WO2022151563A1 - 基于4d打印的摩擦纳米发电机、能量收集装置及制备方法 - Google Patents
基于4d打印的摩擦纳米发电机、能量收集装置及制备方法 Download PDFInfo
- Publication number
- WO2022151563A1 WO2022151563A1 PCT/CN2021/076785 CN2021076785W WO2022151563A1 WO 2022151563 A1 WO2022151563 A1 WO 2022151563A1 CN 2021076785 W CN2021076785 W CN 2021076785W WO 2022151563 A1 WO2022151563 A1 WO 2022151563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- base layer
- triboelectric nanogenerator
- conductive layer
- printing technology
- Prior art date
Links
- 238000007639 printing Methods 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000005516 engineering process Methods 0.000 claims abstract description 41
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002042 Silver nanowire Substances 0.000 claims description 6
- 230000008676 import Effects 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 229920000431 shape-memory polymer Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 238000003754 machining Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 11
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000003306 harvesting Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 5
- 230000006386 memory function Effects 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002520 smart material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Definitions
- the present invention relates to the field of combining 4D printing technology and triboelectric nanogenerator technology, and more particularly, to a triboelectric nanogenerator and energy harvesting device based on 4D printing technology.
- triboelectric nanogenerators can efficiently convert mechanical energy into electrical energy. Compared with traditional power generation technologies, triboelectric nanogenerators have a simple structure, low cost, high energy conversion efficiency, and a wide range of materials, and have extremely high application potential in the field of mechanical energy harvesting.
- Patent document CN108964511A discloses a triboelectric nanogenerator based on 3D printing technology and a manufacturing method thereof. Through complex mechanical structure design, 3D printing technology is used to complete the production of each unit structure, and each triboelectric nanogenerator is fabricated. The generator units are assembled in corresponding positions, and finally assembled into a high-output, low-cost triboelectric nanogenerator.
- the preparation process is complicated, the preparation efficiency and preparation precision are not high, and the service life of the produced triboelectric nanogenerator is not satisfactory.
- the present invention aims to solve the above-mentioned technical problems of low preparation efficiency and precision and low device life at least to a certain extent.
- the primary purpose of the present invention is to provide a triboelectric nanogenerator based on 4D printing technology.
- a triboelectric nanogenerator based on 4D printing technology comprising a first base layer and a second base layer placed in parallel up and down, and a bottom surface disposed on the lower surface of the first base layer.
- the first conductive layer, the second conductive layer arranged on the upper surface of the second base layer, the electrical connection between the first conductive layer and the second conductive layer is arranged on the lower surface of the first conductive layer or the upper surface of the second conductive layer
- the first friction layer, wherein the first base layer, the second base layer and the first friction layer are formed by 4D printing technology, and the first friction layer and the second conductive layer or the first conductive layer are oppositely arranged and contacted - Separated reciprocating motion.
- the first base layer, the second base layer and the first friction layer are made of shape memory polymer or self-healing material.
- the printing adopts the method of direct ink writing or digital light curing.
- a volatile solution with conductive substances is sprayed on the surfaces of the first substrate and the second substrate layer, and the first conductive layer and the second conductive layer are obtained after the solvent is volatilized.
- the conductive material includes silver nanowires, carbon nanotubes or graphene.
- the first friction layer has protrusions or grooves.
- the ends on both sides of the first base layer and the second base layer are connected to form an annular structure by connecting parts.
- the connecting portion is integrally printed with the first base layer and the second base layer.
- a further object of the present invention is to provide a mechanical energy collection device, wherein the triboelectric nanogenerator of the 4D printing technology is arranged in the shape of an insole to collect the mechanical energy generated by human walking, wherein the first base layer and the second base layer Both ends of the bottom layer have connecting parts.
- the third object of the present invention is to provide a preparation method of a triboelectric nanogenerator based on 4D printing technology, comprising the following steps:
- the lower surface of the first base layer and the upper surface of the second base layer that have been printed and processed are sprayed with a solution mixed with a conductive substance using a sprayer, and the first conductive layer and the second conductive layer can be obtained after the solution is volatilized;
- the present invention completes the preparation of the main structure of the triboelectric nanogenerator through 4D printing technology, which simplifies the preparation process of the triboelectric nanogenerator and improves the preparation precision.
- the printed object Due to the shape memory function of polyurethane, the printed object has a shape memory function.
- a good shape memory function can restore the shape of the device, and at the same time The output performance of the device can also be effectively restored, thus greatly improving the service life of the triboelectric nanogenerator.
- a feasible method for preparing the topography of the device surface is provided. 4D printing technology enables the friction layer to have rich surface topography, which can increase the effective contact area of the device, thereby improving the output performance of the device.
