WO2022151929A1 - 一种大口径工程管道的生产方法 - Google Patents

一种大口径工程管道的生产方法 Download PDF

Info

Publication number
WO2022151929A1
WO2022151929A1 PCT/CN2021/139885 CN2021139885W WO2022151929A1 WO 2022151929 A1 WO2022151929 A1 WO 2022151929A1 CN 2021139885 W CN2021139885 W CN 2021139885W WO 2022151929 A1 WO2022151929 A1 WO 2022151929A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
pipeline
diameter
core mold
fiber
Prior art date
Application number
PCT/CN2021/139885
Other languages
English (en)
French (fr)
Inventor
肖学良
陈天骄
黄夏妍
崔梓盈
许润欣
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022151929A1 publication Critical patent/WO2022151929A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon

Definitions

  • the invention relates to the technical field of processing large-diameter RTP pipes, in particular to a production method for large-diameter engineering pipes.
  • Large-diameter pipes are mostly prepared by extrusion molding technology of polymers (such as PP, PE, PVC, etc.) or fiber-reinforced thermoplastic pipe-forming technology, in order to make large-diameter pipes have good compression resistance.
  • the rigidity is generally covered with a layer of reinforcing ribs around the diameter of the pipe.
  • the strong rib can be a hollow surrounding pipe, a spiral steel sheet coil, or a fiber braided structure, so that the mechanical performance indicators such as the ring rigidity of the large-diameter pipe can meet the construction requirements.
  • the cost of the plastic matrix of the pipeline such as PP or PVC is about 10,000 yuan per ton
  • the calcium powder is about 1,000 yuan per ton
  • the overall cost of the pipeline is about 7,000 yuan per ton.
  • the transportation cost of a pipeline is 10,000 to 20,000 yuan per piece, which greatly limits the profit margin of the company.
  • the applicant of the present invention provides a production method for a large-diameter engineering pipeline.
  • the invention divides the traditional large-diameter pipeline production method into several processes to complete in several locations, the weaving and dipping production links are carried out in the factory area, and the technical guarantee and effectiveness of production are provided, and the curing process of the resin in the pipeline can be carried out in the pipeline.
  • Engineering applications are carried out on the construction site. Through the compressed transportation of the temporary shape of the pipeline, the pipeline transportation cost of the intermediate link is effectively reduced.
  • a production method of a large-diameter engineering pipeline comprising the following steps:
  • the wet fibers are wound on a core mold to form an inner fiber winding layer, and then woven to form an intermediate fiber woven layer, and finally the outer layer is wound to form an outer fiber winding layer to obtain Three-layer structure of large-diameter engineering pipeline prefab; it is in a wet and uncured state;
  • step (2) Deformation of the preform, deforming the core mold of the preform obtained in step (1), from a circular pipe to a folded sheet structure, and then using PP film or PE film for packaging, which is convenient for transportation to the construction site;
  • step (1) the wet fiber is obtained by impregnating the fiber with a liquid resin, and the liquid resin is prepared by compounding a corrosion-resistant, wear-resistant or shape-memory resin with calcium silicon powder.
  • step (1) the inner fiber winding layer and the outer fiber winding layer are both obtained by winding wet fibers back and forth along the axial direction of the core mold; the middle fiber weaving layer is obtained by multi-directional weaving or fiber coil bundling.
  • the core mold is a deformable core mold, and its cross-sectional shape can be changed from a circular shape to a sheet-like structure, and the inner perimeter of the large-diameter pipe is kept unchanged before and after deformation.
  • step (2) the preform folded into a sheet-like structure is stored in a cooling chamber, and during transportation, the condition is lower than the curing temperature of the resin for transportation.
  • step (4) the method of curing is heating and curing in a high-temperature warehouse or heating the heating module at normal temperature; wherein the heating method of the heating module is that the heating module moves slowly on the surface of the pipeline, controls the resin curing temperature and moving speed, and waits for the overall pipeline resin to be cured. After that, the heating is completed; if a modified resin is used, the resin is cured by spraying an oxidant on the surface of the pipe.
  • the core mold is composed of 8 telescopic rods, a driving device and a contact device; the driving mode is electric or pneumatic, and each telescopic rod can be extended or contracted independently; Length, changing to a shape that accommodates the deformation of the supporting pipe.
  • the flexibility of the resin is particularly important.
  • the application of the present invention adopts the resin to be cured under different environmental stimuli, and the resin polymer can be formed by high-temperature curing.
  • Cross-linking for example, the macromolecule of epoxy resin forms a three-dimensional cross-linked network at high temperature and is irreversible.
  • the formed cured epoxy resin has excellent mechanical properties such as stiffness and strength, and meets the requirements and standards of pipeline use.
  • the present invention also designs and prepares a type of modified resin for the matrix of fiber braided pipes.
  • the resin contains reversible covalent bonds - disulfide bonds.
  • oxidants and other stimuli can also be used to make the resin cross-link and cure.
  • the cured resin can also meet the use standards and requirements of the pipeline, or even higher, because the introduction of the polymer system into the polymer system.
  • the new small molecule branch chain adds new covalent bond cross-linking points, and the cured modified resin is stronger and more stable in terms of mechanical indicators (ring stiffness and ring flexibility, etc.), and has a longer service life.
  • the small molecular branch chain introduced from the resin polymer system can better improve the interface bonding strength, improve the bonding fastness of the material, and also increase the mechanical index during the contact process with the fiber surface.
  • the molecular structure of the modified resin is modified by taking bisphenol A epoxy resin as an example.
  • the modification principle of other types of resin macromolecules is the same, that is, the specific functional group of the resin macromolecule is grafted containing disulfide. Bonds or small molecular segments of sulfhydryl groups, through the breaking and bonding of disulfide bonds, realize the processing technology of braided pipes at different locations:
  • the disulfide bonds are reversible covalent bonds, the disulfide bonds in the resin can be destroyed by UV light of a specific power (such as 254nm band) to form cross-links.
  • a fluid resin whose junction is a mercapto group.
  • the modified flowing resin is used to spray glue to become a wet pipe.
