WO2022151525A1 - 一种超模式数的合成涡旋声场产生方法及装置 - Google Patents

一种超模式数的合成涡旋声场产生方法及装置 Download PDF

Info

Publication number
WO2022151525A1
WO2022151525A1 PCT/CN2021/073843 CN2021073843W WO2022151525A1 WO 2022151525 A1 WO2022151525 A1 WO 2022151525A1 CN 2021073843 W CN2021073843 W CN 2021073843W WO 2022151525 A1 WO2022151525 A1 WO 2022151525A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
sound field
array
vortex
transducer array
Prior art date
Application number
PCT/CN2021/073843
Other languages
English (en)
French (fr)
Inventor
蒋海波
何欣洋
宫玉彬
唐聃
杨阳
陈子君
付江南
高源�
Original Assignee
中国科学院成都生物研究所
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院成都生物研究所, 电子科技大学 filed Critical 中国科学院成都生物研究所
Priority to US17/597,395 priority Critical patent/US11523211B2/en
Priority to JP2023507713A priority patent/JP7487408B2/ja
Priority to KR1020237003872A priority patent/KR102599416B1/ko
Priority to EP21918724.2A priority patent/EP4250487A4/en
Publication of WO2022151525A1 publication Critical patent/WO2022151525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/006Theoretical aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8922Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being concentric or annular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers

Definitions

  • the invention belongs to the technical field of acoustic wave imaging and underwater communication, and in particular relates to a method and a device for generating a synthetic vortex sound field with a super-mode number.
  • acoustic orbital angular momentum has important scientific significance and application value.
  • using the multiplexing technology of acoustic orbital angular momentum can improve the channel capacity of underwater acoustic signal transmission and ensure extremely high transmission accuracy for underwater high-speed communication.
  • the increase of the number of acoustic orbital angular momentum modes (hereinafter referred to as the number of modes) can improve the azimuth resolution, which is of great significance in non-destructive testing in industry and medicine.
  • a vortex sound field (including a vortex ultrasonic field) is usually generated by a transducer array (eg, a circular array) formed by arranging a plurality of transducer units.
  • the number of modes of the vortex sound field generated by this method is limited by the number of transducer elements of the transducer array, that is, the number of modes of the sound field generated by the transducer array composed of N elements is less than N/2. Therefore, in order to obtain a vortex sound field with a higher mode number, the number of transducer elements in the transducer array can only be increased.
  • the present invention provides a method and a device for generating a synthetic vortex sound field with a super-mode number, the purpose of which is to use a limited number of replacements.
  • the transducer unit can generate infinite multi-mode numbers by adjusting the position and phase of each transducer in the array.
  • step (3) superimposing the initial sound field generated in step (1) and the s sound fields generated in step (2) to obtain a synthetic vortex sound field of super-mode number;
  • N and s are integers greater than 0, and N*s is not less than 4.
  • the array elements of the composite transducer array are arranged on one ring or on a concentric ring formed by at least two rings, and preferably, the array elements on each ring are evenly arranged.
  • the array elements of the synthesized transducer array are arranged on a ring, and the phase of the sound field generated by the mth array element in the synthesized transducer array is: where 1 ⁇ m ⁇ N s , m is an integer, ⁇ ' is the mode number of the synthetic vortex sound field,
  • the transducer units are arranged on a ring, and the transducer array rotates around a rotation axis passing through the center of the ring; Evenly arranged on the ring.
  • the phase of the sound field with the initial phase generated by the nth transducer unit is: where 1 ⁇ n ⁇ N, n is an integer, ⁇ ' is the number of synthetic modes,
  • the angle of each rotation of the transducer array is After the n-th transducer unit rotates the i-th time, the phase of the resulting sound field is: Among them, 1 ⁇ i ⁇ s, 1 ⁇ n ⁇ N, i, n are integers, ⁇ ' is the number of synthetic modes,
  • the present invention also provides the vortex sound field generated by the above method.
  • the present invention also provides the above-mentioned vortex sound field for underwater communication or acoustic imaging.
  • the present invention also provides a super-mode number synthetic vortex sound field generating device, comprising a rotating device and a transducer array composed of at least one transducer unit, the rotating device is used to drive the transducer array to rotate.
  • the transducer units are arranged in an equidistant arrangement on a ring; the rotating shaft that drives the transducer array to rotate by the rotating device is arranged in a circle formed by the transducer units.
  • the present invention also provides underwater communication or acoustic imaging equipment comprising the above device.
  • Supermode number means a very high mode number, the synthetic vortex ultrasonic field produced by the method of the present invention with a limited number of transducer elements has a significantly higher mode number than the vortex ultrasonic field produced by prior art methods (i.e. the maximum number of composite modes is higher).
  • the method of "sound field superposition” is: the initial sound field generated in step (1) and the expressions (or measurement values) of the s sound fields generated in step (2) are vector-added to obtain a new expression (measurement value) , the sound field represented by the new expression (measured value) is the superimposed sound field.
  • the expression refers to the detection point sound pressure expression.
  • the axis of the ring refers to the center line on the ring, which passes through the center of the ring and is perpendicular to the plane on which the ring lies.
  • the invention has the following advantages: (1) The number of acoustic orbital angular momentum modes can be simply and effectively increased to obtain a vortex ultrasonic field with a higher mode, thereby improving the directivity and azimuth resolution of the vortex sound field. (2) Through the technical scheme of the present invention, the number of acoustic orbital angular momentum modes can be increased through a limited number of transducer units, and a higher modal vortex sound field can be generated, which overcomes the problem of increasing the number of acoustic orbital angular momentum modes in the prior art.
  • the method and device for generating a vortex sound field of the present application can be used for underwater communication or acoustic imaging, which can achieve the effect of improving its channel capacity and/or its resolution, and has a good application prospect.
  • 1 is a schematic diagram of a uniform circular transducer array
  • 2 is a vortex ultrasonic field with 1(a), 2(b), and 3(c) modes obtained by 8 uniform circular transducer arrays in the prior art; and 8 Schematic representation of the inability of the transducer unit to generate a vortex sound field with mode number 4 (e);
  • Figure 3 is a schematic diagram of the state of the basic array formed by the transducer units before and after rotating twice, and the synthesized transducer array formed by them;
  • A is the amplitude of the sound wave
  • f is the signal frequency
  • t is the time
  • j is the imaginary unit.
  • the coordinates of the observation point T in the Cartesian coordinate system are (x, y, z), and its coordinates in the spherical polar coordinate system are Among them, r is the distance between the observation point and the coordinate origin, is the angle between the line connecting the observation point and the origin of the coordinate axis and the X axis, and ⁇ is the angle between the line connecting the observation point and the origin of the coordinate axis and the Z axis.
  • the sound pressure detected by the observation point is:
  • R n the distance from any transducer to the observation point T, and R n can be expressed as:
  • the characteristics of the vortex sound field are that the central sound intensity is 0, and the wavefront in the propagation direction is helical. Its properties come from the linearly varying phase distribution of the wavefront.
  • each parameter is defined as follows:
  • the number of original transducer units is N;
  • the synthesized mode number is ⁇ ', and ⁇ ' is an integer, and satisfies:
  • the modulation phase difference between two adjacent transducer units in the combined transducer array is:
  • the number of times the transducer array is rotated is recorded as s;
  • the synthetic transducer array refers to the array formed by the position of each transducer unit used to synthesize the vortex sound field to generate the sound field as an array element.
  • the composite transducer array is the original array of transducers. If the transducer array is rotated once (as shown in Figure 3), the composite transducer array is a combination of the original transducer array and the rotated transducer array (as shown in the right figure of Figure 3).
  • the operation method of this embodiment is:
  • the N transducer units are evenly distributed on a ring with a radius of R, and the obtained ring transducer array is controlled by a precision turntable, which can drive the ring transducer array according to the set direction ( clockwise or counterclockwise).
  • the ring is controlled by a precision rotary table, which will drive the transducer array to rotate according to the set direction (clockwise or counterclockwise).
  • the angle of each rotation of the ring transducer array is: After the transducer array rotates for the i-th time (1 ⁇ i ⁇ s), the phase of the sound field emitted by the n-th transducer in turn is: in
  • the method of "sound field superposition” is: the initial sound field generated in step (1) and the expressions (or measurement values) of the s sound fields generated in step (2) are vector-added to obtain a new expression (measurement value) , the sound field represented by the new expression (measured value) is the superimposed sound field.
  • the expression refers to the detection point sound pressure expression.
  • the method can realize the generation of the super-mode number vortex sound field with a small number of transducer units.
  • Other parameters in this embodiment are the same as those used in the above-mentioned method for generating a vortex sound field by a uniform circular transducer array.
  • the directivity function of the circular transducer array used in this embodiment is:
  • R is the radius of the array
  • c is the speed of sound
  • j is the imaginary unit
  • a is the radius of the transducer unit.
  • the present application rotates a transducer array with a small number of transducer units, adjusts the phase of each transducer unit accordingly, and compares the vortex sound field generated after each rotation with the The vortex sound field before rotation is superimposed to synthesize multi-mode vortex sound field.
  • the synthetic vortex ultrasonic field generated by the method of the present invention has better directivity. Applying this method to underwater communication, biomedical imaging and other equipment can reduce the number of transducer units, thereby simplifying the equipment.
  • the increase in the number of vortex sound field modes can increase the information carrying capacity and imaging resolution; the enhancement of directivity also enables better imaging resolution and better transmission performance in the imaging process and data transmission process. Therefore, the application potential of the technology of the present invention is huge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本发明属于声波成像技术领域,具体涉及一种超模式数的合成涡旋声场产生方法及装置。本发明方法包括如下步骤:(1)构建由N个换能器单元构成的换能器阵列,每个换能器单元发射声场,产生初始声场;(2)同时改变换能器单元的位置以及每个换能器单元发射声场的相位,每改变一次产生一个声场,改变s次,产生s个声场,其中,改变换能器单元位置的方式是整体旋转换能器阵列;(3)将初始声场与步骤(2)产生的s个声场叠加,得到超模式数的合成涡旋声场;其中N、s为大于0的整数,N*s不小于4。本申请产生旋涡声场的方法及装置用于水下通信或声学成像,也能够达到提高其信道容量和/或提高其分辨率的效果,具有很好的应用前景。