- the insole-shaped energy harvesting device based on 4D printing technology can effectively collect the mechanical energy generated by human walking and convert it into electrical energy in actual work.
- FIG. 1 is a schematic plan view of a triboelectric nanogenerator based on 4D printing technology provided in Example 1 of the present invention.
- FIG. 2 is a perspective view of the triboelectric nanogenerator based on the 4D printing technology provided in Embodiment 1 of the present invention.
- FIG. 3 is a schematic diagram illustrating the variation of the peak voltage of the triboelectric nanogenerator based on the 4D printing technology with the width of the gap between the first friction layer and the first conductive layer or the second conductive layer according to Embodiment 1 of the present invention.
- FIG. 4 is the process of applying pressure to two base layers for the first time in the work of the triboelectric nanogenerator based on the 4D printing technology provided in Example 1 of the present invention, resulting in the triboelectric electrification.
- FIG. 5 is a process in which the first friction layer and the second conductive layer are separated from each other after the external force is removed during the operation of the triboelectric nanogenerator based on the 4D printing technology provided in Example 1 of the present invention.
- FIG. 6 is a process of restoring the initial positions of the two base layers of the triboelectric nanogenerator based on the 4D printing technology provided in Example 1 of the present invention.
- FIG. 7 is a process of applying pressure to two base layers again for the triboelectric nanogenerator based on the 4D printing technology provided in Example 1 of the present invention.
- FIG. 8 is an output voltage change diagram provided by Embodiment 1 of the present invention.
- FIG. 9 is a perspective view of an energy harvesting device provided in Embodiment 2 of the present invention.
- FIG. 10 is an output voltage change diagram provided by Embodiment 2 of the present invention.
- FIG. 11 is a flow chart of the steps of a preparation method of a triboelectric nanogenerator based on 4D printing technology provided in Embodiment 3 of the present invention.
- the triboelectric nanogenerator based on 4D printing technology proposed in this embodiment includes: a base layer including a first base layer 11 above and a second base layer 15 below, a first conductive layer 12, a first friction layer Layer 13, the second conductive layer 14, and the second conductive layer 14 are also used as the second friction layer; the base layer 11 and the first friction layer 13 are made by 4D printing and have a shape memory function; the first conductive layer 12 and the first friction layer 13 are The second conductive layer 14 is obtained by spraying a solution with conductive substances and volatilizing the solution. The first conductive layer 12 and the second conductive layer 14 are electrically connected,
- first friction layer 13 can also be disposed on the second conductive layer 14, so that there is a gap between the first friction layer 13 and the first conductive layer 12, and the first conductive layer 12 is used as the second friction layer at this time.
- the triboelectric nanogenerator adopts the method of fused deposition printing, ink direct writing printing or digital light processing printing, the first base layer 11 , the second base layer 15 and the first friction layer 13
- Shape memory polymers or self-healing materials can be used, as well as various smart materials that sense external stimuli and process them appropriately.
- the conductive material can be silver nanowires, carbon nanotubes or graphene.
- the solution can be a volatile solution.
- the first base layer 11 , the second base layer 15 and the first friction layer 13 are made of polyurethane material, the conductive material is made of silver nanowires, and the solution is made of methanol solution.
- the gap distance between the first base layer 11 and the second base layer 15 is compressed, resulting in the continuous contact-separation movement of the first friction layer 13 and the second conductive layer 14.
- vertical contact is used.
- -Separation mode so that the triboelectric nanogenerator outputs alternating electrical signals to the outside; outputs a voltage signal in an open-circuit state, and outputs a current signal in a short-circuit state; wherein, when an external force acts on the first base layer 11 and/or the second base layer 15.
- the triboelectric nanogenerator starts to work; then the external force is removed, and the first friction layer 13 is on the first base.
- the bottom layer 11 and/or the second base layer 15 are moved to the initial position, and an external force is applied to the first base layer 11 and/or the second base layer 15 again, so that the first friction layer 13 and the second conductive layer 14 are in contact again, Thus, a complete power generation cycle is completed; when the external force acts on the first base layer 11 and/or the second base layer 15 regularly, the above power generation cycle will occur cyclically.
- both ends of the first base layer 11 and the second base layer 15 may also be provided with connecting portions 16 .
- the cross-sections of the base layer 11 , the second base layer 15 , the first friction layer 13 , the first conductive layer 12 , and the second conductive layer 14 can be polygonal or curved, such as rectangle or circle.
- the connecting portion 16 may also be an elastic component.
- the width of the gap between the first friction layer 13 and the second conductive layer 14 or the first conductive layer 12 can be set to 5mm-45mm.