  • the pipeline enters the construction site use the variable mandrel to restore the shape of the pipeline, and spray the hydrogen peroxide solution (H 2 O 2 ) inside and outside the wet glue spray pipeline after the shape has been restored. This solution can make the esterified dithiopropionic acid break down.
  • the open disulfide bonds are bonded, and the macromolecular network is re-formed, so as to achieve the purpose of resin curing.
  • Experimental tests show that the average breaking strength of the modified resin without fibers is increased by 35% to 55%, and the elongation at break is increased by 10% to 22% compared with the resin before modification. After the board with the same fiber volume content is cured, the average strength of the board with the modified resin is increased by 42% to 63% compared with the unmodified board, which may be due to the improvement of the interfacial fastness of the fiber and the resin. The final sheet strength is further improved.
  • the resin reaction includes:
  • 2-iminothiophene hydrochloride is grafted on the hydroxyl group of the resin macromolecule, and through the ring-opening treatment of thiophene, the end group of the branched chain of the macromolecule becomes a mercapto group, and the resin macromolecule system is still in a fluid state, which is the same as that of the first medium.
  • the scheme is similar.
  • oxidizing agents such as hydrogen peroxide are used to bond the sulfhydryl groups of the macromolecular branches to form relatively stable covalent disulfide bonds.
  • the mechanical parameters such as epoxy and ring stiffness of the pipeline meet the construction requirements.
  • the specific reaction process is shown in Figure 7.
  • disulfide bonds can also be introduced by grafting a combination of succinic anhydride and cystamine under specific conditions; or 4-morpholinoethanesulfonic acid and 1-(3-dimethylaminopropyl)-3-ethyl Disulfide bond is grafted on the branched chain by means of carbodiimide hydrochloride, etc., to form a polymer system with disulfide bond branched chain as in Scheme 1 or Scheme 2. Subsequent processing techniques and usage methods are similar to those of Schemes 1 and 2.
  • the invention adopts a fiber three-layer structure, the inner and outer layers adopt a reciprocating winding structure, and there is a certain cross angle between different fiber layers, which is beneficial to improve the structural mechanical properties of the fiber layers.
  • the intermediate fiber layer is braided and formed, which can effectively increase the mechanical properties of the pipeline, especially the structural stability under internal and external pressure.
  • the use of fiber-reinforced structural pipes can improve the mechanical properties and service life of the pipes, and can also reduce the overall cost of the pipes, which is an important direction for future pipeline development.
  • the invention is a reinforced thermoplastic composite pipe (RTP).
  • RTP reinforced thermoplastic composite pipe
  • the inner layer is usually a thermoplastic pipe with corrosion resistance and wear resistance. It is the outer cladding layer that plays a protective role; the reinforcing layer mostly uses reinforcing fiber ribbons, metal fiber ribbons, glass fiber ribbons, etc. It can be used as oil and natural gas pipelines, urban and rural water pipelines and fire pipelines. According to the existing technology and practical application, it can meet the performance requirements in the project.
  • the fibers used in the present invention can form an integral structure, and through the cross-linking action of the polymer system, the phenomenon of fiber dislocation or structural delamination will not occur during the process of compression deformation or shape reduction; the fiber aggregate is in a state of tension.
  • a layer of PP or PE film is laid on the surface of the core mold to facilitate the release of the core mold in the future.
  • the outer layer is braided, push the braided part of the tube into the cooling chamber to reduce the chemical reaction of the resin and reduce the curing of the resin.
  • the core mold used in the present invention is a core mold supported by a telescopic rod.
  • the extension and contraction of the telescopic frame support rod can cause the surface shape of the core mold to change, and the extension and contraction of the telescopic rod support rod are driven by electric or pneumatic driving.
  • the present invention is transported to the construction site by conventional transport or refrigerated transport vehicles.
  • a transport vehicle could only transport one large-diameter pipe, but now multiple pipes, such as 9-10 pipes, can be transported, and the transport cost is greatly reduced.
  • the PP or PE film is used to coat the surface of the core mold. When the core mold shrinks and the core mold exits, it will not affect the overall structure and mechanical properties of the pipeline.
  • Fig. 1 is the production flow schematic diagram of the present invention
  • Fig. 2 is the schematic diagram of the three-layer structure of the preform
  • Inner fiber winding layer 1. Middle fiber braiding layer; 3. Outer fiber winding layer;
  • Fig. 3 is the schematic diagram of the deformation of the preform
  • Fig. 4 is the schematic diagram of preform heating curing and demoulding
  • Figure 5 is a schematic diagram of the core mold structure.
  • Fig. 6 is the flow chart of the epoxy resin reaction in scheme one.
  • Fig. 7 is the flow chart of the epoxy resin reaction in scheme two.
  • Fig. 1 is the schematic flow chart of the production process of the present invention, select suitable fiber aggregates and resin impregnation, weave the impregnated fiber aggregates on the mold, axially compress after demoulding, refrigerate to reduce the solidification of resin, and refrigerate ( The temperature is lower than the resin curing temperature.)
  • the transport vehicle is transported to the construction site, and the core mold recovery device is used to restore the shape of the pipe to the shape of a hollow cylinder, and the finished product is obtained after curing and demoulding.
  • This embodiment provides a method for producing a large-diameter engineering pipeline.
  • a large-diameter engineering pipeline preform is prepared, and fibers are wound on a core mold to form an inner fiber winding layer 1, and then woven to form an intermediate fiber braided layer. 2.
  • the outer layer is wound to form an outer fiber winding layer 3 to obtain a large-diameter engineering pipeline prefabricated body with a three-layer structure;
  • the production method is wet weaving, and the fibers are wet fibers.
  • the inner filament winding layer 1 and the outer filament winding layer 3 are both obtained by winding wet fibers back and forth along the axial direction of the core mold.
  • the wet fiber is obtained by impregnating the fiber with a liquid resin, and the liquid resin is prepared by compounding a corrosion-resistant and wear-resistant epoxy resin and silicon calcium powder.
  • the content of epoxy resin is 60-90%
  • the content of silicon calcium powder filler is 10%-40%.
  • the particle size range of silicon-calcium powder is 100nm-10um.
