WO2022151616A1 - 一种生物-生态耦合污水处理装置及方法 - Google Patents

一种生物-生态耦合污水处理装置及方法 Download PDF

Info

Publication number
WO2022151616A1
WO2022151616A1 PCT/CN2021/092146 CN2021092146W WO2022151616A1 WO 2022151616 A1 WO2022151616 A1 WO 2022151616A1 CN 2021092146 W CN2021092146 W CN 2021092146W WO 2022151616 A1 WO2022151616 A1 WO 2022151616A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
micro
biological
aeration
oxygen adsorption
Prior art date
Application number
PCT/CN2021/092146
Other languages
English (en)
French (fr)
Inventor
张建
纪明德
胡振
梁爽
王洁
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022151616A1 publication Critical patent/WO2022151616A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of sewage treatment, in particular to a biological-ecological coupling sewage treatment device and method.
  • the present invention provides a biological-ecological coupling sewage treatment device and method, which can efficiently remove pollutants such as carbon, nitrogen, phosphorus and other pollutants in sewage under low energy consumption, and realize the production and multi-stage production of reclaimed water that meets the standard. At the same time, it greatly reduces the cost of construction, operation and management, and has the potential of resource and energy recovery and environmental landscape benefits.
  • a biological-ecological coupling sewage treatment device comprising a micro-oxygen adsorption and aeration tank, a vertical flow sedimentation tank, a constructed wetland and a microalgae cultivation tank connected in sequence, and the bottom of the vertical flow sedimentation tank is connected to the micro-oxygen adsorption and aeration through a return pipe
  • the bottom of the micro-oxygen adsorption and aeration tank, the constructed wetland and the micro-algae culture tank are all provided with aeration devices
  • the bottom of the micro-oxygen adsorption and aeration tank is provided with a magnetic stirrer
  • the top of the vertical flow sedimentation tank is provided with an overflow weir
  • the microalgae culture tank is staggered with guide plates, and a plurality of wire meshes attached with ultra-fine fiber materials are installed at the front end of the water outlet area of the microalgae culture tank.
  • the micro-oxygen adsorption aeration tank, the vertical flow sedimentation tank and the constructed wetland are all cylindrical structures, the bottom of the vertical flow sedimentation tank is conical; the microalgae culture tank is of a square structure.
  • a central pipe is arranged above the vertical flow sedimentation tank, the central pipe is connected to the micro-oxygen adsorption and aeration tank through a pipeline, and a reflector is arranged below the central pipe.
  • the artificial wetland planting plant is calamus; the filler of the artificial wetland adopts gravel and biological ceramsite.
  • the aeration device at the bottom of the microalgae culture tank adopts a micro-nano aeration tube, and the micro-nano aeration reduces the volume of the bubbles, prolongs the residence time of the bubbles in the water body, and increases the dissolved oxygen content in the water body. Nitrification.
  • a biological-ecological coupling sewage treatment method using the above-mentioned biological-ecological coupling sewage treatment device, includes the following processes:
  • the sewage to be treated is passed into the micro-oxygen adsorption aeration tank, and the undissolved organic matter and suspended solids in the sewage are quickly adsorbed for the self-proliferation process through the biological adsorption and flocculation of activated sludge for the self-proliferation process.
  • a small fraction of organic pollutants are converted to carbon dioxide and water, and some ammonia nitrogen is converted to nitrate nitrogen and phosphate is absorbed;
  • the micro-oxygen adsorption aeration tank adopts a continuous aeration method
  • the activated sludge concentration in the micro-oxygen adsorption aeration tank is 2000-3000mg/L
  • the hydraulic retention time is 30-60min
  • the dissolved oxygen concentration is 0.5 -1.0mg/L
  • the magnetic stirring intensity of the micro-oxygen adsorption aeration tank is 700-800r/min.
  • the hydraulic retention time of the vertical flow sedimentation tank is 60-90min.
  • the constructed wetland operates in a vertical flow mode
  • the hydraulic retention time of the constructed wetland is 1 d
  • the hydraulic load is 12.5 mm/h.
  • the microalgae cultivation pond is operated by continuous aeration, the hydraulic retention time of the microalgae cultivation pond is 6d, the aeration rate of the microalgae cultivation pond is 0.8-1.2L/min, and the light
  • the intensity is 6000-7000lux, the light-dark ratio is 16:8, and the temperature is 25 ⁇ 3°C.
  • the biological-ecological coupling sewage treatment device and method provided by the present invention have the following beneficial effects:
  • the invention breaks the traditional regenerated water production idea of "energy consumption for water quality" with activated sludge as the core, and adopts the technological route of biological flocculation adsorption, solid-liquid separation, biofilm method and suspension adhesion method coupling, so that the sewage in sewage can be
  • the non-dissolved organic matter of the product is removed by a low-energy bioflocculation adsorption process, which reduces the organic load of the subsequent process units and increases the recovery potential of energy resources.
  • the process device can achieve up-to-standard production of reclaimed water, and has resource recovery potential and landscape benefits.
