WO2022151542A1 - 摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法 - Google Patents

摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法 Download PDF

Info

Publication number
WO2022151542A1
WO2022151542A1 PCT/CN2021/075024 CN2021075024W WO2022151542A1 WO 2022151542 A1 WO2022151542 A1 WO 2022151542A1 CN 2021075024 W CN2021075024 W CN 2021075024W WO 2022151542 A1 WO2022151542 A1 WO 2022151542A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
triboelectric
base layer
power generation
friction
Prior art date
Application number
PCT/CN2021/075024
Other languages
English (en)
French (fr)
Inventor
黄龙彪
韩建成
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US18/271,859 priority Critical patent/US20240128895A1/en
Publication of WO2022151542A1 publication Critical patent/WO2022151542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • A61B5/1122Determining geometric values, e.g. centre of rotation or angular range of movement of movement trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to the cross technical field of the combination of 4D printing technology, sensing technology and self-powered system, and more particularly, to a triboelectric nanogenerator based on 4D printing technology, a self-powered sensing system, and a The detection method of the joint rotation angle of the sensor system and the preparation method of the triboelectric nanogenerator based on the 4D printing technology.
  • Patent document CN111564985A discloses a sensing triboelectric nanogenerator, a tire sensing device and a force monitoring system, wherein by designing the structure of the triboelectric nanogenerator, each basic The bottom layer, the electrode layer and the friction layer are successively pasted on the inner wall of the flexible substrate layer, thereby obtaining a relatively closed triboelectric nanogenerator; the friction layers are in contact with each other under the action of pre-tightening force; when the two sides of the substrate layer are subjected to opposite forces , the friction layers are far away from each other, thereby generating an electric signal related to the deformation amount; the deformation characteristics of the triboelectric nanogenerator can be judged according to the characteristics of the electric signal, so that the sensing type triboelectric nanogenerator of the invention has the induction function.
  • the preparation process is complicated, the preparation efficiency and preparation precision are not high, and the service life of the fabricated sensing device is not satisfactory
  • the invention aims to at least to a certain extent solve the technical problems that the preparation process of the sensing device is complicated, the preparation efficiency and the preparation precision are not high, and the service life of the fabricated sensing device is not satisfactory.
  • the primary purpose of the present invention is to provide a triboelectric nanogenerator based on 4D printing technology.
  • the technical scheme of the present invention is as follows:
  • a triboelectric nanogenerator based on 4D printing technology comprising a first triboelectric power generation part and a second triboelectric power generation part that are relatively rotatable;
  • the first triboelectric power generation part comprises a first base layer, a The friction units are arranged at intervals with the center of the first base layer as the center of the circle;
  • the second triboelectric power generation component includes a second base layer, a first electrode and a second electrode arranged on the inner surface of the second base layer.
  • a number of first electrodes and a number of second electrodes are spaced apart from each other with the geometric center of the second base layer as the center, and a gap is set between the first electrode and the second electrode; the first base layer and the second base layer are arranged through each other. Some flanges and grooves are inserted together, so that the friction unit and the first electrode and the second electrode can rotate and rub against each other; the first triboelectric power generation component and the second base layer are prepared by 4D printing technology.
  • the 4D printing adopts shape memory polymer or self-healing material, and adopts fused deposition printing, ink direct writing printing or digital light processing printing.
  • the surface of the friction unit has protrusions or grooves.
  • the first electrode and the second electrode are obtained after spraying a solution with a conductive substance on the surface of the second base layer and volatilizing the solvent, and the conductive substance includes silver nanowires, carbon nanotubes or graphene.
  • the longitudinal cross-sectional shapes of the first triboelectric power generation member and the second friction power generation member are polygonal or curved.
  • the central angle corresponding to each friction unit is a, and the central angle b is the same between two adjacent friction units; the central angle corresponding to each first electrode is c, and the central angle corresponding to each second electrode is c.
  • a further object of the present invention is to provide a self-powered sensing system, in which the triboelectric nanogenerator based on 4D printing technology is assembled at the joint, wherein the first triboelectric power generation component and the second triboelectric power generation component are installed in one part of the joint.
  • the joint moves, the relative rotation between one of the triboelectric components and the other is driven to generate an alternating current signal, and the angle of the joint movement can be inferred according to the characteristics of the alternating current signal.
  • the third object of the present invention is to provide a detection method based on the joint rotation angle of the self-powered sensing system, comprising the following steps:
  • step S3 detecting the phase information corresponding to the output electrical signal after smoothing and noise reduction processing in step S2;
  • step S4 match the phase information of the output electrical signal according to the correspondence table of "rotation angle-output signal phase" in step S1;
  • step S2 a plurality of self-powered sensing systems are installed at the joints at the same time, and accordingly in step S3, the average value of the phase information corresponding to the output electrical signals after the smoothing and noise reduction processing is obtained as the average value. final phase information.
  • the fourth object of the present invention is to provide a method for preparing a triboelectric nanogenerator of 4D printing technology, comprising the following steps:
  • the present invention designs and prepares an independent layered triboelectric nanogenerator by introducing 4D printing technology into the preparation of the triboelectric nanogenerator.
  • 4D printing technology enables the individualized, high-precision, and high-efficiency preparation of triboelectric nanogenerators, and surface protrusions or grooves can be made on the surface of the friction unit to increase the contact area, thereby improving the friction nanogenerator.