- the width of the gap is set to 5mm, 10mm, 15mm , 20mm, 25mm, 30mm, 35mm, 40mm, 45mm
- the corresponding peak open circuit voltages generated by the triboelectric nanogenerator are 40.85V, 41.25V, 41.45V, 42.1V, 42.35V, 42.4V, 42.6V, 42.65V. It can be seen from FIG.
- the peak open circuit voltage of the triboelectric nanogenerator also increases, but when the gap width is greater than 20 mm, the output voltage does not change much.
- the separation process mainly depends on the resilience of the material of the connecting part. In a high-frequency test environment, when the spacing is too large, the deformed device cannot sufficiently spring back. Therefore, the width of the gap between the first friction layer 13 and the second conductive layer 14 or the first conductive layer 12 is selected to be 20 mm.
- the initial state of the triboelectric nanogenerator is shown in Figure 1.
- all components are electrically neutral; when the external force acts to make the first friction layer 13 and the second conductive layer 14 contact each other, as shown in Figure 4 , due to the difference in electronegativity between the first friction layer 13 and the second conductive layer 14, charge transfer (triboelectric charging phenomenon) occurs at the interface between the two contacting layers; the effective component of the first friction layer 13 in this embodiment It is polyurethane, and the active ingredient of the second conductive layer 14 is silver nanowires. Since the electronegativity of polyurethane is stronger than that of silver nanowires, the surface of the first friction layer 13 is net negative charge, and the surface of the second conductive layer 14 is net positive charge. , the total charge of the two is equal; since the positive and negative charge centers are very close, the potential difference between the interfaces tends to be zero, and when there is an electrical connection between the conductive layers, there will be no charge flow in the external circuit.
- the first friction layer 13 and the second conductive layer 14 are separated from each other, as shown in FIG.
- the positive charges in the first conductive layer 12 approach the interface between the first conductive layer 12 and the first friction layer 13; when there is an electrical connection between the conductive layers, in order to balance the first friction layer 13 and the first friction layer 13
- the potential difference between the first conductive layers 14 electrons flow from the first conductive layer 12 to the second conductive layer 14 .
- the first friction layer 13 is made by 4D printing
- some patterns such as convex or groove structures, can be designed on the surface of the model. When the triboelectric nanogenerator is working, these patterns can effectively increase the contact area, thereby improving the output performance of the triboelectric nanogenerator.
- the triboelectric nanogenerator When the relative area size between the first friction layer 13 and the second conductive layer 14 is 4 cm ⁇ 4 cm, and the gap between the first friction layer 13 and the first conductive layer or the second conductive layer is 20 mm, the triboelectric nanogenerator The resulting peak open-circuit voltage was 42.1V; when the deformation occurred, the peak open-circuit voltage of the device attenuated to 18V due to the reduction of the effective contact area; after heating the device at 60°C for 30s, the shape of the device was restored, and the peak value of the device was restored. The open circuit voltage also recovered to 42V, approximately equal to the initial value. As can be seen from Figure 8, when the device is deformed, the generated voltage drops significantly; after the device returns to shape, the performance is also effectively recovered.
- Example 1 On the basis of Example 1, an energy harvesting device in the shape of an insole was designed. Based on the working principle of the triboelectric nanogenerator, its basic working mode is the contact-separation mode, specifically, the vertical contact-separation mode can be used.
- the device consists of an upper substrate 11, a first conductive layer 12, a first friction layer 13, a connecting portion 16, a second conductive layer 14, and a lower substrate 15 in order from top to bottom; the second conductive layer 14 is also as a second friction layer. Since the structure of the device is similar to that of the first embodiment and the working principle is the same, the working principle will not be repeated here.
- the vertical contact-separation mode is also used in the energy harvesting device. Considering the practicality of the insole, the width of the gap between the first friction layer 13 and the second conductive layer is selected to be 20 mm.
- the size of the insole-shaped energy harvesting device designed in the present invention is European size 41.
- the generated peak open circuit voltage reaches 138V, and the peak power density reaches 56mW/m 2 , which can be easily lit. 28 LEDs.
- the peak open circuit voltage attenuates to 68V due to the reduction of the effective contact area; after heating the deformed insole at 60°C for 2 minutes, the shape of the insole is restored, and the peak open circuit voltage also recovers to 135V.
- a preparation method of a triboelectric nanogenerator based on 4D printing technology specifically includes the following steps:
- step S2 3DS MAX software is used to model, and software such as COMSOL is used to analyze the working process of the model and simulate the distribution of the electric potential field.
