WO2022151982A1 - 一种测量等离子体离子非广延参数的方法 - Google Patents

一种测量等离子体离子非广延参数的方法 Download PDF

Info

Publication number
WO2022151982A1
WO2022151982A1 PCT/CN2021/142834 CN2021142834W WO2022151982A1 WO 2022151982 A1 WO2022151982 A1 WO 2022151982A1 CN 2021142834 W CN2021142834 W CN 2021142834W WO 2022151982 A1 WO2022151982 A1 WO 2022151982A1
Authority
WO
WIPO (PCT)
Prior art keywords
extensive
plasma
ion
geodesic
parameter
Prior art date
Application number
PCT/CN2021/142834
Other languages
English (en)
French (fr)
Inventor
邱慧斌
肖东华
彭行坤
张显阳
朱宇晴
袁尤龙
蔡奇龙
常晋铭
邹雯旭
胡天一
李嘉恒
高玥
明智毅
王章天
刘三秋
Original Assignee
南昌大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌大学 filed Critical 南昌大学
Publication of WO2022151982A1 publication Critical patent/WO2022151982A1/zh
Priority to US18/107,239 priority Critical patent/US11856682B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0087Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by magnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the invention relates to the technical field of plasma ion non-extensive parameter measurement, in particular to a method for measuring plasma ion non-extensive parameters.
  • Plasma is the fourth state of matter different from solids, liquids and gases. Matter is made up of molecules, and molecules are made of atoms, and atoms are made up of a positively charged nucleus and negatively charged electrons surrounding it. When heated to a high enough temperature or for other reasons, the outer electrons are freed from the shackles of the nucleus and become free electrons, just like the students running to the playground after class to play at will. The electrons leave the nucleus, a process called "ionization". At this time, the matter becomes a uniform "paste" composed of positively charged nuclei and negatively charged electrons, so people jokingly call it ionic plasma. The total amount of positive and negative charges in these ionic plasmas is equal. Therefore it is approximately electrically neutral.
  • the present invention designs a method for measuring the non-extensive parameters of plasma ions.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a method for measuring the non-extensive parameters of plasma ions, which fills in the non-extensive parameters in the diagnosis of the non-extensive parameters.
  • the corresponding ion non-extensive parameters cannot be diagnosed yet; it can be extended to the ion non-extensive parameter diagnosis methods including plasma elongation, triangle deformation and electron effects.
  • the invention discloses a method for measuring non-extensive parameters of plasma ions, comprising the following steps:
  • Step S1 describe the plasma with non-extensive statistical mechanics, and obtain a formula describing the relationship between the frequency of the geodesic acoustic mode and the sound velocity of the plasma ions;
  • Step S2 collecting the measurement data of the frequency of the geodesic acoustic mode and the plasma temperature in the device where the plasma to be measured is located;
  • Step S3 use the formula obtained in step S1 to describe the relationship between the frequency of the geodesic acoustic mode and the speed of sound of the plasma ions to the frequency and plasma temperature of the geodesic acoustic mode in the device where the plasma to be measured is collected in step S2.
  • the measured data are linearly fitted to obtain the slope value;
  • Step S4 according to the formula obtained in step S1 and the slope value obtained in step S3, and in combination with the safety factor of the device where the measured plasma is located, numerically solve to obtain the ion non-extension parameter;
  • the formula describing the relationship between the geodesic acoustic mode frequency and the non-extensive parameter of the plasma ion in the step S1 is as follows:
  • v ti is the thermal velocity of the ion
  • c s is the ion sound velocity
  • R 0 is the large radius of the tokamak
  • q is the safety factor of the device.
  • step S5 is also included to calculate the goodness of fit curve
  • Step S6 obtain the ion non-extensive parameter value corresponding to the minimum SSE
  • Step S7 calculate the goodness of fit curve
  • Step S8 obtain the ion non-extensive parameter value corresponding to the maximum R 2 ;
  • Step S9 compare the ion non-extensive parameters obtained in step S8 and step S6;
  • step S10 check whether the two results in step S9 are consistent. If the results are consistent, it is confirmed as the optimal ion non-extensive parameter, and the obtained optimal ion non-extensive parameter is used to substitute the data in steps S3 and S4. group to obtain the data group corresponding to the optimal ion non-extensive parameters;
  • Step S11 output a measurement result report.
  • the device where the plasma to be measured is located is a T-10 tokamak device.
  • the present invention fills the gap in the non-extensive parameter diagnosis, where the electronic non-extensive parameters can be measured by the non-extensive electric single probe and the corresponding ion non-extensive parameters cannot be diagnosed; In the ionic non-extensive parameter diagnosis method for the effects of long, triangular and electronic effects.
  • Fig. 1 is the structure schematic diagram of the method HIBP and non-extended electric probe used for measuring the frequency of T-10 tokamak device in the present invention
  • Fig. 2 is the data analysis of the geodesic acoustic mode experiment on the T-10 tokamak device in the present invention
  • Fig. 3 is the ion non-extensive parameter measurement diagram of the plasma generated by 36815 discharges of the T-10 tokamak device in the present invention
  • Fig. 4 is the statistical quantity SSE analysis figure of optimal ion non-extensive parameter in the present invention.
  • FIG. 5 is an analysis diagram of the statistic R 2 of the optimal ion non-extensive parameter in the present invention.
  • the invention discloses a method for measuring the non-extensive parameters of plasma ions.
  • the theory of geoacoustic mode is generalized as a theory under the framework of non-extensive statistics.
  • the obtained geodesic modal dispersion relation under the non-extensive statistical framework is as follows:
  • the above formula is stated as follows:
  • the geodesic acoustic mode frequency is proportional to the ion sound velocity, which is supported by fluid and kinetic theory and experimental data, but unlike the theory under the extended statistical framework, the proportionality factor is not only a function of the safety factor, And it is also a function of the non-extensive parameter: the proportionality coefficient decreases with the increase of the safety factor, and also decreases with the increase of the ionic non-extensive parameter; the formula (2) is brought into the formula (1), and c s is about Equal to v ti , we get the following formula:
  • the frequency measurement method HIBP and the T-10 tokamak shown in Figure 1 are used.
  • Non-extensive electrical probes first measure a set of geodesic acoustic mode frequencies and electron temperatures for the plasma to be measured in a specific tokamak device.
  • 4 experimental data points are obtained for the plasma generated by 36815 discharges of the T-10 tokamak device;
  • the invention fills the gap in the non-extensive parameter diagnosis, where the electronic non-extensive parameters can be measured by the non-extensive electric single probe and the corresponding ion non-extensive parameters cannot be diagnosed; In ionic non-extensive parametric diagnostic methods for triangular and electron-equivalent effects.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