  • the output performance of the generator; secondly, the triboelectric nanogenerator made of shape memory material also has a shape memory function. When there is performance degradation caused by device deformation during use, it is only necessary to place the deformed device under certain conditions. , the shape of the device can be restored, and the performance will also be restored, thereby indirectly improving the service life of the triboelectric nanogenerator.
  • the independent layered triboelectric nanogenerator is assembled at the joint as a self-powered sensing system and combined with a new method for detecting the rotation angle of the joint, and the triboelectric nanogenerator is used to detect the movement of the joint.
  • Self-powered sensor Different from the previous sensing-type triboelectric nanogenerator, which realizes detection by detecting the strength of the output signal, the present invention starts from the principle of the output signal of the triboelectric nanogenerator, according to the relative rotation angle between the triboelectric components and the output electrical signal. This method can effectively avoid detection errors caused by device performance degradation, thereby improving the reliability of detection.
  • FIG. 1 is a top view of the surface of the first triboelectric power generation component of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • FIG. 2 is a top view of the surface of the second triboelectric power generation component of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • Example 3 is a schematic cross-sectional view of the triboelectric nanogenerator based on the 4D printing technology provided in Example 1 of the present invention.
  • FIG. 4 is a schematic diagram of the first step of the workflow of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of the second step of the workflow of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the third step of the workflow of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the fourth step of the workflow of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
  • FIG. 8 is a schematic assembly diagram of the self-powered sensing system for detecting human joint motion provided in Embodiment 2 of the present invention.
  • FIG. 9 is a voltage change diagram of the self-powered sensing system provided in Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart showing the steps of a method for detecting a rotation angle of a human body joint based on the self-powered sensing system according to Embodiment 3 of the present invention.
  • FIG. 11 is a flowchart of steps of a preparation method of a triboelectric nanogenerator based on 4D printing technology provided in Embodiment 4 of the present invention.
  • a triboelectric nanogenerator based on 4D printing technology includes a first triboelectric power generation part 1 and a second triboelectric power generation part 2 that are relatively rotatable; the first triboelectric power generation part 1 includes a first base layer 11.
  • the second triboelectric power generation component 2 includes the second base layer 21,
  • the first triboelectric power generation component 1 and the second base layer 21 are prepared by 4D printing technology.
  • the first triboelectric power generation component 1 and the second base layer 21 use shape memory polymer or self-healing material, and further, the printing wire can be polyurethane.
  • the first electrode 22 and the second electrode 23 are sprayed with a solution containing a conductive substance using a spraying machine, and the function of the mask is Then, a corresponding electrode pattern is obtained, and finally the solvent is volatilized to obtain a corresponding electrode layer.
  • the conductive substance includes silver nanowires, carbon nanotubes or graphene. More specifically, the solution used for preparing the conductive layer may be a methanol solution of silver nanowires.
  • the longitudinal cross-sectional shapes of the first base layer 11 and the second base layer 21 are polygons or curved surfaces, and can be further configured as regular polygons or circles.
  • the friction unit 12 is rectangular, triangular or fan-shaped.
  • the first triboelectric power generation component 1 and the second triboelectric power generation component 2 are assembled together through the flange 24 and the groove 13 arranged at the geometric center of the two, so that the friction unit 12 and the first electrode 22 and the first electrode 22 and the third
  • the two electrodes 23 are in contact with each other to form an independent layered triboelectric nanogenerator.
  • the cross-sectional shapes of the flange 24 and the groove 13 are circular.
  • the surfaces of several friction units 12 can obtain surface convex or groove patterns through 4D printing technology, thereby increasing the output performance of the triboelectric nanogenerator. 2
  • the triboelectric nanogenerator When relative rotation occurs, the triboelectric nanogenerator generates alternating current under the action of triboelectricity and electrostatic induction.
  • the working mode of the triboelectric nanogenerator in this embodiment is an independent layer type. As shown in Figures 4-7, under the action of external force, the first electrode 22 and the second electrode 23 are centered on the flange and the groove relative to the friction unit. Rotation; during the rotation, several friction units 12 alternately overlap with the first electrode 22 and the second electrode 23, which affects the charge distribution on the electrode surface, thereby causing a potential difference between the first electrode 22 and the second electrode 23; when the first electrode 22 and the second electrode 23 When there is an electrical connection between the electrode 22 and the second electrode 23, the triboelectric nanogenerator generates an alternating current signal in the external circuit.
  • the triboelectric nanogenerator When the circuit between the first electrode 22 and the second electrode 23 is open, the triboelectric nanogenerator outputs an external output.
  • An alternating voltage signal specifically, when friction occurs, the friction unit has a large electronegativity, so the surface is negatively charged; when a number of friction units 12 and a number of first electrodes 22 are completely overlapped, in the electrostatic induction Under the action of , the surfaces of several first electrodes 22 have positive charges equal to that of several friction units 12, and at this time, the surfaces of several second electrodes 23 have no charge, so there is a potential difference between the first electrodes 22 and the second electrodes 23; As the friction unit continues to rotate until the second electrode 23 is completely covered, the surface of the first electrode 22 has an equal amount of positive charge as that of the friction unit 12, while the surface of the first electrode 22 has no charge, so the second electrode 23 and the first electrode have no charge. There is a potential difference between 22; when the external force continues to act, the above-mentioned power generation cycle will
  • the performance of the triboelectric nanogenerator is often degraded due to the deformation of some components, which greatly affects the stability and service life of the triboelectric nanogenerator.
  • polyurethane is used as the printing wire, and the 4D printing technology
  • the above-mentioned triboelectric nanogenerator has a shape memory function.