  • the effluent of the process device can be discharged into natural water bodies such as rivers and lakes after dilution to reduce water ecological risks, increase water environment capacity and store water resources, which can be used as urban domestic water (washing cars and toilets, etc.) and municipal water (road cleaning, construction, etc.) construction, urban greening and ecological landscape, etc.) reuse, so as to achieve multi-level utilization of reclaimed water.
  • FIG. 1 is a schematic diagram of a biological-ecological coupling sewage treatment device disclosed in an embodiment of the present invention.
  • Micro-oxygen adsorption aeration tank 2. Vertical flow sedimentation tank; 3. Constructed wetland; 4. Microalgae culture tank; 5. Magnetic stirrer; 6. Overflow weir; 7. Guide plate; 8 , barbed wire; 9, sludge funnel; 10, central pipe; 11, reflector; 12, plants; 13, filler; 14, micro-nano aeration plate; 15, micro-nano aeration pipe; 16, aeration pump 1; 17, aeration pump two; 18, aeration pump three; 19, flow meter one; 20, flow meter two; 21, flow meter three; 22, peristaltic pump one; 23, peristaltic pump two; 24, peristaltic pump three; 25, peristaltic pump four; 26, peristaltic pump five; 27, peristaltic pump six; 28, microfiber material.
  • the present invention provides a biological-ecological coupling sewage treatment device.
  • the device includes a micro-oxygen adsorption aeration tank 1, a vertical flow sedimentation tank 2, a constructed wetland 3 and a microalgae culture tank 4, which are connected in sequence.
  • the bottom of the vertical flow sedimentation tank 2 is connected to the micro-oxygen adsorption and aeration tank 1 through a return pipeline.
  • the bottom of the micro-oxygen adsorption and aeration tank 1, the constructed wetland 3 and the microalgae culture tank 4 are all provided with aeration devices.
  • micro-oxygen adsorption and aeration tank 1 A magnetic stirrer 5 is set, an overflow weir 6 is set on the top of the vertical flow sedimentation tank 2, 3-5 guide plates 7 are staggered inside the microalgae cultivation pool 4, and a plurality of attached ultra Wire mesh 8 of fine fibrous material 28 to progressively filter out water and retain microalgal biomass.
  • the micro-oxygen adsorption aeration tank 1, the vertical flow sedimentation tank 2, and the constructed wetland 3 are all cylindrical structures made of plexiglass to reduce the internal dead water area, and the bottom of the vertical flow sedimentation tank 2 is a conical sludge
  • the funnel 9 has an inclination angle of 60°, which facilitates the sedimentation and discharge of sludge; the microalgae cultivation pool 4 is of a square structure.
  • the effective volume of micro-oxygen adsorption aeration tank 1 is 3.5L.
  • the effective volume of the vertical flow sedimentation tank 2 is 8.75L
  • the effective volume of the constructed wetland 3 is 84L
  • the effective volume of the microalgae culture tank 4 is 15L.
  • a central pipe 10 is arranged above the vertical flow sedimentation tank 2 , the central pipe 10 is connected to the micro-oxygen adsorption and aeration tank 1 through a pipeline, and a reflector 11 is arranged below the central pipe 10 .
  • the plant 12 of the constructed wetland 3 is calamus with strong root system and strong pollution resistance, and the planting density is 80 plants/m 2 ;
  • Bioceramsite is a synthetic material with a diameter of 4-8mm, high porosity, large specific surface area and easy biofilm growth.
  • a quick detachable modular basket is installed on the upper part of the constructed wetland 3 to facilitate replacement of the packing 13 after the constructed wetland 3 is blocked due to suspended matter in the water.
  • the aeration device at the bottom of the constructed wetland 3 adopts a micro-nano aeration disk 14 .
  • the aeration device at the bottom of the microalgae culture tank 4 adopts a micro-nano aeration tube 15, which reduces the volume of bubbles through micro-nano aeration, prolongs the residence time of the bubbles in the water body, and increases the dissolved oxygen content in the water body to enhance nitrification.
  • a biological-ecological coupling sewage treatment method using the above-mentioned biological-ecological coupling sewage treatment device, includes the following processes:
  • the sewage to be treated is passed into the micro-oxygen adsorption aeration tank 1, and the undissolved organic matter and suspended matter in the sewage are quickly adsorbed for the self-proliferation process through the biological adsorption and flocculation of the activated sludge in the tank.
  • a small part of the organic pollutants in the sewage is converted into carbon dioxide and water, and part of the ammonia nitrogen is converted into nitrate nitrogen and phosphate is absorbed;
  • the micro-oxygen adsorption and aeration tank 1 adopts the continuous aeration method.
  • the activated sludge concentration in the micro-oxygen adsorption and aeration tank 1 is 2500mg/L, the sludge age is 0.5-1d, and the hydraulic retention time is 45min. 16
  • the dissolved oxygen concentration in the tank is controlled at 0.5-1.0mg/L, which provides adsorption and proliferation conditions for activated sludge under high load operation; the stirring intensity of the magnetic stirrer 5 is 750r/min to maintain the micro-oxygen adsorption aeration tank 1.
  • the activated sludge in the pool fully adsorbs the undissolved organic matter, suspended matter and other substances in the sewage for self-proliferation.