- the above-mentioned preparation method of the triboelectric nanogenerator based on 4D printing technology can also be used for the preparation of triboelectric nanogenerators of various modes, including but not limited to lateral sliding mode, single electrode mode and independent layer mode.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种基于4D打印技术的摩擦纳米发电机,包括上下平行放置的第一基底层(11)和第二基底层(15),设置在第一基底层(11)的下表面的第一导电层(12),设置在第二基底层(15)上表面的第二导电层(14),第一导电层(12)和第二导电层(14)之间电性连接,设置在第一导电层(12)的下表面或第二导电层(14)上表面的第一摩擦层(13),其中第一基底层(11)、第二基底层(15)和第一摩擦层(13)采用4D打印技术形成,第一摩擦层(13)和第二导电层(14)或第一导电层(12)相对设置且进行接触-分离的往复运动。本发明提高了摩擦纳米发电机的制备效率、制备精度,并同时提高摩擦纳米发电机的使用寿命。本发明还提供一种鞋垫形状的机械能收集装置及一种基于4D打印技术的摩擦纳米发电机的制备方法。
Description
本发明涉及4D打印技术和摩擦纳米发电机技术结合的领域,更具体地,涉及一种基于4D打印技术的摩擦纳米发电机和能量收集装置。
化石能源的大量使用,推动了全球变暖和能源危机,寻找一种清洁可再生的绿色能源以缓解人类发展面临的困境变得尤为紧迫。作为一种新型的微纳能源收集技术,摩擦纳米发电机可以高效地将机械能转换为电能。与传统的发电技术相比,摩擦纳米发电机结构简单、成本低廉、能量转换效率高、选材范围广泛,在机械能收集领域具有极高的应用潜力。
在当前情况下,摩擦纳米发电机的发展与应用仍然存在一些限制。首先,制备摩擦纳米发电机的传统工艺往往是通过组件的加工、组装,最终得到完整的摩擦纳米发电机,然而,使用这样的工艺难以得到结构复杂且精细的器件。其次,由于摩擦纳米发电机在工作过程中需要介电材料之间不断进行摩擦、分离,使得介电材料受损,进而导致摩擦纳米发电机的性能下降,器件寿命降低。
专利文献CN108964511A(公开日20181207)公开了一种基于3D打印技术的摩擦纳米发电机及其制作方法,其通过复杂的机械结构设计,使用3D打印技术完成对各单元结构的制作,将各个摩擦纳米发电机单元装配在对应位置,最后装配成一个高输出性能、低成本的摩擦纳米发电机。但其制备流程复杂,制备效率和制备精度不高,且制作出的摩擦纳米发电机的使用寿命不尽如人意。
为了推动摩擦纳米发电机的应用与发展,迫切需要一种全新的工艺,以提高摩擦纳米发电机的制备效率、制备精度,并同时提高摩擦纳米发电机的使用寿命。
发明内容
本发明旨在至少在一定程度上解决上述制备效率和精度不高,以及器件寿命偏低的技术问题。
本发明的首要目的是提供一种基于4D打印技术的摩擦纳米发电机。
为解决上述技术问题,本发明的技术方案如下:一种基于4D打印技术的摩擦纳米发电机,包括上下平行放置的第一基底层和第二基底层,设置在第一基底 层的下表面的第一导电层,设置在第二基底层上表面的第二导电层,第一导电层和第二导电层之间电性连接,设置在第一导电层的下表面或第二导电层上表面的第一摩擦层,其中所述第一基底层、第二基底层和第一摩擦层采用4D打印技术形成,所述第一摩擦层和第二导电层或第一导电层相对设置且进行接触-分离的往复运动。
优选地,所述第一基底层、第二基底层和第一摩擦层采用形状记忆聚合物或自修复材料。
优选地,打印采用油墨直写或数字光固化的方法。
优选地,在第一基底和第二基底层表面喷涂具有导电物质的挥发溶液,将溶剂挥发后得到第一导电层和第二导电层。
优选地,所述导电物质包括银纳米线、碳纳米管或石墨烯。
优选地,所述第一摩擦层具有凸起或凹槽。
优选地,第一基底层和第二基底层的两端两侧端部通过连接部连接成环形结构。
优选地,所述连接部与第一基底层和第二基底层一体打印而成。
本发明的进一步目的是提供一种机械能收集装置,将所述的4D打印技术的摩擦纳米发电机设置为鞋垫形状,用于收集人体行走产生的机械能,其中所述第一基底层和第二基底层的两端具有连接部。
本发明的第三个目的是提供一种基于4D打印技术的摩擦纳米发电机的制备方法,包括以下步骤:
S1、设计出接触-分离式摩擦纳米发电机模型;
S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;
S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令;
S4、将加工指令导入3D打印机,分别完成对第一基底层、第二基底层以及第一摩擦层的逐层打印加工;若加工过程中遇到打印产品出现不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令;
S5、将打印加工完成的第一基底层的下表面和第二基底层的上表面使用喷涂机喷涂掺有导电物质的溶液,将溶液挥发后即可得到第一导电层和第二导电层;