Description

一种超模式数的合成涡旋声场产生方法及装置 技术领域
本发明属于声波成像和水下通信技术领域,具体涉及一种超模式数的合成涡旋声场产生方法及装置。
背景技术
目前,对涡旋声场的研究主要仍然停留在理论探索阶段与前期实验室试验阶段。由于声波不存在偏振或自旋效应,因此漩涡声场不具有自旋角动量,仅能够携带轨道角动量。作为一个新的声波操控的自由度,声轨道角动量具有重要的科学意义和应用价值。从理论上讲,利用声轨道角动量的复用技术,可以提高水下声信号传输的信道容量,为水下高速通信保证极高的传输准确率。声轨道角动量模式数(下文简称模式数)的增加可以提高方位角分辨率,在工业、医学等方面的无损检测具有重要意义。
现有技术中,涡旋声场(包括漩涡超声场)通常是采用多个换能器单元排列成的换能器阵列(例如圆形阵列)产生。这种方法产生的涡旋声场的模式数受到换能器阵列的换能器单元数量的限制,即,由N个单元构成的换能器阵列产生声场的模式数小于N/2。因此,想要获取更高模式数的涡旋声场,只能增加换能器阵列的换能器单元数量。这将导致设备复杂程度提高,且为了提供容纳更多换能器单元的空间,设备的体积也会增加,这不利于涡旋声场的应用,那就意味着,在较小半径平面内,无法构建较高模式数的涡旋声场。而目前还缺少其他提高涡旋声场轨道角动量模式数的相关研究。
发明内容
针对现有技术中缺少提高涡旋声场的声轨道角动量的模式数的相关研究的问题,本发明提供一种超模式数的合成涡旋声场产生方法及装置,其目的在于:利用有限个换能器单元,通过对阵列中每个换能器进行位置和相位调控,产生无限多模式数。
一种超模式数的合成涡旋声场产生方法,
包括如下步骤:
(1)构建由N个换能器单元构成的换能器阵列,每个换能器单元发射声场,产生初始声场;
(2)同时改变换能器单元的位置以及每个换能器单元发射声场的相位, 每改变一次产生一个声场,改变s次,产生s个声场,其中,改变换能器单元位置的方式是整体旋转换能器阵列;
(3)将步骤(1)产生的初始声场与步骤(2)产生的s个声场叠加,得到超模式数的合成涡旋声场;
其中N、s为大于0的整数,N*s不小于4。
优选的,换能器阵列在旋转前和旋转后共同构成虚拟的合成换能器阵列,合成换能器阵列中的阵元个数为N s,N s=(s+1)×N。
优选的,合成换能器阵列的阵元排列在一个圆环上或至少两个圆环形成的同心圆环上,优选的,每个圆环上的阵元均匀排列。
优选的,所述合成换能器阵列的阵元排列在一个圆环上,合成换能器阵列中第m个阵元产生的声场的相位为:
Figure PCTCN2021073843-appb-000001
其中1≤m≤N s,m为整数,α′为所述合成涡旋声场的模式数,
Figure PCTCN2021073843-appb-000002
优选的,换能器阵列中,换能器单元排列在一个圆环上,所述换能器阵列绕一个通过所述圆环的圆心的旋转轴旋转;优选的,所述换能器阵列在圆环上均匀排列。
优选的,第n个换能器单元产生的具有初始相位的声场的相位为:
Figure PCTCN2021073843-appb-000003
其中1≤n≤N,n为整数,α′为合成模式数,
Figure PCTCN2021073843-appb-000004
和/或,换能器阵列每次旋转的角度为
Figure PCTCN2021073843-appb-000005
第n个换能器单元旋转第i次后,产生的声场的相位为:
Figure PCTCN2021073843-appb-000006
其中,1≤i≤s、1≤n≤N,i、n为整数,α′为合成模式数,
Figure PCTCN2021073843-appb-000007
本发明还提供上述方法产生的旋涡声场。
本发明还提供上述旋涡声场用于水下通信或声学成像。
本发明还提供一种超模式数的合成涡旋声场的产生装置,包括旋转装置和至少一个换能器单元构成的换能器阵列,所述旋转装置用于带动换能器阵列转动。
优选的,所述换能器阵列中,换能器单元的排列方式为等距排列在一个圆环上;所述旋转装置带动换能器阵列转动的转动轴通过换能器单元排列形成的圆环的圆心;优选的,所述旋转装置为精密旋转台。
本发明还提供包含上述装置的水下通信或声学成像设备。
本发明中符号“*”表示乘以。“超模式数”表示非常高的模式数,本发明方法用有限数量的换能器单元产生的合成漩涡超声场,相比于现有技术方法产生的漩涡超声场,具有显著更高的模式数(即最大合成模式数更高)。
“声场叠加”的方法是:将步骤(1)产生的初始声场与步骤(2)产生的s个声场的表达式(或测量值)进行矢量相加,得到的新的表达式(测量值),新的表达式(测量值)所代表的声场即为叠加后的声场。所述表达式是指检测点
Figure PCTCN2021073843-appb-000008
的声压表达式。
“圆环的轴线”是指圆环上的中心线,该中心线通过圆环的圆心,且与圆环所在的平面垂直。
