WO2022151415A1 - 一种发送上行控制信道的方法和装置 - Google Patents

一种发送上行控制信道的方法和装置 Download PDF

Info

Publication number
WO2022151415A1
WO2022151415A1 PCT/CN2021/072299 CN2021072299W WO2022151415A1 WO 2022151415 A1 WO2022151415 A1 WO 2022151415A1 CN 2021072299 W CN2021072299 W CN 2021072299W WO 2022151415 A1 WO2022151415 A1 WO 2022151415A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
symbols
symbol
adjustment value
transmit beam
Prior art date
Application number
PCT/CN2021/072299
Other languages
English (en)
French (fr)
Inventor
刘显达
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/072299 priority Critical patent/WO2022151415A1/zh
Publication of WO2022151415A1 publication Critical patent/WO2022151415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for sending a physical uplink control channel in the field of communications.
  • Multi-base station cooperation can reduce or eliminate mutual interference by utilizing the coordination and cooperation between adjacent base stations, thereby increasing the throughput of the communication system and improving the performance of users at the cell boundary. Therefore, in a New Radio (NR) system, multi-base station cooperation has become an important technology.
  • Each base station in the cooperative group can obtain the information of all or part of the channels in the group in advance, and at the same time, according to this information, perform independent scheduling, multi-base station cooperative scheduling, and cooperative multiple-input multiple-output (MIMO), etc. The more channel information the base station can obtain, the greater the mutual cooperation ability between the base stations, and the greater the gain obtained by the communication system.
  • MIMO multiple-input multiple-output
  • a terminal device can use multiple transmit beams to transmit an uplink control channel (physical uplink control channel, PUCCH).
  • PUCCH physical uplink control channel
  • the terminal device may send the PUCCH through multiple beams on non-overlapping time domain resources respectively. How to ensure the PUCCH transmission performance corresponding to each transmission beam in the case of transmitting PUCCH in multiple beams is an urgent problem to be solved.
  • the present application provides a method and apparatus for sending an uplink control channel, which can improve the transmission performance of PUCCH in a time-division multi-beam transmission scenario.
  • a method for sending an uplink control channel comprising: determining a first power adjustment value of a PUCCH according to a first number of symbols, where the number of the first symbols is less than the number of symbols occupied by the PUCCH; The number determines the second power adjustment value of the PUCCH, and the second symbol number is less than the number of symbols occupied by the PUCCH, wherein the symbols occupied by the PUCCH include a non-overlapping first symbol set and a second symbol set; according to For the first power adjustment value, the PUCCH is sent on the first symbol set through a first transmission beam; according to the second power adjustment value, the PUCCH is sent on the second symbol set through a second transmission beam. described PUCCH.
  • the transmission performance of the channel can be improved in a time-division multi-beam transmission scenario.
  • different wireless access points respectively receive and process the transmission signals of each beam, and can achieve better transmission performance without combining the transmission signals of each beam.
  • the method before the determining the first power adjustment value of the PUCCH according to the first symbol quantity, the method further includes: receiving first indication information, the first The indication information is used to indicate a transmit beam for transmitting the PUCCH, and the transmit beam includes the first transmit beam and the second transmit beam.
  • the number of the first symbols is equal to the number of symbols in the first symbol set; the second symbol number is equal to the number of symbols in the second symbol set quantity.
  • the power adjustment value of each transmission beam is calculated according to the number of symbols occupied by the transmission beam, so that the transmission power adjustment value required by each transmission beam can be determined more accurately, which improves the Transmission performance of PUCCH on different transmit beams.
  • the number of the first symbols is equal to the number of the second symbols, and is equal to or Wherein, M is the number of symbols occupied by the PUCCH, and N is the number of transmit beams of the PUCCH.
  • the adjustment value of the transmit power required by each transmit beam is determined according to the average value of the number of symbols corresponding to multiple transmit beams of the PUCCH, so that the terminal device can adjust the transmit power according to the same power
  • the adjustment value transmits multiple transmit beams of the PUCCH, which is convenient for the network device to receive, and can improve the transmission performance of the PUCCH on different transmit beams.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate the number of symbols occupied by the PUCCH; The number of symbols and the transmit beam of the PUCCH to determine the first number of symbols and the second number of symbols.
  • the method further includes: the terminal device determines the power adjustment value of the PUCCH according to the total number of symbols occupied by one PUCCH resource in one time unit.
  • the method further includes: receiving configuration information sent by a network device, where the configuration information is used to instruct a terminal device to determine a method for a PUCCH power adjustment value.
  • the network device can flexibly configure the method for the terminal device to determine the PUCCH power adjustment value according to its own receiving mechanism. Determine the power adjustment value of each transmission beam separately; if multiple transmissions need to be combined, the terminal device can determine the power adjustment value of the PUCCH according to the total number of symbols of the PUCCH in a time unit.
  • the PUCCHs corresponding to the first transmission beam and the second transmission beam occupy different frequency domain resources.
  • different sending beams can occupy different frequency domain resources, obtain higher diversity gain, and improve the overall transmission performance of PUCCH.
  • the present application provides a method for sending an uplink control channel, including: determining a third symbol according to a PUCCH time domain resource, where the third symbol is at least one between a start symbol and an end symbol of the PUCCH symbol, the third symbol does not carry the PUCCH; the third symbol is an odd-numbered symbol in the PUCCH, and the two symbols adjacent to the third symbol correspond to the first transmit beam and the the second transmit beam, the PUCCH is PUCCH format 1; or, the third symbol is numbered in the PUCCH as Wherein, M is the number of symbols occupied by the PUCCH, N is the number of transmit beams of the PUCCH, and the PUCCH corresponds to PUCCH format 3 or PUCCH format 4.
  • the method before the determining of the third symbol according to the PUCCH time domain resource, the method further includes:
  • Receive first indication information where the first indication information is used to indicate a transmit beam of the PUCCH, where the transmit beam includes the first transmit beam and the second transmit beam.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate the number of symbols occupied by the PUCCH; The number of symbols and the transmit beam of the PUCCH to determine the first number of symbols and the second number of symbols.
  • the method further includes: determining, according to a first power control parameter, the transmit power of the PUCCH before the third symbol, the first power control parameter is the power control parameter corresponding to the first transmit beam; according to the second power control parameter, the transmit power of the PUCCH after the third symbol is determined, and the second power control parameter is the power control parameter corresponding to the second transmit beam Power control parameters.
  • the PUCCHs corresponding to the first transmission beam and the second transmission beam occupy different frequency domain resources.
  • different sending beams can occupy different frequency domain resources, thereby obtaining a higher diversity gain and improving the overall transmission performance of the PUCCH.
  • an embodiment of the present application provides a method for sending an uplink control channel, the method comprising:
  • the first power adjustment The value is determined according to the number of first symbols, which is smaller than the number of symbols occupied by the PUCCH; the second power adjustment value is determined according to the number of second symbols, which is smaller than the number of symbols occupied by the PUCCH; The number of symbols occupied by PUCCH.
  • the network device receives the PUCCH according to the power adjustment value of each sending beam, which can avoid the problem that the combined gain cannot be obtained due to the independent reception of each beam in the time-division multi-beam transmission scenario , thereby improving the transmission performance of the channel.