  • the aeration pump one 16 continuously aerates the micro-oxygen biological adsorption aeration tank, and the aeration amount is controlled by the flow meter one 19. After the water level in the tank reaches the water level of the effective volume, the peristaltic pump 1 22 passes the sewage from the micro-aerobic biological adsorption aeration tank into the vertical flow sedimentation tank 2 .
  • the sludge mixture enters the vertical flow sedimentation tank 2 from the central pipe 10 and then falls vertically on the reflector 11, and then flows into the conical sludge funnel 9 for sedimentation.
  • the precipitated sludge concentrate is returned to the micro-aerobic biological adsorption aeration tank through the peristaltic pump II 23.
  • the hydraulic retention time of the vertical flow sedimentation tank 2 is 80 minutes.
  • the sludge supernatant after sedimentation overflows from the overflow weir 6, thereby realizing solid-liquid separation.
  • the water from the overflow weir 6 enters the constructed wetland 3 through the peristaltic pump 3 24 .
  • the sewage and sludge in the sludge mixture are separated into solid-liquid, and part of the organic matter and ammonia nitrogen in the supernatant are oxidized.
  • the energy resources contained in the excess sludge generated in the vertical flow sedimentation tank 2 are recovered by means of anaerobic/aerobic digestion and the like.
  • the constructed wetland 3 is continuously aerated by the aeration pump two 17 , and the aeration amount is controlled by the flow meter two 20 , and the gas enters the constructed wetland 3 through the micro-nano aeration plate 14 .
  • Constructed wetland 3 operates in a vertical flow mode, the hydraulic retention time of constructed wetland 3 is 1d, and the hydraulic load is 12.5mm/h.
  • the effluent of the constructed wetland 3 enters the microalgae cultivation pool 4 through the peristaltic pump 4 25 .
  • the microalgae cultivation tank 4 is aerated by the aeration pump three 18 , and the aeration amount is controlled by the flow meter three 21 .
  • the microalgae cultivation pool 4 is operated by continuous aeration, the hydraulic retention time of the microalgae cultivation pool 4 is 6d, the aeration rate of the microalgae cultivation pool 4 is 1.0L/min, the light intensity is 6500lux, and the light-dark ratio is 16 : 8, and the temperature is 25 ⁇ 3°C, which provides suitable growth conditions for the proliferation of microalgae.
  • the water flow flows along the runway under the action of the deflector 7 and drives the microalgae to flow at the same time.
  • Nitrogen and phosphorus pollutants in sewage are further removed through the absorption and transformation process of suspended microalgae.
  • a plurality of wire meshes 8 attached with ultra-fine fiber materials 28 are installed at the front end of the water outlet area of the microalgae cultivation tank 4 to gradually filter out the water.
  • the reclaimed water that reaches the standard is discharged through the peristaltic pump 627.
  • the effluent quality of the process unit is COD ⁇ 10mg/L, TN ⁇ 2mg/L, TP ⁇ 0.1mg/L, and the effluent can be discharged into natural water bodies such as rivers and lakes.
  • the water ecological risk is reduced, and the water environment capacity is increased and stored. Water resources are reused as urban domestic water (car washing, toilet flushing, etc.) and municipal water (road cleaning, building construction, urban greening and ecological landscape, etc.), so as to achieve multi-level utilization of reclaimed water.
  • the above-mentioned device is used to determine the optimal sludge return ratio of the vertical flow sedimentation tank 2, so as to provide stable influent water quality and moderate pollutant load for subsequent process units.
  • 1.5 L of activated sludge mixed solution sludge concentration of 6 g/L
  • sewage was introduced into the micro-oxygen adsorption and aeration tank 1 through a peristaltic pump, so that the initial The sludge concentration is about 2.6g/L.
  • the initial sludge return ratio is 50% and is adjusted and incremented by 10% in turn, namely 60%, 70%, 80%, 90%, 100%, after the domestication and adaptation process and the stable effluent quality, the optimum sludge return ratio is determined to be 80% by monitoring the effluent quality after each adjustment and considering the relatively low energy consumption of the pump as possible.
  • insoluble organic matter in sewage is removed through the microbial flocculation adsorption process of activated sludge, which not only greatly reduces energy consumption such as aeration and water pumps, but also greatly reduces sewage treatment.
  • the cost of construction, operation and management is reduced, and the recovery potential of energy resources is increased while reducing the organic load of subsequent process units.
  • pollutants such as dissolved organic matter, suspended solids, nitrogen and phosphorus in the sewage are removed through the absorption and transformation of plants 12 in the constructed wetland 3, the synergistic effect of matrix adsorption and microbial assimilation, and the absorption and transformation process of microalgae.
  • the effluent of this process can be discharged into natural water bodies such as rivers and lakes after dilution to reduce water ecological risks, increase water environment capacity and store water resources, as urban domestic water (washing cars and toilets, etc.) and municipal water (road cleaning, construction, urban Greening and ecological landscape, etc.) reuse, so as to realize the multi-level utilization of reclaimed water.

