WO2022151514A1 - 一种干贝风味的检测评价方法 - Google Patents

一种干贝风味的检测评价方法 Download PDF

Info

Publication number
WO2022151514A1
WO2022151514A1 PCT/CN2021/072962 CN2021072962W WO2022151514A1 WO 2022151514 A1 WO2022151514 A1 WO 2022151514A1 CN 2021072962 W CN2021072962 W CN 2021072962W WO 2022151514 A1 WO2022151514 A1 WO 2022151514A1
Authority
WO
WIPO (PCT)
Prior art keywords
scallops
group
flavor
betaine
dried
Prior art date
Application number
PCT/CN2021/072962
Other languages
English (en)
French (fr)
Inventor
邓尚贵
林慧敏
应晓国
高元沛
袁鹏翔
Original Assignee
浙江海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江海洋大学 filed Critical 浙江海洋大学
Publication of WO2022151514A1 publication Critical patent/WO2022151514A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the invention relates to the technical field of food detection, in particular to a detection and evaluation method for the flavor of dried scallops.
  • Dried scallops also known as Yuanbei, Yuju, and scallops
  • Dried scallops and bird's nest, sea cucumber shark's fin, abalone, fish maw, fish lips, fish roe are also known as the Eight Treasures of the Sea.
  • Dried scallops have high protein content and are rich in various minerals and fatty acids, which have the functions of nourishing yin and kidney, regulating middle and lower qi, and promoting growth and development. Regular consumption of scallops can help lower blood pressure, lower cholesterol, and regulate blood lipids to a certain extent. .
  • the scallops used to make dried scallops are distributed in the Yellow Sea, Bohai Sea, and the southeastern coast of my country, and mostly live in the sandy seabed and intertidal zone with a water depth of 2-4m in the shallow sea.
  • Scallops generally go through a breeding period of 3 to 4 years, and can be harvested and processed when the individual grows to about 7cm or more.
  • scallops are mainly produced in the north, and the annual output has been greatly increased with the maturity of breeding technology to meet the increasing consumer demand of the people.
  • the purpose of the present invention is to provide a method for detecting and evaluating the flavor of scallops, so as to solve the problems existing in the prior art, analyze the comprehensive nutritional components of scallops, detect and evaluate the flavor of scallops, and fully understand the nutritional components and flavor characteristics of scallops.
  • the present invention provides the following scheme:
  • the invention provides a method for detecting and evaluating the flavor of dried scallops, comprising the following steps: taking the dried scallops as an object, after rehydrating, obtaining the rehydrating dried scallops;
  • the chromatic aberration of the rehydrated scallop muscle was measured by a chromatometer, the cross section and vertical section of the rehydrated scallop were observed by scanning electron microscope, the amino acid content of the rehydrated scallop was determined by high performance liquid chromatography (HPLC), and the betaine was extracted by water extraction.
  • HPLC high performance liquid chromatography
  • the content of betaine was determined by color method, the taste of betaine was evaluated by TAV value, ATP-related compounds were determined by high performance liquid chromatography, and volatile components were analyzed by GC-MS.
  • the moisture content is measured according to the moisture determination method in GB5009.3-2016 food, and the rehydration rate is calculated by formula (1):
  • RR rehydration rate
  • Wr sample mass after rehydration
  • Wd dried scallop mass before drying, that is, fresh scallop mass.
  • the extraction of betaine by water extraction method includes the following steps: decoct the scallops with water for 3 times, the amount of water is respectively 6, 5, and 4 times the quality of the scallops, the boiling time is 1h, 1h, 0.5h, respectively, and let cool
  • the filtrate was then combined, filtered, and the filtered filtrate was concentrated under reduced pressure to obtain betaine.
  • the determination of betaine content by colorimetry includes the following steps: dissolving betaine in acetone with a mass concentration of 70%, measuring absorbance at 525 m, and then finding the content on betaine standard solution.
  • GC-MS is used to analyze volatile components.
  • SPME conditions insert the aged extraction head into the sample bottle, extract at 60°C for 30min, then move it into the GC-MS combined sampler, and desorb at 250°C for 3min;
  • Mass spectrometry conditions electron energy 70eV; interface temperature 250°C; ion source temperature 230°C; mass scanning range 40-400um.
  • the invention takes dried scallops as the object, after rehydration, the rehydrated dried scallops are obtained, the moisture content and rehydration rate of the rehydrated dried scallops are measured by the method for measuring the moisture in food, the color difference of the muscles of the rehydrated dried scallops is measured by a colorimeter, and a scanning electron microscope is used to observe
  • the cross-section and vertical section of the rehydrated scallops, the amino acid content of the rehydrated scallops was determined by high performance liquid chromatography (HPLC), the betaine was extracted by the water extraction method, the betaine content was determined by the colorimetric method, and the betaine content was evaluated by the TAV value.
  • HPLC high performance liquid chromatography
  • Figure 1 is a 2000 ⁇ scanning electron microscope image (10 ⁇ m) of the dried scallops prepared by the KGM group
  • Figure 2 is a 2000 ⁇ scanning electron microscope image (10 ⁇ m) of dried scallops prepared in the control group.
  • the scallops in the embodiment of the present invention are fresh bay scallops, purchased from a local market in Zhoushan, Zhejiang.
  • KGM purity > 95%) was purchased from China Xi'an Zelang Silicon Technology Co., Ltd.
  • CA purity > 99%
  • SA purity > 99%
  • Fresh scallops (total weight with shell 15kg, sample quantity 400) were purchased from the local market in Zhoushan, Zhejiang, after shelling and viscera, the adductor muscle was taken, washed with distilled water, and the adductor muscle (that is, the scallop muscle that appeared later) was divided into Four groups (100 copies in each group), each group had no significant difference.
  • the first group was soaked in a 3% NaCl aqueous solution at 4°C for 30 minutes (referred to as the control group); the second group was soaked in a mixed solution of 0.2% konjac glucomannan and 3% NaCl (w/v) at 4°C for 30 minutes (denoted as KGM group); the third group was soaked in a mixed solution of 2% carrageenan and 3% NaCl (w/v) at 4°C for 30min (denoted as CA group); the fourth group was soaked in 0.2% alginic acid at 4°C Soak in the mixed solution of sodium and 3%NaCl (w/v) for 30min (referred to as SA group).
  • the soaked adductor muscles were dried in a drying oven at 80°C for 6 hours to make scallops, which were then vacuum-packed and stored at room temperature for 48 hours.
  • Rehydration Soak scallops in purified water at 25°C for 2 hours for rehydration.
  • Embodiment 1 Determination of moisture content and rehydration rate
  • Moisture determination is carried out according to GB5009.3-2016 Moisture Determination Method in Food.
  • the rehydration rate was calculated according to formula (1):
  • RR rehydration rate
  • Wr sample mass after rehydration
  • Wd dried scallop mass before drying, that is, fresh scallop mass.
  • the moisture contents of the control group, KGM group, CA group and SA group after rehydration were 76.06% ⁇ 2.17%, 73.93% ⁇ 1.06%, 77.25% ⁇ 1.34%, 73.13% ⁇ 2.51, respectively.
  • the rehydration rates were 88.73 ⁇ 0.12, 90.83 ⁇ 0.15, 85.47 ⁇ 0.07 and 89.73 ⁇ 0.17, respectively.
  • the water content of the KGM group and the CA group were lower than the control group and the difference was significant (P ⁇ 0.05), but their rehydration rate (RR) was higher than that of the control group but there was no significant difference (P>0.05).