  • the shape of the device can be restored after heating the deformed device at 60 ° C for 1 min. , the performance of the device can also be effectively restored.
  • the friction unit 12 When the friction unit 12 is rotated by 15°, the friction unit and the first electrode 22 are completely overlapped at this time. Under the action of electrostatic induction, the surface of the first electrode 22 has a positive charge equal to the negative charge on the surface of the friction unit.
  • the potential difference between the electrode 22 and the second electrode 23 reaches the maximum value; when the friction unit 12 rotates 15° in the same direction, the friction unit 12 reaches the middle position of the first electrode 22 and the second electrode 23 again, and the first The surfaces of the electrode 22 and the second electrode 23 have an equal amount of positive charges, and the potential difference between the electrodes disappears, corresponding to the change curve of the potential difference from point i to point ii in FIG. 8 .
  • the relationship between the relative rotation angle and the waveform phase is not invariable (30°, ⁇ ), (60°, 2 ⁇ ), (90°, 3 ⁇ ), and the specific correspondence is affected by the specific structure of the device. , that is to say, the central angle corresponding to each friction unit 12 is a, the central angle between two adjacent friction units 12 is the same, the central angle corresponding to each first electrode 22 is c, and the central angle corresponding to each second electrode 22 is c.
  • the value of the central angle e corresponding to the electrode 23 will affect the final judgment result.
  • the application scenarios of the self-powered sensing system are not limited to human joints, but various rotational positions, such as industrial robot arms and the like.
  • the 4D printing technology-based triboelectric nanogenerators are assembled at different joints, they have different sizes.
  • the dimensions of the triboelectric nanogenerators installed in human elbow joints, wrist joints and finger joints are determined by Change from big to small.
  • Figure 9 shows the detection results of the self-powered sensing system at the finger joints. It can be seen that when the joints are rotated by 30°, 60°, and 90°, the phases of the sensor output electrical signal waveforms are ⁇ , 2 ⁇ , and 3 ⁇ , respectively. , and the peak voltage is maintained at about 0.7V; when the device is deformed, it can be seen that the phase of the sensor output electrical signal does not change, but only the peak voltage drops to about 0.3V, attenuating about 55%; However, after heating the deformed sensor at 60°C for 1 min, the shape of the sensor was recovered. From the data in Figure 8, it can be seen that the performance of the sensor output was also recovered, the phase characteristics were the same, and the peak voltage also recovered to 0.7V or so.
  • this embodiment provides a method for detecting the rotation angle of a human body joint based on the self-powered sensing system, including the following steps:
  • step S3 detecting the phase information corresponding to the output electrical signal after smoothing and noise reduction processing in step S2;
  • step S4 match the phase information of the output electrical signal according to the correspondence table of "rotation angle-output signal phase" in step S1;
  • step S2 multiple self-powered sensing systems can be installed at the joints of the human body at the same time, and correspondingly, in step S3, the average value of the phase information corresponding to the output electrical signals after the smoothing and noise reduction processing is obtained. as the final phase information.
  • the self-powered sensor proposed in this embodiment adopts a new detection method. Based on the working principle of the independent layered triboelectric nanogenerator, the motion of the joint is judged according to the phase relationship of the output waveform of the triboelectric nanogenerator under different conditions. During the working process, even if the performance degradation caused by the deformation of the device occurs, it will not affect the effective detection of the sensor, thus greatly improving the reliability of the sensor detection.
  • a preparation method of a triboelectric nanogenerator based on 4D printing technology includes the following steps:
  • the surface of the second base layer after the printing process is sprayed with a volatile solution mixed with a conductive substance with a sprayer, and the first electrode 22 and the second electrode 23 can be obtained after the solvent is volatilized;
  • step S2 3ds MAX software is used for modeling, and software such as COMSOL is used to analyze the working process of the model and simulate the distribution of electric potential field.