Abstract

本发明公开了一种生物-生态耦合污水处理装置及方法,本装置包括依次连接的微氧吸附曝气池、竖流沉淀池、人工湿地和微藻培养池,所述竖流沉淀池底部通过回流管道连接微氧吸附曝气池,所述微氧吸附曝气池、人工湿地和微藻培养池底部均设置曝气装置,所述微氧吸附曝气池底部设置磁力搅拌器,所述竖流沉淀池顶部设置溢流堰,所述微藻培养池内部交错设置导流板,在微藻培养池的出水区前端安装多个附着超细纤维材料的铁丝网。本发明所公开的装置及方法能够在低耗能下高效率的去除污水中的碳氮磷等污染物,实现达标再生水的生产和多级利用,同时大大降低建设运行和管理运营成本,且具有资源能源回收的潜力和环境景观效益。

Description

一种生物-生态耦合污水处理装置及方法 技术领域
本发明涉及污水处理技术领域,特别涉及一种生物-生态耦合污水处理装置及方法。
背景技术
近年来随着社会经济的快速发展,各行各业对水资源的需求不断增加,使得水资源的污染和浪费加剧,水资源短缺问题愈发凸显,严重阻碍了社会经济的发展。因地制宜、就地节水是补齐城市水资源供需矛盾短板更为经济有效的方式。污水是稳定的再生水补给水源,提高污水处理厂出水再生回用率是提升水资源利用效率的重要措施,是缓解水资源短缺的重要战略和必要途径。
作为市政污水处理的主体设施,当前污水处理厂的污水处理工艺虽然能够针对性的去除碳氮磷等污染物,然而从整个工艺系统来看,由于工艺单元的冗杂堆积和曝气水泵等的高能耗以及大量外加药剂等,大大增加了污水处理厂的建设运行和管理运营成本。而且在传统的污水处理工艺的基础上,不合理的“提标增效”措施在污水再生回用的角度来看也极大地增加了某些地区在污水处理上的财力负担。
发明内容
为解决上述技术问题,本发明提供了一种生物-生态耦合污水处理装置及方法,能够在低耗能下高效率的去除污水中的碳氮磷等污染物,实现达标再生水的生产和多级利用,同时大大降低建设运行和管理运营成本,且具有资源能源回收的潜力和环境景观效益。
为达到上述目的,本发明的技术方案如下:
一种生物-生态耦合污水处理装置,包括依次连接的微氧吸附曝气池、竖流沉淀池、人工湿地和微藻培养池,所述竖流沉淀池底部通过回流管道连接微氧 吸附曝气池,所述微氧吸附曝气池、人工湿地和微藻培养池底部均设置曝气装置,所述微氧吸附曝气池底部设置磁力搅拌器,所述竖流沉淀池顶部设置溢流堰,所述微藻培养池内部交错设置导流板,在微藻培养池的出水区前端安装多个附着超细纤维材料的铁丝网。
上述方案中,所述微氧吸附曝气池、竖流沉淀池、人工湿地均为圆柱形结构,所述竖流沉淀池底部为圆锥形;所述微藻培养池为方形结构。
上述方案中,所述竖流沉淀池上方设置中心管,所述中心管通过管路连接微氧吸附曝气池,中心管下方设置反射板。
上述方案中,所述人工湿地种植植物为菖蒲;所述人工湿地的填料采用砾石和生物陶粒。
上述方案中,所述微藻培养池底部的曝气装置采用微纳米曝气管,通过微纳米曝气减小气泡体积,延长气泡在水体中的停留时间,增加水体中溶解氧的含量以加强硝化作用。
一种生物-生态耦合污水处理方法,采用上述的一种生物-生态耦合污水处理装置,包括如下过程:
(1)将待处理的污水通入微氧吸附曝气池,通过活性污泥的生物吸附絮凝作用将污水中的非溶解态的有机物、悬浮物快速吸附用于自身增殖过程,并将污水中的一小部分有机污染物转化成二氧化碳和水,以及将部分氨氮转化为硝氮和吸收磷酸盐;
(2)将微氧吸附曝气池出水通入竖流沉淀池进行泥水分离,部分污泥浓缩液回流至微氧吸附曝气池以补充活性污泥量;
(3)将竖流沉淀池出水通过溢流堰通入人工湿地,通过微生物、填料和植物的协同作用去除污水中剩余的有机污染物、悬浮物和氮磷化合物;
(4)将人工湿地出水通入微藻培养池,通过微藻的吸收转化进一步深度处理剩余的氮磷化合物。
上述方案中,所述微氧吸附曝气池采用连续曝气的方式,微氧吸附曝气池 内的活性污泥浓度为2000-3000mg/L,水力停留时间为30-60min,溶解氧浓度为0.5-1.0mg/L,微氧吸附曝气池的磁力搅拌强度为700-800r/min。
上述方案中,所述竖流沉淀池的水力停留时间为60-90min。
上述方案中,所述人工湿地采用垂直流的方式运行,人工湿地的水力停留时间为1d,水力负荷为12.5mm/h。