  • the method further includes: sending first indication information, where the first indication information is used to indicate a sending beam for sending the PUCCH, and the sending beam includes the first transmit beam and the second transmit beam.
  • the number of the first symbols is equal to the number of symbols in the first symbol set; the second symbol number is equal to the number of symbols in the second symbol set quantity.
  • the power adjustment value of each transmission beam is calculated according to the number of symbols occupied by each, and the network device receives each transmission beam respectively according to the power adjustment value of each transmission beam,
  • the transmission performance of PUCCH on different transmit beams can be improved.
  • the number of the first symbols is equal to the number of the second symbols, and is equal to or Wherein, M is the number of symbols occupied by the PUCCH, and N is the number of transmit beams of the PUCCH.
  • the power adjustment value of each transmission beam is calculated according to the average value of the number of symbols corresponding to multiple transmission beams of the PUCCH, and the network device can adjust the power according to the same value.
  • Sending multiple transmit beams of the PUCCH can improve the transmission performance of the PUCCH on different transmit beams while facilitating reception.
  • the method further includes: sending second indication information, where the second indication information is used to indicate the number of symbols occupied by the PUCCH; The number of symbols and the transmit beam of the PUCCH to determine the first number of symbols and the second number of symbols.
  • the network device sends configuration information to the terminal device, where the configuration information is used to instruct the terminal device to determine a method for a PUCCH power adjustment value.
  • the network device can flexibly configure the method for the terminal device to determine the PUCCH power adjustment value according to its own receiving mechanism.
  • the terminal equipment is instructed to determine the power adjustment value of each transmission beam separately; if multiple transmissions need to be combined, the terminal equipment can determine the power adjustment value of the PUCCH according to the total number of symbols of the PUCCH in a time unit.
  • an apparatus for sending an uplink control channel including a unit for performing each step of the communication method in any one of the foregoing first to ninth aspects and implementations thereof.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, a terminal device, a P-CSCF device or a gateway device, etc.), and the communication chip may include a transmitter for sending information or data, and a transmitter for receiving information or data receiver.
  • the communication chip may include a transmitter for sending information or data, and a transmitter for receiving information or data receiver.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the first aspect to the first A communication method in any one of the three aspects and various possible implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the forwarding device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system the above-mentioned terminal device and network device are provided.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes the computer to execute the above-mentioned first to sixth aspects The method in any one possible implementation manner of the nine aspects.
  • a computer-readable medium stores a computer program (also referred to as code, or instruction), when it runs on a computer, causing the computer to execute the above-mentioned first aspect to sixth The method in any one possible implementation manner of the nine aspects.
  • a computer program also referred to as code, or instruction
  • a chip system including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes the above-mentioned The method in any one possible implementation manner of the first aspect to the ninth aspect.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a method for sending an uplink control channel according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for sending an uplink control channel according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time domain resource configuration pattern of PUCCH format 3 or format 4 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time domain resource configuration pattern of PUCCH format 3 or format 4 according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a time domain resource configuration pattern of PUCCH format 3 or format 4 according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural block diagram of a network device according to an embodiment of the present application.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, next-generation communication system (For example, fifth-generation (5G) communication system), fusion system of multiple access systems, or evolution system, three major application scenarios of next-generation 5G mobile communication system eMBB, URLLC and eMTC or future emerging new communication system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS
  • the transmission reception point (TRP) involved in the embodiments of this application may be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: a base station, for example, a base station NodeB , evolved base station eNodeB, and various forms of macro base station, micro base station, relay station, access point, network equipment in future communication systems, access nodes in Wireless-Fidelity (WiFi) systems, wireless medium Relay node, wireless backhaul node, remote radio head (RRH), etc.
  • a base station for example, a base station NodeB , evolved base station eNodeB, and various forms of macro base station, micro base station, relay station, access point, network equipment in future communication systems, access nodes in Wireless-Fidelity (WiFi) systems, wireless medium Relay node, wireless backhaul node, remote radio head (RRH), etc.
  • WiFi Wireless-Fidelity
  • RRH remote radio head
  • the terminal devices involved in the embodiments of this application may include various access terminals, mobile devices, user terminals, or user equipments with wireless communication functions.
  • it can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) ), machine type communication (MTC) terminals, customer terminal equipment (Customer Premise Equipment, CPE), wireless terminals in self-driving (self-driving), telemedicine (remote medical) in Wireless terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the aforementioned terminal equipment and the chips that can be provided in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • This application takes the carrier as an example to describe the frequency domain unit, and takes the time slot as an example to describe the time unit in the 5G system.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for a method for sending an uplink control channel according to an embodiment of the present application.
  • the communication system 100 may include: two or more transmission and reception points TRP, such as TRP 1 and TRP 2, and one or more terminal devices, such as the terminal device 130.
  • the terminal device 130 may be mobile or fixed.
  • the transmission reception points TRP 1 and TRP 2 may communicate with the terminal device 130 through a wireless link.
  • Each transmission reception point can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area.
  • the transmission and reception point may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device.
  • the terminal may use one TRP for single TRP (Single-TRP) transmission, may also use at least two TRPs for multi-TRP (Multi-TRP) transmission, or may also perform Single-TRP/Multi-TRP adaptive transmission.
  • TRP can perform dynamic transmission point selection (Dynamic Point Select, DPS) transmission or joint transmission (Joint Transmission, JT). It should be understood that the present application does not limit the number of network devices and terminal devices.
  • the cell shown in FIG. 1 is provided with two base stations, TRP1 and TRP2, and can perform Multi-TRP transmission with the terminal through TRP1 and TRP2.
  • This multi-base station cooperative transmission mode of receiving and processing PUCCH through two TRPs can improve transmission reliability.
  • the terminal equipment uses multiple transmit beams to transmit the uplink control channel (PUCCH) on non-overlapping time domain resources respectively.
  • the terminal device sends the first transmit beam to TRP 1 on the first symbol, and sends the second transmit beam to TRP 2 on the second symbol.
  • PUCCH uplink control channel
  • the first transmit beam and the second transmit beam can obtain combining gain in the process of joint processing, ensuring that the PUCCH can be used in multiple Transmission performance during beam transmission.
  • TRP1 and TRP2 can be decoded based on soft information, respectively, and correct reception of PUCCH can be achieved as long as one of the TRPs is decoded correctly.
  • the UCI information bits can be obtained by directly performing the correlation operation between the received signal and the local sequence, and the TRPs can perform the correlation detection operation respectively and compare the results without directly transmitting the received signal.
  • the present application provides a method for transmitting PUCCH, which determines the adjustment value of each transmitting beam according to the number of partial symbols occupied by PUCCH resources, so as to improve transmission performance in a time-division multi-beam transmission scenario.
  • the symbols described in this application refer to orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • the first number of symbols is the number of first OFDM symbols
  • the number of second symbols is the number of second OFDM symbols.
  • FIG. 2 is a schematic flowchart of a method 200 for sending an uplink control channel according to an embodiment of the present application, where the method 200 is executed by a terminal device. As shown in Figure 2, the method 200 includes:
  • the number of first symbols is smaller than the number of symbols occupied by the PUCCH in the first time unit.