一种测量等离子体离子非广延参数的方法,包括如下步骤:用非广延统计力学描述等离子体,求得描述测地声模频率与等离子体离子声速之间关系的公式;收集待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据;利用求得的描述测地声模频率与等离子体离子声速之间关系的公式对收集到的待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据进行线性拟合得到斜率值;根据求得的公式和得到的斜率值,并结合所测等离子体所在装置的安全因子,数值求解得到离子非广延参数。填补了在非广延参数诊断中,电子非广延参数已可由非广延电单探针测得而对应的离子非广延参数还无法诊断的空白。

Description

一种测量等离子体离子非广延参数的方法 技术领域
本发明涉及等离子体离子非广延参数测量技术领域,尤其涉及一种测量等离子体离子非广延参数的方法。
背景技术
等离子体是不同于固体、液体和气体的物质第四态。物质由分子构成,分子由原子构成,原子由带正电的原子核和围绕它的带负电的电子构成。当被加热到足够高的温度或其它原因,外层电子摆脱原子核的束缚成为自由电子,就像下课后的学生跑到操场上随意玩耍一样。电子离开原子核,这个过程就叫做“电离”。这时,物质就变成了由带正电的原子核和带负电的电子组成的、一团均匀的“浆糊”,因此人们戏称它为离子浆,这些离子浆中正负电荷总量相等,因此它是近似电中性的。
理论分析和大量实验证明等离子体各成分不满足玻尔兹曼-吉布斯统计而可由非广延统计力学很好地描述。非广延效应的考虑对等离子体参数的精确诊断至关重要,当不考虑非广延效应时,电探针诊断误差可能高达83.91%,于是我们必须考虑非广延参数的影响,从而非广延参数的测量是必须进行的一件事。常见的等离子体非广延参数有电子非广延参数和离子非广延参数。电子非广延参数我们已经能够测量,然而离子非广延参数还不能测出。
正是基于上述原因,本发明设计了一种测量等离子体离子非广延参数的方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种测量等离子体离子非广延参数的方法,填补了非广延参数诊断中,电子非广延参数已可由非广延电单探针测得而对应的离子非广延参数还无法诊断的空白;能够推广到包含等离子体拉长、三角形变和电子等效应的离子非广延参数诊断方法中。
为了实现本发明的目的,本发明采用的技术方案为:
本发明公开了一种测量等离子体离子非广延参数的方法,包括如下步骤:
步骤S1,用非广延统计力学描述等离子体,求得描述测地声模频率与等离子体离子声速之间关系的公式;
步骤S2,收集待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据;
步骤S3,利用步骤S1求得的描述测地声模频率与等离子体离子声速之间关系的公式对步骤S2中收集到的待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据进行线性拟合得到斜率值;
步骤S4,根据步骤S1求得的公式和步骤S3得到的斜率值,并结合所测等离子体所在装置的安全因子,数值求解得到离子非广延参数;
优选的,所述步骤S1中描述测地声模频率与等离子体离子非广延参数的关系的公式如下,
Figure PCTCN2021142834-appb-000001
上式中:v ti为离子的热速度,c s为离子声速,
Figure PCTCN2021142834-appb-000002
为等离子体离子非广延参数,R 0为托卡马克大半径,q为装置的安全因子。
优选的,还包括步骤S5,作拟合优度
Figure PCTCN2021142834-appb-000003
曲线;
步骤S6,求得最小SSE对应的离子非广延参数值;
步骤S7,作拟合优度
Figure PCTCN2021142834-appb-000004
曲线;
步骤S8,求得最大R 2对应的离子非广延参数值;
步骤S9,将步骤S8和步骤S6求得的离子非广延参数进行对照;
步骤S10,看步骤S9两结果对照是否一致,如果结果为一致,则确认为最优离子非广 延参数,并利用求得的最优离子非广延参数,代入步骤S3和步骤S4中的数据组,得到最优离子非广延参数对应的数据组;
步骤S11,输出测量结果报告。
优选的,步骤S2中,所述待测等离子体所在装置为T-10托卡马克装置。
本发明的有益效果在于:
1.本发明填补了非广延参数诊断中,电子非广延参数已可由非广延电单探针测得而对应的离子非广延参数还无法诊断的空白;能够推广到包含等离子体拉长、三角形变和电子等效应的离子非广延参数诊断方法中。
附图说明
图1为本发明中T-10托卡马克装置已使用的测频率的方法HIBP和非广延电探针的结构示意图;
图2为本发明中T-10托卡马克装置上测地声模实验数据分析;
图3为本发明中T-10托卡马克装置36815次放电产生的等离子体的离子非广延参数测量图;
图4为本发明中最优离子非广延参数的统计量SSE分析图;
图5为本发明中最优离子非广延参数的统计量R 2分析图。
图中,1离子枪,2缺陷板,3主光束,4次级光束,5主光束探测器,6静电分析器。
具体实施方式
下面结合附图和实施例对本发明进一步说明:
参见图1-5。