上述方案中,所述微藻培养池采用连续曝气的方式运行,所述微藻培养池的水力停留时间为6d,所述微藻培养池的曝气量为0.8-1.2L/min,光照强度为6000-7000lux,光暗比为16:8,温度为25±3℃。
通过上述技术方案,本发明提供的生物-生态耦合污水处理装置及方法具有如下有益效果:
本发明打破了传统的以活性污泥为核心的“能耗换水质”的再生水生产思路,采取了生物絮凝吸附、固液分离、生物膜法和悬浮附着法相耦合的工艺技术路线,使得污水中的非溶解态有机物通过低耗能的生物絮凝吸附过程去除,在减轻后续工艺单元的有机负荷同时增加能源资源的回收潜力。而后,污水中部分剩余的溶解态有机物、悬浮物和大部分氮磷等污染物通过后续人工湿地中植物吸收、基质吸附和微生物同化的协同作用去除,最后剩余的部分氮磷污染物等通过微藻的吸收转化过程而去除。从整个工艺体系来看,在运行过程中不仅大幅度降低了曝气、水泵等电力能耗和外加药剂等的化学品消耗,也节省了如传统污水处理厂冗杂工艺单元的建设成本。该工艺装置能够实现再生水的达标生产,且具有资源回收潜力和景观效益。同时,该工艺装置出水可排入河湖等自然水体经稀释作用后降低水生态风险,增加水环境容量并储存水资源,作为城市生活用水(洗车冲厕等)和市政用水(道路清扫、建筑施工、城市绿化和生态景观等)回用,从而实现再生水的多级利用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的一种生物-生态耦合污水处理装置示意图。
图中,1、微氧吸附曝气池;2、竖流沉淀池;3、人工湿地;4、微藻培养池;5、磁力搅拌器;6、溢流堰;7、导流板;8、铁丝网;9、污泥漏斗;10、中心管;11、反射板;12、植物;13、填料;14、微纳米曝气盘;15、微纳米曝气管;16、曝气泵一;17、曝气泵二;18、曝气泵三;19、流量计一;20、流量计二;21、流量计三;22、蠕动泵一;23、蠕动泵二;24、蠕动泵三;25、蠕动泵四;26、蠕动泵五;27、蠕动泵六;28、超细纤维材料。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种生物-生态耦合污水处理装置,如图1所示,该装置包括依次连接的微氧吸附曝气池1、竖流沉淀池2、人工湿地3和微藻培养池4,竖流沉淀池2底部通过回流管道连接微氧吸附曝气池1,微氧吸附曝气池1、人工湿地3和微藻培养池4底部均设置曝气装置,微氧吸附曝气池1底部设置磁力搅拌器5,竖流沉淀池2顶部设置溢流堰6,微藻培养池4内部交错设置3-5个导流板7,在微藻培养池4的出水区前端安装多个附着超细纤维材料28的铁丝网8,以逐步过滤出水并截留微藻生物质。
本实施例中,微氧吸附曝气池1、竖流沉淀池2、人工湿地3均为有机玻璃材质的圆柱形结构,以减少内部死水区,竖流沉淀池2底部为圆锥形的污泥漏斗9,倾斜角为60°,便于污泥的沉降与排放;微藻培养池4为方形结构。微氧吸附曝气池1有效体积为3.5L。竖流沉淀池2的有效体积为8.75L,人工湿地3的有效体积为84L,微藻培养池4的有效体积为15L。
竖流沉淀池2上方设置中心管10,中心管10通过管路连接微氧吸附曝气池1,中心管10下方设置反射板11。
人工湿地3种植植物12为根系粗壮、耐污性强的菖蒲,种植密度为80株/m 2;人工湿地3的填料13采用直径10-20mm的钙铁镁铝含量较高的天然材料 砾石和直径4-8mm的孔隙率高、比表面积大和易于生物膜附着生长的人工合成材料生物陶粒。
人工湿地3的上部安装可快速拆卸式的模块化筐架,以便于因进水中悬浮物等造成人工湿地3堵塞后的填料13更换。人工湿地3底部的曝气装置采用微纳米曝气盘14。
微藻培养池4底部的曝气装置采用微纳米曝气管15,通过微纳米曝气减小气泡体积,延长气泡在水体中的停留时间,增加水体中溶解氧的含量以加强硝化作用。
一种生物-生态耦合污水处理方法,采用上述的一种生物-生态耦合污水处理装置,包括如下过程:
(1)将待处理的污水通入微氧吸附曝气池1,通过池内的活性污泥的生物吸附絮凝作用将污水中的非溶解态的有机物、悬浮物快速吸附用于自身增殖过程,并将污水中的一小部分有机污染物转化成二氧化碳和水,以及将部分氨氮转化为硝氮和吸收磷酸盐;