  • the first time unit may be a slot (slot) or a sub-slot (sub-slot).
  • the number of symbols occupied by the PUCCH refers to the number of symbols occupied by one repeated transmission.
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate the transmission beam corresponding to the PUCCH.
  • the terminal device may acquire the number of transmit beams according to the first indication information.
  • the terminal device can also indirectly determine the sending beam information of the PUUCH by referring to the sending methods of other channel resources, and obtain the number of sending beams.
  • the PUCCH sending beam described in this application is the beam that sends the PUCCH.
  • the number of beams used to transmit the PUCCH is the number of beams used to transmit the PUCCH.
  • the terminal device receives the second indication information sent by the network device, where the second indication information is used to indicate the number of symbols occupied by the PUCCH.
  • the terminal device determines the first number of symbols according to the first indication information and the second indication information.
  • the terminal device determines the first power adjustment value of the PUCCH according to the number of symbols occupied by the PUCCH, and when the number of transmit beams indicated by the first indication information is greater than 1, the terminal The device determines the first power adjustment value of the PUCCH according to the first number of symbols.
  • the terminal device determines the first number of symbols according to the number of symbols occupied by the PUCCH and the number of transmission beams of the PUCCH.
  • determining the number of first symbols may include the following two possible situations:
  • the first number of symbols is the number of symbols corresponding to the first transmit beam.
  • the terminal device determines the time-domain resource configuration pattern of each transmission beam according to the number of symbols occupied by the PUCCH and the number of transmission beams of the PUCCH.
  • the time-domain resource configuration of each transmission beam may be a predefined configuration, or may be a time-domain resource indicated by high-layer signaling configuration or physical layer signaling.
  • the number of first symbols is or where M is the number of symbols occupied by the PUCCH, and N is the number of the multiple transmit beams.
  • the first number of symbols is an average value of symbols corresponding to multiple transmission beams of the PUCCH. If the average is odd, it needs to be rounded up or down.
  • the first number of symbols is the number of symbols occupied by the PUCCH.
  • the network device may determine to use one of the foregoing configurations to notify the terminal device according to its own receiving mechanism.
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • ⁇ TF ,b,f,b (i) 10log 10 (K 1 ⁇ (n HARQ-ACK (i)+O SR (i)+O CSI (i))/N RE (i))
  • N RE (i) is determined according to the number of the first symbols.
  • K 1 6, n HARQ-ACK (i) represents the number of HARQ-ACK bits, O SR (i) represents the number of SR bits, and O CSI (i) represents the number of CSI bits.
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • BPRE (i) ( OACK (i)+OSR(i)+ OCSI (i)+ OCRC (i))/ NRE (i).
  • the terminal device determines a second power adjustment value of the PUCCH according to the second symbol number, where the second symbol number is less than the number of symbols occupied by the PUCCH;
  • the number of first symbols is smaller than the number of symbols occupied by the PUCCH in the first time unit.
  • the first time unit may be a slot (slot) or a sub-slot (sub-slot).
  • the number of symbols occupied by the PUCCH refers to the number of symbols occupied by one repeated transmission.
  • the terminal device before determining the second power adjustment value of the PUCCH according to the second symbol quantity, receives the first indication information sent by the network device, where the first indication information is used to indicate the transmission beam corresponding to the PUCCH.
  • the terminal device acquires the number of transmit beams according to the first indication information.
  • the terminal device can also indirectly determine the sending beam information of the PUUCH by referring to the sending methods of other channel resources, and obtain the number of sending beams.
  • the PUCCH sending beam described in this application is the beam that sends the PUCCH.
  • the number of beams used to transmit the PUCCH is the number of beams used to transmit the PUCCH.
  • the terminal device receives the second indication information sent by the network device, where the second indication information is used to indicate the number of symbols occupied by the PUCCH.
  • the terminal device determines the second symbol quantity according to the first indication information and the second indication information.
  • the terminal device determines the first number of symbols according to the number of symbols occupied by the PUCCH and the number of transmission beams of the PUCCH.
  • the second number of symbols can include the following two possible cases:
  • the number of second symbols is the number of symbols corresponding to the second transmit beam.
  • the terminal device determines the time-domain resource configuration pattern of each transmission beam according to the number of symbols occupied by the PUCCH and the number of transmission beams of the PUCCH.
  • the time-domain resource configuration of each transmission beam may be a predefined configuration, or may be a time-domain resource indicated by high-layer signaling configuration or physical layer signaling.
  • the number of second symbols is or where M is the number of symbols occupied by the PUCCH, and N is the number of the multiple transmit beams.
  • the second number of symbols is an average value of symbols corresponding to multiple transmission beams of the PUCCH. If the evaluation value is odd, it needs to be rounded up or down.
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • ⁇ TF ,b,f,b (i) 10log 10 (K 1 ⁇ (n HARQ-ACK (i)+O SR (i)+O CSI (i))/N RE (i))
  • N RE (i) is determined according to the number of the second symbols.
  • K 1 6, n HARQ-ACK (i) represents the number of HARQ-ACK bits, O SR (i) represents the number of SR bits, and O CSI (i) represents the number of CSI bits.
  • the terminal device determines the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH according to the following formula:
  • BPRE (i) ( OACK (i)+OSR(i)+ OCSI (i)+ OCRC (i))/ NRE (i).
  • the symbols occupied by the PUCCH include a non-overlapping first symbol set and a second symbol set, the first symbol set corresponds to the first transmit beam, and the second symbol set corresponds to the second beam.
  • first symbol set and the second symbol set do not overlap, which means that the first symbol set and the second symbol set occupy different symbols.
  • sending the PUCCH is sending a PUCCH control signal or signaling; or, sending the PUCCH is sending a control signal or signaling on the PUCCH.
  • the terminal device may use an omnidirectional beam to send the PUCCH, or the terminal device may use an analog beam to send the PUCCCH.
  • the terminal device may generally use an omnidirectional beam.
  • the amplitude and phase of the transmit beams on the first symbol set and the second symbol set may be different.
  • the terminal equipment can usually use directional beams. At this time, the shift values of the beam phase shifters used on the first symbol set and the second symbol set are different, and the direction of the transmit beam is adjusted.
  • an embodiment of the present application provides a method for transmitting PUCCH, which determines an adjustment value of PUCCH transmit power according to the number of partial symbols occupied by PUCCH resources, so as to improve channel transmission performance in a time-division multi-beam transmission scenario.
  • the terminal device may further determine the power adjustment value of the PUCCH according to the total number of symbols occupied by one PUCCH resource in one time unit.
  • the first time unit may be a slot (slot) or a sub-slot (sub-slot).
  • the terminal device may determine the power adjustment value of PUCCH according to the total number of symbols of one PUCCH resource in one slot; or, the terminal device may determine the power adjustment value of PUCCH according to the total number of symbols of one PUCCH resource in one sub-slot.