S6、将制备有导电层的第一基底层、第二基底层和第一摩擦层装配成摩擦纳米发电机。
与现有技术相比,本发明技术方案的有益效果是:
1、本发明通过4D打印技术完成摩擦纳米发电机的主体结构的制备,简化了摩擦纳米发电机制备流程并提高了制备精度。由于聚氨酯具备形状记忆的功能使得打印出的物体具有形状记忆功能,在作为功能器件工作时,应对一些由于器件变形、磨损导致的性能衰减时,良好的形状记忆功能可以使器件形状得以恢复,同时器件的输出性能也能得到有效恢复,因此极大地提升了摩擦纳米发电机的使用寿命。同时提供了一种制备器件表面的形貌的可行方法。4D打印技术使摩擦层具有丰富的表面形貌,可以增大器件的有效接触面积,从而提升器件的输出性能。
2、基于4D打印技术制备的鞋垫状能量收集装置在实际工作中可以有效收集人体行走产生的机械能,并将其转换为电能。
图1为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的平面示意图。
图2为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的立体图。
图3为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的峰值电压随第一摩擦层与第一导电层或第二导电层之间间隙宽度变化的示意图。
图4为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机工作中的首次对两个基底层施加压力导致产生摩擦起电的过程。
图5为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机工作中外力撤去后第一摩擦层和第二导电层相互远离的过程。
图6为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的两个基底层恢复初始位置的过程。
图7为本发明实施例1提供的基于4D打印技术的摩擦纳米发电机的再次对两个基底层施加压力的过程。
图8为本发明实施例1提供的输出电压变化图。
图9为本发明实施例2提供的能量收集装置的立体图。
图10为本发明实施例2提供的输出电压变化图。
图11为本发明实施例3提供的一种基于4D打印技术的摩擦纳米发电机的制备方 法步骤流程图。
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
参见图1-2,本实施例提出的基于4D打印技术的摩擦纳米发电机包括:基底层包括上方的第一基底层11和下方的第二基底层15,第一导电层12,第一摩擦层13,第二导电层14,第二导电层14也作为第二摩擦层使用;其中基底层11和第一摩擦层13通过4D打印制得,具备形状记忆功能;第一导电层12和第二导电层14通过喷涂具有导电物质的溶液并将所述溶液挥发后得到。第一导电层12和第二导电层14之间电性连接,
另外,所述第一摩擦层13也可以设置在第二导电层14上,从而第一摩擦层13和第一导电层12之间具有间隙,此时第一导电层12作为第二摩擦层使用。
在具体实施过程中,所述摩擦纳米发电机的采用熔融沉积式打印、油墨直写打印或数字光处理打印的方法,所述第一基底层11、第二基底层15和第一摩擦层13可以采用形状记忆聚合物或自修复材料,以及各类能感知外部刺激并进行适当处理的智能材料。所述导电物质可以采用银纳米线、碳纳米管或石墨烯。所述溶液可以采用易挥发的溶液。
具体地,本实施例第一基底层11、第二基底层15和第一摩擦层13采用聚氨酯材料,导电物质采用银纳米线,溶液采用甲醇溶液。
在周期性外力作用下,第一基底层11和第二基底层15之间的间隙距离被压缩,导致第一摩擦层13与第二导电层14不断进行接触-分离运动,具体地采用垂直接触-分离模式,使得摩擦纳米发电机向外部输出交变的电信号;开路状态下输出电压信号,短路状态下输出电流信号;其中,当外力作用于第一基底层11和/或第二基底层15,使得第一摩擦层13与第二导电层14由于摩擦起电,表面带上等量的正负电荷时,摩擦纳米发电机开始工作;随后撤去外力,第一摩擦 层13在第一基底层11和/或第二基底层15运动至初始位置,再次施加外力作用在第一基底层11和/或第二基底层15上,使得第一摩擦层13与第二导电层14再次接触,从而完成一个完整的发电周期;当外力有规律地作用在第一基底层11和/或第二基底层15上时,上述发电周期就会循环发生。
具体地,参见图1-2,所述第一基底层11和第二基底层15的两端也可以设置连接部16,连接部16可以设置成平面形或拱形等曲面形,所述第一基底层11、第二基底层15、第一摩擦层13、第一导电层12、第二导电层14的截面可以为多边形或曲边形,例如矩形或圆形。打印时由组成第一基底层11和第二基底层15的材质一体打印而成;连接部16还可以是具有弹性的部件。当外力撤去时,在连接部弹性力作用下第一摩擦层13与第二导电层14相互远离从而使第一基底层11和第二基底层15回复至初始位置。