  • the complex gel structure formed by konjac glucomannan and myofibrillar protein has strong binding force for water, which increases the retention rate of water in the gel.
  • sodium alginate has strong hydrophilicity and is an excellent water-retaining agent. In the SA group, the water content is the highest and the rehydration rate is the lowest (P ⁇ 0.05).
  • carrageenan dissolves in water to form a hydrophilic gel, which adheres to the surface of the scallop muscle and solidifies during the drying process. This solidified layer reduces the water absorption capacity of the scallop muscle and thus reduces its rehydration rate.
  • K-carrageenan can significantly reduce the water loss rate of meat gel and can effectively improve its water retention.
  • the color difference value was measured under natural light using a colorimeter (CM-5; Konica Minolta, Tokyo, Japan). Luminance, redness, greenness, yellowness, and blueness are represented by L*, +a*, -a*, +b*, -b*, respectively.
  • the L* values of all samples are not significantly different. There was no significant difference in the a* value of the four groups of samples (P>0.05). However, there was a significant difference in a* value between SA group and CA group (P ⁇ 0.05). In the SA group, the a* value of the samples decreased and the color became green, while the a* value of the samples in the CA group increased and the color became red. After pretreatment with carrageenan, the b* values of the samples were significantly different from those of the control group, KGM group and CA group, and the b* value was significantly reduced. As the concentration of agar or carrageenan increased, the yellowness tended to decrease.
  • the gel samples had higher a* values and lower L* and b* values after adding KGM. This is due to the Maillard reaction between the amino group and carbonyl group in the muscle protein, which deepens the yellow color of the scallop muscle surface and improves the quality of the scallop muscle.
  • the cross-section and vertical section of the four groups of prepared scallops were observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the samples were cut into 1 mm ⁇ 1 mm ⁇ 3 mm, firstly fixed with 2.5% glutaraldehyde solution, rinsed with phosphate buffer, dehydrated with ethanol gradients of different concentrations, then critically dried with CO , and finally sprayed with gold on the surface of the sample and scanned with SEM.
  • the scanning electron microscope (SEM) results of the dried scallops prepared in the KGM group and the control group are shown in Fig. 1 and Fig. 2, respectively. From the longitudinal section (500 ⁇ ), the control group, the KGM group and the SA group all had different degrees of curling, and the CA group was relatively stable. Under the electron microscope at 2000 ⁇ , it can be seen that the muscles in the KGM group are more broken and curled, the control group has a slight degree of breakage, and the CA group has the best effect, with almost no muscle breakage. Under the 5000 ⁇ electron microscope, it can be clearly seen that the four groups of fractures have different degrees of folds, and the degree of their curling is KGM group>SA group>CA group. Fragmentation is closely related to the drying process of scallops.
  • the control group had many cracks at the white border.
  • the degree of fracture in the KGM group was less severe.
  • the SA group has many cracks.
  • the muscle tissue in the CA group had almost no cracks.
  • dense tissue structures were observed in all four groups of samples.
  • the gap did not affect the tightness of the tissue structure.
  • the ends of the KGM group were significantly curled. Under 5000 ⁇ magnification, it can be clearly seen that the curling degree of the end tissue of the four groups of samples is KGM group>SA group>CA group. This is mainly because the protein and KGM are connected to each other, forming a dense network structure that can lock in water or other nutrients.
  • the KGM-treated samples had a higher degree of fragmentation and more curling, but also higher compactness, which was due to the denaturation of proteins during the drying of the scallops. Denaturation of proteins can build protein-protein interactions, leading to protein aggregation.
  • the CA group had the highest fiber structural integrity.
  • Amino acids are the basic units of protein, and their composition and content are often used as quality indicators for fish and crustacean products. Amino acids are not only the source of seafood umami, but also present many complex taste characteristics, such as sweetness and bitterness. Delicious Amino Acids (DAAs) such as asparagine, glycine, alanine, arginine, glutamic acid, and proline have been identified as active ingredients in fresh scallops and the main free amino acids in boiled scallops. Glycine is closely related to the palatability of crustacean muscles and is the main amino acid that affects the taste of scallops.
  • the amino acid contents of the four groups of samples are shown in Table 3.
  • the total amino acid content of SA group was higher than that of control group, and the total amino acid content of KGM group and CA group was lower than that of control group.
  • Amino acids are mainly derived from the breakdown of proteins by endogenous proteolytic enzymes. For carrageenan-treated scallops, Na + will attach to the scallop surface and affect its gel strength. During the drying process of the oven, there is a temperature difference between the inside and outside of the scallops. The scallop endogenous enzyme activity was higher than the control group, the protein decomposition rate was higher, and the amino acid content was higher than the control group.
  • the betaine was extracted by water extraction, its content was determined by colorimetry, and the taste of betaine was evaluated by TAV value.
  • the extraction of betaine by water extraction method includes the following steps: decoct the dried scallops with water for 3 times, the amount of water is respectively 6, 5, and 4 times the quality of the dried scallops, and the boiling time is respectively 1 h, 1 h and 0.5 h, and after cooling, the filtrates are combined and filtered, The filtered filtrate was concentrated under reduced pressure to obtain betaine.
  • Determination of betaine content by colorimetric method specifically includes the following steps: when betaine is at pH 1, it can form red precipitate with Reinhardt’s salt, dissolve betaine in acetone with a mass concentration of 70%, measure the absorbance at 525 m, and then measure the absorbance at 525 m. Find the content on the betaine standard solution. The analysis results are shown in Table 4.
  • Betaine is high in crustaceans, mollusks, aquatic animals and fish. It can effectively increase the sweetness and is one of the main taste substances in these aquatic products. It can be seen from Table 4 that the TAV values of the four groups of samples are all greater than 1, the TAV value of the KGM group is the largest (35.82), and the values of the CA group, SA group and control group are 30.67, 25.34 and 20.72, respectively. This indicated that the KGM, CA and SA pretreatment of the samples could effectively affect the scallop flavor, and KGM had the greatest effect. This may be due to the stable physical and chemical properties and high temperature resistance of betaine. During the processing, high temperature treatment destroyed the structure of scallops and fully released betaine.
  • nucleotides can also enhance the overall taste of seafood.
  • Table 5 shows that among the four groups of samples, the ATP content of the SA group was the highest at 96.8 mg/kg, while no ATP was detected in the KGM group.
  • the highest AMP content in the control group was 429.3 mg/kg, followed by the CA group, SA group and KGM group (251.1 mg/kg, 203.2 mg/kg and 124.1 mg/kg, respectively).
  • the SA group had the highest IMP content of 880.8 mg/kg, followed by the control group, KGM group and CA group (717.4 mg/kg, 593.6 mg/kg, and 507.7 mg/kg, respectively), and all were above the threshold, indicating that they Contributes to the flavoring effect of scallops.