本发明具有如下优点:(1)能够简单、有效地提高声轨道角动量模式数,获得更高模态的旋涡超声场,进而提高旋涡声场的指向性和方位角分辨率。(2)通过本发明的技术方案,能够通过有限个数的换能器单元提高声轨道角动量模式数,产生更高模态的旋涡声场,克服了现有技术中提高声轨道角动量模式数必须增加换能器单元数量的限制,从而能够使得用于产生高模态的旋涡声场的装置结构更简单、体积更小,为利用声波实现高分辨成像提供了一种技术路径。(3)通过更高模态的涡旋声场的构建,可以增加系统信息获取的容量。
因此,本申请产生旋涡声场的方法及装置用于水下通信或声学成像,能够达到提高其信道容量和/或提高其分辨率的效果,具有很好的应用前景。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为均匀圆形换能器阵列的示意图;
图2为现有技术中通过8个均匀圆形换能器阵列得到的模式数为1(a),模式数为2(b),模式数为3(c)的漩涡超声场;以及8个换能器单元无法产生模式数为4的涡旋声场(e)的示意图;
图3换能器单元形成的基础阵列旋转前和旋转两次的状态,以及它们形成的合成换能器阵列的示意图;
图4为实施例中用N=8的换能器基础阵列旋转一次,模拟N s=16个换能器阵列产生模式数为4的漩涡声场的示意图;
图5为实施例中用N=8的换能器基础阵列旋转两次,模拟N s=24个换能器阵列产生模式数为8的涡旋声场的示意图;
图6为实施例中用N=8的换能器基础阵列直接产生模式数为3的漩涡声场的指向性;
图7为实施例中N=8的换能器基础阵列,利用本方法合成模式数为3的涡旋声场的指向性;
图8为实施例中用N=8的换能器基础阵列产生模式数为4的漩涡声场的指向性;
图9为实施例中用N=8的换能器基础阵列旋转一次,利用本方法合成模式数为4的涡旋声场的指向性。
具体实施方式
下面通过具体的实施例对本申请的技术方案做进一步的说明。
现有技术中通过均匀圆形换能器阵列产生的旋涡声场的方法如下:
假设由N个圆形换能器组成的均匀圆阵列位于XOY平面内,如图1所示,阵列半径为R,第n个换能器的调制方位角(即产生的声场的相位)为φ n=2π(n-1)α/N,α为拓扑荷数(即模式数)。对于每个换能器施加激励信号:
s n=A*exp(j2πft+jφ n)    (1-1)
其中,A为声波的振幅,f为信号频率,t为时间,j为虚数单位。
假设观测点T在直角坐标系中的坐标为(x,y,z),及其在球极坐标系中的坐标为
Figure PCTCN2021073843-appb-000009
其中,r为观测点与坐标原点的距离,
Figure PCTCN2021073843-appb-000010
为观测点与坐标轴原点连线与X轴的夹角,θ为观测点与坐标轴原点连线和Z轴的夹角。那么,观测点检测到的声压为:
Figure PCTCN2021073843-appb-000011
其中k为波数,
Figure PCTCN2021073843-appb-000012
为换能器在球坐标下空间方位角,
Figure PCTCN2021073843-appb-000013
R n为任意一个换能器到观测点T的距离,R n可以表示为:
Figure PCTCN2021073843-appb-000014
当N个换能器叠加作用时,检测点
Figure PCTCN2021073843-appb-000015
的声压可以表示为
Figure PCTCN2021073843-appb-000016
将公式(1-4)复指数形式展开为三角函数形式:
Figure PCTCN2021073843-appb-000017
多个换能器叠加后,形成声场的幅值表达式如下::
Figure PCTCN2021073843-appb-000018
形成声场相位表达式如下:
Figure PCTCN2021073843-appb-000019
采用的实验参数为频率f=1000Hz,声速c=340m/s,声波振幅A=1,阵元数目N=8,模式数α=1,2,3,4,阵列半径R=0.2m。利用公式(1-6)和公式(1-7)得到的旋涡声场如图2所示,从图2可知,当α=4时,无法形成涡旋场。旋涡声场的特性为中心声强为0,在传播方向上的波阵面呈螺旋状。其特性来自于波前线性变化的相位分布。
实施例:本发明超模式数的合成轨道角动量模式数的涡旋声场
本实施例中,各参数定义如下:
原始换能器单元个数为N;
合成换能器阵列中的换能器单元个数为N s;N s=(s+1)×N;
合成的模式数为α′,α′取整数,且满足:
Figure PCTCN2021073843-appb-000020
原本N个原始换能器单元,则能够形成的涡旋场模式数为α,α取整数,且满足:
Figure PCTCN2021073843-appb-000021
若合成模式数为α′,则合成换能器阵列中相邻两个换能器单元之间的调 制相位差为:
Figure PCTCN2021073843-appb-000022