  • silane coupling agent is added to the resin system ( ⁇ 1 %) and temperature initiator ( ⁇ 1%), the core component of the initiator is azodiisopropylimidazoline hydrochloride.
  • the structure of the inner layer 1 and the outer layer 3 are both untwisted glass fibers (the diameter of the monofilament is 10-20um, and the monofilament bundle contains 1000-10000 filaments).
  • the included angle ranges from 30 to 120°, and the interlayer pores are favorable for resin infiltration.
  • the intermediate fiber braided layer 2 is made by a multi-directional braiding method; the untwisted glass fiber roving is used, and the roving is dipped or sprayed with glue before weaving.
  • the resin in the glue is prepared by compounding the corrosion-resistant and wear-resistant epoxy resin with calcium silicon powder.
  • the braided pipe adopts an empty pipe structure.
  • the middle layer of the pipe wall contains fiber bundles.
  • the fiber bundles rotate through the spindle and revolve around the center of the pipe to form an integrated braided structure with a tight structure and interpenetrating inner and outer layers on the pipe wall.
  • the glass fiber has a diameter of 7-15um, a single bundle of untwisted glass fiber bundles of 1,000-15,000, an empty tube structure of three-dimensional four-direction or five-direction, and a thickness of 3-50 layers of fiber bundles.
  • the above processing process is carried out at room temperature, and the three-layer processing space is very close. After the weaving and winding process of the fiber aggregate is completed, the wet resin matrix has not yet been cured.
  • the large-diameter pipe adopts a circular section, the diameter of the pipe is >80cm, and the core mold used is an intelligent controllable and deformable core mold.
  • the surface of the core mold is a metal (such as aluminum alloy) rectangular plate pieced together into a cylindrical shape, and a support rod is connected under each plate, and the support rod is connected to the central axis. can be regulated.
  • the cross-sectional shape of the core mold can be changed from a circular shape to a sheet-like, elliptical or rectangular structure, and the inner circumference of the large-diameter pipe can be kept unchanged before and after deformation.
  • the fiber aggregate is in a state of tension. Before the inner fiber is wound, a layer of PP or PE film is laid on the surface of the core mold to facilitate the smooth demolding of the core mold in the future.
  • the three-layer fiber weaving process can be woven in the space of the cold room, and the temperature is -5 ⁇ 5 °C to ensure that the resin will not solidify during the weaving process.
  • the wet large The diameter pipe is deformed by the core mold, and the braided structure covering the periphery of the core mold also changes from a circular pipe to a folded sheet structure, and the overall thickness changes from a circular diameter to the sum of the three thicknesses.
  • the deformed mandrel and the large-diameter fiber resin tube wrapped around it are wrapped with PP film or PE film and packaged. Transport it to the construction site in a refrigerated transport vehicle. As shown in Figure 3, a transporter can only transport 1 large diameter pipe at a time, but now it can transport up to 9 to 10 pipes at one time.
  • a self-made mandrel recovery device is used in a refrigerated environment to restore the folded sheet or oval or rectangular mandrel to a circular cross section by electric or pneumatic means, and the fiber resin tube wrapped around it is always in tension. tight state.
  • the mandrel plus the fiber-reinforced resin pipeline is pushed into the heating chamber on the construction site as a whole.
  • the resin is a high-temperature curing resin, and the resin reacts and cures at a high temperature (90-100°C).
  • the length of the support rod of the core mold is reduced by electric or pneumatic means, thereby reducing the diameter of the core mold.
  • Large-diameter pipes are prepared at the construction site. Because PP or PE film is used to coat the surface of the mandrel, when the mandrel shrinks, it will not affect the overall structure of the pipeline.
  • This embodiment provides a method for producing a large-diameter engineering pipeline.
  • a large-diameter engineering pipeline preform is prepared, and fibers are wound on a core mold to form an inner fiber winding layer 1, and then woven to form an intermediate fiber braided layer. 2.
  • the outer layer is wound to form an outer fiber winding layer 3 to obtain a large-diameter engineering pipeline prefabricated body with a three-layer structure;
  • the production method is wet weaving, and the fibers are wet fibers.
  • the inner filament winding layer 1 and the outer filament winding layer 3 are both obtained by winding wet fibers back and forth along the axial direction of the core mold; the wet fibers are made by impregnating the fibers with liquid resin, and the liquid resin is made of unsaturated polyester resin and unsaturated polyester resin.
  • Silicon calcium powder is compounded. Among them, the content of unsaturated polyester resin is 60-90%, and the content of silica calcium powder filler is 10%-40%. The particle size range of silica-calcium powder is 100nm-10um.
  • a small amount of silane coupling agent ( ⁇ 1%) and temperature initiator ( ⁇ 1%) the core component of the initiator is azodiisopropylimidazoline hydrochloride.
  • the structure of the inner layer 1 and the outer layer 3 are all basalt (the diameter of the monofilament is 10-20um, and the monofilament bundle contains 1000-10000 filaments). At 30-120°, the interlayer pores are favorable for resin infiltration.
  • the middle fiber braided layer 2 is made by bundling fiber coils; the tow (fiber aggregate) is widened by a ribbon structure, and glue is sprayed during the braiding process.
  • the resin in the glue is prepared by compounding the corrosion-resistant and wear-resistant epoxy resin with calcium silicon powder.
  • the braided pipe adopts an empty pipe structure.
  • the middle layer of the pipe wall contains fiber bundles. The fiber bundles rotate through the spindle and revolve around the center of the pipe to form an integrated braided structure with a tight structure and interpenetration of the inner and outer layers on the pipe wall.
  • the above processing process is carried out at room temperature, and the three-layer processing space is very close. After the weaving and winding process of the fiber aggregate is completed, the wet resin matrix has not yet been cured.
  • the large-diameter pipe adopts a circular section, the diameter of the pipe is >80cm, and the core mold used is an intelligent controllable and deformable core mold.
  • the surface of the core mold is a metal (such as aluminum alloy) rectangular plate pieced together into a cylindrical shape, and a support rod is connected under each plate, and the support rod is connected to the central axis. can be regulated.
  • the cross-sectional shape of the core mold can be changed from a circular shape to a sheet-like, elliptical or rectangular structure, and the inner circumference of the large-diameter pipe can be kept unchanged before and after deformation.