  • the power adjustment value ⁇ TF,b,f,b (i) of the PUCCH is:
  • ⁇ TF ,b,f,b (i) 10log 10 (K 1 ⁇ (n HARQ-ACK (i)+O SR (i)+O CSI (i))/N RE (i))
  • N RE (i) is determined according to the number of REs occupied by a PUCCH resource in a time unit, then the power adjustment value ⁇ TF of the PUCCH ,b,f,b (i) are:
  • ⁇ TF ,b,f,b (i) 10log 10 (K 1 ⁇ (n HARQ-ACK (i)+O SR (i)+O CSI (i))/N RE (i))
  • N RE (i) is determined according to the number of REs occupied by a PUCCH resource in a time unit, then the power adjustment value ⁇ TF of the PUCCH ,b,f,b (i) is:
  • the network device can flexibly configure the method for the terminal device to determine the PUCCH power adjustment value according to its own receiving mechanism.
  • the network device determines whether to combine the received soft information according to the current information exchange situation in the multi-base station cooperative transmission process.
  • the network device sends a configuration message to the terminal device, instructing the terminal device to calculate the power adjustment value of the first transmission beam and the power adjustment value of the second transmission beam according to the first symbol number and the second symbol number respectively according to the method 200 .
  • the network device sends configuration information to the terminal device, instructing the terminal device to determine the power adjustment value of the PUCCH according to the total number of symbols of the PUCCH in a time unit.
  • the network device may respectively send the configuration message for different PUCCH resources.
  • the network device may also send the configuration message for different terminal devices, and one terminal device only sends the configuration message once, and the terminal device only uses the method in method 200 when it sends multiple beams on different time domain resources Determine the PUCCH power adjustment value.
  • the network device can flexibly select different PUCCH transmission powers for the terminal device by configuring the way that the terminal device determines the PUCCH power adjustment value, and can increase the flexibility of transmission implementation without reducing the PUCCH transmission performance.
  • multiple transmit beams of the PUCCH may correspond to different frequency hopping respectively.
  • the terminal device adopts the frequency hopping mechanism, which can transmit beams on different time domain resources, and at the same time, corresponding to different frequency hopping transmit beams, the occupied frequency domain resources are also different.
  • the terminal device sends the first beam to TRP 1 on the first frequency hopping, and then sends the first beam to TRP 2 on the second frequency hopping second beam.
  • the UCI sent on the two frequency hopping may be the same.
  • TRP 1 and TRP 2 can perform channel estimation and demodulation according to the DMRS obtained respectively, wherein TRP 1 performs channel estimation and demodulates UCI according to the DMRS on the first hop, and TRP 2 performs channel estimation and demodulates UCI according to the DMRS on the second hop.
  • the DMRS performs channel estimation and demodulates UCI to obtain soft information.
  • the joint scheduler combines the soft information and performs a unified decoding operation to obtain the information bits of UCI.
  • the network device determines the power adjustment value of the PUCCH according to the number of symbols occupied by the PUCCH in a time slot, thereby determining the transmission power of the PUCCH.
  • TRP 1 and TRP 2 are decoded based on their respective soft information without combining, then TRP 1 and TRP 2 determine the power adjustment value of the PUCCH according to the number of symbols of the first beam and the second beam, respectively.
  • one frequency hopping may correspond to multiple transmission beams of PUCCH, or one transmission beam of PUCCH may correspond to multiple frequency hopping to obtain more diversity gain, which is not limited in this application.
  • the terminal device may use different transmit powers to adapt to different channels.
  • the first transmit beam and the second transmit beam correspond to and PL b,f,c (q d ) can be independently configured, and the dynamic power adjustment g b,f,c (i,l) can be independently indicated, so that the transmit power of the PUCCH on the first transmit beam and the second transmit beam different. If the same power amplifier PA is used to generate the transmit signal on the first transmit beam and the second transmit beam, the performance of the transmit signal will be degraded due to transient signal distortion due to the power landslide effect due to PA power switching.
  • FIG. 3 is a schematic flowchart of a method 300 for sending an uplink control channel according to an embodiment of the present application, and the method 200 is executed by a terminal device. As shown in Figure 3, the method 300 includes:
  • S310 Determine a third symbol according to the PUCCH time domain resource, where the third symbol does not carry the PUCCH.
  • the third symbol does not carry PUCCH, and can be used as a protection symbol for power switching or beam switching to reduce performance impact caused by power switching or beam switching.
  • the time domain resource configuration of the PUCCH includes the third symbol, or in other words, the third symbol is located between the start symbol and the end symbol of the PUCCH.
  • the third symbol is determined according to the time domain resource of the PUCCH, and the third symbol may be a reserved symbol position, and at the third symbol position, the PUCCH control channel or control signaling is not sent.
  • the terminal device Before determining the PUCCH power adjustment value of the first beam according to the first number of symbols, the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate the transmission beam corresponding to the PUCCH.
  • the PUCCH sending beam described in this application is the beam that sends the PUCCH.
  • the number of beams used to transmit the PUCCH is the number of beams used to transmit the PUCCH.
  • the terminal device when the number of transmit beams indicated by the first indication information is 1, the terminal device does not need to determine the third symbol; when the number of transmit beams indicated by the first indication information is greater than 1, the terminal device determines the number of transmit beams according to the time domain resources of the PUCCH.
  • the symbols occupied by the PUCCH include a first symbol set and a second symbol set, where the first symbol set is the first symbol set in the PUCCH symbols, the second set of symbols is the second symbol in the PUCCH symbols; or, the first symbol set is the first symbol in the PUCCH symbols, the second set of symbols is the second symbol in the PUCCH symbol.
  • the third symbol should be the last symbol of the first symbol set; or, the third symbol should be the first symbol of the second symbol set.
  • the first symbol set corresponds to a first transmit beam among the multiple transmit beams
  • the second symbol set corresponds to a second transmit beam among the multiple transmit beams.
  • PUCCH time domain resources there are two ways to determine PUCCH time domain resources:
  • Configuration 1 The third symbol is an odd-numbered symbol in the PUCCH.
  • the two adjacent symbols of the third symbol correspond to the first transmission beam and the second transmission beam respectively, and the first terminal equipment is numbered at or Of the two symbols of , the odd-numbered symbol is reserved as the third symbol.
  • PUCCH format 1 the number of PUCCH symbols is 7 as an example:
  • the terminal device transmits the first transmit beam on a first symbol set, where the first symbol set includes three symbols numbered 0-2; the terminal device transmits the second transmit beam on a second symbol set, where the second symbol set Includes four symbols numbered 3-6. Then the third symbol should be the symbol numbered 2 or 3.
  • the terminal equipment reserves the odd-numbered symbol, that is, the symbol numbered 3, as the third symbol. At this time, the symbol numbered 3 does not carry the PUCCH. The rest of the symbol configuration information remains unchanged.
  • this way of determining the PUCCH time domain resources can enable multiple terminal devices to align the positions of the DMRSs when multiplexing the same time-frequency resources to transmit the PUCCH, which ensures the DMRS reception performance.
  • Configuration 2 On the basis of determining the third symbol in configuration 1, the terminal device determines the number and position of symbols occupied by the DMRS in the PUCCH according to the number and position of the PUCCH symbols after removing the third symbol.
  • PUCCH format 1 the number of PUCCH symbols is 7 as an example:
  • the terminal device transmits the first transmit beam on a first symbol set, where the first symbol set includes three symbols numbered 0-2; the terminal device transmits the second transmit beam on a second symbol set, where the second symbol set Includes four symbols numbered 3-6.