换能器阵列旋转的次数记为s;
合成换能器阵列是指:用于合成旋涡声场的各换能器单元产生声场时,其所在的位置作为一个阵元所形成的阵列。例如,在现有技术中,换能器阵列不转动的情况下,合成换能器阵列就是原始的换能器整列。若,换能器阵列转动一次(如图3所示),则合成换能器阵列为原始的换能器阵列及转动后的换能器阵列的组合(如图3右图所示)。
因而,若要获得较大的α′,则需要增大合成换能器阵列的换能器单元个数N s。在传统方法中,也即是必须增加原始换能器单元个数N。而对于本方法而言,则只需要增加原始换能器阵列的旋转次数s。
具体的,本实施例的操作方法为:
(1)将N个换能器单元均匀分布在半径为R的圆环上,得到的环形换能器阵列由精密旋转台进行控制,精密旋转台能够带动环形换能器阵列按照设定方向(顺时针或逆时针)旋转。
(2)若要合成的模式数为α′的虚拟涡旋声场,在初始位置时,第n个换能器单元产生的声场的相位为
Figure PCTCN2021073843-appb-000023
其中
Figure PCTCN2021073843-appb-000024
(3)若需要合成阵元数为N s的合成换能器阵列,则所述环形换能器阵列需要旋转k-1次,从而使得N s=kN。圆环由精密旋转台进行控制,精密旋转台将带动换能器阵列按照设定方向(顺时针或逆时针)旋转,每次环形换能器阵列旋转的角度为:
Figure PCTCN2021073843-appb-000025
能器阵列旋转第i次后(1≤i≤s),第n个换能器依次发射声场的相位为:
Figure PCTCN2021073843-appb-000026
其中
Figure PCTCN2021073843-appb-000027
(4)将阵列在不同位置上形成的不同模态数的原始声场进行叠加,则可以合成得到合成轨道角动量模式数的涡旋声场。
“声场叠加”的方法是:将步骤(1)产生的初始声场与步骤(2)产生的s个声场的表达式(或测量值)进行矢量相加,得到的新的表达式(测量值),新的表达式(测量值)所代表的声场即为叠加后的声场。所述表达式是指检测点
Figure PCTCN2021073843-appb-000028
的声压表达式。
通过上述方法操作,结果如图4所示。用N=8的换能器基础阵列产生模式数为4(等于N/2)的声场如图4(a)所示,再用该基础阵列旋转一次产 生的模式数为4的声场如图4(b)所示,将两次产生的声场叠加,来模拟合成N s=16个换能器阵列产生模式数为4的涡旋声场如图4(c)。如图5所示,直接用N=24的换能器基础阵列产生模式数为8的声场如图5(a)所示。若用N=8的换能器基础阵列产生模式数为8的合成涡旋声场,则需要对阵列进行两次旋转,阵列空间位置旋转后,需要对相位进行改变。用N=8的换能器基础阵列产生的初始声场如图5(b)所示;用N=8的换能器基础阵列旋转一次,各换能器单元发射声场相位并做相应改变后,产生的声场如图5(c)所示;用N=8的换能器基础阵列再次旋转,各换能器单元发射声场相位并做相应改变后,产生的声场如图5(d)所示,将阵列在三个不同空间位置发射的声场进行叠加后,获取的模式数为8的合成涡旋声场如图5(e)所示。通过上述方法,完成了用8个换能器单元产生模式数为8的合成涡旋声场。由此可见,本方法可以用较少的换能器单元个数,实现了超模式数涡旋声场的产生。本实施例其它参数与上述通过均匀圆形换能器阵列产生的旋涡声场的方法中采用的参数一致。
为了说明本申请的优势,下面对本实施例产生的声场的指向性进行说明。本实施例用到的圆形换能器阵列的指向性函数为:
Figure PCTCN2021073843-appb-000029
其中,R为阵列半径,c为声速,j为虚数单位,a为换能器单元半径。
图6为用N=8的换能器基础阵列直接产生模式数为3的漩涡声场的指向性;图7为实施例中N=8的换能器基础阵列,利用本方法合成模式数为3的涡旋声场的指向性;
图8为用N=8的换能器基础阵列产生模式数为4的漩涡声场的指向性;图9为实施例中用N=8的换能器基础阵列旋转一次,利用本方法合成模式数为4的涡旋声场的指向性。
显然,从图6与图7的比较,图8与图9的比较中发现,本方法所形成的涡旋声场具有更好的指向性,因此,其在成像过程、数据传输过程中具有更好的成像分辨率和更好的传输性能。
从上述实施例中可以看到,本申请通过旋转换能器单元数量较少的换能器阵列,并对各个换能器单元进行相应的相位调整,并将每次旋转后产生的漩涡声场与旋转前的漩涡声场叠加,能够合成多模式数的涡旋声场。且相比于现有技术,本发明方法产生的合成漩涡超声场具有更好的指向性。将该方 法应用于水下通信、生物医学成像等设备中,能够减少换能器单元的数量,从而简化设备。而涡旋声场模式数的增加,可增加信息承载容量和成像分辨率;指向性的增强也使得在成像过程、数据传输过程中具有更好的成像分辨率和更好的传输性能。因而本发明技术的应用潜力巨大。