  • the fiber aggregate is in a state of tension. Before the inner fiber is wound, a layer of PP or PE film is laid on the surface of the core mold to facilitate the smooth demolding of the core mold in the future.
  • the three-layer fiber weaving process is braided at room temperature, especially after the outer layer weaving is completed, push the braided part of the tube into the cooling chamber (temperature is -5 ⁇ 5 °C) to reduce the chemical reaction of the resin and reduce the curing of the resin.
  • the wet large-diameter pipe is subjected to core mold deformation in the cooling chamber, and the braided structure wrapped around the core mold also changes from a circular pipe to a folded sheet structure.
  • the overall thickness changes from the circular diameter to the sum of the three thicknesses.
  • the deformed core mold and the large-diameter fiber resin tube wrapped around it are wrapped with PP film or PE film. Transport it to the construction site in a refrigerated transport vehicle. As shown in Figure 3, a transporter can only transport 1 large diameter pipe at a time, but now it can transport up to 9 to 10 pipes at one time.
  • a self-made mandrel recovery device is used in a refrigerated environment to restore the folded sheet or oval or rectangular mandrel to a circular cross section by electric or pneumatic means, and the fiber resin tube wrapped around it is always in tension. tight state.
  • Use the heating module to move slowly (1mm/s) on the surface of the pipeline to control the resin curing temperature and moving speed. After the overall pipeline resin is cured, the heating is completed.
  • the length of the support rod of the core mold is reduced by electric or pneumatic means, thereby reducing the diameter of the core mold.
  • Large-diameter pipes are prepared at the construction site. Because PP or PE film is used to coat the surface of the mandrel, when the mandrel shrinks, it will not affect the overall structure of the pipeline.
  • This embodiment provides a method for producing a large-diameter engineering pipeline.
  • a large-diameter engineering pipeline preform is prepared, and fibers are wound on a core mold to form an inner fiber winding layer 1, and then woven to form an intermediate fiber braided layer. 2.
  • the outer layer is wound to form an outer fiber winding layer 3 to obtain a large-diameter engineering pipeline prefabricated body with a three-layer structure;
  • the production method is wet weaving, and the fibers are wet fibers.
  • the inner filament winding layer 1 and the outer filament winding layer 3 are both obtained by winding wet fibers back and forth along the axial direction of the core mold; the wet fibers are made by impregnating the fibers with liquid resin, and the liquid resin is made of phenolic resin and silicon calcium powder. compounded.
  • the content of phenolic resin is 60-90%
  • the content of calcium silicon powder filler is 10%-40%
  • the particle size of calcium silicon powder is 100nm-10um
  • a small amount of silane coupling agent ( ⁇ 1%) is added to the resin system.
  • a temperature initiator ⁇ 1%
  • the core component of the initiator is azobisisopropylimidazoline hydrochloride.
  • the structure of the inner layer 1 and the outer layer 3 is a kind of polyester, PP, PE or other organic polymer chemical filaments (the diameter of the monofilament is 10-20um, and the monofilament bundle contains 1000-10000 filaments) filament fibers It is reciprocatingly wound around the pipe in the axial direction, and the angle between the fibers of the adjacent structural layers is 30 to 120°, and the interlayer pores are conducive to resin infiltration.
  • the fibers of the intermediate fiber braided layer 2 are made by weaving; the tow (fiber aggregate) is widened by a ribbon structure, and glue is sprayed during the braiding process.
  • the resin in the glue is prepared by compounding phenolic resin and calcium silicon powder.
  • the braided pipe adopts an empty pipe structure.
  • the middle layer of the pipe wall contains fiber bundles. The fiber bundles rotate through the spindle and revolve around the center of the pipe to form an integrated braided structure with a tight structure and interpenetrating inner and outer layers on the pipe wall.
  • the large-diameter pipe adopts a circular section, the diameter of the pipe is >80cm, and the core mold used is an intelligent controllable and deformable core mold.
  • the surface of the core mold is a metal (such as aluminum alloy) rectangular plate pieced together into a cylindrical shape, and a support rod is connected under each plate, and the support rod is connected to the central axis. can be regulated.
  • the cross-sectional shape of the core mold can be changed from a circular shape to a sheet-like, elliptical or rectangular structure, and the inner circumference of the large-diameter pipe can be kept unchanged before and after deformation.
  • the fiber aggregate is in a state of tension. Before the inner fiber is wound, a layer of PP or PE film is laid on the surface of the core mold to facilitate the smooth demolding of the core mold in the future.
  • the three-layer fiber weaving process is braided at room temperature, especially after the outer layer weaving is completed, push the braided part of the tube into the cooling chamber (temperature is -5 ⁇ 5 °C) to reduce the chemical reaction of the resin and reduce the curing of the resin.
  • the wet large-diameter pipe is subjected to core mold deformation in the cooling chamber, and the braided structure wrapped around the core mold also changes from a circular pipe to a folded sheet structure.
  • the overall thickness changes from the circular diameter to the sum of the three thicknesses.
  • the deformed mandrel and the large-diameter fiber resin tube wrapped around it are wrapped with PP film or PE film and packaged. Transport it to the construction site in a refrigerated transport vehicle. As shown in Figure 3, a transporter can only transport 1 large diameter pipe at a time, but now it can transport up to 9 to 10 pipes at one time.
  • a self-made mandrel recovery device is used in a refrigerated environment to restore the folded sheet or oval or rectangular mandrel to a circular cross section by electric or pneumatic means, and the fiber resin tube wrapped around it is always in tension. tight state.
  • Use the heating module to move slowly (1mm/s) on the surface of the pipeline to control the resin curing temperature and moving speed. After the overall pipeline resin is cured, the heating is completed.
  • the length of the support rod of the core mold is reduced by electric or pneumatic means, thereby reducing the diameter of the core mold.
  • Large-diameter pipes are prepared at the construction site. Because PP or PE film is used to coat the surface of the mandrel, when the mandrel shrinks, it will not affect the overall structure of the pipeline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明公开了一种大口径工程管道的生产方法,所述生产方法包括如下步骤:(1)制备大口径工程管道预制体;(2)预制体变形;(3)预制体回复;(4)预制体固化;(5)脱模,芯模直径变小,芯模退出管道,制得所述大口径工程管道。本发明将传统的大口径管道生产方式拆分成几个工序在几个地点完成,编织和浸胶生产环节在厂区进行,提供生产的技术保障和有效性,管道内树脂的固化工序可在管道工程应用的施工现场进行。通过管道临时形状的压缩运输,有效的降低了中间环节的管道运输成本。