  • the DMRS occupies symbols numbered 0, 2, 4, and 6.
  • the terminal equipment reserves the symbol numbered 3 as the third symbol.
  • the terminal device re-determines the number of symbols occupied by the DMRS in the PUCCH according to the PUCCH symbol after removing the third symbol.
  • the symbols numbered 4-6 determine the number of symbols occupied by the DMRS according to the number of PUCCH symbols minus 1, that is, the number of symbols occupied by the DMRS is determined according to the situation where the number of PUCCH symbols in the prior art is 6.
  • the DMRS occupies symbols numbered 0, 2, and 5. At this time, the number of DMRSs carried on the PUCCH is reduced.
  • PUCCH format 3 For PUCCH format 3 or PUCCH format 4, there are two ways to determine PUCCH time domain resources:
  • Configuration 3 The location of this third symbol is Wherein, M is the number of symbols occupied by the PUCCH, and N is the number of the multiple transmit beams.
  • the terminal equipment is numbered as or Of the two symbols of , the reserved number is symbol as the third symbol.
  • PUCCH format 3 or PUCCH format 4 take the transmission beam N as 2 as an example:
  • the time-domain resource pattern of the PUCCH is shown in FIG. 4 .
  • the corresponding third symbols are numbered 2, 3, 3, 4, 4, 5, 5, 6, and 6, respectively.
  • the position is The symbol of , can make the vacated symbol far away from the DMRS position, so as to ensure the channel estimation performance.
  • Configuration 4 In the case where the numbers of any two PUCCH symbols are different, when the DMRS is in the same position in a slot, the same third symbol is reserved.
  • the terminal device retains the same third symbol.
  • PUCCH format 3 or PUCCH format 4 take the transmission beam N as 2 as an example:
  • the time domain resource pattern of the PUCCH is as shown in FIG. 5 .
  • the same third symbol should be reserved for both.
  • the number of PUCCH symbols is 10 and the number of PUCCH symbols is 11, and the positions of the DMRS are the same, the same third symbol should be reserved for both.
  • the corresponding third symbols are numbered 3, 3, 3, 4, 5, 5, 5, 6, and 6, respectively.
  • the same third symbol is reserved, which can ensure that the PUCCH formats with the same DMRS positions can vacate the same position.
  • the interference level on each symbol is the same, which is beneficial to improve the performance of channel estimation.
  • Configuration 5 The position of the third symbol is at the first symbol of the second frequency hopping.
  • the first transmit beam is sent on the first frequency hopping
  • the second transmit beam is sent on the second frequency hopping
  • the position of the third symbol is at the first symbol of the second frequency hopping .
  • PUCCH format 3 or PUCCH format 4 take the transmission beam N as 2 as an example:
  • the time-domain resource pattern of the PUCCH is shown in FIG. 6 .
  • the positions of the third symbols are the first symbols of the second frequency hopping.
  • the corresponding third symbols are numbered 3, 3, 4, 4, 5, 5, 6, 6, and 7, respectively.
  • the third symbol is located in the second frequency hopping in the PUCCH, which can ensure the performance when the first frequency hopping is multiplexed with other users.
  • S320 Send the PUCCH on the first symbol according to the first transmit beam; send the PUCCH on the second symbol according to the second transmit beam, wherein the first symbol and the The second symbols do not overlap.
  • the terminal device determines the transmit power of the PUCCH before the second symbol according to the first power control parameter, and the first power control parameter is the power control parameter of the first transmit beam; the terminal device determines according to the second power control parameter, the second symbol After that, the transmission power of the PUCCH and the second power control parameter are the power control parameters of the second transmission beam.
  • the power control parameters corresponding to the first transmit beam and the second transmit beam are different.
  • the first transmit beam and the second transmit beam correspond to different open-loop power control parameters, including: and PL b,f,c (q d ) can be independently configured, and the dynamic power adjustment g b,f,c (i,l) can be independently instructed by the network equipment, so that the first transmit beam and the second transmit beam
  • the transmission power of the PUCCH is different.
  • the terminal device calculates the transmit power of the first transmit beam and the second transmit beam respectively according to the number of PUCCH symbols after the third symbol is vacated.
  • FIG. 7 shows a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the device 700700 in the above is used to execute the method or step corresponding to the aforementioned terminal device.
  • each module in the terminal device 700 may be implemented by software.
  • the terminal device 700700 may include:
  • a processing unit 710 configured to determine a first power adjustment value of the PUCCH according to a first number of symbols, where the number of the first symbols is less than the number of symbols occupied by the PUCCH;
  • a transceiver unit 720 configured to send the PUCCH on the first symbol set through a first sending beam according to the first power adjustment value
  • the terminal device 700 may correspond to the terminal device that sends the uplink control channel in the foregoing method embodiments, and may be used to perform various steps related to the terminal device in the foregoing method embodiments. And the above-mentioned and other management operations and/or functions of each unit in the terminal device 700 are respectively to implement the corresponding steps of the above-mentioned various methods, so the beneficial effects in the above-mentioned method embodiments can also be achieved.
  • the determination unit in the embodiment of the present application may be implemented by a processor, and the transceiver unit may be implemented by a transceiver.
  • FIG. 8 shows a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 800 is configured to execute the methods or steps corresponding to the foregoing terminal devices.
  • each module in the network device 800 may be implemented by software.
  • the network device 800 includes:
  • a sending unit 810 configured to send first indication information, where the first indication information is used to indicate a sending beam for sending the PUCCH;
  • the receiving unit 820 includes two receiving points, respectively configured to receive the PUCCH on the first symbol set and receive the PUCCH on the second symbol.
  • the network device 800 may correspond to the network device for transmitting control information in the foregoing method embodiments, and the above-mentioned and other management operations and/or functions of each unit in the network device 800 are respectively for the purpose of realizing the foregoing various Therefore, the beneficial effects in the foregoing method embodiments can also be achieved.
  • the determination unit and the decoding unit in the embodiments of the present application may be implemented by a processor, and the transceiver unit may be implemented by a transceiver.
  • FIG. 9 is a structural block diagram of a terminal device 900 provided according to an embodiment of the present application.
  • the terminal device 900 shown in FIG. 9 includes: a processor 901 , a memory 902 and a transceiver 903 .
  • the processor 901, the memory 902 and the transceiver 903 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 901, memory 902, and transceiver 903 may be implemented in a chip.
  • the memory 902 may store program codes, and the processor 901 invokes the program codes stored in the memory 902 to implement corresponding functions of the terminal device.
  • the processor 901 is used for:
  • the second power adjustment value of the PUCCH is determined according to a second number of symbols, which is smaller than the number of symbols occupied by the PUCCH, wherein the symbols occupied by the PUCCH include a non-overlapping first symbol set and a second collection of symbols;
  • Sending the information to be sent by using the transceiver 903 includes sending the PUCCH on the first symbol set by using a first sending beam according to the first power adjustment value;
  • the PUCCH is transmitted on the second set of symbols through a second transmit beam according to the second power adjustment value.
  • the terminal device 900 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 902 may store some or all of the instructions for performing the methods performed by the terminal device in the aforementioned methods.