本发明公开了一种测量等离子体离子非广延参数的方法,为了获得与实验相一致的非广延统计框架下测地声模理论,将玻尔兹曼-吉布斯统计框架下的测地声模理论推广为非广延统计框架下的理论。获得的非广延统计框架下测地声模色散关系如下:
Figure PCTCN2021142834-appb-000005
其中
Figure PCTCN2021142834-appb-000006
以上公式阐述如下:测地声模频率与离子声速成正比,这被流体和动理学理论及实验数据所支持,但与广延统计框架下的理论不同的是比例系数不仅是安全因子的函数,而且还是非广延参数的函数:比例系数随安全因子增大而减小,也随离子非广延参数的增大而减小;将公式(2)带入公式(1),且c s约等于v ti,得到下式:
Figure PCTCN2021142834-appb-000007
这表明测地声模f GAM-c s/2πR 0曲线(离子非广延参数诊断的理论基石)对非广延参数有较为复杂的依赖关系,这不同于传统的(不含非广延参数的)测地声模理论;另外我们发现,在广延极限
Figure PCTCN2021142834-appb-000008
下,上述结果都回到传统的玻尔兹曼-吉布斯统计框架下的理论,这证明了非广延理论的正确性和普适性(更大的适用范围)。
上面的分析已经表明非广延参数对测地声模f GAM-c s/2πR 0曲线有影响,下面我们将阐述如何基于此理论测量连非广延电单探针都无法测得的离子非广延参数。
如图2所示,为了测量离子非广延参数,我们首先可以通过现在已有的方法,本实施例采用如图1所示的T-10托卡马克装置已使用的测频率的方法HIBP和非广延电探针,先测得一组针对特定托卡马克装置中待测等离子体的测地声模频率和电子温度等。本文针对T-10托卡马克装置36815次放电产生的等离子体获得4个实验数据点;
如图3所示,然后采用最小二乘法对这一组实验数据进行拟合。由于理论和实验都证明f GAM和c s/2πR 0成正比例函数关系,于是我们作无截距的正比例函数一次拟合,发现, 最优斜率为
Figure PCTCN2021142834-appb-000009
见下表1,
表1 T-10托卡马克装置36815次放电产生的等离子体相关参量
Figure PCTCN2021142834-appb-000010
再根据公式(2),得知此时安全因子q和离子非广延参数
Figure PCTCN2021142834-appb-000011
间的关系。由于T-10托卡马克装置36815次放电的安全因子q=3.3,于是可解得对应的离子非广延参数
Figure PCTCN2021142834-appb-000012
4条曲线是公式(2)结合f GAM-c s/2πR 0图拟合得到的斜率
Figure PCTCN2021142834-appb-000013
给出的
Figure PCTCN2021142834-appb-000014
图。从图中可以看出,存在四族解,这里我们从物理意义的角度,只考虑实曲线代表的一族解。
Figure PCTCN2021142834-appb-000015
是T-10托卡马克装置36815次放电(安全因子q=3.3)产生的等离子体的离子非广延参数。
如图4所示,为了阐述
Figure PCTCN2021142834-appb-000016
是最优离子非广延参数,我们对统计量SSE和R 2进行分析。我们发现:当离子非广延参数
Figure PCTCN2021142834-appb-000017
为不同值时,SSE取不同值,且在
Figure PCTCN2021142834-appb-000018
时取得最小值,说明
Figure PCTCN2021142834-appb-000019
是最优离子非广延参数。为了确认采用统计量SSE衡量所得结果的可靠性。
如图5所示,我们还对另一个独立的指标R 2进行了分析,并作了
Figure PCTCN2021142834-appb-000020
图,发现也是在
Figure PCTCN2021142834-appb-000021
时,R 2取得最大值,这就确证了
Figure PCTCN2021142834-appb-000022
是最优离子非广延参数,也就是T-10装置36815次放电产生的等离子体的离子非广延参数的测量结果为
Figure PCTCN2021142834-appb-000023
研究结果显示:一种离子非广延参数的测量方法的有效性,在T-10托卡马克装置中。最近的研究表明:用非广延统计力学取代玻尔兹曼-吉布斯统计力学来描述等离子体具有很强的优越性。不采用非广延统计力学来描述等离子体的诊断结果误差可能高达83.91%。我们通过引入非广延统计力学从而计及已被大量事实证明了的系统的非广延性而建立的非广延测地声模理论,不仅在广延极限时可以得到传统的测地声模相关结果,这佐证非广延测地声模理论的正确性,而且结合现有的测地声模频率和等离子体电子温度诊断方法(如:非广延电探针),可测量连非广延电单探针都无法测出的离子非广延参数(
Figure PCTCN2021142834-appb-000024
见图3)。
本发明填补了非广延参数诊断中,电子非广延参数已可由非广延电单探针测得而对应 的离子非广延参数还无法诊断的空白;能够推广到包含等离子体拉长、三角形变和电子等效应的离子非广延参数诊断方法中。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