Description

一种大口径工程管道的生产方法 技术领域
本发明涉及大口径RTP管的加工技术领域,尤其是涉及一种大口径工程管道的生产方法。
背景技术
大口径的管道(直径超过80cm)多是用聚合物(如PP,PE,PVC等)挤塑成型技术或纤维增强热塑性成管技术等方式制备,为了使得大口径管道具有良好的抗压性环刚强度,一般在管径外围包覆一层加强筋。强筋可为空心环绕管道,也可为螺旋形钢片卷,或者纤维编织结构,使得大口径管道的环刚等力学性能指标达到施工要求。
在生产企业,大口径管一旦成型,管道就固化成型,不可变形,从生产企业到施工现场,一般用卡车1次装运1~2根大口径管至工程施工现场,运输成本极高。如何降低运输成本是许多大口径管道生产企业面临的主要问题。
以排污水管道(1.6米直径)为例,管道塑料基体如PP或PVC的成本大约1万元1吨,钙粉大概1千元1吨,管道的总体成本大约在7千元1吨。而一根管道的运输成本就在1~2万元/根,大大限制了企业的利润空间。
发明内容
针对现有技术存在的上述问题,本发明申请人提供了一种大口径工程管道的生产方法。本发明将传统的大口径管道生产方式拆分成几个工序在几个地点完成,编织和浸胶生产环节在厂区进行,提供生产的技术保障和有效性,管道内树脂的固化工序可在管道工程应用的施工现场进行。通过管道临时形状的压缩运输,有效的降低了中间环节的管道运输成本。
本发明的技术方案如下:
一种大口径工程管道的生产方法,所述生产方法包括如下步骤:
(1)制备大口径工程管道预制体,湿态纤维在芯模上进行缠绕,形成内层纤维缠绕层,之后进行编织形成中间纤维编织层,最后在外层缠绕形成外层纤维缠绕层,制得三层结构的大口径工程管道预制体;其处于湿态且尚未固化的 状态;
(2)预制体变形,将步骤(1)所得预制体的芯模变形,由圆形管道变成折叠的片状结构,之后采用PP膜或PE膜打包,便于运输至施工现场;
(3)预制体回复,采用芯模回复装置,将片状结构的预制体回复至圆形截面;
(4)预制体固化,将回复后的预制体进行固化;
(5)脱模,芯模直径变小,芯模退出管道,制得所述大口径工程管道。
步骤(1)中,所述湿态纤维为将纤维浸渍液态树脂,液态树脂采用耐腐、耐磨或形状记忆的树脂与硅钙粉复合制得。
步骤(1)中,内层纤维缠绕层与外层纤维缠绕层,均为湿态纤维沿芯模轴向往返缠绕制得;中间纤维编织层采用多向编织或纤维线圈捆绑的方式制得。
步骤(1)中,所述芯模为可变形芯模,其截面形状可由圆形变成片状结构,变形前后保证大口径管的内层周长不变。
步骤(2)中,折叠成片状结构的预制体在冷却室中存放,运输过程中,采用低于树脂固化温度的条件进行运输。
步骤(4)中,固化的方式为高温仓中加热固化或常温下加热模块加热;其中加热模块加热的方式为加热模块在管道表面缓慢移动,控制树脂固化温度和移动速度,待整体管道树脂固化后,加热完成;如果采用改性树脂,则通过在管道表面喷洒氧化剂的方式进行树脂固化。
步骤(1)中,所述芯模由8个伸缩杆、驱动装置和接触装置组成;驱动方式为电动或者气动,每个伸缩杆可以独自伸长或收缩;芯模通过改变8个伸缩杆的长度,变化成适应支撑管道变形的形状。
由于本发明中大口径管道的生产加工分拆成在不同地点完成,树脂的灵活性显得格外重要,本发明申请采用树脂在不同环境刺激下发生固化,可以利用高温固化的方式让树脂高分子发生交联,例如环氧树脂的高分子在高温下形成立体交联网络且不可逆,形成的固化环氧树脂刚度和强度等力学性能指标优异,达到管道的使用要求和标准。
除了编织管道可以使用的环氧树脂、不饱和树脂和酚醛树脂等树脂以外(3个对应的具体实施例),本发明还设计和制备了一类改性树脂,用于纤维编织管道的基体。树脂中含有可逆的共价键-二硫键。除了高温刺激让树脂发生交联固 化外,还可以使用氧化剂等刺激让树脂发生交联固化,固化后的树脂同样可以达到管道的使用标准和要求,甚至更高,因为在高分子体系中引入了新的小分子支链,增加了新的共价键交联点,固化后的改性树脂在力学指标上(环刚度和环柔度等方面)更结实稳定,使用寿命更长久。另外,从树脂高分子体系中引入的小分子支链在与纤维表面的接触过程中,能更好的提高界面结合强度,提升材料的结合牢度,也能增加力学指标。
从加工工艺角度讲,在使用改性树脂对编织管道进行喷胶时,尽量在光线较暗或无光的环境下喷胶,湿态的编织管道随即用PP或PE保鲜膜缠绕,减少与空气接触,然后用黑色薄膜包缠管道,减少后期运输过程中的光照。通过生产后芯模的变形及后期远程运输,使用改性树脂喷胶后的编织管道在施工现场进行形状还原和树脂氧化固化工艺,形成基于二硫键共价键的高分子固化体系,管道的环刚和环柔等力学指标达到施工要求。
此处,改性树脂的分子结构,以双酚A型环氧树脂为例进行改性,其他类型的树脂高分子的改性原理相同,即在树脂高分子的特定官能团上接枝含有二硫键或巯基基团的小分子链段,通过二硫键的断开和键合实现编织管道在不同地点的加工工艺:
方案一:在环氧树脂分子体系中,加入十二烷基硫酸钠(pH=4)和3,3’-二硫代丙酸(提供二硫键);POEOFE:聚氧乙烯(10)辛基苯基醚作为缓冲液;在50℃环境下,反应3小时,在树脂高分子的羟基与3,3’-二硫代丙酸(提供二硫键)的羧基之间发生酯化反应。整体树脂被二硫键进行了大分子网格交联,由于二硫键是可逆共价键,所以可以利用特定功率的UV光(例如254nm波段)将树脂中的二硫键进行破坏,形成交联点为巯基的流动性树脂。在管道利用纤维在芯模上进行缠绕和编织时,利用改性后的流动树脂进行喷胶,成为湿态的管道。当管道进入施工现场后,利用可变的芯模回复管道形状,将形状回复后的湿态喷胶管道内外喷洒双氧水溶液(H 2O 2),该溶液可使得酯化二硫代丙酸断开的二硫键键合,重新形成大分子网络,从而达到树脂固化的目的。实验测试表明,不含纤维的改性树脂比改性之前树脂,固化后同样形貌的平板样品的平均断裂强度提升了35%~55%,断裂伸长率提升了10%~22%。在加入相同纤维体积含量的板材固化后,改性树脂的板材的平均强度比未改性的板材强度提升了42%~63%,可能是由于纤维和树脂的界面结合牢度的提升也提高了最终板材强 度的进一步提升。
上述方案中树脂发生反应包括:
(一):形成高分子侧链的交联树脂;
(二):打开交流树脂的二硫键,形成液态树脂,然后进行喷胶;
(三):施工现场进行氧化剂固化,达到管道环刚和环柔度的要求。具体反应流程如图6所示。