  • the processor 901 can execute the instructions stored in the memory 902 in combination with other hardware (such as the transceiver 903) to complete the steps performed by the terminal device in the foregoing method.
  • other hardware such as the transceiver 903
  • FIG. 10 is a structural block diagram of a network device 1000 provided according to an embodiment of the present application.
  • the network device 1000 shown in FIG. 10 includes: a processor 1001 , a memory 1002 and a transceiver 1003 .
  • the processor 1001, the memory 1002 and the transceiver 1003 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 1001, the memory 1002, and the transceiver 1003 may be implemented in a chip.
  • the memory 1002 can store program codes, and the processor 1001 calls the program codes stored in the memory 1002 to implement corresponding functions of the terminal device.
  • the processor 1001 is used for:
  • the first indication information is used to determine the first indication information, the content including the transmission beam for sending the PUCCH; also used to determine the second indication information, the content including the number of symbols occupied by the PUCCH;
  • the transceiver 1003 may include two receiving points, respectively configured to receive PUCCH on the first symbol set and receive PUCCH on the second symbol.
  • the network device 1000 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 1002 may store some or all of the instructions for performing the methods performed by the terminal device in the aforementioned methods.
  • the processor 1001 can execute the instructions stored in the memory 1002 in combination with other hardware (such as the transceiver 1003) to complete the steps performed by the terminal device in the foregoing method.
  • other hardware such as the transceiver 1003
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components, can also be a system on chip (SoC), can also be a central processor unit (CPU), can also be a network processor (network processor) processor, NP), can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (micro controller unit, MCU), can also be a programmable logic device (programmable logic device, PLD) or other Integrated chip.
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • the terminal device chip implements the functions of the terminal device in the foregoing method embodiments.
  • the terminal device chip receives information from other modules in the terminal device, such as a radio frequency module or an antenna.
  • the network device chip implements the functions of the network device in the foregoing method embodiments.
  • the network device chip sends the above information from other modules in the network device (such as a radio frequency module or an antenna).
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供了一种发送上行控制信道的方法和装置,包括:根据第一符号数量确定PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合;根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。本申请中发送上行控制信道的方法,通过分别计算不同发送波束的功率调整值,可以在时分的多波束传输场景中提高信道的传输性能。

Description

一种发送上行控制信道的方法和装置 技术领域
本申请涉及通信领域,尤其涉及通信领域中发送物理上行控制信道的方法和装置。
背景技术
多基站协作能够利用邻近基站之间的协调配合,减小或者消除相互之间的干扰,从而提高通信系统的吞吐量,改善小区边界用户的性能。因此,在新空口(New Radio,NR)系统中,多基站协作已成为的一项重要的技术。协作组中的各个基站能够预先获得组内全部信道或者部分信道的信息,同时根据这些信息,进行独立调度、多基站协作调度、协作多输入多输出(Multiple-input Multiple-output,MIMO)等。基站能够获得的信道信息越多,基站间相互协作的能力越大,通信系统获得的增益越大。
在多基站协作传输场景中,终端设备可以采用多个发送波束发送上行控制信道(physical uplink control channel,PUCCH)。其中,终端设备可以分别在不重叠的时域资源上,通过多个波束发送该PUCCH。如何保证在多波束发送PUCCH的情况下,各个发送波束对应的PUCCH传输性能,是亟待解决的问题。
发明内容
本申请提供了一种发送上行控制信道的方法和装置,可以在时分的多波束传输场景中提升PUCCH的传输性能。
第一方面,提供了一种发送上行控制信道的方法,包括:根据第一符号数量确定PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合;根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
因此,本申请实施例的发送上行控制信道的方法,通过根据PUCCH的部分符号分别计算不同发送波束的功率调整值,可以在时分的多波束传输场景中,从而提高信道的传输性能。例如,不同无线接入点分别接收各个波束的传输信号并处理,而不需要进行各个波束的传输信号的合并,就能达到较好的传输性能。
结合第一方面,在第一方面的某些实现方式中,在所述根据第一符号数量确定PUCCH的第一功率调整值之前,所述方法还包括:接收第一指示信息,所述第一指示信息用于指示发送所述PUCCH的发送波束,所述发送波束包括所述第一发送波束和所述第二发送波束。
结合第一方面,在第一方面的某些实现方式中,所述第一符号数量等于所述第一符号 集合的符号的数量;所述第二符号数量等于所述第二符号集合的符号的数量。
因此,本申请实施例中的发送上行控制信道的方法,分别根据各个发送波束占用的符号数量计算该发送波束的功率调整值,可以较为准确地确定各个发送波束所需的发送功率调整值,提升PUCCH在不同发送波束上的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一符号数量与所述第二符号数量相等,且等于
Figure PCTCN2021072299-appb-000001
Figure PCTCN2021072299-appb-000002
其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量。