  1. 一种测量等离子体离子非广延参数的方法,其特征在于,包括如下步骤:
    步骤S1,用非广延统计力学描述等离子体,求得描述测地声模频率与等离子体离子声速之间关系的公式;
    步骤S2,收集待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据;
    步骤S3,利用步骤S1求得的描述测地声模频率与等离子体离子声速之间关系的公式对步骤S2中收集到的待测等离子体所在装置中的测地声模的频率和等离子体温度的测量数据进行线性拟合得到斜率值;
    步骤S4,根据步骤S1求得的公式和步骤S3得到的斜率值,并结合所测等离子体所在装置的安全因子,数值求解得到离子非广延参数。
  2. 根据权利要求1所述的一种测量等离子体离子非广延参数的方法,其特征在于:所述步骤S1中描述测地声模频率与等离子体离子非广延参数的关系的公式如下,
    Figure PCTCN2021142834-appb-100001
    上式中:v ti为离子的热速度,c s为离子声速,
    Figure PCTCN2021142834-appb-100002
    为等离子体离子非广延参数,R 0为托卡马克大半径,q为装置的安全因子。
  3. 根据权利要求1所述的一种测量等离子体离子非广延参数的方法,其特征在于:还包括步骤S5,作拟合优度
    Figure PCTCN2021142834-appb-100003
    曲线;
    步骤S6,求得最小SSE对应的离子非广延参数值;
    步骤S7,作拟合优度
    Figure PCTCN2021142834-appb-100004
    曲线;
    步骤S8,求得最大R 2对应的离子非广延参数值;
    步骤S9,将步骤S8和步骤S6求得的离子非广延参数进行对照;
    步骤S10,看步骤S9两结果对照是否一致,如果结果为一致,则确认为最优离子非广延参数,并利用求得的最优离子非广延参数,代入步骤S3和步骤S4中的数据组,得到最优离子非广延参数对应的数据组;
    步骤S11,输出测量结果报告。
  4. 根据权利要求1所述的一种测量等离子体离子非广延参数的方法,其特征在于:步骤S2中,所述待测等离子体所在装置为T-10托卡马克装置。
PCT/CN2021/142834 2021-01-18 2021-12-30 一种测量等离子体离子非广延参数的方法 WO2022151982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/107,239 US11856682B2 (en) 2021-01-18 2023-02-08 Method for measuring plasma ion nonextensive parameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110059985.5 2021-01-18
CN202110059985.5A CN112888128B (zh) 2021-01-18 2021-01-18 一种测量等离子体离子非广延参数的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/107,239 Continuation US11856682B2 (en) 2021-01-18 2023-02-08 Method for measuring plasma ion nonextensive parameter