  • the decomposition pathway of ATP after shellfish death is ATP ⁇ ADP ⁇ AMP ⁇ IMP ⁇ H X R ⁇ H X .
  • AMP is a better flavoring agent in shellfish meat
  • IMP is an umami substance fortified with glutamic acid, which makes the meat sweet and can present a strong umami flavor, and when it is converted into HxR and Hx The latter has an unpleasant bitter taste.
  • the sum of HxR and Hx content in SA group was 230.0 mg/kg, which was significantly higher than other groups.
  • the addition of carrageenan can increase the richness of the scallop's flavor, improve its umami taste, and reduce the bitterness to a certain extent.
  • SPME conditions insert the aged extraction head into the sample bottle, extract at 60 °C for 30 min, then move it into the GC-MS combined sampler, and desorb at 250 °C for 3 min.
  • Gas chromatographic conditions Rtx-5MS elastic capillary column (30mm ⁇ 0.25mm ⁇ 0.25 ⁇ m); temperature programming: initial column temperature is 50°C, hold for 5min; set the heating rate of 5°C/min to heat up to 160°C, hold for 5min; set The heating rate of 10°C/min was raised to 250°C and held for 2min; inlet temperature: 250°C; air carrying capacity (He) flow rate: 1.0 mL/min.
  • Mass spectrometry conditions electron energy 70eV; interface temperature 250°C; ion source temperature 230°C; mass scanning range 40-400um. The results are shown in Table 6.
  • Table 6 shows the results of the analysis of volatile components in the scallop muscles of the control group, the KGM group, the SA group and the CA group. A total of 78 compounds were identified. Among them, esters (15 kinds) are the most, and other compound categories include amines (7 kinds), acids (10 kinds), ketones (6 kinds), alkanes (10 kinds), aldehydes (6 kinds), aromatic hydrocarbons (6 kinds), Phenolic compounds (6 types), alcohols (5 types), basics (3 types), furans (3 types), naphthalene (2 types), pyrazine (1 type) and pyridine (1 type).
  • Methyl hexadecate is one of the main aroma components of Anji white tea, which is formed by dehydration condensation of higher fatty acids and lower alcohols. Butyl butyrate and diethylmethylcarbamoyl disulfate were also detected in the control, KGM and SA groups.
  • Carbazol-3,6-diester thiocyanate was detected in the other three groups of samples except SA group, and its proportion was as high as 3.26% in KGM group, 2.67% and 1.93% in control group and CA group, respectively .
  • Butyl butyrate is a low fatty acid ester that is often used as a flavor additive because of its fruity aroma. Residual esters were unique to each set of samples. For example, dodecyl methyl ester was unique in the control group at 5.65%. Triglycerides were specific to the SA group, accounting for 3.80%. Phenylacetic acid, 4-(1,1-dimethylethyl)-methyl ester, was unique in the CA group, accounting for 2.21%. Among them, methyl dodecanoate and tricaprylin are important components of mushroom flavor.
  • ketones A total of 6 ketones were detected in the four groups of samples. Acetophenone was detected in KGM group, SA group and CA group, accounting for 0.44%, 0.39% and 0.49%, respectively. The only ketone detected in the control group was 2-propan-1-one, 1-(4-aminobenzene)-3-phenyl, which accounted for 3.18% and was unique to the control group. Other ketones detected in the SA group were 3-methyl-3-cyclohexen-1-one (0.84%) and 7-methoxy-2,3-diphenyl-4H-Chromen-4-one (0.43%). Generally, ketones originate from lipid oxidation and degradation and Maillard reactions.
  • the three groups of palmitic acid accounted for 11.16%, 9.46% and 12.01% respectively.
  • Tetradecanoic acid accounted for 3.16%, 1.76% and 2.34% in the three groups, respectively.
  • valeric acid (0.62%) and n-octadecanoic acid (0.66%) were detected in the control group, respectively.
  • polyoctanoic acid (1.07%) and benzene nitric acid (0.62%) were detected, respectively.
  • Fumaric acid (0.44%), folic acid (2.28%) and 16-hydroxy-hexadecanoic acid (0.99%) were detected in the CA group, respectively.
  • Benzaldehyde was the aldehyde detected in all four groups.
  • the proportion of total volatile components in SA group was the highest (5.09%), followed by control group, KGM group and CA group, accounting for 1.36%, 1.15% and 0.42%, respectively.
  • Benzaldehyde has a pleasant almond, nutty and fruity aroma and is an important flavor component of crab meat and wild catfish.
  • 3-methylbutanal (1.47%) and (E)-2-heptanal (1.15%) were detected in the KGM group, respectively.
  • 4-isopropylbenzaldehyde (1.03%) and acetaldehyde (0.53%) were detected, respectively.
  • C3C4 aldehydes have a strong odor.
  • the C5C9 aldehyde has the fragrance of green incense, oil wax and oily putty.
  • C10C12 aldehydes have orange peel and lemon flavors. These aldehydes are usually produced by lipid degradation and oxidation.
  • Phenolic compounds were detected in four groups of samples.
  • Eugenol was the compound with the highest proportion of the four sample groups.
  • the control group, KGM group, SA group and CA group accounted for 42.54%, 31.28%, 36.30% and 40.17%, respectively.
  • Clove oil has a particularly strong spicy, bacon-like aroma.
  • Phenol was simultaneously detected in the control group (0.87%), KGM group (0.69%), SA group (1.10%) and CA group (0.76%).
  • Phenolic compounds have a sweet taste.
  • 2,4-phenol was detected at 0.44% in the KGM group.
  • Prenol (0.51%) and 3,5-di-tert-butylphenol (6.42%) were detected in the SA group.
  • Phenolic compounds are generally synthesized from esters of alcohols and free fatty acids from fat oxidation, which give meat products a fruity flavor. Phenolic compounds may also originate from gut microbial fermentation of food or scallops.
  • hydrocarbons were detected in four sets of samples. Tetradecane (0.41%), nonane (0.64%), octadiene (0.64) were detected in the control group. Octadecane (0.44%) and cyclooctane (0.58%) were detected in the KGM group, respectively. In the CA group, 1-methyl-2-methylenecyclohexane (0.53%) and hexadecane (0.43%) were detected, respectively. Most hydrocarbons have sweet and aromatic odors, but generally have a higher threshold and therefore do not contribute much to odor. Hydrocarbons generally originate from lipid degradation.
  • Heterocyclic compounds including furans, pyridines, and thiazoles, were detected in four groups of samples.
  • Furans are mainly produced by the thermal decomposition of amino acids, fat oxidation and Maillard reactions, and tend to have a meaty taste.
  • the proportions in the control group, KGM group, SA group and CA group were 2.65%, 3.09%, 1.77% and 3.14%, respectively.
  • 3-methylindole was unique to SA group, accounting for 11.05%.
  • the presence of indole indicates that microorganisms contribute to the flavor of the product.
  • Amines were also detected, with 4 in the control group, 2 in the KGM group, and 2 in the CA group. Amines usually have a putrid fishy smell. This also indicates that the pretreatment combination produces a better mouthfeel than the control group to some extent.
  • Other compounds detected, such as guanidines were mostly derived from protein degradation, which may be related to added sugars and processing.
  • the amino acid detection showed that the total amino acid content of the CA group was the highest, and the flavor amino acid content was the highest.
  • the detection of ATP-related compounds showed that the IMP contents of the four groups of samples were all greater than the threshold, which contributed to the taste of scallops, and the CA group had the highest IMP content.
  • the KGM group had the highest betaine content.
  • a total of 78 compounds were detected, most of which were esters.
  • Eugenol has the aroma of bacon and is the highest among the four groups of samples.
  • the contents of hexadecanoic acid, methyl hexadecanoate, tetradecanoic acid, biphenyl and heterocyclic compounds were next.
  • the method of the present invention can comprehensively analyze and evaluate the nutritional components and flavor of scallops.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