方案二:
在树脂高分子的羟基上接枝2-亚氨基盐酸噻吩,通过对噻吩的开环处理,使得大分子的支链的端基变成巯基,树脂高分子体系依然是流动状态,与第一中方案相似,在施工现场,利用双氧水等氧化剂处理,使得大分子支链的巯基键合,形成相对较稳定的共价键二硫键。伴随树脂固化,管道的环氧和环刚度等力学指标都符合施工要求。具体反应流程如图7所示。
方案三:
在树脂高分子体系中还可以通过特定条件接枝琥珀酸酐和胱胺的组合引入二硫键;或者4-吗啉乙磺酸和1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺盐酸盐等方式在支链上接枝二硫键,形成如方案一或方案二的二硫键支链的高分子体系。后续加工工艺和使用方法与方案一、二相似。
本发明有益的技术效果在于:
本发明采用了纤维三层结构,内外层采用往复缠绕的结构形式,不同纤维层之间有一定的交叉角度,有利于提升纤维层的结构力学性能。中间纤维层采用编织成型的方式,可有效的增加管道的力学性能,特别是内外压力下的结构稳定性。采用纤维增强结构管道,可改善管道的力学性能,使用寿命,也可以降低管道的整体成本,是未来管道发展的重要方向。
本发明是增强热塑性塑料复合管(RTP),目前现有RTP管大多采用三层结构,内层通常是耐腐蚀、耐磨损的热塑性塑料管,中间层是起增强作用的增强层,外层是起保护作用的外包覆层;其中增强层多使用增强纤维丝带、金属纤维丝带、玻璃纤维丝带等。可以作为石油天然气输送管道、城乡输水管道和消防管道等。根据现有工艺及应用实际,满足工程中性能要求。
本发明采用的纤维能够成为一体结构,通过高分子体系的交联作用,在压缩变形或形状还原过程中不会出现纤维错位或结构分层现象;使得纤维集合体处 于张力张紧状态。在内层纤维缠绕之前,在芯模表面铺一层PP或PE薄膜,以方便将来芯模的脱模。在外层编织结束后,将编织成型的部分管推入至冷却室,减少树脂的化学反应,降低树脂的固化。
本发明采用的芯模为伸缩杆支撑的芯模,伸缩架撑杆伸长和收缩可以导致芯模表面形状变化,伸缩杆撑杆的伸长和收缩由电动或气动驱动。
本发明通过常规运输或冷藏运输车运输至施工现场,原先一辆运输车只能运输1根大口径管,现在可以运输多根管道,例如9~10根管,运输成本大大降低。
采用了PP或PE膜在芯模表面包覆,芯模缩小时,芯模退出时,不会对管道整体结构和力学性能造成影响。
附图说明
图1为本发明生产流程示意图;
图2为预制体三层结构的示意图;
图中:1、内层纤维缠绕层;2、中间纤维编织层;3、外层纤维缠绕层;
图3为预制体变形的示意图;
图4为预制体加热固化及脱模的示意图;
图5为芯模结构示意图。
图6为方案一中环氧树脂反应的流程。
图7为方案二中环氧树脂反应的流程。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
图1为本发明生产过程的流程示意图,选择合适的纤维集合体和树脂浸渍,在模具上对浸渍后的纤维集合体编织,脱模后轴向压缩,冷藏以降低树脂的固化,通过冷藏(温度低于树脂固化温度即可)运输车运输至施工现场,使用芯模回复装置将管道形状回复到空心圆柱形状,固化脱模后得到成品。
实施例1
本实施例提供一种大口径工程管道的生产方法,如图2,制备大口径工程管道预制体,纤维在芯模上进行缠绕,形成内层纤维缠绕层1,之后进行编织形成中间纤维编织层2,最后在外层缠绕形成外层纤维缠绕层3,制得三层结构的大口径工程管道预制体;
所述生产方法为湿法编织,纤维为湿态纤维。
内层纤维缠绕层1与外层纤维缠绕层3,均为湿态纤维沿芯模轴向往返缠绕制得。所述湿态纤维为将纤维浸渍液态树脂,液态树脂采用耐腐蚀及耐磨的环氧树脂与硅钙粉复合制得。其中环氧树脂的含量在60~90%,而硅钙粉填料含量在10%~40%,硅钙粉颗粒粒径范围在100nm~10um,同时树脂体系中加入微量硅烷偶联剂(<1%)和温度引发剂(<1%),引发剂的核心成分是偶氮二异丙基咪唑啉盐酸盐。
内层1和外层3结构均为无捻玻纤(单丝直径10~20um,单丝束含1000~10000根长丝)长丝纤维绕管道轴向往复缠绕,缠绕相邻结构层的纤维夹角范围在30~120°,层间孔隙有利于树脂浸入。
中间纤维编织层2采用多向编织方式制得;采用无捻玻纤粗纱,编织前将粗纱进行浸胶或喷胶。胶水中的树脂采用耐腐蚀及耐磨的环氧树脂与硅钙粉复合制得。编织管道采用空管结构,管壁中间层含有纤维束,纤维束通过锭子自转和围绕管道中心公转的形式,在管壁上形成结构紧密、内外层互穿的一体编织结构。所述玻纤直径7~15um,单束无捻玻纤丝束1000~15000根,空管结构为三维四向或五向,厚度含有3~50层纤维束。
以上加工过程在常温下进行,三层加工空间距离很近,纤维集合体编织和缠绕工序完成后,湿态的树脂基体尚未固化。
在缠绕编织过程中,大口径管道采用圆形截面,管径>80cm,采用的芯模为智能可控可变形芯模。芯模的表面为金属(如铝合金)长方形板片拼凑成圆柱形,每个板片下方连接有支撑杆件,支撑杆件连接到中心轴上,每个支撑杆件均可收缩,收缩幅度可进行调控。芯模的截面形状可由圆形变成片状或椭圆状或矩形结构,变形前后保证大口径管的内层周长不变。使得纤维集合体处于张力张紧状态。在内层纤维缠绕之前,在芯模表面铺一层PP或PE薄膜,以方便将来芯模的脱模顺利。
三层纤维编织过程可以在冷藏室的空间中编织,温度为-5~5℃,保证编织过程中树脂不会固化,等所需长度的管道编织加工完成后,在冷却室内将湿态的大口径管道进行芯模变形,包覆在芯模外围的编织结构也随之由圆形管道变成折叠的片层结构,整体的厚度由圆形直径变成三者的厚度和。
将变形后的芯模及其外围包覆的大口径纤维树脂管进行PP膜或PE薄膜包覆 打包。将其通过冷藏运输车运输至施工现场。如图3,原先一辆运输车每次只能运输1根大口径管,现在可一次性运输多达9~10根管。
在施工现场,在冷藏环境中采用自制的芯模回复装置,将折叠片状或椭圆状或矩形状的芯模通过电动或气动方式回复至圆形截面,外围包覆的纤维树脂管始终处于张紧状态。将芯模加纤维增强树脂管道整体推入施工现场的加热室,树脂为高温固化树脂,在高温下(90~100℃)树脂反应固化。
管道树脂完全固化后,如图4,通过电动或气动方式缩小芯模支撑杆的长度,进而缩小芯模直径,管道内层的PP模或PE模与芯模支撑片分离,芯模退出管道,大口径管道在施工现场制备完成。由于采用了PP或PE膜在芯模表面包覆,芯模缩小时,不会对管道整体结构造成影响。