具体地,所述第一摩擦层13与第二导电层14或第一导电层12之间的间隙宽度可设置为5mm-45mm,参见图3,当所述间隙宽度设置为5mm、10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm时,对应的摩擦纳米发电机产生的峰值开路电压为40.85V、41.25V、41.45V、42.1V、42.35V、42.4V、42.6V、42.65V。从图3可知,随着所述间隙宽度增大,所述摩擦纳米发电机的峰值开路电压也随之增大,但是当间隙宽度大于20mm时,输出电压的变化幅度不大。另外,由于需要在外力作用下不断做接触-分离运动,分离过程主要靠连接部材料的回弹力。在高频测试环境下,当间距过大时,变形的器件不能充分回弹。因此,选择所述第一摩擦层13与第二导电层14或第一导电层12之间的间隙宽度为20mm。
下面,将结合图4-7对本实施例的基于4D打印技术的摩擦纳米发电机的工作原理进行说明。
摩擦纳米发电机的初始状态如图1所示,在初始状态下,各部件都呈电中性;当外力作用使得第一摩擦层13与第二导电层14相互接触时,如图4所示,由于第一摩擦层13和第二导电层14电负性的不同,导致在两者接触的界面上发生电荷转移(摩擦起电现象);本实施例中的第一摩擦层13的有效成分为聚氨酯,第二导电层14的有效成分为银纳米线,由于聚氨酯的电负性强于银纳米线,导致第一摩擦层13表面为净负电荷,第二导电层14表面为净正电荷,两者的电荷总量相等;由于正负电荷中心非常接近,因此界面间的电势差趋近于0,当导电 层之间存在电学连接时,外电路中也不会有电荷流动。
当外力撤去,在连接部16自身的弹性力作用下,第一摩擦层13和第二导电层14相互远离,如图5所示,由于正负电荷中心相互远离,导致界面之间出现电势差;在静电感应的作用下,第一导电层12中的正电荷向第一导电层12与第一摩擦层13的界面处靠近;当导电层之间存在电学连接时,为了平衡第一摩擦层13与第一导电层14之间的电势差,电子从第一导电层12流向第二导电层14。
当第一基底层11和/或第二基底层15完全恢复到初始状态时,如图6所示,此时第一摩擦层13与第二导电层14之间的电势差被完全中和,外电路中也没有电子流动。
再次向基底施加压力,使得第一摩擦层13和第二导电层14相互靠近,如图7所示,为了平衡第一摩擦层13与第二导电层14之间的电势差,电子从第二导电层14流向第一导电层12;重复以上过程,摩擦纳米发电机就能向外输出一个交变的电信号。
而当导电层之间开路时,即可得到一个电压信号。
值得注意的是,由于第一摩擦层13采用4D打印制得,因此在模型设计阶段,可以在模型表面设计一些图案,例如凸起或凹槽结构。当摩擦纳米发电机在工作时,这些图案能有效地增大接触面积,从而提高摩擦纳米发电机的输出性能。
由于摩擦纳米发电机在工作中会不断进行接触-分离运动,高强度的摩擦会导致摩擦层表面出现磨损,外力的作用也可能导致器件出现变形。这些微观和宏观的变形导致摩擦纳米发电机的性能出现衰减。
当第一摩擦层13与第二导电层14之间的相对面积尺寸为4cm×4cm,第一摩擦层13与第一导电层或第二导电层之间的间隙为20mm时,摩擦纳米发电机产生的峰值开路电压为42.1V;当发生形变后,由于有效接触面积的减小,器件的峰值开路电压衰减至18V;将器件在60℃条件下加热30s后,器件形状得以恢复,器件的峰值开路电压也恢复至42V,约等于初始值。从图8中可以看出,当器件发生形变后,产生的电压出现了大幅下降;在器件恢复形状后,性能也得到了有效地恢复。
实施例2
在实施例1的基础上设计了一款鞋垫形状的能量收集装置,基于摩擦纳米发电机的工作原理,其基本工作模式为接触-分离模式,具体地可以采用垂直接触- 分离模式。
如图9所示,器件从上往下依次为上基底11,第一导电层12,第一摩擦层13,连接部16、第二导电层14,下基底15;其中第二导电层14也作为第二摩擦层。由于器件结构与实施例一相似,且工作原理相同,因此不再赘述其工作原理。在能量收集装置中同样采用垂直接触-分离模式,考虑到鞋垫的实用性,因此选择第一摩擦层13与第二导电层的间隙宽度为20mm。
本发明中设计的鞋垫形状的能量收集装置尺寸为欧洲尺码41码,当体重约为60kg的人正常行走时,产生的峰值开路电压达到138V,峰值功率密度达到56mW/m
2,可以轻易点亮28颗LED。如图10所示,当鞋垫出现变形时,由于有效接触面积的减小,峰值开路电压衰减至68V;将变形的鞋垫在60℃条件下加热2min后,鞋垫形状得以恢复,峰值开路电压也恢复至135V。
实施例3
一种基于4D打印技术的摩擦纳米发电机的制备方法,参见图11,具体包括以下步骤:
S1、设计出接触-分离式摩擦纳米发电机模型;
S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;
S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令(如gcode代码);
S4、将加工指令(如gcode代码)导入3D打印机,分别完成对第一基底层、第二基底层以及第一摩擦层的逐层打印加工;若加工过程中遇到打印产品出现坍塌、变形或影响装配等不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令(如gcode代码);
S5、将打印加工完成的第一基底层的底部表面和第二基底层的顶部表面使用喷涂机喷涂掺有导电物质的溶液,将溶液挥发后即可得到第一导电层和第二导电层;
S6、将制备有导电层的第一基底层、第二基底层和第一摩擦层装配成摩擦纳米发电机。
其中步骤S2中使用3DS MAX软件进行建模,并使用COMSOL等软件对该模型的工作过程进行受力分析并对电势场分布进行仿真测试。