  • the above-mentioned preparation method of the triboelectric nanogenerator based on 4D printing technology can also be used for the preparation of triboelectric nanogenerators of various modes, including but not limited to lateral sliding mode, single electrode mode and contact-separation mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种基于4D打印技术的摩擦纳米发电机,包括第一基底层、摩擦单元的第一摩擦发电部件,若干摩擦单元以第一基底层的几何中心为圆心间隔排列;包括第二基底层、第一电极、第二电极的第二摩擦发电部件,若干第一电极和若干第二电极以第二基底层的几何中心为圆心相互间隔设置,且第一电极与第二电极之间设有间隙;第一基底层和第二基底层通过彼此设有的凸缘和凹槽插装在一起,使摩擦单元与第一电极和第二电极相互接触摩擦。本发明还提供了一种自供能传感系统、关节转动角度的检测方法和4D打印摩擦纳米发电机的制备方法。本发明在解决了传感装置的制备流程复杂,制备效率和精度低且制作的传感装置的使用寿命短的技术问题。

Description

摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法 技术领域
本发明涉及4D打印技术、传感技术和自供能系统相结合的交叉技术领域,更具体地,涉及一种基于4D打印技术的摩擦纳米发电机、自供能传感系统、基于所述自供能传感系统的关节转动角度的检测方法以及所述基于4D打印技术的摩擦纳米发电机的制备方法。
背景技术
随着物联网时代的到来,大量的便携式电子设备得以应用,这些电子设备的供电方式普遍选择使用电池进行供电。但使用电池供电需要进行频繁充电或更换电池,同时废弃的电池还会带来严重的环境污染。因此,迫切需要一种不需要外部电源供电即可实现检测的自供能传感技术。为了解决这一问题,基于摩擦纳米发电机的自供能传感系统得到了广泛的关注。
然而,在实现普遍应用的道路上,基于摩擦纳米发电机的自供能传感系统仍然存在一些问题。首先,当器件长期工作时,器件性能会出现衰减,从而导致检测结果出现错误。其次,基于摩擦纳米发电机的自供能传感器的制备工艺相对落后。最后,传统的制备工艺通过对各组件的加工、组装,并最终装配成一个完整的器件;然而这样的工艺很难保证同一批器件的性能,并最终影响检测效果。
专利文献CN111564985A(公开日2020年08月21日)公开了一种传感式摩擦纳米发电机、轮胎的传感装置及力监测系统,其中通过对摩擦纳米发电机的结构进行设计,将各个基底层、电极层以及摩擦层依次粘贴在柔性基底层内壁,从而得到一个相对封闭的摩擦纳米发电机;摩擦层在预紧力的作用下相互接触;当基底层的两侧受到相反的作用力时,摩擦层相互远离,从而产生一个与形变量有关的电信号;根据电信号的特征即可判断摩擦纳米发电机的形变特征,从而使该发明的传感式摩擦纳米发电机具备感应功能。但其制备流程复杂,制备效率和制备精度不高,且制作出的传感装置的使用寿命不尽如人意。
为了推动基于摩擦纳米发电机的传感装置应用与发展,迫切需要一种全新的工艺,以提高传感装置的制备效率、制备精度,并同时提高传感装置的使用寿命。
发明内容
本发明旨在至少在一定程度上解决传感装置的制备流程复杂,制备效率和制备精度不高,且制作出的传感装置的使用寿命不尽如人意的技术问题。
本发明的首要目的是提供一种基于4D打印技术的摩擦纳米发电机。为解决上述技术问题,本发明的技术方案如下:
一种基于4D打印技术的摩擦纳米发电机,包括可相对转动的第一摩擦发电部件和第二摩擦发电部件;所述第一摩擦发电部件包括第一基底层、设置在第一基底层表面的的摩擦单元,所述若干摩擦单元以第一基底层的中心为圆心间隔排列;所述第二摩擦发电部件包括第二基底层、设置在第二基底层内表面的第一电极、第二电极,若干第一电极和若干第二电极以第二基底层的几何中心为圆心相互间隔设置,且第一电极与第二电极之间设有间隙;第一基底层和第二基底层通过彼此设有的凸缘和凹槽插装在一起,从而使摩擦单元与第一电极和第二电极能相互转动及接触摩擦;其中第一摩擦发电部件和第二基底层采用4D打印技术制备而成。
优选地,所述4D打印采用形状记忆聚合物或自修复材料,采用熔融沉积式打印、油墨直写打印或数字光处理打印。
优选地,所述摩擦单元表面具有凸起或凹槽。
优选地,在所述第二基底层的表面喷涂具有导电物质的溶液并将溶剂挥发后得到所述第一电极和第二电极,所述导电物质包括银纳米线、碳纳米管或石墨烯。
优选地,所述第一摩擦发电部件和第二摩擦发电部件的纵向截面形状为多边形或曲边状。
优选地,每个所述摩擦单元对应的圆心角为a,相邻两个摩擦单元之间相隔相同的圆心角b;每个第一电极对应的圆心角为c,每个第二电极对应的圆心角为e,其中a=c=d,b=c+2*e。
本发明的进一步目的是提供一种自供能传感系统,将所述基于4D打印技术的摩擦纳米发电机装配在关节处,其中第一摩擦发电部件和第二摩擦发电部件装设在关节的一侧,当关节发生运动时带动其中一个摩擦发电部件与另一个摩擦发电部件之间发生相对转动从而产生交流电信号,根据交流电信号的特征即可推断关节运动的角度。
本发明的第三个目的是提供一种基于所述自供能传感系统的关节转动角度的检测方法,包括以下步骤:
S1、分别测得不同转动角度下所述摩擦纳米发电机输出电信号的相位,并建立“转动角度—输出电信号相位”的对应关系表;
S2、实时获取安装在关节处的所述自供能传感系统的输出电信号,并对所述输出电信号做进行平滑和降噪处理;
S3、检测步骤S2中经过平滑和降噪处理后的输出电信号对应的相位信息;
S4、根据步骤S1中标定“转动角度-输出信号相位”的对应关系表,将输出电信号的相位信息进行匹配;
S5、根据S4中输出电信号的相位信息与转动角度的匹配结果,获取关节转动角度。
优选地,在步骤S2中,在关节处同时安装多个自供能传感系统,相应地在步骤S3中求取多个经过平滑和降噪处理后的输出电信号对应的相位信息的平均值作为最终的相位信息。
本发明的第四个目的是提供一种4D打印技术的摩擦纳米发电机的制备方法,包括以下步骤:
S1、设计出独立层式摩擦纳米发电机模型;
S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;
S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令;
S4、将加工指令导入3D打印机,分别完成对第一摩擦发电部件和第二基底层的打印加工;若加工过程中打印产品出现不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令;
S5、将打印加工完成的第二基底层的表面使用喷涂机喷涂掺有导电物质的挥发溶液,将溶剂挥发后即可得到第一电极和第二电极;