一种干贝风味的检测评价方法,以干贝为对象,经过复水后,得复水干贝,采用食品中水分测定法测定复水干贝水分含量及复水率,采用色度计测定复水干贝肌肉色差,采用扫描电子显微镜观察复水扇贝的横截面和垂直截面,采用高效液相色谱法测定复水干贝氨基酸含量,采用水提法提取甜菜碱,采用比色法测定甜菜碱含量,并用TAV值评价甜菜碱的口感,用高效液相色谱法测定ATP关联化合物,采用GC-MS分析挥发性成分,可以全面了解干贝的营养成分和风味特征,能够客观、量化地评价干贝的风味,而无需依赖专家的主观评价,从而为干贝风味物质的研究提供有效的技术手段。

Description

一种干贝风味的检测评价方法 技术领域
本发明涉及食品检测技术领域,特别是涉及一种干贝风味的检测评价方法。
背景技术
干贝,又称元贝、玉珧、瑶柱,是从瓣鳃纲异柱目扇贝科和江珧科贝类动物的后闭壳肌,经晒制加工而成的一种海鲜食品原料。干贝与燕窝、海参鱼翅、鲍鱼、鱼肚、鱼唇、鱼子并称海八珍。干贝的蛋白质含量很高且富含多种矿物质和脂肪酸,具有滋阴补肾,调中下气,促进生长发育等功效,常食有助于降血压,降胆固醇,并具有一定的调节血脂的作用。制作干贝的扇贝在我国黄海、渤海、东南沿海均有分布,多生活于浅海2~4m水深的沙质海底和潮间带。扇贝一般经过3~4年的养殖期,待其个体长到约7cm以上,即可采收加工。目前干贝主要产自北方,年产量伴随着养殖技术的成熟而大幅提高,以满足人民群众日益高涨的消费需求。
目前,国内外关于干贝的报道主要集中在其干制工艺、食用价值、烹饪方法、养殖技术等方面。申淑琦等对购自秦皇岛市水产品市场的海湾扇贝进行无水保活,测定其中的水分、粗灰分、粗脂肪、粗蛋白质、糖原、乳酸等营养成分的变化。然而,有关干贝挥发性成分的研究,Hau Yin Chunga采用同时蒸馏萃取(SDE)法提取冷冻和干制的贝,利用气相色谱-质谱联用技术(GC-MS)分析比较两种扇贝的挥发性成分。关于干贝的全面营养成分分析、风味检测尚未见报道。
发明内容
本发明的目的是提供一种干贝风味的检测评价方法,以解决上述现有技术存在的问题,分析干贝的全面营养成分,检测评价干贝风味,全面了解干贝的营养成分和风味特征。
为实现上述目的,本发明提供了如下方案:
本发明提供一种干贝风味的检测评价方法,包括以下步骤:以干贝为对象,经过复水后,得复水干贝,采用食品中水分测定法测定复水干贝水分含量及复水率,采用色度计测定复水干贝肌肉色差,采用扫描电子显微镜观察复水扇贝的横截面和垂直截面,采用高效液相色谱法(HPLC)测定复水干贝氨基酸含量,采用 水提法提取甜菜碱,采用比色法测定甜菜碱含量,并用TAV值评价甜菜碱的口感,用高效液相色谱法测定ATP关联化合物,采用GC-MS分析挥发性成分。
优选地,所述水分含量根据GB5009.3-2016食品中水分测定法进行测定,所述复水率按式(1)计算:
Figure PCTCN2021072962-appb-000001
其中RR:复水率,Wr:复水后样品质量,Wd:干贝干制前质量,即鲜贝质量。
优选地,所述采用色度计测定复水干贝肌肉色差包括以下步骤:用色度计在自然光下测定,亮度、红度、绿度、黄度和蓝度分别用L*、+a*、-a*、+b*、-b*表示,用ΔE*评估总色差值,ΔE*=[(ΔL*) 2+(Δa*) 2+(Δb*) 2] 1/2
优选地,所述采用高效液相色谱法测定复水干贝氨基酸含量中色谱条件:KromatC18柱(250mm×4.6mm×5μm),柱温:40℃,流动相A:乙腈,流动相B:0.03mol/L乙酸盐缓冲液(pH=5.2),检测波长:360nm,流量:1m L/min,进样体积:10μL。
优选地,所述采用水提法提取甜菜碱包括以下步骤:将干贝用水煎煮3次,水量分别为干贝质量的6、5、4倍,煮沸时间分别为1h、1h、0.5h,放冷后合并滤液,过滤,减压浓缩过滤后的滤液得到甜菜碱。
优选地,所述采用比色法测定甜菜碱含量包括以下步骤:将甜菜碱溶于质量浓度为70%的丙酮中,在525m处测定吸光度,然后在甜菜碱标准溶液上查找含量。
优选地,所述用高效液相色谱法测定ATP关联化合物中采用GC-MS分析挥发性成分中色谱柱:COSMOSIL5 C 18-MS-II(4.6mm×250mm×5μm);流动相:0.05mol/L KH 2PO 4-K 2HPO 4缓冲液(含2%甲醇,pH 6.5);流量:0.6mL/min,洗脱量相等;柱温:25℃;检测波长:254nm;进样量:20μL。
优选地,所述采用GC-MS分析挥发性成分中:
SPME条件:将老化的萃取头插入样品瓶中,在60℃下提取30min,然后移入GC-MS联合取样器,在250℃下解吸3min;
气相色谱条件:Rtx-5MS弹性毛细管柱(30mm×0.25mm×0.25μm);温度编程:初始柱温度为50℃,保持5min;设置5℃/min的升温速度升温至160℃,保持 5min;设置10℃/min的升温速度升温至250℃,保持2min;入口温度:250℃;空气承载能力(He)流量:1.0mL/min;
质谱条件:电子能70eV;界面温度250℃;离子源温度230℃;质量扫描范围40~400um。
本发明公开了以下技术效果:
本发明以干贝为对象,经过复水后,得复水干贝,采用食品中水分测定法测定复水干贝水分含量及复水率,采用色度计测定复水干贝肌肉色差,采用扫描电子显微镜观察复水扇贝的横截面和垂直截面,采用高效液相色谱法(HPLC)测定复水干贝氨基酸含量,采用水提法提取甜菜碱,采用比色法测定甜菜碱含量,并用TAV值评价甜菜碱的口感,用高效液相色谱法测定ATP关联化合物,采用GC-MS分析挥发性成分,可以全面了解干贝的营养成分和风味特征,能够客观、量化地评价干贝的风味,而无需依赖专家的主观评价,从而为干贝风味物质的研究提供有效的技术手段。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为KGM组制备的干贝2000×扫描电子显微镜图(10μm);
图2为对照组制备的干贝2000×扫描电子显微镜图(10μm)。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的 常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例的扇贝为新鲜海湾扇贝,购自浙江舟山当地市场。KGM(纯度>95%)购自中国西安泽朗硅科技有限公司,CA(纯度>99%)和SA(纯度>99%)购自中国江苏白药生物技术有限公司,烘箱购自上海一恒科技有限公司。
新鲜扇贝(带壳总重量15kg,样品数量400份)从浙江舟山当地市场购买,去壳和内脏后,取内收肌,用蒸馏水洗涤,将内收肌(即后面出现的扇贝肌肉)分为四组(每组100份),每组无显著差异。第一组在4℃的3%NaCl水溶液中浸泡30min(记为对照组);第二组在4℃的0.2%魔芋葡甘聚糖和3%NaCl(w/v)的混合溶液中浸泡30min(记为KGM组);第三组在4℃的2%卡拉胶和3%NaCl(w/v)混合溶液中浸泡30min(记为CA组);第四组在4℃的0.2%海藻酸钠和3%NaCl(w/v)混合溶液中浸泡30min(记为SA组)。浸泡后的内收肌在80℃的干燥烘箱中干燥6h制成干贝,然后将它们真空包装,室温储存48h。
复水:将干贝放于25℃的纯化水中浸泡2h进行复水。
实施例1水分含量和复水率的测定
水分测定根据GB5009.3-2016食品中水分测定法进行测定。
复水率测定,将四组的干贝样品分别置于100mL蒸馏水中浸泡2h,取出复水样品,用滤纸吸去样品表面多余水分后称重,复水率按式(1)计算:
Figure PCTCN2021072962-appb-000002
其中RR:复水率,Wr:复水后样品质量,Wd:干贝干制前质量,即鲜贝质量。
四组的水分含量和复水率结果见表1。
表1
Figure PCTCN2021072962-appb-000003
注:不同上标(a-c)的值差异显著(P<0.05)。