上述基于4D打印技术的摩擦纳米发电机的制备方法也可以用于制作多种模式的摩擦纳米发电机的制备,包括但不限于横向滑动模式、单电极模式以及独立层模式。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (10)
- 一种基于4D打印技术的摩擦纳米发电机,其特征在于,包括上下平行放置的第一基底层(11)和第二基底层(15),设置在第一基底层(11)下表面的第一导电层(12),设置在第二基底层(15)上表面的第二导电层(14),第一导电层(12)和第二导电层(14)之间电性连接,设置在第一导电层(12)下表面或第二导电层(14)上表面的第一摩擦层(13),其中所述第一基底层(11)、第二基底层(15)和第一摩擦层(13)采用4D打印技术形成,所述第一摩擦层(13)与第二导电层(14)或第一导电层(12)之间设有间隙且进行接触-分离的往复运动。
- 如权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述第一基底层(11)、第二基底层(15)和第一摩擦层(13)采用形状记忆聚合物层或自修复材料层。
- 如权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于4D打印采用熔融沉积式打印、油墨直写打印或数字光处理打印。
- 如权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于在第一基底层(11)和第二基底层(15)表面喷涂具有导电物质的挥发溶液,将溶剂挥发后得到第一导电层(12)和第二导电层(14)。
- 如权利要求4所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述导电物质包括银纳米线、碳纳米管或石墨烯。
- 如权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述第一摩擦层(13)表面具有凸起或凹槽。
- 如权利要求1所述的基于4D打印技术的摩擦纳米发电机,其特征在于第一基底层(11)和第二基底层(15)的两侧端部通过连接部(16)连接成环形结构。
- 如权利要求7所述的基于4D打印技术的摩擦纳米发电机,其特征在于所述连接部(16)与第一基底层(11)和第二基底层(15)一体打印而成。
- 一种机械能收集装置,其特征在于,将权利要求1-8任一项所述的4D打印技术的摩擦纳米发电机制成鞋垫形状,用于收集人体行走产生的机械能。
- 一种如权利要求1-8任一项所述的基于4D打印技术的摩擦纳米发电机 的制备方法,其特征在于包括以下步骤:S1、设计出接触-分离式摩擦纳米发电机模型;S2、建模后对该模型的工作过程进行受力分析并对电势场分布进行仿真测试;S3、将测试好的模型导入切片软件进行切片分层,根据模型的实际结构选择加工顺序并生成加工指令;S4、将加工指令导入3D打印机,分别完成对第一基底层、第二基底层以及第一摩擦层的逐层打印加工;若加工过程中打印产品出现不符合使用要求的问题,则返回S1,重新完成模型的设计和仿真测试并生成新的加工指令;S5、将打印加工完成的第一基底层的底部表面和第二基底层的顶部表面使用喷涂机喷涂掺有导电物质的挥发溶液,将溶剂挥发后即可得到第一导电层和第二导电层;S6、将制备有导电层的第一基底层、第二基底层和第一摩擦层装配成摩擦纳米发电机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110038923.6 | 2021-01-12 | ||
CN202110038923.6A CN112671259A (zh) | 2021-01-12 | 2021-01-12 | 基于4d打印的摩擦纳米发电机、能量收集装置及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022151563A1 true WO2022151563A1 (zh) | 2022-07-21 |
Family
ID=75414639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/076785 WO2022151563A1 (zh) | 2021-01-12 | 2021-02-19 | 基于4d打印的摩擦纳米发电机、能量收集装置及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112671259A (zh) |
WO (1) | WO2022151563A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113452278B (zh) * | 2021-06-25 | 2022-06-03 | 上海大学 | 一种纳米摩擦式能量收集器 |
CN116576953A (zh) * | 2023-07-11 | 2023-08-11 | 吉林大学 | 一种用于行星采样的4d打印自供电振动传感器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108616225A (zh) * | 2018-04-25 | 2018-10-02 | 东华大学 | 一种纤维基多层结构摩擦纳米发电机及其制备方法 |