Publications (1)

Publication Number Publication Date
WO2022151982A1 true WO2022151982A1 (zh) 2022-07-21

Family

ID=76048679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142834 WO2022151982A1 (zh) 2021-01-18 2021-12-30 一种测量等离子体离子非广延参数的方法

Country Status (3)

Country Link
US (1) US11856682B2 (zh)
CN (1) CN112888128B (zh)
WO (1) WO2022151982A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740558B (zh) * 2019-10-18 2021-05-07 南昌大学 一种测量等离子体电子非广延参数的方法
CN112888128B (zh) * 2021-01-18 2023-04-07 南昌大学 一种测量等离子体离子非广延参数的方法
CN113779855B (zh) * 2021-09-02 2024-02-06 大连理工大学 一种用于求解托卡马克等离子体中鱼骨模色散关系的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650663A (zh) * 2011-02-28 2012-08-29 中国科学院空间科学与应用研究中心 一种获取等离子体伏安特性曲线方法
CN103218755A (zh) * 2013-04-24 2013-07-24 国家电网公司 采用反非广延熵的微电网测评方法
KR101459518B1 (ko) * 2013-08-08 2014-11-10 한양대학교 산학협력단 플라즈마 처리 장비 및 이를 이용한 플라즈마 변수 측정 방법
CN106413237A (zh) * 2016-10-31 2017-02-15 大连理工大学 一种基于数据采集卡的多振幅交流偏置探针等离子体诊断方法
CN106568805A (zh) * 2016-11-08 2017-04-19 华中科技大学 一种高集成度朗缪尔探针诊断系统及方法
CN109507489A (zh) * 2018-10-18 2019-03-22 北京理工大学 一种用于低温等离子体电位诊断的探针系统
CN110740558A (zh) * 2019-10-18 2020-01-31 南昌大学 一种测量等离子体电子非广延参数的方法
CN112888128A (zh) * 2021-01-18 2021-06-01 南昌大学 一种测量等离子体离子非广延参数的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203960A (en) * 1989-03-09 1993-04-20 Applied Microwave Plasma Concepts, Inc. Method of operation of electron cyclotron resonance plasma source
US7323116B2 (en) * 2004-09-27 2008-01-29 Lam Research Corporation Methods and apparatus for monitoring a process in a plasma processing system by measuring self-bias voltage
US7691226B2 (en) * 2005-03-24 2010-04-06 Tokyo Electron Limited Electron temperature measurement method, electron temperature measurement program for implementing the method, and storage medium storing the electron temperature measurement program
CN102109547B (zh) * 2009-12-24 2013-06-26 核工业西南物理研究院 托卡马克装置强场侧扫描探针系统
US20120283973A1 (en) * 2011-05-05 2012-11-08 Imec Plasma probe and method for plasma diagnostics
CN108037173B (zh) * 2017-12-06 2020-11-03 上海无线电设备研究所 一种超高声速二维等离子体鞘套的测试系统及方法
CN109640501B (zh) * 2018-11-20 2021-04-02 上海无线电设备研究所 一种非均匀等离子体电子密度的诊断系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650663A (zh) * 2011-02-28 2012-08-29 中国科学院空间科学与应用研究中心 一种获取等离子体伏安特性曲线方法
CN103218755A (zh) * 2013-04-24 2013-07-24 国家电网公司 采用反非广延熵的微电网测评方法
KR101459518B1 (ko) * 2013-08-08 2014-11-10 한양대학교 산학협력단 플라즈마 처리 장비 및 이를 이용한 플라즈마 변수 측정 방법
CN106413237A (zh) * 2016-10-31 2017-02-15 大连理工大学 一种基于数据采集卡的多振幅交流偏置探针等离子体诊断方法
CN106568805A (zh) * 2016-11-08 2017-04-19 华中科技大学 一种高集成度朗缪尔探针诊断系统及方法
CN109507489A (zh) * 2018-10-18 2019-03-22 北京理工大学 一种用于低温等离子体电位诊断的探针系统
CN110740558A (zh) * 2019-10-18 2020-01-31 南昌大学 一种测量等离子体电子非广延参数的方法
CN112888128A (zh) * 2021-01-18 2021-06-01 南昌大学 一种测量等离子体离子非广延参数的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI HONGWEI, CHEN XIAOCHANG; LIU SANQIU: "Debye Shielding Length in a Nonextensive Plasma", JOURNAL OF NANCHANG UNIVERSITY (NATURAL SCIENCE), vol. 41, no. 2, 1 April 2017 (2017-04-01), pages 118 - 121, XP055804024, ISSN: 1006-0464, DOI: 10.13764/j.cnki.ncdl.2017.02.004 *