实施例2
本实施例提供一种大口径工程管道的生产方法,如图2,制备大口径工程管道预制体,纤维在芯模上进行缠绕,形成内层纤维缠绕层1,之后进行编织形成中间纤维编织层2,最后在外层缠绕形成外层纤维缠绕层3,制得三层结构的大口径工程管道预制体;
所述生产方法为湿法编织,纤维为湿态纤维。
内层纤维缠绕层1与外层纤维缠绕层3,均为湿态纤维沿芯模轴向往返缠绕制得;所述湿态纤维为将纤维浸渍液态树脂,液态树脂采用不饱和聚酯树脂与硅钙粉复合制得。其中不饱和聚酯树脂的含量在60~90%,而硅钙粉填料含量在10%~40%,硅钙粉颗粒粒径范围在100nm~10um,同时树脂体系中加入微量硅烷偶联剂(<1%)和温度引发剂(<1%),引发剂的核心成分是偶氮二异丙基咪唑啉盐酸盐。
内层1和外层3结构均为玄武岩(单丝直径10~20um,单丝束含1000~10000根长丝)长丝纤维绕管道轴向往复缠绕,缠绕相邻结构层的纤维夹角范围在30~120°,层间孔隙有利于树脂浸入。
中间纤维编织层2纤维线圈捆绑的方式制得;采用带状结构展宽丝束(纤维集合体),编织过程中喷胶。胶水中的树脂采用耐腐蚀及耐磨的环氧树脂与硅钙粉复合制得。编织管道采用空管结构,管壁中间层含有纤维束,纤维束通过锭子自转和围绕管道中心公转的形式,在管壁上形成结构紧密、内外层互穿的一 体编织结构。
以上加工过程在常温下进行,三层加工空间距离很近,纤维集合体编织和缠绕工序完成后,湿态的树脂基体尚未固化。
在缠绕编织过程中,大口径管道采用圆形截面,管径>80cm,采用的芯模为智能可控可变形芯模。芯模的表面为金属(如铝合金)长方形板片拼凑成圆柱形,每个板片下方连接有支撑杆件,支撑杆件连接到中心轴上,每个支撑杆件均可收缩,收缩幅度可进行调控。芯模的截面形状可由圆形变成片状或椭圆状或矩形结构,变形前后保证大口径管的内层周长不变。使得纤维集合体处于张力张紧状态。在内层纤维缠绕之前,在芯模表面铺一层PP或PE薄膜,以方便将来芯模的脱模顺利。
三层纤维编织过程在室温中编织,特别是在外层编织结束后,将编织成型的部分管推入至冷却室(温度为-5~5℃),减少树脂的化学反应,降低树脂的固化。等所需长度的管道编织加工完成后,在冷却室内将湿态的大口径管道进行芯模变形,包覆在芯模外围的编织结构也随之由圆形管道变成折叠的片层结构,整体的厚度由圆形直径变成三者的厚度和。
将变形后的芯模及其外围包覆的大口径纤维树脂管进行PP膜或PE薄膜包覆打包。将其通过冷藏运输车运输至施工现场。如图3,原先一辆运输车每次只能运输1根大口径管,现在可一次性运输多达9~10根管。
在施工现场,在冷藏环境中采用自制的芯模回复装置,将折叠片状或椭圆状或矩形状的芯模通过电动或气动方式回复至圆形截面,外围包覆的纤维树脂管始终处于张紧状态。利用加热模块在管道表面缓慢移动(1mm/s),控制树脂固化温度和移动速度,待整体管道树脂固化后,加热完成。
管道树脂完全固化后,如图4,通过电动或气动方式缩小芯模支撑杆的长度,进而缩小芯模直径,管道内层的PP模或PE模与芯模支撑片分离,芯模退出管道,大口径管道在施工现场制备完成。由于采用了PP或PE膜在芯模表面包覆,芯模缩小时,不会对管道整体结构造成影响。
实施例3
本实施例提供一种大口径工程管道的生产方法,如图2,制备大口径工程管道预制体,纤维在芯模上进行缠绕,形成内层纤维缠绕层1,之后进行编织形成 中间纤维编织层2,最后在外层缠绕形成外层纤维缠绕层3,制得三层结构的大口径工程管道预制体;
所述生产方法为湿法编织,纤维为湿态纤维。
内层纤维缠绕层1与外层纤维缠绕层3,均为湿态纤维沿芯模轴向往返缠绕制得;所述湿态纤维为将纤维浸渍液态树脂,液态树脂采用酚醛树脂与硅钙粉复合制得。其中酚醛树脂的含量在60~90%,而硅钙粉填料含量在10%~40%,硅钙粉颗粒粒径范围在100nm~10um,同时树脂体系中加入微量硅烷偶联剂(<1%)和温度引发剂(<1%),引发剂的核心成分是偶氮二异丙基咪唑啉盐酸盐。
内层1和外层3结构均为聚酯、PP、PE或其他有机高分子化学长丝中的一种(单丝直径10~20um,单丝束含1000~10000根长丝)长丝纤维绕管道轴向往复缠绕,缠绕相邻结构层的纤维夹角范围在30~120°,层间孔隙有利于树脂浸入。
中间纤维编织层2纤维采用梭织的方式制得;采用带状结构展宽丝束(纤维集合体),编织过程中喷胶。胶水中的树脂采用酚醛树脂与硅钙粉复合制得。编织管道采用空管结构,管壁中间层含有纤维束,纤维束通过锭子自转和围绕管道中心公转的形式,在管壁上形成结构紧密、内外层互穿的一体编织结构。
在缠绕编织过程中,大口径管道采用圆形截面,管径>80cm,采用的芯模为智能可控可变形芯模。芯模的表面为金属(如铝合金)长方形板片拼凑成圆柱形,每个板片下方连接有支撑杆件,支撑杆件连接到中心轴上,每个支撑杆件均可收缩,收缩幅度可进行调控。芯模的截面形状可由圆形变成片状或椭圆状或矩形结构,变形前后保证大口径管的内层周长不变。使得纤维集合体处于张力张紧状态。在内层纤维缠绕之前,在芯模表面铺一层PP或PE薄膜,以方便将来芯模的脱模顺利。
三层纤维编织过程在室温中编织,特别是在外层编织结束后,将编织成型的部分管推入至冷却室(温度为-5~5℃),减少树脂的化学反应,降低树脂的固化。等所需长度的管道编织加工完成后,在冷却室内将湿态的大口径管道进行芯模变形,包覆在芯模外围的编织结构也随之由圆形管道变成折叠的片层结构,整体的厚度由圆形直径变成三者的厚度和。
将变形后的芯模及其外围包覆的大口径纤维树脂管进行PP膜或PE薄膜包覆 打包。将其通过冷藏运输车运输至施工现场。如图3,原先一辆运输车每次只能运输1根大口径管,现在可一次性运输多达9~10根管。
在施工现场,在冷藏环境中采用自制的芯模回复装置,将折叠片状或椭圆状或矩形状的芯模通过电动或气动方式回复至圆形截面,外围包覆的纤维树脂管始终处于张紧状态。利用加热模块在管道表面缓慢移动(1mm/s),控制树脂固化温度和移动速度,待整体管道树脂固化后,加热完成。
管道树脂完全固化后,如图4,通过电动或气动方式缩小芯模支撑杆的长度,进而缩小芯模直径,管道内层的PP模或PE模与芯模支撑片分离,芯模退出管道,大口径管道在施工现场制备完成。由于采用了PP或PE膜在芯模表面包覆,芯模缩小时,不会对管道整体结构造成影响。