从表1可以看出,干贝复水后对照组、KGM组、CA组和SA组的水分含量分别为76.06%±2.17%、73.93%±1.06%、77.25%±1.34%、73.13%±2.51,其复水率分别为88.73±0.12,90.83±0.15,85.47±0.07和89.73±0.17。KGM组和CA组水分含量均低于对照组且差异性显著(P<0.05),但它们的复水率(RR)高于对照组但无显著性差异(P>0.05)。这可能是因为魔芋葡甘聚糖和肌原纤维蛋白形成的复杂凝胶结构对水具有较强的结合力,增加了水在该凝胶中保留率。此外,海藻酸钠具有较强的亲水性,是一种优良的保水剂,在SA组中,含水量最高而复水率最低(P<0.05)。原因之一可能是卡拉胶溶解在水中形成亲水性凝胶,附着在扇贝肌肉表面并在干燥过程中固化,这种固化层降低了扇贝肌肉的吸水能力从而降低其复水率。K-卡拉胶的加入可显著降低肉凝胶的失水率,可有效提高其保水性。
实施例2色差测量
色差值利用色度计(CM-5;KonicaMinolta,东京,日本)在自然光下进行测定。亮度、红度、绿度、黄度和蓝度分别用L*、+a*、-a*、+b*、-b*表示。同时,用ΔE*评估总色差值,ΔE*=[(ΔL*) 2+(Δa*) 2+(Δb*) 2] 1/2。每组6个样品,每个样品测量3次,取平均值。结果见表2。
表2
Figure PCTCN2021072962-appb-000004
从表2可以看出,所有样本的L*值没有显着性差异。四组样品的a*值差异无显著性差异(P>0.05)。然而,SA组和CA组的a*值存在显著性差异(P<0.05)。在SA组中,样品的a*值降低颜色变绿,而CA组中样品的a*值增加颜色变红。 用卡拉胶预处理后,样品的b*值均与对照组、KGM组和CA组呈显著性差异,且b*值显著降低。随着琼脂或卡拉胶浓度的增加,黄度都呈降低趋势。加入KGM后,凝胶样品的a*值较高,L*和b*值较低。这是由于肌肉蛋白中的氨基与羰基之间发生了美拉德反应,使扇贝肌肉表面黄色加深,同时也提高了扇贝肌肉的质量。
实施例3微观结构
用扫描电子显微镜(SEM)观察四组制备的干贝的横截面和垂直截面。将样品切成1mm×1mm×3mm,首先用2.5%戊二醛溶液固定,用磷酸盐缓冲液冲洗后利用不同浓度的乙醇梯度脱水,然后CO 2临界干燥,最后用离子喷金样品表面并用SEM分别放大×500、×2000、×5000倍(日立S-4300SE,日立科学系统有限公司,日本)观察。
KGM组和对照组制备的干贝的扫描电子显微镜(SEM)结果分别如图1和图2所示。从纵断面(500×)看,对照组、KGM组和SA组均有不同程度的卷曲,CA组相对平稳。在2000×的电镜下可以看出KGM组肌肉断裂和卷曲较多,对照组呈现轻微程度断裂,CA组是效果最佳,肌肉几乎无断裂。在5000×电镜下可以清楚地看到四组骨折均可见不同程度的皱褶,它们的卷曲程度为KGM组>SA组>CA组。断裂与扇贝干燥过程密切相关。扇贝肌肉的内部和外部在干燥过程中存在温差,易造成内外水分流失不均,产生较大内应力进而造成不同程度的断裂。此外,干燥过程中的美拉德反应也易导致蛋白质聚集和断裂。此外,KGM与蛋白质之间形成的优质凝胶结构,在加热过程中可能会有一定的抗失水性,导致蛋白质断裂,因此在SA组中,扇贝表面的凝胶膜阻碍了水分的流失,导致了一定程度的断裂。
从横断面图(500×)看,对照组有的白色边界处有许多裂缝。KGM组断裂程度较轻。而SA组有许多裂缝。同时,CA组的肌肉组织几乎没有裂纹。在2000×的显微镜下,四组样品均观察到致密的组织结构。虽然对照组可见明显的白色间隙边界,但间隙并不影响组织结构的紧密性。此外,KGM组的末端有明显的卷曲。在5000×放大倍数下,可以清楚地看到四组样品的末端组织卷曲程度为KGM组>SA组>CA组。这主要因为蛋白质和KGM相互连接,形成致密的网络结构,可以锁定水或其他营养物质。
因此,KGM处理的样品具有较高的断裂程度和更多的卷曲,但同时也具有较高的紧密性,这是由于扇贝干燥过程中蛋白质的变性所致。蛋白质的变性可以构建蛋白质-蛋白质的相互作用,导致蛋白质聚集。CA组具有最高的纤维结构完整性。
实施例4氨基酸测定
采用高效液相色谱法(HPLC)测定氨基酸含量,色谱条件:KromatC18柱(250mm×4.6mm×5μm),柱温:40℃,流动相A:乙腈,流动相B:0.03mol/L乙酸盐缓冲液(pH=5.2),检测波长:360nm,流量:1mL/min,进样体积:10μL。
氨基酸是组成蛋白质的基本单位,其组成和含量常被用作鱼类和甲壳类产品的品质指标。氨基酸不仅是海鲜鲜味的来源,而且呈现了许多复杂的味觉特征,如甜味和苦味。美味氨基酸(DAA)如天冬酰胺、甘氨酸、丙氨酸、精氨酸、谷氨酸和脯氨酸已被鉴定为鲜活扇贝活性成分和煮干扇贝的主要游离氨基酸。甘氨酸与甲壳类肌肉的适口性密切相关,是影响扇贝口感的主要氨基酸。
四组样品的氨基酸含量见表3。SA组总氨基酸含量高于对照组,KGM组和CA组总氨基酸含量低于对照组。氨基酸主要来源于内源性蛋白水解酶对蛋白质的分解。对于卡拉胶处理的扇贝,Na +会附着在扇贝表面并影响其凝胶强度。在烘箱干燥过程中,扇贝内外部产生温差。扇贝内源酶活性高于对照组,蛋白质分解率较高,氨基酸含量高于对照组。
表3
Figure PCTCN2021072962-appb-000005
Figure PCTCN2021072962-appb-000006
实施例5甜菜碱测定
采用水提法提取甜菜碱,利用比色法测定其含量,并用TAV值评价甜菜碱的口感。水提法提取甜菜碱包括以下步骤:将干贝用水煎煮3次,水量分别为干贝质量的6、5、4倍,煮沸时间分别为1h、1h、0.5h,放冷后合并滤液,过滤,减压浓缩过滤后的滤液得到甜菜碱。比色法测定甜菜碱含量具体包括以下步骤:甜菜碱在pH为1时能和雷氏盐生成红色沉,将甜菜碱溶于质量浓度为70%的丙酮中,在525m处测定吸光度,然后在甜菜碱标准溶液上查找含量。分析结果见表4。
表4
Figure PCTCN2021072962-appb-000007
甜菜碱在甲壳类、软体动物、水生动物和鱼类中含量较高,它能有效增加甜味,是这些水产品的主要呈味物质之一。从表4中可以看出四组样品的TAV值均大于1,KGM组的TAV值最大(35.82),CA组、SA组和对照组分别为30.67、25.34和20.72。这表明样品的KGM、CA和SA预处理能有效影响扇贝风味,且KGM影响最大。这可能是由于甜菜碱具有稳定的理化性质和耐高温性能,加工过程中,高温处理破坏了扇贝的结构,充分释放了甜菜碱。
实施例6ATP关联化合物的测定
用HPLC进行分析,色谱柱:COSMOSIL5 C 18-MS-II(4.6mm×250mm×5μm);流动相:0.05mol/L KH 2PO 4-K 2HPO 4缓冲液(含2%甲醇,pH 6.5);流量:0.6mL/min,洗脱量相等;柱温:25℃;检测波长:254nm;进样量:20μL。结果见表5。
表5
Figure PCTCN2021072962-appb-000008
Figure PCTCN2021072962-appb-000009
除了氨基酸,部分核苷酸也能增强海鲜的整体口感。表5显示,四组样品中SA组的ATP含量最高为96.8mg/kg,而KGM组未检出ATP。对照组AMP含量最高为429.3mg/kg,其次为CA组、SA组和KGM组(分别为251.1mg/kg、203.2mg/kg和124.1mg/kg)。SA组的IMP含量最高为880.8mg/kg,其次是对照组、KGM组和CA组(分别为717.4mg/kg、593.6mg/kg和507.7mg/kg),且均高于阈值,这表明它们有助于扇贝的呈味作用。一般来说,贝类死亡后其ATP的分解途径为ATP→ADP→AMP→IMP→H XR→H X。其中AMP是贝类肉中较好的增香剂;IMP是一种使谷氨酸强化的umami物质,它使肉具有甜味并能呈现出强烈的umami味,而当它转化为HxR和Hx后则呈现令人不悦的苦味。SA组的HxR和Hx含量之和为230.0mg/kg,明显高于其他组。然而,加入卡拉胶可增加扇贝风味的丰富度,改善其umami味,在一定程度上可减少了苦味的产生。
实施例7挥发性成分分析
利用GC-MS分析:
SPME条件:将老化的萃取头插入样品瓶中,在60℃下提取30min,然后移入GC-MS联合取样器,在250℃下解吸3min。
气相色谱条件:Rtx-5MS弹性毛细管柱(30mm×0.25mm×0.25μm);温度编程:初始柱温度为50℃,保持5min;设置5℃/min的升温速度升温至160℃,保持5min;设置10℃/min的升温速度升温至250℃,保持2min;入口温度:250℃;空气承载能力(He)流量:1.0mL/min。
质谱条件:电子能70eV;界面温度250℃;离子源温度230℃;质量扫描范围40-400um。结果见表6。
表6
Figure PCTCN2021072962-appb-000010
Figure PCTCN2021072962-appb-000011
Figure PCTCN2021072962-appb-000012
Figure PCTCN2021072962-appb-000013
Figure PCTCN2021072962-appb-000014
表6显示了对照组、KGM组、SA组和CA组扇贝肌肉挥发性成分分析的结果。共鉴定出78种化合物。其中酯类(15种)为最多,其他化合物类别包括胺(7种)、酸(10种)、酮(6种)、烷烃(10种)、醛(6种)、芳烃(6种)、酚类化合物(6种)、醇类(5种)、碱性(3种)、呋喃(3种)、萘(2种)、吡嗪(1种)和吡啶(1种)。
四组样品共检测到15种酯类,其中十六烷酸甲酯在四组样品含量最高,在KGM组中占12.96%,其次是CA组、SA组和对照组,分别占12.83%、8.57%和7.17%。十六酸甲酯是安吉白茶的主要香气成分之一,其是由较高脂肪酸和较 低醇通过脱水缩合而成的。丁酸丁酯和二乙基甲基氨基甲酰二硫酸酯在对照组、KGM组和SA组中也均被检测出。硫氰酸卡巴唑-3,6-二酯在SA组除外的其它三组样品中检出,其在KGM组中的比例高达3.26%,在对照组和CA组中分别为2.67%、1.93%。丁酸丁酯是一种低脂肪酸酯,它因呈现一定的果香常被用作风味添加剂。残留酯类在每一组样品中都特有的。例如,十二烷基甲酯在对照组中特有,占5.65%。甘油三酯是SA组特有,占3.80%。苯乙酸,4-(1,1-二甲基乙基)-甲酯在CA组中特有,占2.21%。其中十二烷酸甲酯和三辛甘酯是蘑菇风味的重要成分。
四组样品共检测到6个酮。乙酰苯酮在KGM组、SA组和CA组均检出,分别占0.44%、0.39%和0.49%。在对照组中检测到的唯一酮为2-丙酮-1-酮,1-(4-氨基苯)-3-苯基,占3.18%,且为对照组特有。在SA组中检测到的其他酮为3-甲基-3-环己烯-1-酮(0.84%)和7-甲氧基-2,3-二苯基-4H-Chromen-4-酮(0.43%)。一般来说,酮来源于脂质氧化和降解以及美拉德反应。
四组样品共检测到10种酸性物质,其中四癸酸和棕榈酸在对照组、KGM组和CA组中均被检出。三组棕榈酸分别占11.16%、9.46%和12.01%。四癸酸在三组中分别占3.16%、1.76%和2.34%。此外,对照组分别检测到戊酸(0.62%)和正十八酸(0.66%)。在KGM组(1.36%)中单独检测到癸酸)。在SA组中,分别检测到多辛酸(1.07%)和苯硝酸(0.62%)。在CA组中分别检测到富马酸(0.44%)、叶酸(2.28%)和16-羟基-十六烷酸(0.99%)。
四组样品共检测6个醛类。苯甲醛是四组中均被检出的醛,SA组中总挥发性成分的比例最高(5.09%),其次是对照组、KGM组和CA组,分别占1.36%、1.15%和0.42%。苯甲醛具有令人愉悦的杏仁、坚果和水果香气,是蟹肉和野生长鼻鲶的重要风味成分。在KGM组中分别检测3-甲基丁醛(1.47%)和(E)-2-庚醛(1.15%)。在SA组中,分别检测4-异丙基苄醛(1.03%)和乙醛(0.53%)。不同的醛有不同的气味,C3C4醛有很强的气味。所述C5C9醛具有绿香,油蜡,油腻子的香味。C10C12醛有橘皮和柠檬味。这些醛通常是由脂质降解氧化产生的。
四组样品共检测到5种醇。对照组和CA组(分别为0.92%和1.14%)均检测到庚醇)。从KGM组中分离出1-四糖(0.73%)。在SA组中,分别检测5-壬醇(3.95%) 和薄荷醇(1.11%)在CA组中仅检出11-Heneicosanol(0.37%)。酒精来源于脂质氧化和降解。
四组样品检测6种酚类化合物。尤金诺是四个样品组中比例最高的化合物。对照组、KGM组、SA组和CA组分别占42.54%、31.28%、36.30%和40.17%。丁香油具有特别强烈的辛辣、熏肉般的香气。对照组(0.87%)、KGM组(0.69%)、SA组(1.10%)和CA组(0.76%)同时检测到苯酚。酚类化合物具有甜味。2,4-酚在KGM组中检测到0.44%。在SA组中检测到异戊烯醇(0.51%)和3,5-二叔丁基酚(6.42%)。酚类化合物一般由脂肪氧化产生的醇和游离脂肪酸的酯类合成,使肉制品具有果味。酚类化合物也可能来源于食物或扇贝的肠道微生物发酵。
四组样品检测到8种烃类。对照组中检测到四癸烷(0.41%)、壬烷(0.64%)、辛二烯(0.64)。在KGM组中分别检出十八烷(0.44%)和环辛烷(0.58%)。在CA组中,分别检测1-甲基-2-亚甲基环己烷(0.53%)和十六烷(0.43%)。大多数碳氢化合物都有甜味和芳香气味,但一般阈值较高,因此对气味的贡献不大。碳氢化合物一般来源于脂质降解。此外,检测到6种芳香烃对照组、SA组和CA组联合检测苯并噻唑,分别占0.40%、0.74%和1.86%。3,3’,4,4’-四甲基联苯是实施例1特有的,占1.48%。四组均检出萘,其中KGM组、CA组和CA组分别占1.41%、2.22%、1.02%和2.12。联苯、萘和邻苯二甲酸酯被认为是环境污染物。在所有四组中都有不同程度的检测。1,1-联苯有一种令人愉快、辛辣、温和、天竺葵和奇怪的复杂气味。萘可能是微生物降解植物材料或环境污染物的产物。烯烃被认为是脂肪酸的氧化产物,或来源于N-6PufAs。
四组样品检测到杂环化合物,包括呋喃、吡啶和噻唑。呋喃主要是由氨基酸的热分解、脂肪氧化和美拉德反应产生的,往往呈现肉味。对照组、KGM组、SA组和CA组中分别占2.65%、3.09%、1.77%和3.14%。其中3-甲基吲哚是SA组特有的,占11.05%。吲哚的存在表明微生物对产品的风味有献。还检测到胺,对照组有4个,KGM组有2个,CA组有2个。胺通常有一种腐烂的腥味。这也表明预处理组合在一定程度上比对照组产生更好的口感。检出的其他化合物如胍类,多来源于蛋白质降解,其可能与添加的糖和加工过程有关。
扇贝肌肉通过不同方式的浸泡预处理后,其干燥制品复水后,CA组样品水分含量最高,KGM组样品复水率最高。在色差方面,每组样本的L*和ΔE值没 有显著性差异。用CA预处理的扇贝,其b*有显著的降低,即CA组扇贝的黄度与其他组相比显著降低。通过SEM观察可知,蛋白质和KGM形成了三维网络结构,该结构有助于锁定水分,但在干燥过程中也易引起蛋白质变性和聚集,因此KGM组的肌纤维断裂和卷曲程度较高。综上分析,KGM具有优良的保水性,CA组水分含量较高,黄度降低。
氨基酸检测可知,CA组氨基酸总含量最高,风味氨基酸含量最高。ATP关联化合物检测可知四组样品的IMP含量均大于阈值,这有助于扇贝的呈味作用,且CA组的IMP含量最高。而KGM组甜菜碱含量最高。在挥发性成分分析中,共检测到78种化合物,其中大多数是酯类化合物。尤金诺具有熏肉的香气,在四组样品中含量最高。十六烷酸、十六酸甲酯、十四酸、联苯和杂环化合物的含量次之。四组样品中还检出了对样品风味有很大贡献的醛类,如苯甲醛在CA组中所占比例最高。同时,在样品中检测到一些环境污染物,如萘和二酞酸盐,这使扇贝肌肉的口感复杂化。通过对比和分析可知CA组的总氨基酸含量最高、风味氨基酸含量最高、ATP关联化合物含量最高、使扇贝风味突出的IMP化合物(如苯甲醛)含量也最高。
综上所述,通过本发明所述方法能对干贝的营养成分和风味进行全面的分析和评价。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