S6、将制备有第一电极和第二电极的第二摩擦发电部件和第一摩擦发电部件装配成摩擦纳米发电机。
与现有技术相比,本发明技术方案的有益效果是:
1、本发明通过将4D打印技术引入到摩擦纳米发电机的制备中,设计并制备一个独立层式摩擦纳米发电机。首先,4D打印技术的引进,使得摩擦纳米发电机实现了个性化、高精度、高效率的制备,并且可以在摩擦单元表面制作表面 凸起或凹槽,以增大接触面积,进而提升摩擦纳米发电机的输出性能;其次,使用形状记忆材料制得的摩擦纳米发电机还具备形状记忆功能,当使用过程中出现有器件变形导致的性能衰减时,只需将变形的器件置于一定条件下,器件的形状就能得到恢复,性能也会随之恢复,从而间接提高了摩擦纳米发电机的使用寿命。
2、本发明将所述独立层式摩擦纳米发电机装配在关节处作为自供能传感系统并结合一种新的关节转动角度的检测方法,将所述摩擦纳米发电机用于检测关节运动的自供能传感器。不同于以往的传感式摩擦纳米发电机通过检测输出信号的强弱来实现检测的方法,本发明从摩擦纳米发电机输出信号的原理出发,根据摩擦发电组件之间相对转动角度与输出电信号的特征之间的关系,来判断关节运动的角度,这种方式可以有效规避由于器件性能衰减造成的检测误差,从而提高检测的可靠性。
附图说明
图1为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的第一摩擦发电部件表面的俯视图。
图2为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的第二摩擦发电部件表面的俯视图。
图3为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的横截面示意图。
图4为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的工作流程第一步骤示意图。
图5为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的工作流程第二步骤示意图。
图6为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的工作流程第三步骤示意图。
图7为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的工作流程第四步骤示意图。
图8为本发明实施例2提供的自供能传感系统检测人体关节运动的装配示意图。
图9为本发明实施例2提供的自供能传感系统的电压变化图。
图10为本发明实施例3提供的基于所述自供能传感系统的人体关节转动角度的检测方法步骤流程图。
图11为本发明实施例4提供的一种基于4D打印技术的摩擦纳米发电机的制备方法步骤流程图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
参见图1-3,一种基于4D打印技术的摩擦纳米发电机,包括可相对转动的第一摩擦发电部件1和第二摩擦发电部件2;所述第一摩擦发电部件1包括第一基底层11、设置在第一基底层11表面的摩擦单元12,所述若干摩擦单元12以第一基底层11的几何中心为圆心间隔排列;所述第二摩擦发电部件2包括第二基底层21、设置在第二基底层21表面的第一电极22、第二电极23,若干第一电极22和若干第二电极23以第二基底层21的几何中心为圆心相互间隔设置,且第一电极22与第二电极23之间设有间隙;第一基底层11和第二基底层21通过彼此设有的凸缘24和凹槽13插装在一起,从而使摩擦单元12与第一电极22和第二电极23能相互转动及接触摩擦;其中第一摩擦发电部件1、第二基底层21采用4D打印技术制备而成。
具体地,所述第一摩擦发电部件1、第二基底层21使用形状记忆聚合物或自修复材料,进一步地,打印线材可以是聚氨酯。采用采用熔融沉积式打印、油墨直写打印或数字光处理打印等3D打印方法打印制得;第一电极22和第二电极23则使用喷涂机喷涂含有导电物质的溶液,在掩膜版的作用下,得到相应的电极图案,最后将溶剂挥发,即可得到相应的电极层。所述导电物质包括银纳米线、碳纳米管或石墨烯。进一步具体地,制备导电层所用的溶液可以是银纳米线甲醇溶液。
具体地,所述第一基底层11和第二基底层21的纵向截面形状为多边形或曲面形,进一步可设置为正多边形或圆形。所述摩擦单元12为矩形、三角形或扇形形状。每个所述摩擦单元12对应的圆心角为a,相邻两个摩擦单元12之间相 隔相同的圆心角b;每个第一电极22对应的圆心角为c,每个第二电极23对应的圆心角为e,其中a=c=d,b=c+2*e。
在具体实施过程中,第一摩擦发电部件1与第二摩擦发电部件2通过设置在二者几何中心处的凸缘24和凹槽13组装在一起,使摩擦单元12与第一电极22和第二电极23相互接触,组成一个独立层式摩擦纳米发电机。其中所述凸缘24和凹槽13的截面形状为圆形。为了增大有效接触面积,若干摩擦单元12表面可通过4D打印技术得到表面凸起或凹槽图案,进而增大摩擦纳米发电机的输出性能,当第一摩擦发电部件1与第二摩擦发电部件2发生相对转动时,在摩擦起电与静电感应的作用下,摩擦纳米发电机产生交流电。
下面,将对本实施例的4D打印摩擦纳米发电机的工作原理进行说明:
本实施例中的摩擦纳米发电机的工作模式为独立层式,如图4-7所示,在外力作用下,第一电极22和第二电极23以凸缘和凹槽为中心相对摩擦单元转动;在转动过程中,若干摩擦单元12交替与第一电极22、第二电极23重叠,影响电极表面的电荷分布,从而导致第一电极22和第二电极23之间产生电势差;当第一电极22与第二电极23之间存在电学连接时,摩擦纳米发电机在外电路中产生一个交变电流信号,当第一电极22和第二电极23之间开路时,摩擦纳米发电机对外输出输出一个交变电压信号;具体来说,当发生摩擦时,摩擦单元由于具有较大的电负性,因此表面带上负电荷;当若干摩擦单元12与若干第一电极22完全重叠时,在静电感应的作用下,若干第一电极22表面出现与若干摩擦单元12等量的正电荷,此时若干第二电极23表面无电荷,因此第一电极22和第二电极23之间存在一个电势差;随着摩擦单元继续转动,直至完全覆盖第二电极23,此时第一电极22表面出现与摩擦单元12等量的正电荷,而第一电极22表面无电荷,因此第二电极23与第一电极22之间存在一个电势差;当外力持续产生作用时,上述发电周期就会循环发生。
摩擦纳米发电机时常会因为部分组件的变形导致器件的性能出现下降,这极大地影响了摩擦纳米发电机工作的稳定性和使用寿命;而本实施例中以聚氨酯为打印线材,通过4D打印技术制得的上述摩擦纳米发电机由于具有形状记忆功能,当出器件变形导致器件性能衰减时,将变形的器件置于60℃的条件下加热1min后,器件的形状就能恢复原状,经测试发现,器件的性能也能得到有效恢复。
实施例2