微氧吸附曝气池1采用连续曝气的方式,微氧吸附曝气池1内的活性污泥浓度为2500mg/L,污泥龄为0.5-1d,水力停留时间为45min,通过曝气泵一16将池内溶解氧浓度控制在0.5-1.0mg/L,为高负荷运行下的活性污泥提供吸附增殖条件;磁力搅拌器5的搅拌强度为750r/min,以维持微氧吸附曝气池1活性污泥浓度和溶解氧浓度的均匀分布,同时避免搅拌强度过大破坏污泥絮体结构。
池内的活性污泥在磁力搅拌器5的搅拌作用下充分吸附污水中的非溶解态有机物、悬浮物等物质用于自身增殖。曝气泵一16为微氧生物吸附曝气池连续曝气,且通过流量计一19控制曝气量。待池内水位达到有效体积的水位液面后,蠕动泵一22将微氧生物吸附曝气池的污水通入竖流沉淀池2。
(2)将微氧吸附曝气池1出水通入竖流沉淀池2进行泥水分离,部分污泥浓缩液回流至微氧吸附曝气池1以补充活性污泥量。
污泥混合液从中心管10进入竖流沉淀池2后垂直打落在反射板11上,然后再流入圆锥形污泥漏斗9进行沉淀。经沉淀后的污泥浓缩液通过蠕动泵二23回流至微氧生物吸附曝气池。竖流沉淀池2的水力停留时间为80min。经过沉淀后的污泥上清液从溢流堰6溢出,进而实现固液分离。溢流堰6出水通过蠕动泵三24进入人工湿地3。在此过程中,污泥混合液的污水和污泥进行固液分离,上清液中的部分有机物和氨氮氧化。竖流沉淀池2内产生的剩余污泥通过厌氧/好氧消化等方式将其含有的能源资源进行回收。
(3)将竖流沉淀池2出水通过溢流堰6通入人工湿地3,通过微生物、填料13和植物12的协同作用去除污水中剩余的有机污染物、悬浮物和氮磷化合物。
人工湿地3通过曝气泵二17连续曝气,且通过流量计二20控制曝气量,气体经微纳米曝气盘14进入人工湿地3。人工湿地3采用垂直流的方式运行,人工湿地3的水力停留时间为1d,水力负荷为12.5mm/h。人工湿地3的出水通过蠕动泵四25进入微藻培养池4。从整体来看,由于植物12根系泌氧和底部曝气以及人工湿地3中部的水体“密封”,形成了一个“O-A-O”即“好氧-厌氧-好氧”的污染物处理模式。在此过程中,对污水中剩余的有机物、悬浮物和氮磷化合物等进行吸附过滤和降解转化。
(4)将人工湿地3出水通入微藻培养池4,通过悬浮的微藻的吸收转化进一步深度处理剩余的氮磷化合物。
微藻培养池4通过曝气泵三18曝气,且通过流量计三21控制曝气量。微藻培养池4采用连续曝气的方式运行,微藻培养池4的水力停留时间为6d,微藻培养池4的曝气量为1.0L/min,光照强度为6500lux,光暗比为16:8,温度为25±3℃,为微藻增殖提供适宜的生长条件。
当人工湿地3的出水进入微藻培养池4后,在导流板7的作用下水流沿跑道方向流动并同时带动微藻流动,在微纳米曝气的作用下使得污水与微藻充分混合,经过悬浮的微藻的吸收转化过程进一步去除污水中的氮磷污染物等。同 时,微藻培养池4出水区前端安装多个附着超细纤维材料28的铁丝网8,以逐步过滤出水。达标再生水通过蠕动泵六27排出。
工艺系统的进水水质为COD=200-400mg/L,NH 4 +-N=30-40mg/L,TN=40-50mg/L,TP=4-6mg/L,按照上述实施例运行后,经监测工艺装置出水水质为COD<10mg/L,TN<2mg/L,TP<0.1mg/L,出水可排入河湖等自然水体经稀释作用后降低水生态风险,增加水环境容量并储存水资源,作为城市生活用水(洗车冲厕等)和市政用水(道路清扫、建筑施工、城市绿化和生态景观等)回用,从而实现再生水的多级利用。
采用上述装置进行确定竖流沉淀池2的最佳污泥回流比,为后续工艺单元提供稳定的进水水质和适度的污染物负荷。具体地,在微氧吸附曝气池1中加入活性污泥混合液1.5L(污泥浓度为6g/L),通过蠕动泵五向微氧吸附曝气池1通入污水,使得池内的初始污泥浓度约为2.6g/L。在水力停留时间为40min,溶解氧浓度为0.5-1.0mg/L的条件下,初始污泥回流比为50%并依次按10%调整递增,即60%、70%、80%、90%、100%,经驯化适应过程和出水水质稳定后,通过对每次调整后的出水水质监测以及考虑泵的能耗尽可能相对低的情况下,确定最适污泥回流比为80%。