因此,本申请实施例中的发送上行控制信道的方法,根据PUCCH的多个发送波束对应的符号数量的平均值,确定各个发送波束所需的发送功率调整值,使得终端设备可以根据同样的功率调整值发送PUCCH的多个发送波束,便于网络设备接收的同时,可以提升PUCCH在不同发送波束上的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述PUCCH占用的符号数量;根据所述PUCCH占用的符号数量和所述PUCCH的发送波束,确定所述第一符号数量和所述第二符号数量。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述根据第一符号数量确定PUCCH的功率调整值,包括,根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Figure PCTCN2021072299-appb-000003
其中,
Figure PCTCN2021072299-appb-000004
为所述第一符号数量或所述第二符号数量,
Figure PCTCN2021072299-appb-000005
表示所述PUCCH的参考符号数量,所述PUCCH的格式为PUCCH格式0时,
Figure PCTCN2021072299-appb-000006
所述PUCCH的格式为PUCCH格式1时,
Figure PCTCN2021072299-appb-000007
Δ UCI(i)=10log 10(O UCI(i)),O UCI(i)表示所述PUCCH承载的UCI的比特数。
结合第一方面,在第一方面的某些实现方式中,所述根据第一符号数量确定PUCCH的功率调整值,包括,根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):Δ TF,b,f,b(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i)),其中,N RE(i)为所述第一符号数量或第二符号数量,K 1=6,n HARQ-ACK(i)表示HARQ-ACK比特数,O SR(i)表示SR比特数,O CSI(i)表示CSI比特数;或者,
Figure PCTCN2021072299-appb-000008
其中,K 2=2.4,BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:终端设备根据一个PUCCH资源在一个时间单元内占用的全部符号数量确定PUCCH的功率调整值。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:接收网络设备发送的配置信息,该配置信息用于指示终端设备确定PUCCH功率调整值的方法。
因此,本申请实施例的发送上行控制信道的方法,网络设备可以根据自身接收机制灵活地配置终端设备确定PUCCH功率调整值的方法,多个发送波束分别接收而不作软合并处理时,终端设备可以分别确定各个发送波束的功率调整值;若多个发送需要作合并处理时,终端设备可以根据PUCCH在一个时间单元内的全部符号数量确定PUCCH的功率调整值。
结合第一方面,在第一方面的某些实现方式中,所述第一发送波束和所述第二发送波束对应的PUCCH占用不同的频域资源。
因此,本申请实施例的发送上行控制信道的方法,不同的发送波束可以占用不同的频 域资源,获得更高的分集增益,提升PUCCH的整体传输性能。
第二方面,本申请提供了一种发送上行控制信道的方法,包括:根据PUCCH时域资源确定第三符号,所述第三符号为所述PUCCH的起始符号和结束符号之间的至少一个符号,所述第三符号不承载所述PUCCH;所述第三符号为所述PUCCH中奇数编号的符号,与所述第三符号相邻的两个符号分别对应所述第一发送波束和所述第二发送波束,所述PUCCH为PUCCH格式1;或者,所述第三符号在所述PUCCH中编号为
Figure PCTCN2021072299-appb-000009
其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量,所述PUCCH对应PUCCH格式3或者PUCCH格式4。
因此,本申请实施例的发送上行控制信道的方法,通过预留一个符号的位置作为功率切换或者波束切换的保护符号,且该符号上既不传输DMRS,也不传输UCI,可以在波束切换时,规避因发送功率调整而导致的信号失真,从而提高PUCCH的传输性能。
结合第二方面,在第二方面的某些实现方式中,在所述根据PUCCH时域资源确定第三符号之前,所述方法还包括:
接收第一指示信息,所述第一指示信息用于指示所述PUCCH的发送波束,所述发送波束包括所述第一发送波束和所述第二发送波束。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述PUCCH占用的符号数量;根据所述PUCCH占用的符号数量和所述PUCCH的发送波束,确定所述第一符号数量和所述第二符号数量。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:根据第一功控参数确定,所述第三符号之前所述PUCCH的发送功率,所述第一功控参数为所述第一发送波束对应的功控参数;根据第二功控参数确定,所述第三符号之后所述PUCCH的发送功率,所述第二功控参数为所述第二发送波束对应的功控参数。
结合第二方面,在第二方面的某些实现方式中,所述第一发送波束和所述第二发送波束对应的PUCCH占用不同的频域资源。
因此,本申请实施例的发送上行控制信道的方法,不同的发送波束可以占用不同的频域资源,获得更高的分集增益,提升PUCCH的整体传输性能。
第三方面,本申请实施例提供一种发送上行控制信道的方法,该方法包括:
使用第一传输接收点,通过第一发送波束在第一符号集合上接收PUCCH;使用第二传输接收点,通过第二发送波束在第二符号集合上接收所述PUCCH;所述第一功率调整值是根据第一符号数量确定的,所述第一符号数量小于所述PUCCH占用的符号数量;所述第二功率调整值是根据第二符号数量确定的,所述第二符号数量小于所述PUCCH占用的符号数量。
因此,本申请实施例的发送上行控制信道的方法,网络设备根据各个发送波束的功率调整值接收PUCCH,可以在时分的多波束传输场景中,规避因各个波束独立接收而无法获取合并增益的问题,从而提高信道的传输性能。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示发送所述PUCCH的发送波束,所述发送波束包括所述第一发送波束和所述第二发送波束。
结合第三方面,在第三方面的某些实现方式中,所述第一符号数量等于所述第一符号 集合的符号的数量;所述第二符号数量等于所述第二符号集合的符号的数量。
因此,本申请实施例中的发送上行控制信道的方法,各个发送波束的功率调整值是根据各自占用的符号数量计算得到的,网络设备根据各个发送波束的功率调整值,分别接收各个发送波束,可以提升PUCCH在不同发送波束上的传输性能。
结合第三方面,在第三方面的某些实现方式中,所述第一符号数量与所述第二符号数量相等,且等于
Figure PCTCN2021072299-appb-000010
Figure PCTCN2021072299-appb-000011
其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量。
因此,本申请实施例中的发送上行控制信道的方法,各个发送波束的功率调整值是根据PUCCH的多个发送波束对应的符号数量的平均值计算得到的,网络设备可以根据同样的功率调整值发送PUCCH的多个发送波束,在便于接收的同时,还可以提升PUCCH在不同发送波束上的传输性能。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述PUCCH占用的符号数量;根据所述PUCCH占用的符号数量和所述PUCCH的发送波束,确定所述第一符号数量和所述第二符号数量。
结合第三方面,在第三方面的某些实现方式中,网络设备向终端设备发送配置信息,该配置信息用于指示终端设备确定PUCCH功率调整值的方法。
因此,本申请实施例的发送上行控制信道的方法,网络设备可以根据自身接收机制灵活地配置终端设备确定PUCCH功率调整值的方法,多个发送波束分别接收而不作软合并处理时,网络设备可以指示终端设备分别确定各个发送波束的功率调整值;若多个发送需要作合并处理时,终端设备可以根据PUCCH在一个时间单元内的全部符号数量确定PUCCH的功率调整值。
第四方面,提供了一种用于发送上行控制信道的装置,包括用于执行上述第一方面至第九方面中任一方面及其各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,终端设备、P-CSCF设备或网关设备等),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面至第三方面中任一种及其各种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该转发设备还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种通信系统,上述终端设备和网络设备。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第九方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第九方面中任一种可能实现方式中的方法。
第九方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第九方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。本申请实施例的发送上行控制信道的方法,通过根据PUCCH的部分符号分别计算不同发送波束的功率调整值,可以在时分的多波束传输场景中,规避因各个波束独立接收而无法获取合并增益的问题,从而提高信道的传输性能。
附图说明
图1是是本申请的实施例应用的移动通信系统的架构示意图。
图2是根据本申请实施例的发送上行控制信道的方法的示意性流程图。
图3是根据本申请实施例的发送上行控制信道的方法的示意性流程图。
图4是根据本申请实施例的PUCCH格式3或格式4的时域资源配置图样示意图。
图5是根据本申请实施例的PUCCH格式3或格式4的时域资源配置图样示意图。
图6是根据本申请实施例的PUCCH格式3或格式4的时域资源配置图样示意图。
图7是根据本申请实施例的终端设备的示意性框图。
图8是根据本申请实施例的网络设备的示意性框图。
图9是根据本申请实施例的终端设备的示意性结构框图。
图10是根据本申请实施例的网络设备的示意性结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