本实施例提供了一种基于实施例一的自供能传感系统,将所述基于4D打印技术的摩擦纳米发电机装配在人体关节处,其中第一摩擦发电部件1和第二摩擦发电部件2装设在人体关节的一侧,当人体关节发生运动时带动其中一个摩擦发电部件与另一个摩擦发电部件之间发生相对转动从而产生交流电信号,根据交流电信号的特征即可推断关节运动的角度。具体地,设置a=c=d=29°,b=31°,e=1°。在实际应用中,自供能传感系统检测精度会根据上述参数的变化而变化。
当摩擦单元12位于第一电极22和第二电极23的中间位置时,此时第一电极22和第二电极23表面分布有等量的正电荷,且两电极之间没有电势差,此时对应图8中的i点。
当摩擦单元12转动15°时,此时摩擦单元与第一电极22完全重叠,在静电感应的作用下,第一电极22表面出现与摩擦单元表面的负电荷等量的正电荷,此时第一电极22与第二电极23之间的电势差达到最大值;当摩擦单元12沿着同一方向转动15°时,摩擦单元12再次到达第一电极22与第二电极23的中间位置,此时第一电极22与第二电极23表面有等量的正电荷,电极之间的电势差消失,对应图8中的从i点到ii点之间的电势差变化曲线。
当摩擦单元沿着相同方向转动30°时,电极间的电势差先出现后归零,对应图8中的从ii点-iii点、从iii点-iv点之间的电势差变化曲线。
因此,观察摩擦单元的转动角度与输出波形,我们可以发现,当相对转动角度分别为30°、60°、90°时,传感器产生的波形相位分别为π、2π、3π;因此,根据传感器产生的输出波形的相位特征,我们就可以得知第一摩擦发电组件与第二摩擦发电组件的相对转动角度,即关节的转动角度;
值得注意的是,相对转动角度与波形相位之间并不是一成不变的(30°,π)、(60°,2π)、(90°,3π)的关系,具体的对应关系受到器件的具体结构影响,也就是说每个所述摩擦单元12对应的圆心角为a、相邻两个摩擦单元12之间相隔相同的圆心角、每个第一电极22对应的圆心角为c、每个第二电极23对应的圆心角为e的数值会影响最终的判断结果。
另外,所述自供能传感系统的应用场景不局限于人体关节,而是多种发生转动的位置,例如工业机器人手臂等。所述基于4D打印技术的摩擦纳米发电机装配在不同的关节处时,具有不同的尺寸大小,例如装在人的肘部关节、腕部关节 和指部关节的摩擦纳米发电机的尺寸是由大变小进行变化的。
图9展示了在指部关节处自供能传感系统的检测结果,可以看出,当关节分别转动30°、60°、90°时,传感器输出电信号波形的相位分别为π、2π以及3π,且峰值电压维持在0.7V左右;当器件出现变形时,可以看出,传感器输出电信号的相位没有发生变化,仅仅是峰值电压出现了下降,降至0.3V左右,衰减了约55%;然而,将变形的传感器置于60℃的条件下加热1min后,传感器的形状得以恢复,从图8中的数据可以看出,传感器输出的性能也得以恢复,相位特征相通,峰值电压也恢复至0.7V左右。
实施例3
参见图10,本实施例提供了一种基于所述自供能传感系统的人体关节转动角度的检测方法,包括以下步骤:
S1、分别测得不同转动角度下所述摩擦纳米发电机输出电信号的相位,并建立“转动角度—输出电信号相位”的对应关系表;
S2、实时获取安装在人体关节处的所述自供能传感系统的输出电信号,并对所述输出电信号做进行平滑和降噪处理;
S3、检测步骤S2中经过平滑和降噪处理后的输出电信号对应的相位信息;
S4、根据步骤S1中标定“转动角度-输出信号相位”的对应关系表,将输出电信号的相位信息进行匹配;
S5、根据S4中输出电信号的相位信息与转动角度的匹配结果,获取人体关节转动角度。
其中,在步骤S2中,可在人体关节处同时安装多个自供能传感系统,相应地在步骤S3中求取多个经过平滑和降噪处理后的输出电信号对应的相位信息的平均值作为最终的相位信息。
本实施例提出的自供能传感器采用一种新的检测方法,基于独立层式摩擦纳米发电机的工作原理,根据摩擦纳米发电机在不同条件下输出波形的相位关系,来判断关节的运动情况,在工作过程中,即使出现器件变形导致的性能衰减,也不会影响传感器进行有效地检测,从而大大地提高了传感器检测的可靠性。
实施例4
一种4D打印技术的摩擦纳米发电机的制备方法,参见图11,包括以下步骤:
S1、设计出独立层式摩擦纳米发电机模型;
S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;
S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令(如gcode代码);
S4、将加工指令导入3D打印机,分别完成对第一摩擦发电部件1、第二基底层21的打印加工;若加工过程中打印产品出现出现坍塌、变形或影响装配等不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令(如gcode代码);
S5、将打印加工完成的第二基底层的表面使用喷涂机喷涂掺有导电物质的挥发溶液,将溶剂挥发后即可得到第一电极22和第二电极23;
S6、将制备有第一电极22和第二电极23的第二摩擦发电部件2和第一摩擦发电部件1装配成摩擦纳米发电机。
其中步骤S2中使用3ds MAX软件进行建模,并使用COMSOL等软件对该模型的工作过程进行受力分析并对电势场分布进行仿真测试。
上述基于4D打印技术的摩擦纳米发电机的制备方法也可以用于制作多种模式的摩擦纳米发电机的制备,包括但不限于横向滑动模式、单电极模式以及接触-分离模式。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种基于4D打印技术的摩擦纳米发电机,其特征在于,包括可相对转动的第一摩擦发电部件(1)和第二摩擦发电部件(2);所述第一摩擦发电部件(1)包括第一基底层(11)、设置在第一基底层(11)表面的摩擦单元(12),所述若干摩擦单元(12)以第一基底层的几何中心为圆心间隔排列;所述第二摩擦发电部件(2)包括第二基底层(21)、设置在第二基底层(21)表面的第一电极(22)、第二电极(23),若干第一电极(22)和若干第二电极(23)以第二基底层(21)的几何中心为圆心相互间隔设置,且第一电极(22)与第二电极(23)之间设有间隙;第一基底层(11)和第二基底层(21)通过彼此设有的凸缘(24)和凹槽(13)插装在一起,使摩擦单元(12)与第一电极(22)和第二电极(23)能相互转动及接触摩擦;其中第一摩擦发电部件(1)和第二基底层(21)采用4D打印制备而成。
  2. 根据权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述4D打印采用形状记忆聚合物或自修复材料,采用熔融沉积式打印、油墨直写打印或数字光处理打印。
  3. 根据权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述摩擦单元(12)表面具有凸起或凹槽。
  4. 根据权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于在所述第二基底层(21)表面喷涂具有导电物质的溶液并将溶剂挥发后得到所述第一电极(22)和第二电极(23),所述导电物质包括银纳米线、碳纳米管或石墨烯。