相比于污水处理厂的传统活性污泥法而言,污水中非溶解性有机物通过活性污泥的微生物絮凝吸附过程被去除,不仅大大减少了曝气和水泵等能耗,大大降低了污水处理的建设运行和管理运营成本,而且在减轻后续工艺单元的有机负荷同时也增加了能源资源的回收潜力。而后,污水中的溶解态有机物、悬浮物和氮磷等污染物通过人工湿地3中的植物12吸收、基质吸附和微生物同化的协同作用和微藻的吸收转化过程被去除,进而在低耗能下高效去除污水中的碳氮磷等污染物,实现再生水的达标生产且具有环境景观效益。该工艺出水可排入河湖等自然水体经稀释作用后降低水生态风险,增加水环境容量并储存水资源,作为城市生活用水(洗车冲厕等)和市政用水(道路清扫、建筑施工、城市绿化和生态景观等)回用,从而实现再生水的多级利用。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种生物-生态耦合污水处理装置,其特征在于,包括依次连接的微氧吸附曝气池、竖流沉淀池、人工湿地和微藻培养池,所述竖流沉淀池底部通过回流管道连接微氧吸附曝气池,所述微氧吸附曝气池、人工湿地和微藻培养池底部均设置曝气装置,所述微氧吸附曝气池底部设置磁力搅拌器,所述竖流沉淀池顶部设置溢流堰,所述微藻培养池内部交错设置导流板,在微藻培养池的出水区前端安装多个附着超细纤维材料的铁丝网。
  2. 根据权利要求1所述的一种生物-生态耦合污水处理装置,其特征在于,所述微氧吸附曝气池、竖流沉淀池、人工湿地均为圆柱形结构,所述竖流沉淀池底部为圆锥形;所述微藻培养池为方形结构。
  3. 根据权利要求1所述的一种生物-生态耦合污水处理装置,其特征在于,所述竖流沉淀池上方设置中心管,所述中心管通过管路连接微氧吸附曝气池,中心管下方设置反射板。
  4. 根据权利要求1所述的一种生物-生态耦合污水处理装置,其特征在于,所述人工湿地种植植物为菖蒲;所述人工湿地的填料采用砾石和生物陶粒。
  5. 根据权利要求1所述的一种生物-生态耦合污水处理装置,其特征在于,所述微藻培养池底部的曝气装置采用微纳米曝气管。
  6. 一种生物-生态耦合污水处理方法,采用如权利要求1所述的一种生物-生态耦合污水处理装置,其特征在于,包括如下过程:
    (1)将待处理的污水通入微氧吸附曝气池,通过活性污泥的生物吸附絮凝作用将污水中的非溶解态的有机物、悬浮物快速吸附用于自身增殖过程,并将污水中的一小部分有机污染物转化成二氧化碳和水,以及将部分氨氮转化为硝氮和吸收磷酸盐;
    (2)将微氧吸附曝气池出水通入竖流沉淀池进行泥水分离,部分污泥浓缩液回流至微氧吸附曝气池以补充活性污泥量;
    (3)将竖流沉淀池出水通过溢流堰通入人工湿地,通过微生物、填料和植物的协同作用去除污水中剩余的有机污染物、悬浮物和氮磷化合物;
    (4)将人工湿地出水通入微藻培养池,通过微藻的吸收转化进一步深度处理剩余的氮磷化合物。
  7. 根据权利要求6所述的一种生物-生态耦合污水处理方法,其特征在于,所述微氧吸附曝气池采用连续曝气的方式,微氧吸附曝气池内的活性污泥浓度为2000-3000mg/L,水力停留时间为30-60min,溶解氧浓度为0.5-1.0mg/L,微氧吸附曝气池的磁力搅拌强度为700-800r/min。
  8. 根据权利要求6所述的一种生物-生态耦合污水处理方法,其特征在于,所述竖流沉淀池的水力停留时间为60-90min。
  9. 根据权利要求6所述的一种生物-生态耦合污水处理方法,其特征在于,所述人工湿地采用垂直流的方式运行,人工湿地的水力停留时间为1d,水力负荷为12.5mm/h。
  10. 根据权利要求6所述的一种生物-生态耦合污水处理方法,其特征在于,所述微藻培养池采用连续曝气的方式运行,所述微藻培养池的水力停留时间为6d,所述微藻培养池的曝气量为0.8-1.2L/min,光照强度为6000-7000lux,光暗比为16:8,温度为25±3℃。
PCT/CN2021/092146 2021-01-14 2021-05-07 一种生物-生态耦合污水处理装置及方法 WO2022151616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110045417.XA CN112811734A (zh) 2021-01-14 2021-01-14 一种生物-生态耦合污水处理装置及方法
CN202110045417.X 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022151616A1 true WO2022151616A1 (zh) 2022-07-21