Claims (7)

  1. 一种大口径工程管道的生产方法,其特征在于,所述生产方法包括如下步骤:
    (1)制备大口径工程管道预制体,湿态纤维在芯模上进行缠绕,形成内层纤维缠绕层(1),之后进行编织形成中间纤维编织层(2),最后在外层缠绕形成外层纤维缠绕层(3),制得三层结构的大口径工程管道预制体;其处于湿态且尚未固化的状态;
    (2)预制体变形,将步骤(1)所得预制体的芯模变形,由圆形管道变成折叠的片状结构,之后采用PP膜或PE膜打包,便于运输至施工现场;
    (3)预制体回复,采用芯模回复装置,将片状结构的预制体回复至圆形截面;
    (4)预制体固化,将回复后的预制体进行固化;
    (5)脱模,芯模直径变小,芯模退出管道,制得所述大口径工程管道。
  2. 根据权利要求1所述的生产方法,其特征在于,步骤(1)中,所述湿态纤维为将纤维浸渍液态树脂,液态树脂采用耐腐、耐磨或形状记忆的树脂与硅钙粉复合制得。
  3. 根据权利要求1所述的生产方法,其特征在于,步骤(1)中,内层纤维缠绕层(1)与外层纤维缠绕层(3),均为湿态纤维沿芯模轴向往返缠绕制得;中间纤维编织层(2)采用多向编织或纤维线圈捆绑的方式制得。
  4. 根据权利要求1所述的生产方法,其特征在于,步骤(1)中,所述芯模为可变形芯模,其截面形状可由圆形变成片状结构,变形前后保证大口径管的内层周长不变。
  5. 根据权利要求1所述的生产方法,其特征在于,步骤(2)中,折叠成片状结构的预制体在冷却室中存放,运输过程中,采用低于树脂固化温度的条件进行运输。
  6. 根据权利要求1所述的生产方法,其特征在于,步骤(4)中,固化的方式为高温仓中加热固化或常温下加热模块加热;其中加热模块加热的方式为加热模块在管道表面缓慢移动,控制树脂固化温度和移动速度,待整体管道树脂固化后,加热完成;如果采用改性树脂,则通过在管道表面喷洒氧化剂的方 式进行树脂固化。
  7. 根据权利要求1所述的生产方法,其特征在于,步骤(1)中,所述芯模由8个伸缩杆、驱动装置和接触装置组成;驱动方式为电动或者气动,每个伸缩杆可以独自伸长或收缩;芯模通过改变8个伸缩杆的长度,变化成适应支撑管道变形的形状。
PCT/CN2021/139885 2021-01-15 2021-12-21 一种大口径工程管道的生产方法 WO2022151929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110052815.4A CN112895506B (zh) 2021-01-15 2021-01-15 一种大口径工程管道的生产方法
CN202110052815.4 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022151929A1 true WO2022151929A1 (zh) 2022-07-21

Family

ID=76114858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139885 WO2022151929A1 (zh) 2021-01-15 2021-12-21 一种大口径工程管道的生产方法

Country Status (2)

Country Link
CN (1) CN112895506B (zh)
WO (1) WO2022151929A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112895506B (zh) * 2021-01-15 2021-11-12 江南大学 一种大口径工程管道的生产方法
CN115926580B (zh) * 2023-01-13 2024-03-19 江苏恒美幕墙材料有限公司 一种轻型幕墙铝板及其制备方法
CN116714281A (zh) * 2023-08-09 2023-09-08 上海骐杰碳素材料有限公司 一种预制体的固化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238140A (ja) * 1999-02-17 2000-09-05 Toray Ind Inc Frp筒状体およびその製造方法
CN103465481A (zh) * 2013-09-22 2013-12-25 西安高强绝缘电气有限责任公司 一种深井油田用复合材料管的制造方法
CN110920095A (zh) * 2019-10-21 2020-03-27 常熟万龙机械有限公司 一种碳纤维复合材料石油管制备方法
AU2020100383A4 (en) * 2020-03-12 2020-05-28 JIANGSU Marine Resources Development Research Institute (LIAN YUNGANG) Production Method of Corrosion-Resistant and High-Strength FRP Storage Tank
CN112895506A (zh) * 2021-01-15 2021-06-04 江南大学 一种大口径工程管道的生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015971B (zh) * 1987-07-11 1992-03-25 藤仓电线株式会社 用于连续生产可热收缩的交联树脂管的装置
KR101463851B1 (ko) * 2010-09-28 2014-12-03 무라다기카이가부시끼가이샤 필라멘트 와인딩 장치
CN105003753B (zh) * 2015-08-07 2017-10-20 广东宝通玻璃钢有限公司 有关连续纤维增强的热塑性管道及生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238140A (ja) * 1999-02-17 2000-09-05 Toray Ind Inc Frp筒状体およびその製造方法
CN103465481A (zh) * 2013-09-22 2013-12-25 西安高强绝缘电气有限责任公司 一种深井油田用复合材料管的制造方法
CN110920095A (zh) * 2019-10-21 2020-03-27 常熟万龙机械有限公司 一种碳纤维复合材料石油管制备方法
AU2020100383A4 (en) * 2020-03-12 2020-05-28 JIANGSU Marine Resources Development Research Institute (LIAN YUNGANG) Production Method of Corrosion-Resistant and High-Strength FRP Storage Tank
CN112895506A (zh) * 2021-01-15 2021-06-04 江南大学 一种大口径工程管道的生产方法

Also Published As

Publication number Publication date
CN112895506A (zh) 2021-06-04
CN112895506B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2022151929A1 (zh) 一种大口径工程管道的生产方法
CN113606487B (zh) 一种ⅴ型无内胆高压复合材料储罐成型工艺
CN104633378B (zh) 一种紫外线固化软管内衬修复旧管道的工艺
CN115143386B (zh) 一种无内衬深冷高压储氢气瓶制备方法
CN109291477A (zh) 热塑性连续玻纤预浸带径轴双向增强复合管及其制备方法
CN103485570B (zh) 一种内加筋复合材料杆塔及其制备方法
CN101440909A (zh) 玻璃钢缠绕钢内胆复合气瓶及其缠绕方法
CN109681770B (zh) 纤维缠绕塑料内胆的储运气瓶及其制造方法
CN115095789A (zh) 一种无内衬深冷高压储氢气瓶及其制备装置
CN105587942B (zh) 一种连续纤维增强压力管及其成型工艺
WO2022017105A1 (zh) 一种自承压连续线性的树脂基纤维增强预浸料
CN105799190A (zh) 一种纤维带增强热塑性树脂复合管道的制备方法
CN103411040A (zh) 一种混杂有碳纤维的玻璃钢复合管道制备方法
CN211398825U (zh) 一种玻纤预浸带增强复合管
CN115195161B (zh) 一种编织结构复合材料气瓶的制作方法及其复合材料气瓶
CN110239111A (zh) 一种复合材料管体与连接件一体化成型方法
CN2142912Y (zh) 一种纤维增强拉挤塑料管
WO2023070990A1 (zh) 轻量化大载荷的商用车稳定杆吊杆总成及其制备方法
CN204003279U (zh) 一种风力发电机的复合材料塔筒及制备模具
CN105719768A (zh) 架空导线用铝包纤维增强复合芯及其制造方法
CN203547210U (zh) 一种内加筋复合材料杆塔
CN115464905A (zh) 一种提高frp筋抗剪强度的编织方法
CN103062527A (zh) 一种可盘绕式钢丝增强塑料复合管
CN210007284U (zh) 一种复合材料电力用电缆保护管
CN103644083A (zh) 一种风力发电机的复合材料塔筒及其制备方法和制备模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919116

Country of ref document: EP

Kind code of ref document: A1