  5. 根据权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述第一基底层(11)和第二基底层(21)的纵向截面形状为多边形或曲边形。
  6. 根据权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于每个所述摩擦单元(12)对应的圆心角为a,相邻两个摩擦单元(12)之间相隔相同的圆心角b;每个第一电极(22)对应的圆心角为c,每个第二电极(23)对应的圆心角为e,其中a=c=d,b=c+2*e。
  7. 一种自供能传感系统,其特征在于将权利要求1-6任一项所述基于4D打印技术的摩擦纳米发电机装配在关节处,其中第一摩擦发电部件(1)和第二摩 擦发电部件(2)装设在关节的一侧,当关节发生运动时带动其中一个摩擦发电部件与另一个摩擦发电部件之间发生相对转动从而产生交流电信号,根据交流电信号的特征即可推断关节运动的角度。
  8. 一种基于权利要求7所述自供能传感系统的关节转动角度的检测方法,包括以下步骤:
    S1、分别测得不同转动角度下所述摩擦纳米发电机输出电信号的相位,并建立“转动角度—输出电信号相位”的对应关系表;
    S2、实时获取安装在关节处的所述自供能传感系统的输出电信号,并对所述输出电信号做进行平滑和降噪处理;
    S3、检测步骤S2中经过平滑和降噪处理后的输出电信号对应的相位信息;
    S4、根据步骤S1中标定“转动角度-输出信号相位”的对应关系表,将输出电信号的相位信息进行匹配;
    S5、根据S4中输出电信号的相位信息与转动角度的匹配结果,获取关节转动角度。
  9. 根据权利要求8所述的基于自供能传感系统的关节转动角度的检测方法,其特征在于在步骤S2中,在关节处同时安装多个自供能传感系统,相应地在步骤S3中求取多个经过平滑和降噪处理后的输出电信号对应的相位信息的平均值作为最终的相位信息。
  10. 一种权利要求1-7任一项所述的4D打印技术的摩擦纳米发电机的制备方法,其特征在于包括以下步骤:
    S1、设计出独立层式摩擦纳米发电机模型;
    S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;
    S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令;
    S4、将加工指令导入3D打印机,分别完成对第一摩擦发电部件(1)和第二基底层(21)的打印加工;若加工过程中打印产品出现不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令;
    S5、将打印加工完成的第二基底层(21)的表面使用喷涂机喷涂掺有导电物质的挥发溶液,将溶剂挥发后即可得到第一电极(22)和第二电极(23);
    S6、将制备有第一电极(22)和第二电极(23)的第一基底层(11)和第二基底层(21)装配成摩擦纳米发电机。
PCT/CN2021/075024 2021-01-12 2021-02-03 摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法 WO2022151542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/271,859 US20240128895A1 (en) 2021-01-12 2021-02-03 Triboelectric nanogenerator and preparation method, self-powered sensing system, and joint angle detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110038924.0A CN112751502A (zh) 2021-01-12 2021-01-12 摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法
CN202110038924.0 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022151542A1 true WO2022151542A1 (zh) 2022-07-21

Family

ID=75651002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075024 WO2022151542A1 (zh) 2021-01-12 2021-02-03 摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法

Country Status (3)

Country Link
US (1) US20240128895A1 (zh)
CN (1) CN112751502A (zh)
WO (1) WO2022151542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478618A (zh) * 2020-04-22 2020-07-31 西安工程大学 一种基于织物的柔性摩擦发电机及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113565921A (zh) * 2021-07-29 2021-10-29 合肥工业大学 一种自传感磁流变车辆悬架阻尼器
CN116139960A (zh) * 2023-04-19 2023-05-23 中国海洋大学 纳米发电机可控化学反应芯片及其制备、使用方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203445806U (zh) * 2013-08-01 2014-02-19 纳米新能源(唐山)有限责任公司 关节运动发电装置
CN103825489A (zh) * 2014-02-27 2014-05-28 国家纳米科学中心 旋转摩擦发电机、稳压输出电路和供电装置
CN104010613A (zh) * 2011-12-21 2014-08-27 国立大学法人信州大学 动作辅助装置、及动作辅助装置的同步控制方法
WO2016031734A1 (ja) * 2014-08-26 2016-03-03 国立大学法人東京工業大学 体内発電システム
CN110138259A (zh) * 2019-05-21 2019-08-16 中国科学院兰州化学物理研究所 一种耐高湿柔性可穿戴摩擦纳米发电机及其制备方法和应用
CN111193432A (zh) * 2020-02-05 2020-05-22 北京纳米能源与系统研究所 盘式直流输出摩擦纳米发电装置及传感设备