Also Published As

Publication number Publication date
CN112888128B (zh) 2023-04-07
US11856682B2 (en) 2023-12-26
US20230189423A1 (en) 2023-06-15
CN112888128A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022151982A1 (zh) 一种测量等离子体离子非广延参数的方法
Li et al. A single particle model for lithium-ion batteries with electrolyte and stress-enhanced diffusion physics
JPH0495788A (ja) 据置用鉛蓄電池の寿命判定方法
CN109856557A (zh) 一种在线监控锂离子电池电化学阻抗测试方法
CN106771755A (zh) 一种基于回复电压的变压器油纸绝缘老化状况分析方法
DE102011054459A1 (de) Anodengaszusammensetzung unter Ausnutzung von H2-Einspritzdruckwellen-Propagationsraten
CN106841935A (zh) 用于绝缘介质老化状态评估的时域测试系统及评估方法
Zhu et al. Operando odd random phase electrochemical impedance spectroscopy as a promising tool for monitoring lithium-ion batteries during fast charging
Wang et al. A hybrid genetic algorithm and Levenberg–Marquardt (GA–LM) method for cell suspension measurement with electrical impedance spectroscopy
CN115684801A (zh) 一种霍尔推力器在轨运行状态监测方法及系统
Wang et al. In Situ Detection of Lithium‐Ion Battery Pack Capacity Inconsistency Using Magnetic Field Scanning Imaging
CN114660387A (zh) 基于泄漏电流传感器和bp神经网络算法的避雷器监控方法
Jiang et al. An electromechanical coupling model-based state of charge estimation method for lithium-ion pouch battery modules
CN108918985A (zh) 一种基于电声脉冲法恢复空间电荷分布的改进方法
CN105937876A (zh) 一种变压器绕组变形的检测系统及其检测方法
CN101191778B (zh) 一种判断石墨电化学性能的方法
CN207945786U (zh) 电池内阻检测电路及储能电池空调
Zhang et al. Electrochemical impedance spectroscopy
Heaney et al. Electronic cell counting to measure total cell numbers in bronchoalveolar lavage fluid
CN112711894B (zh) 一种在轨元器件抗单粒子能力量化评定方法
Xiong et al. Battery Test
CN117665080A (zh) 参比电极测量误差的确定方法、装置、介质、设备及车辆
JPS5825144A (ja) 血液分析方法およびその装置
Tatel The pulse amplifier in theory and experiment
Deng et al. Determination of space-charge distribution under ultra-high-voltage direct current transmission lines based on air filtration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919169

Country of ref document: EP

Kind code of ref document: A1