022/070238 2021-01-15 2022-01-05 体外膜肺氧合器 WO2022152014A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110057774 2021-01-15
CN202110057774.8 2021-01-15
CN202110605575.6 2021-05-31
CN202110605575.6A CN113209406B (zh) 2021-01-15 2021-05-31 体外膜肺氧合器

Publications (1)

Publication Number Publication Date
WO2022152014A1 true WO2022152014A1 (zh) 2022-07-21

Family

ID=77081891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070238 WO2022152014A1 (zh) 2021-01-15 2022-01-05 体外膜肺氧合器

Country Status (2)

Country Link
CN (1) CN113209406B (zh)
WO (1) WO2022152014A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115192807A (zh) * 2022-07-27 2022-10-18 北京航天长峰股份有限公司 一种氧合器及体外膜肺氧合装置
CN117504027A (zh) * 2024-01-04 2024-02-06 江苏泰斯特生物科技有限公司 一种用于实验动物的血液灌流装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209406B (zh) * 2021-01-15 2022-04-26 苏州心擎医疗技术有限公司 体外膜肺氧合器
CN114642780B (zh) * 2022-02-16 2022-10-14 山东威高新生医疗器械有限公司 新型集成式膜式氧合器
CN115607759B (zh) * 2022-10-31 2023-04-28 北京航空航天大学 一种血液氧合器
CN116036397B (zh) * 2023-03-06 2023-07-04 深圳汉诺医疗科技有限公司 一种立式膜肺氧合装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892533A (en) * 1973-03-02 1975-07-01 Sci Med Oxygenator gas distribution header
US4111659A (en) * 1974-09-25 1978-09-05 Graeme L. Hammond Mass and heat transfer exchange apparatus
US5270004A (en) * 1989-10-01 1993-12-14 Minntech Corporation Cylindrical blood heater/oxygenator
US5651765A (en) * 1995-04-27 1997-07-29 Avecor Cardiovascular Inc. Blood filter with concentric pleats and method of use
CN105833373A (zh) * 2016-06-13 2016-08-10 北京米道斯医疗器械有限公司 一种中空纤维膜式氧合器及方法
CN107514390A (zh) * 2016-06-16 2017-12-26 浙江三花汽车零部件有限公司 流体泵
CN211400938U (zh) * 2019-11-29 2020-09-01 杭州三花研究院有限公司 一种集流件及换热器
CN113209406A (zh) * 2021-01-15 2021-08-06 苏州心擎医疗技术有限公司 体外膜肺氧合器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113782A (en) * 1998-07-28 2000-09-05 Terumo Cardiovascular Systems Corporation Potting of tubular bundles in housing
WO2015100288A1 (en) * 2013-12-23 2015-07-02 University Of Maryland, Baltimore Blood oxygenator
CN106163584B (zh) * 2014-01-20 2019-03-19 优罗塞斯有限责任公司 用于病人血液体外氧合的装置
WO2019035869A1 (en) * 2017-08-15 2019-02-21 University Of Maryland, Baltimore DOUBLE CHAMBER GAS EXCHANGER AND METHOD OF USE FOR RESPIRATORY ASSISTANCE
CN111407945A (zh) * 2020-04-23 2020-07-14 美茵(北京)医疗器械研发有限公司 血液氧合流转装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892533A (en) * 1973-03-02 1975-07-01 Sci Med Oxygenator gas distribution header
US4111659A (en) * 1974-09-25 1978-09-05 Graeme L. Hammond Mass and heat transfer exchange apparatus
US5270004A (en) * 1989-10-01 1993-12-14 Minntech Corporation Cylindrical blood heater/oxygenator
US5651765A (en) * 1995-04-27 1997-07-29 Avecor Cardiovascular Inc. Blood filter with concentric pleats and method of use
CN105833373A (zh) * 2016-06-13 2016-08-10 北京米道斯医疗器械有限公司 一种中空纤维膜式氧合器及方法
CN107514390A (zh) * 2016-06-16 2017-12-26 浙江三花汽车零部件有限公司 流体泵
CN211400938U (zh) * 2019-11-29 2020-09-01 杭州三花研究院有限公司 一种集流件及换热器
CN113209406A (zh) * 2021-01-15 2021-08-06 苏州心擎医疗技术有限公司 体外膜肺氧合器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115192807A (zh) * 2022-07-27 2022-10-18 北京航天长峰股份有限公司 一种氧合器及体外膜肺氧合装置
CN117504027A (zh) * 2024-01-04 2024-02-06 江苏泰斯特生物科技有限公司 一种用于实验动物的血液灌流装置

Also Published As

Publication number Publication date
CN113209406A (zh) 2021-08-06
CN113209406B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2022152014A1 (zh) 体外膜肺氧合器
US20210346581A1 (en) Blood oxygenator
US8545754B2 (en) Radial design oxygenator with heat exchanger
CN109224163B (zh) 一种热交换层外置的中空纤维膜式氧合器
CN113398354B9 (zh) 集成式膜式氧合器
CN201510571U (zh) 膜式氧合器
WO2011099610A1 (ja) 熱交換器および熱交換器一体型人工肺
US20100272606A1 (en) Radial flow oxygenator/heat exchanger
CN113509605B (zh) 膜式氧合器
CN204364532U (zh) 一种膜式氧合器
CN208893292U (zh) 一种螺旋导流集成式膜式氧合器
CN107432960A (zh) 一种双螺旋导流集成式膜式氧合器
CN107638601B (zh) 一种丝膜结构及膜式氧合器
CN107485744A (zh) 一种膜式氧合器
CN214550466U (zh) 一种膜式氧合器
WO2018001177A1 (zh) 医用插管
CN208770516U (zh) 一种双螺旋导流集成式膜式氧合器
US20100272605A1 (en) Radial design oxygenator with heat exchanger and pump
CN112546321B (zh) 一种膜式氧合器
WO2024011988A1 (zh) 氧合器
CN115920161B (zh) 氧合器
CN219743501U (zh) 一种氧合器
CN117122814B (zh) 一种泵头氧合器组件和体外膜肺氧合系统
KR101762228B1 (ko) 혈액 산화기
CN117563071A (zh) 一种立式氧合设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738895

Country of ref document: EP

Kind code of ref document: A1