CN112134482A (zh) * 2020-09-21 2020-12-25 青岛大学 基于各向异性摩擦电纳米发电机的角度传感器及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010613A (zh) * 2011-12-21 2014-08-27 国立大学法人信州大学 动作辅助装置、及动作辅助装置的同步控制方法
CN203445806U (zh) * 2013-08-01 2014-02-19 纳米新能源(唐山)有限责任公司 关节运动发电装置
CN103825489A (zh) * 2014-02-27 2014-05-28 国家纳米科学中心 旋转摩擦发电机、稳压输出电路和供电装置
WO2016031734A1 (ja) * 2014-08-26 2016-03-03 国立大学法人東京工業大学 体内発電システム
CN110138259A (zh) * 2019-05-21 2019-08-16 中国科学院兰州化学物理研究所 一种耐高湿柔性可穿戴摩擦纳米发电机及其制备方法和应用
CN111193432A (zh) * 2020-02-05 2020-05-22 北京纳米能源与系统研究所 盘式直流输出摩擦纳米发电装置及传感设备
CN112134482A (zh) * 2020-09-21 2020-12-25 青岛大学 基于各向异性摩擦电纳米发电机的角度传感器及制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478618A (zh) * 2020-04-22 2020-07-31 西安工程大学 一种基于织物的柔性摩擦发电机及其制造方法

Also Published As

Publication number Publication date
US20240128895A1 (en) 2024-04-18
CN112751502A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2022151542A1 (zh) 摩擦纳米发电机及制备方法、自供能传感系统及关节角度检测方法
Gao et al. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
Wang et al. A self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare
JP6356791B2 (ja) スライド摩擦式発電機、発電方法及びベクトル変位センサ
CN110932591B (zh) 摆式摩擦纳米发电机、供能器件及传感器
Bai et al. Cylindrical rotating triboelectric nanogenerator
Chun et al. High-output and bending-tolerant triboelectric nanogenerator based on an interlocked array of surface-functionalized indium tin oxide nanohelixes
CN111193429B (zh) 摩擦纳米发电机、自驱动矢量和方向传感器及其系统
JP2016525858A (ja) スライド摩擦式発電機、発電方法及びベクトル変位センサ
Wang et al. Linear freestanding electret generator for harvesting swinging motion energy: Optimization and experiment
Xie et al. Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNN
CN110174196B (zh) 多应力传感的自驱动复合传感器
Xia et al. Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor
Ding et al. Study of vibrational droplet triboelectric nanogenerator on structural and operational parameters
Shen et al. Interface defect detection and identification of triboelectric nanogenerators via voltage waveforms and artificial neural network
Zhang et al. Self-powered triboelectric mechanical motion sensor for simultaneous monitoring of linear-rotary multi-motion
Wijewardhana et al. Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency
Li et al. On the performance of freestanding rolling mode triboelectric nanogenerators from rotational excitations for smart tires
Bhatta et al. Magnets-assisted dual-mode triboelectric sensors integrated with an electromagnetic generator for self-sustainable wireless motion monitoring systems
WO2022151563A1 (zh) 基于4d打印的摩擦纳米发电机、能量收集装置及制备方法
CN113037127B (zh) 一种具有重力势能储蓄功能的旋转式摩擦纳米发电机
CN214177184U (zh) 基于4d打印技术的摩擦纳米发电机和自供能传感系统
Zhao et al. Multiphase bipolar electret rotary generator for energy harvesting and rotation monitoring
Zhang et al. High performance DC-TENG based on coupling of mismatched number of triboelectric units and electrodes with mechanical switches for metal surface anti-corrosion
Xu et al. Application of triboelectric nanogenerators on manipulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21918741

Country of ref document: EP

Kind code of ref document: A1