Family

ID=75869267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092146 WO2022151616A1 (zh) 2021-01-14 2021-05-07 一种生物-生态耦合污水处理装置及方法

Country Status (2)

Country Link
CN (2) CN116835758A (zh)
WO (1) WO2022151616A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231708A (zh) * 2022-09-23 2022-10-25 湖南先导洋湖再生水有限公司 一种分区强化功能微生物作用的立体潜流人工湿地系统
CN115594297A (zh) * 2022-12-15 2023-01-13 江苏龙腾工程设计股份有限公司(Cn) 一种组合型多级净化生物滤池及其实施方法
CN116332382A (zh) * 2023-02-15 2023-06-27 重庆阁林环保科技有限公司 一种污水净化设备及污水净化系统
CN117185589A (zh) * 2023-11-02 2023-12-08 四川省生态环境科学研究院 一种生猪养殖废水深度处理一体化装置
CN117185587A (zh) * 2023-10-27 2023-12-08 江苏龙腾工程设计股份有限公司 一种用于渔业光伏互补的养殖尾水生态净化系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354096B (zh) * 2021-07-07 2022-04-19 太原理工大学 一种太阳能供电-微藻曝气-耦合回流供氧微氧污泥床组合装置及其应用
CN113233697A (zh) * 2021-07-09 2021-08-10 山东大学 一种基于微藻培养的污水处理系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966424A (zh) * 2006-11-24 2007-05-23 北京国环清华环境工程设计研究院 生物吸附和人工湿地相结合的城镇污水处理系统及其方法
US7425262B1 (en) * 2007-04-13 2008-09-16 Modular Wetland Systems, Inc. In line wetland water treatment system
US20120021494A1 (en) * 2010-07-23 2012-01-26 Krebs & Sisier L.P. Enhanced photosynthesis and photocatalysis water treatment/biomass growth process
CN105399286A (zh) * 2015-12-25 2016-03-16 浙江省淡水水产研究所 一种新型养殖水体原位生态修复系统
CN106745769A (zh) * 2016-12-21 2017-05-31 兰州理工大学 太阳能恒温培养微藻处理生活污水系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519265B (zh) * 2009-04-09 2011-07-13 孙友峰 一种污水处理工艺及系统
CN105621808A (zh) * 2016-02-05 2016-06-01 北京建筑大学 吸附曝气滤池与人工湿地-生态塘的耦合装置及其应用
CN109574420B (zh) * 2019-01-31 2024-02-20 清华大学深圳研究生院 一种反渗透浓缩水处理方法与设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966424A (zh) * 2006-11-24 2007-05-23 北京国环清华环境工程设计研究院 生物吸附和人工湿地相结合的城镇污水处理系统及其方法
US7425262B1 (en) * 2007-04-13 2008-09-16 Modular Wetland Systems, Inc. In line wetland water treatment system
US20120021494A1 (en) * 2010-07-23 2012-01-26 Krebs & Sisier L.P. Enhanced photosynthesis and photocatalysis water treatment/biomass growth process
CN105399286A (zh) * 2015-12-25 2016-03-16 浙江省淡水水产研究所 一种新型养殖水体原位生态修复系统
CN106745769A (zh) * 2016-12-21 2017-05-31 兰州理工大学 太阳能恒温培养微藻处理生活污水系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231708A (zh) * 2022-09-23 2022-10-25 湖南先导洋湖再生水有限公司 一种分区强化功能微生物作用的立体潜流人工湿地系统
CN115231708B (zh) * 2022-09-23 2023-07-07 湖南先导洋湖再生水有限公司 一种分区强化功能微生物作用的立体潜流人工湿地系统
CN115594297A (zh) * 2022-12-15 2023-01-13 江苏龙腾工程设计股份有限公司(Cn) 一种组合型多级净化生物滤池及其实施方法
CN116332382A (zh) * 2023-02-15 2023-06-27 重庆阁林环保科技有限公司 一种污水净化设备及污水净化系统
CN117185587A (zh) * 2023-10-27 2023-12-08 江苏龙腾工程设计股份有限公司 一种用于渔业光伏互补的养殖尾水生态净化系统
CN117185589A (zh) * 2023-11-02 2023-12-08 四川省生态环境科学研究院 一种生猪养殖废水深度处理一体化装置
CN117185589B (zh) * 2023-11-02 2024-02-27 四川省生态环境科学研究院 一种生猪养殖废水深度处理一体化装置

Also Published As

Publication number Publication date
CN112811734A (zh) 2021-05-18
CN116835758A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2022151616A1 (zh) 一种生物-生态耦合污水处理装置及方法
CN103936229B (zh) 一种城市污水改良a2/o强化脱氮除磷处理装置及工艺
AU2020100706A4 (en) A membrane bioreactor system for rural decentralized wastewater
CN109052821B (zh) 一种高效资源回收低能耗的制药废水处理装置及其运行方法
CN111003906A (zh) 一种节能高效市政污水处理厂建设的方法
CN204981332U (zh) 一种脉冲升流式厌氧反应器
CN102674537A (zh) 一种强化脱氮的逆序sbr水处理装置及方法
US20230271863A1 (en) Method and system for enhanced culture of aerobic granular sludge
CN106976965A (zh) 一种包括旋流破散处理的氧化沟污水处理方法及装置
CN102718360A (zh) 一体化畜禽养殖废水处理方法
CN113697956A (zh) 一种快速培养好氧颗粒污泥的方法
CN100484886C (zh) 废纸造纸废水的处理方法
CN201220925Y (zh) 一种脉冲曝气式膜生物反应器装置
CN200951980Y (zh) 小区封闭中水景观水系生物气浮处理装置
CN203976581U (zh) 一种微污染饮用水水源原水强化预处理装置
CN100500593C (zh) 复合式污水处理方法及装置
CN208136048U (zh) 一种蔬菜榨汁废水处理系统
CN101104534A (zh) 小区封闭中水景观水系生物气浮boaf处理方法及装置
CN207313242U (zh) 一种分体回流式微氧脱氮反应器
CN211255632U (zh) 一种适用于农村的污水处理一体化系统
CN109516639B (zh) 一种城镇生活污水处理厂提标改造系统
CN211056898U (zh) 一种mfbr污水处理装置
CN209276339U (zh) 一种集成式废水处理实验平台
CN208361984U (zh) 一种用于电镀、线路板废水处理的多级曝气生物滤池
CN112499894A (zh) 一种处理高有机高氨氮工业废水的一体式mbbr工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918815

Country of ref document: EP

Kind code of ref document: A1