Claims (10)

  1. 一种超模式数的合成涡旋声场产生方法,其特征在于:包括如下步骤:
    (1)构建由N个换能器单元构成的换能器阵列,每个换能器单元发射声场,产生初始声场;
    (2)同时改变换能器单元的位置以及每个换能器单元发射声场的相位,每改变一次产生一个声场,改变s次,产生s个声场,其中,改变换能器单元位置的方式是整体旋转换能器阵列;
    (3)将步骤(1)产生的初始声场与步骤(2)产生的s个声场叠加,得到超模式数的合成涡旋声场;
    其中N、s为大于0的整数,N*s不小于4。
  2. 按照权利要求1所述的方法,其特征在于:换能器阵列在旋转前和旋转后共同构成虚拟的合成换能器阵列,合成换能器阵列中的阵元个数为N s,N s=(s+1)×N。
  3. 按照权利要求2所述的方法,其特征在于:所述合成换能器阵列的阵元排列在一个圆环上或至少两个圆环形成的同心圆环上,优选的,每个圆环上的阵元均匀排列。
  4. 按照权利要求3所述的方法,其特征在于:所述合成换能器阵列的阵元排列在一个圆环上,合成换能器阵列中第m个阵元产生的声场的相位为:
    Figure PCTCN2021073843-appb-100001
    其中1≤m≤N s,m为整数,α′为所述合成涡旋声场的模式数,
    Figure PCTCN2021073843-appb-100002
  5. 按照权利要求1~4任意一项所述的方法,其特征在于:所述换能器阵列中,换能器单元排列在一个圆环上,所述换能器阵列旋转的旋转轴为圆环的轴线;优选的,所述换能器阵列在圆环上均匀排列。
  6. 按照权利要求5所述的方法,其特征在于:第n个换能器单元在初始位置产生的声场相位为:
    Figure PCTCN2021073843-appb-100003
    其中1≤n≤N,n为整数,α′为被合成涡旋声场的模式数,
    Figure PCTCN2021073843-appb-100004
    和/或,换能器阵列每次旋转的角度为
    Figure PCTCN2021073843-appb-100005
    第n个换能器单元旋转第i次后,产生的声场的相位为:
    Figure PCTCN2021073843-appb-100006
    其中,1≤i≤s、1≤n≤N,i、 n为整数,α′为被合成涡旋声场的模式数,
    Figure PCTCN2021073843-appb-100007
  7. 权利要求1-6任一项所述的方法产生的旋涡声场。
  8. 权利要求7所述的旋涡声场在水下通信或声学成像中的应用。
  9. 一种超模式数的合成涡旋声场的产生装置,其特征在于:包括旋转装置和至少一个换能器单元构成的换能器阵列,所述旋转装置用于带动换能器阵列转动;
    优选的,所述换能器阵列中,换能器单元的排列方式为等距排列在一个圆环上;所述旋转装置带动换能器阵列转动的转动轴通过换能器单元排列形成的圆环的圆心;优选的,所述旋转装置为精密旋转台,用于对换能器阵列的每次旋转角度进行精确控制。
  10. 包含权利要求8或9所述的装置在水下通信或声学成像设备中的应用。
PCT/CN2021/073843 2021-01-18 2021-01-26 一种超模式数的合成涡旋声场产生方法及装置 WO2022151525A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/597,395 US11523211B2 (en) 2021-01-18 2021-01-26 Method and device for generating synthetic vortex sound field with more mode number
JP2023507713A JP7487408B2 (ja) 2021-01-18 2021-01-26 超高モード数の合成渦音場の生成方法及び装置
KR1020237003872A KR102599416B1 (ko) 2021-01-18 2021-01-26 슈퍼 모드 넘버의 합성 와류 음장 생성 방법 및 장치
EP21918724.2A EP4250487A4 (en) 2021-01-18 2021-01-26 METHOD AND DEVICE FOR GENERATING A SYNTHETIC ACOUSTIC EDGE FIELD WITH SUPERMODE NUMBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110065122.9A CN112911464B (zh) 2021-01-18 2021-01-18 一种超模式数的合成涡旋声场产生方法及装置
CN202110065122.9 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022151525A1 true WO2022151525A1 (zh) 2022-07-21