  1. 一种干贝风味的检测评价方法,其特征在于,包括以下步骤:以干贝为对象,经过复水后,得复水干贝,采用食品中水分测定法测定复水干贝水分含量及复水率,采用色度计测定复水干贝肌肉色差,采用扫描电子显微镜观察复水扇贝的横截面和垂直截面,采用高效液相色谱法测定复水干贝氨基酸含量,采用水提法提取甜菜碱,采用比色法测定甜菜碱含量,并用TAV值评价甜菜碱的口感,用高效液相色谱法测定ATP关联化合物,采用GC-MS分析挥发性成分。
  2. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述水分含量根据GB5009.3-2016食品中水分测定法进行测定,所述复水率按式(1)计算:
    Figure PCTCN2021072962-appb-100001
    其中RR:复水率,Wr:复水后样品质量,Wd:干贝干制前质量,即鲜贝质量。
  3. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述采用色度计测定复水干贝肌肉色差包括以下步骤:用色度计在自然光下测定,亮度、红度、绿度、黄度和蓝度分别用L*、+a*、-a*、+b*、-b*表示,用ΔE*评估总色差值,ΔE*=[(ΔL*) 2+(Δa*) 2+(Δb*) 2] 1/2
  4. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述采用高效液相色谱法测定复水干贝氨基酸含量中色谱条件:KromatC18柱,柱温:40℃,流动相A:乙腈,流动相B:0.03mol/L乙酸盐缓冲液,检测波长:360nm,流量:1m L/min,进样体积:10μL。
  5. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述采用水提法提取甜菜碱包括以下步骤:将干贝用水煎煮3次,水量分别为干贝质量的6、5、4倍,煮沸时间分别为1h、1h、0.5h,放冷后合并滤液,过滤,减压浓缩过滤后的滤液得到甜菜碱。
  6. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述采用比色法测定甜菜碱含量包括以下步骤:将甜菜碱溶于质量浓度为70%的丙酮中,在525m处测定吸光度,然后在甜菜碱标准溶液上查找含量。
  7. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述用高效液相色谱法测定ATP关联化合物中采用GC-MS分析挥发性成分中色谱 柱:COSMOSIL5 C 18-MS-II;流动相:0.05mol/L KH 2PO 4-K 2HPO 4缓冲液;流量:0.6mL/min,洗脱量相等;柱温:25℃;检测波长:254nm;进样量:20μL。
  8. 根据权利要求1所述的一种干贝风味的检测评价方法,其特征在于,所述采用GC-MS分析挥发性成分中:
    SPME条件:将萃取头插入样品瓶中,在60℃下提取30min,然后移入GC-MS联合取样器,在250℃下解吸3min;
    气相色谱条件:Rtx-5MS弹性毛细管柱;温度编程:初始柱温度为50℃,保持5min;设置5℃/min的升温速度升温至160℃,保持5min;设置10℃/min的升温速度升温至250℃,保持2min;入口温度:250℃;空气承载能力流量:1.0mL/min;
    质谱条件:电子能70eV;界面温度250℃;离子源温度230℃;质量扫描范围40~400um。
PCT/CN2021/072962 2021-01-13 2021-01-21 一种干贝风味的检测评价方法 WO2022151514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110042050.6 2021-01-13
CN202110042050.6A CN112881549A (zh) 2021-01-13 2021-01-13 一种干贝风味的检测评价方法