CN108964511A (zh) * | 2018-08-30 | 2018-12-07 | 河南师范大学 | 一种基于3d打印技术的摩擦纳米发电机及其制作方法 |
CN110209304A (zh) * | 2019-06-13 | 2019-09-06 | 电子科技大学 | 一种柔性透明自驱动传感阵列结构及其制备方法及系统 |
CN110224573A (zh) * | 2019-06-21 | 2019-09-10 | 南方科技大学 | 一种磁流体发电装置及其制作方法 |
-
2021
- 2021-01-12 CN CN202110038923.6A patent/CN112671259A/zh active Pending
- 2021-02-19 WO PCT/CN2021/076785 patent/WO2022151563A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108616225A (zh) * | 2018-04-25 | 2018-10-02 | 东华大学 | 一种纤维基多层结构摩擦纳米发电机及其制备方法 |
CN108964511A (zh) * | 2018-08-30 | 2018-12-07 | 河南师范大学 | 一种基于3d打印技术的摩擦纳米发电机及其制作方法 |
CN110209304A (zh) * | 2019-06-13 | 2019-09-06 | 电子科技大学 | 一种柔性透明自驱动传感阵列结构及其制备方法及系统 |
CN110224573A (zh) * | 2019-06-21 | 2019-09-10 | 南方科技大学 | 一种磁流体发电装置及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112671259A (zh) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022151563A1 (zh) | 基于4d打印的摩擦纳米发电机、能量收集装置及制备方法 | |
CN208078921U (zh) | 一种全方位多模式收集机械能的柔性可穿戴摩擦纳米发电机 | |
He et al. | Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators | |
US9790928B2 (en) | Triboelectric generators and sensors | |
CN108233762B (zh) | 一种全方位多模式收集机械能的柔性可穿戴摩擦纳米发电机 | |
CN108964511B (zh) | 一种基于3d打印技术的摩擦纳米发电机及其制作方法 | |
KR101653864B1 (ko) | 섬유 기반 마찰 전기 나노 발전 소자 및 이를 이용한 발전 유닛 | |
TWI715071B (zh) | 可原位充電的儲能裝置 | |
CN108847779B (zh) | 一种光驱动柔性摩擦纳米发电机及其制备方法 | |
CN109194187A (zh) | 基于折纸弹簧结构的接触式摩擦发电能量收集装置 | |
CN205092794U (zh) | 摩擦纳米发电机及自发电智能鞋 | |
CN108429483B (zh) | 一种螺旋折叠弹性结构的摩擦纳米发电机 | |
CN103840710B (zh) | 一种振动能量采集器 | |
CN110492777A (zh) | 一种基于3d打印技术制作的螺旋状摩擦发电装置 | |
CN214281260U (zh) | 基于4d打印技术的摩擦纳米发电机和机械能收集装置 | |
CN111654204B (zh) | 摩擦纳米发电海绵、自驱动传感器和智能鞋垫 | |
CN205490228U (zh) | 基于驻极体薄膜的能量采集器 | |
CN112747841A (zh) | 一种自驱动压力传感器及其制备方法 | |
KR20160112043A (ko) | 자가발전장치가 구비된 신발의 인솔(insole) 및 이의 제조방법 | |
CN110323962B (zh) | 静电发电机、提高输出功率的方法、充电方法和穿戴设备 | |
KR20150145994A (ko) | 자연 복제 구조를 갖는 접촉 대전 발전기 및 그 생성 방법 | |
CN110445412A (zh) | 一种3d打印的便携式波浪状多层柔性摩擦发电装置 | |
CN110061652B (zh) | 一种宽频带静电微能量采集器、采集系统及其制备方法 | |
CN115765518A (zh) | 一种摩擦纳米发电机及发电方法、柔性传感器 | |
CN111835224A (zh) | 共形摩擦纳米发电机单体、共形结构及独立收集器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21918762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21918762 Country of ref document: EP Kind code of ref document: A1 |