Family

ID=76115976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073843 WO2022151525A1 (zh) 2021-01-18 2021-01-26 一种超模式数的合成涡旋声场产生方法及装置

Country Status (6)

Country Link
US (1) US11523211B2 (zh)
EP (1) EP4250487A4 (zh)
JP (1) JP7487408B2 (zh)
KR (1) KR102599416B1 (zh)
CN (1) CN112911464B (zh)
WO (1) WO2022151525A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410130A (en) * 2004-01-19 2005-07-20 Roke Manor Research Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes
CN105750181A (zh) * 2016-03-11 2016-07-13 南京大学 一种利用声学超材料产生声涡旋场的装置
CN110522992A (zh) * 2019-07-22 2019-12-03 西安交通大学 基于空间非均匀聚焦涡旋声场的相变纳米液滴调控方法
US20200158694A1 (en) * 2016-05-10 2020-05-21 Invensense, Inc. Operation of an ultrasonic sensor
CN111740223A (zh) * 2020-07-06 2020-10-02 中国科学院成都生物研究所 一种合成高轨道角动量模式数的涡旋电磁场的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882760A (en) * 1983-12-02 1989-11-21 Yee Raymond M Sound reproduction system
JPS62269726A (ja) * 1986-05-15 1987-11-24 Komatsu Ltd 回転音場による音波集塵装置
AU2003212721A1 (en) 2002-03-15 2003-09-29 Bjorn A. J. Angelsen Multiple scan-plane ultrasound imaging of objects
EP1608267A4 (en) * 2003-03-31 2007-04-25 Liposonix Inc VORTEX TRANSDUCER
CN101588524A (zh) 2009-07-08 2009-11-25 电子科技大学 指向可调式微型声频定向扬声器系统
CN101602482B (zh) 2009-07-13 2011-09-07 浙江大学 一种利用超声辐射力三维俘获、旋转微机械构件的方法
WO2017091633A1 (en) 2015-11-25 2017-06-01 Fujifilm Sonosite, Inc. Medical instrument including high frequency ultrasound transducer array
CN109562375A (zh) 2016-05-24 2019-04-02 法国国家科研中心 声学镊子
CN106125771A (zh) 2016-08-16 2016-11-16 江西联创宏声电子有限公司 声频定向扬声器及其转向方法
CN109261472B (zh) * 2018-08-30 2019-11-08 西安交通大学 一种空间聚焦涡旋声场的产生装置及方法
CN110092439B (zh) 2019-04-24 2022-09-09 陕西师范大学 小型涡旋声束发生器及涡旋声束粒子操控方法
CN114051738A (zh) * 2019-05-23 2022-02-15 舒尔获得控股公司 可操纵扬声器阵列、系统及其方法
CN110730042B (zh) * 2019-07-30 2021-02-19 深圳先进技术研究院 一种通信方法及装置
CN110475188A (zh) * 2019-07-30 2019-11-19 吕舒晗 一种柔性压电换能器及系统
CN111069008A (zh) * 2019-12-30 2020-04-28 西北工业大学 一种利用换能器阵列产生涡旋声场的方法及系统
CN111447015B (zh) * 2020-03-20 2021-05-28 哈尔滨工程大学 一种多阶声轨道角动量发射换能器基阵
CN112124975A (zh) 2020-08-19 2020-12-25 西北工业大学 一种利用声涡旋场产生非实体管道的装置
CN112113658A (zh) 2020-08-20 2020-12-22 西北工业大学 一种涡旋驻波耦合场声悬浮装置
CN112083432B (zh) * 2020-09-10 2024-01-09 天津水聿方舟海洋工程技术有限公司 基于声学轨道角动量的超精细三维成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410130A (en) * 2004-01-19 2005-07-20 Roke Manor Research Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes
CN105750181A (zh) * 2016-03-11 2016-07-13 南京大学 一种利用声学超材料产生声涡旋场的装置
US20200158694A1 (en) * 2016-05-10 2020-05-21 Invensense, Inc. Operation of an ultrasonic sensor
CN110522992A (zh) * 2019-07-22 2019-12-03 西安交通大学 基于空间非均匀聚焦涡旋声场的相变纳米液滴调控方法
CN111740223A (zh) * 2020-07-06 2020-10-02 中国科学院成都生物研究所 一种合成高轨道角动量模式数的涡旋电磁场的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250487A4 *