Publications (1)

Publication Number Publication Date
WO2022151514A1 true WO2022151514A1 (zh) 2022-07-21

Family

ID=76045311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072962 WO2022151514A1 (zh) 2021-01-13 2021-01-21 一种干贝风味的检测评价方法

Country Status (2)

Country Link
CN (1) CN112881549A (zh)
WO (1) WO2022151514A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881549A (zh) * 2021-01-13 2021-06-01 浙江海洋大学 一种干贝风味的检测评价方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259266A (zh) * 2015-10-28 2016-01-20 青岛啤酒股份有限公司 检测啤酒和麦汁中的四种麦香类风味物质的方法
CN105717227A (zh) * 2016-02-02 2016-06-29 天津科技大学 一种浓缩苹果汁风味品质判别方法及其应用
CN107246892A (zh) * 2017-04-25 2017-10-13 宁夏农林科学院枸杞工程技术研究所 一种鲜食枸杞果实品质检测方法与品质综合评价方法
WO2018110587A1 (ja) * 2016-12-16 2018-06-21 長谷川香料株式会社 コーヒー風味改善剤およびその製造方法
JP6470526B2 (ja) * 2014-08-26 2019-02-13 小川香料株式会社 香気成分の香気発現特性の評価方法
CN111289707A (zh) * 2020-03-11 2020-06-16 中国海洋大学 一种蒸制鱼肉样品特征滋味表征的方法及应用
CN112881549A (zh) * 2021-01-13 2021-06-01 浙江海洋大学 一种干贝风味的检测评价方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104872781B (zh) * 2015-06-26 2018-04-10 农业部规划设计研究院 扇贝柱的太阳能干燥方法
CN111567764B (zh) * 2020-05-27 2023-04-07 浙江海洋大学 一种瑶柱加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470526B2 (ja) * 2014-08-26 2019-02-13 小川香料株式会社 香気成分の香気発現特性の評価方法
CN105259266A (zh) * 2015-10-28 2016-01-20 青岛啤酒股份有限公司 检测啤酒和麦汁中的四种麦香类风味物质的方法
CN105717227A (zh) * 2016-02-02 2016-06-29 天津科技大学 一种浓缩苹果汁风味品质判别方法及其应用
WO2018110587A1 (ja) * 2016-12-16 2018-06-21 長谷川香料株式会社 コーヒー風味改善剤およびその製造方法
CN107246892A (zh) * 2017-04-25 2017-10-13 宁夏农林科学院枸杞工程技术研究所 一种鲜食枸杞果实品质检测方法与品质综合评价方法
CN111289707A (zh) * 2020-03-11 2020-06-16 中国海洋大学 一种蒸制鱼肉样品特征滋味表征的方法及应用
CN112881549A (zh) * 2021-01-13 2021-06-01 浙江海洋大学 一种干贝风味的检测评价方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN DEWEI, ET AL.: "Determination and Taste Evaluation of Betaine Present in Common Aquatic Products from Beibu Gulf in Guangxi", MODERN FOOD SCIENCE AND TECHNOLOGY, vol. 27, no. 4, 31 December 2011 (2011-12-31), pages 468 - 472, XP055950671, DOI: 10.13982/j.mfst.1673-9078.2011.04.031 *
LIU ZHENG: "Research on the Key Drying Technologies of Scallops", CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER), ENGINEERING SCIENCE & TECHNOLOGY I, no. 8, 15 August 2012 (2012-08-15), XP055950672 *
ZHU YAHUEI: "Improvement of Drying Process of Chlamys Nobilis Scallop and Formation Mechanism of Its Flavor Components", CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER), ENGINEERING SCIENCE & TECHNOLOGY I, no. 2, 15 February 2018 (2018-02-15), XP055950673 *

Also Published As

Publication number Publication date
CN112881549A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Hosoglu Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry
Domínguez et al. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage
Tao et al. Characterization of odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus) using gas chromatography–mass spectrometry–olfactometry
Zhuang et al. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab (Eriocheir sinensis)
Fuentes et al. Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins
Fratini et al. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS
JOSEPHSON et al. Volatile compounds characterizing the aroma of fresh Atlantic and Pacific oysters
Han et al. Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky
Van Houcke et al. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement
Gao et al. Aroma profiles of commercial Chinese traditional fermented fish (Suan yu) in Western Hunan: GC-MS, odor activity value and sensory evaluation by partial least squares regression
Duan et al. Variations in flavor according to fish size in rainbow trout (Oncorhynchus mykiss)
Xu et al. The role of microbes in free fatty acids release and oxidation in fermented fish paste
Luo et al. Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain
Tuckey et al. Determination of volatile compounds in New Zealand Greenshell™ mussels (Perna canaliculus) during chilled storage using solid phase microextraction gas chromatography–mass spectrometry
Wang et al. Postmortem changes in the freshness and volatile compounds of grass carp (Ctenopharyngodon idella)
WO2022151514A1 (zh) 一种干贝风味的检测评价方法
Cong et al. Temperature effects on the nutritional quality in Pacific oysters (Crassostrea gigas) during ultraviolet depuration
Liang et al. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study
Li et al. Investigation of the effect of chemical composition of surimi and gelling temperature on the odor characteristics of surimi products based on gas chromatography-mass spectrometry/olfactometry
Varlet et al. Olfactometric determination of the most potent odor-active compounds in salmon muscle (Salmo salar) smoked by using four smoke generation techniques
Wang et al. Evaluation of microalgae diets on flavor characteristics of Pacific oysters (Crassostrea gigas) during fattening
JP6747658B2 (ja) アンモニア臭を発生する魚類のフィレ肉の除臭及び食味及び食感の改善方法
Wang et al. Composition and nutritional qualities of edible tissues of Chinese mitten crab (Eriocheir sinensis) from Ya Lake over different months
CN112772879B (zh) 一种干贝的制备方法
Zhao et al. Role of lipid deterioration on the quality of aquatic products during low‐temperature storage: a lipidomics‐based study using large yellow croaker (Larimichthys crocea)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918714

Country of ref document: EP

Kind code of ref document: A1