Also Published As

Publication number Publication date
CN112911464A (zh) 2021-06-04
EP4250487A9 (en) 2023-11-08
US20220360889A1 (en) 2022-11-10
JP2023530206A (ja) 2023-07-13
KR102599416B1 (ko) 2023-11-06
EP4250487A4 (en) 2024-02-21
CN112911464B (zh) 2021-10-19
KR20230025028A (ko) 2023-02-21
EP4250487A1 (en) 2023-09-27
US11523211B2 (en) 2022-12-06
JP7487408B2 (ja) 2024-05-20

Similar Documents

Publication Publication Date Title
Ma et al. Beamforming of phased microphone array for rotating sound source localization
CN105750181B (zh) 一种利用声学超材料产生声涡旋场的装置
CN107332629A (zh) 一种基于声学轨道角动量多路复用的信号传输方法
CN101548554A (zh) 麦克风阵列
CN110475188A (zh) 一种柔性压电换能器及系统
KR20090110819A (ko) 변환기 어레이 배열 및 소다 적용을 위한 작동
Shabtai et al. Acoustic centering of sources with high-order radiation patterns
Brown et al. Stackable acoustic holograms
Li et al. Deep-level stereoscopic multiple traps of acoustic vortices
Wang et al. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array
Ma et al. A frequency-domain beamforming for rotating sound source identification
WO2022151525A1 (zh) 一种超模式数的合成涡旋声场产生方法及装置
CN112754527A (zh) 一种用于低频超声胸腔成像的数据处理方法
Li et al. Design and characteristic analysis of multi-degree-of-freedom ultrasonic motor based on spherical stator
Pang et al. Partial discharge ultrasonic detection based on EULER‐MUSIC algorithm and conformal array sensor
Jiang et al. Spatial information coding with artificially engineered structures for acoustic and elastic wave sensing
CN112199899B (zh) 一种二维波动体系内轨道角动量的单源产生方法及产生装置
WO2022007148A1 (zh) 一种合成高轨道角动量模式数的涡旋电磁场的方法
Zhou et al. Acoustic barcode based on the acoustic scattering characteristics of underwater targets
Peng et al. Directivity Analysis of Ultrasonic Array in Directional Sound System
Lirette et al. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses
Mellow et al. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis
Schmele et al. Sound spectrum modulation generated by circularly moving sound sources
US2411910A (en) Signaling system
Wright et al. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237003872

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023507713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021918724

Country of ref document: EP

Effective date: 20230622

NENP Non-entry into the national phase

Ref country code: DE