本申请实施例提及的无线通信系统包括但不限于:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、下一代通信系统(例如,第五代(fifth-generation,5G)通信系统)、多种接入系统的融合系统,或演进系统、下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC或者将来出现的新的通信系统。本申请既适用于工作频率在450MHz-6000MHz的6G以下频段(sub-6G),也适用于高频场景(6G以上)。
本申请实施例中涉及的传输接收点(transmission reception point,TRP)可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站,例如,基站NodeB、演进型基站eNodeB、以及各种形式的宏基站、微基站、中继站、接入点、未来通信系统中的网络设备、无线保真(Wireless-Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点、远程射频头(remote radio head,RRH)等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端、或用户装置。例如,可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、机器类型通信(Machine Type Communication,MTC)终端、客户终端设备(Customer Premise Equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请以载波为例进行频域单元的描述,以时隙为例进行5G系统中的时间单元的描述。
图1示出了适用于本申请实施例的发送上行控制信道方法的通信系统100的示意图。如图所示,该通信系统100可以包括:两个或两个以上传输接收点TRP,如TRP 1和TRP2,一个或多个终端设备,如终端设备130。其中,该终端设备130可以是移动的或固定的。传输接收点TRP 1和TRP 2可以和终端设备130通过无线链路通信。每个传输接收点可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,传输接收点可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。终端可以利用一个TRP进行单TRP(Single-TRP)传输,也可以利用至少两个TRP进行多TRP(Multi-TRP)传输,或者还可以进行Single-TRP/Multi-TRP自适应传输。其中,对于Multi-TRP传输和Single-TRP/Multi-TRP自适应传输,TRP可以进行动态传输点选择(Dynamic Point Select,DPS)传输或者联合传输(Joint Transmission,JT)。应理解,本申请对网络设备和终端设备的数量不作限制。
图1所示的小区中设置有TRP1和TRP2两个基站,且能够通过TRP1和TRP2与终端进行Multi-TRP传输。这种通过两个TRP协作接收和处理PUCCH的多基站协作传输方式可以提升传输可靠性。终端设备采用多个发送波束,分别在不重叠的时域资源上发送上行控制信道(physical uplink control channel,PUCCH)。终端设备在第一符号上向TRP 1发送第一发送波束,在第二符号上向TRP 2发送第二发送波束。若TRP采用协作接收的方式,将TRP 1和TRP 2接收到的波束信息做软信息合并解码,则第一发送波束和第二发送波束可以在联合处理的过程中获得合并增益,保证PUCCH在多波束传输过程中的传输性能。在传输信道的信噪比较高的情况下,TRP1和TRP2可以分别各自基于软信息解码,只要有其中一个TRP的解码正确即可实现PUCCH的正确接收。特别的,对于格式0,可以直接将接收信号与本地序列做相关性运算就可以获取UCI信息比特,TRP可以各自执 行相关性检测运算后将结果进行比对,而不用直接传递接收信号。这样做可以减少TRP间信息交互量,提升网络运行效率。但这种接收方式下,第一发送波束和第二发送波束无法通过联合处理获得合并增益,导致PUCCH传输性能下降。因此,本申请提供一种发送PUCCH的方法,根据PUCCH资源占用的部分符号数量确定各个发送波束的调整值,从而在时分的多波束传输场景中,提升传输性能。
应理解,本申请中所述的符号指的是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。示例性地,第一符号数量,就是第一OFDM符号数量,第二符号数量,就是第二OFDM符号数量。
图2是本申请实施例的发送上行控制信道的方法200的示意性流程图,该方法200由终端设备执行。如图2所示,该方法200包括:
S210,根据第一符号数量确定PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;
应理解,第一符号数量小于所述PUCCH在第一时间单元内占用的符号数量。示例性的,第一时间单元可以为时隙(slot),或者子时隙(sub-slot)。
可选地,当PUCCH采用时域重复传输时,PUCCH占用的符号数量指的是一次重复传输所占的符号数量。
具体地,在根据第一符号数量确定第一波束的PUCCH功率调整值之前,终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示PUCCH对应的发送波束。终端设备根据第一指示信息可以获取发送波束的数量。作为另一种获取PUCCH发送波束的可选方式,终端设备还可以通过参考其他信道资源的发送方式,间接地确定PUUCH的发送波束信息,获取发送波束数量。
应理解,本申请中所述的PUCCH的发送波束,就是发送PUCCH的波束。相应地,PUCCH的发送波束的数量,就是用于发送所述PUCCH的波束的数量。
终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示PUCCH占用的符号数量。终端设备根据第一指示信息和第二指示信息确定第一符号数量。
可选地,当第一指示信息指示的发送波束的数量为1,终端设备根据PUCCH占用的符号数量确定PUCCH的第一功率调整值,当第一指示信息指示的发送波束的数量大于1,终端设备根据第一符号数量确定PUCCH的第一功率调整值。
具体地,终端设备根据PUCCH占用的符号数量和PUCCH的发送波束数量,确定第一符号数量。其中,确定第一符号数量可以包括以下两种可能的情况:
配置1:第一符号数量为第一发送波束对应的符号的数量。
具体地,终端设备根据所述PUCCH占用的符号数量和PUCCH的发送波束数量,确定各个发送波束的时域资源配置图样。可选地,各个发送波束的时域资源配置情况,可以是预先定义的配置,也可以是由高层信令配置或物理层信令指示的时域资源。
配置2:第一符号数量为
Figure PCTCN2021072299-appb-000012
Figure PCTCN2021072299-appb-000013
中,M为所述PUCCH占用的符号数量,N为所述多个发送波束的数量。
具体地,第一符号数量为PUCCH的多个发送波束对应的符号的平均值。若该平均值为奇数,则需要对其进行上取整或下取整。
配置3:第一符号数量为PUCCH占用的符号数量。
根据上述实施方式,网络设备可以根据自身接收机制确定采用上述配置中的一个配置告知终端设备。
针对PUCCH格式0或格式1,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Figure PCTCN2021072299-appb-000014
其中,
Figure PCTCN2021072299-appb-000015
根据第一符号数量确定,
Figure PCTCN2021072299-appb-000016
表示所述PUCCH的参考符号数量,所述PUCCH的格式为PUCCH格式0时,
Figure PCTCN2021072299-appb-000017
所述PUCCH的格式为PUCCH格式1时,
Figure PCTCN2021072299-appb-000018
Δ UCI(i)=10log 10(O UCI(i)),O UCI(i)表示所述PUCCH承载的UCI的比特数。
针对PUCCH格式2或格式3或格式4,且UCI比特数小于等于11,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Δ TF,b,f,b(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
其中,N RE(i)根据所述第一符号数量确定。K 1=6,n HARQ-ACK(i)表示HARQ-ACK比特数,O SR(i)表示SR比特数,O CSI(i)表示CSI比特数。
针对PUCCH格式2或格式3或格式4,且UCI比特数大于11,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Figure PCTCN2021072299-appb-000019
其中,K 2=2.4,
BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)。
S220,终端设备根据第二符号数量确定PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量;
应理解,第一符号数量小于所述PUCCH在第一时间单元内占用的符号数量。示例性的,第一时间单元可以为时隙(slot),或者子时隙(sub-slot)。
可选地,当PUCCH采用时域重复传输时,PUCCH占用的符号数量指的是一次重复传输所占的符号数量。
具体地,在根据第二符号数量确定PUCCH的第二功率调整值之前,终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示PUCCH对应的发送波束。终端设备根据第一指示信息获取发送波束的数量。
作为另一种获取PUCCH发送波束的可选方式,终端设备还可以通过参考其他信道资源的发送方式,间接地确定PUUCH的发送波束信息,获取发送波束数量。
应理解,本申请中所述的PUCCH的发送波束,就是发送PUCCH的波束。相应地,PUCCH的发送波束的数量,就是用于发送所述PUCCH的波束的数量。
终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示PUCCH占用的符号数量。终端设备根据第一指示信息和第二指示信息确定第二符号数量。
具体地,终端设备根据PUCCH占用的符号数量和PUCCH的发送波束的数量确定第一符号数量。第二符号数量可以包括以下两种可能的情况:
配置1:第二符号数量为第二发送波束对应的符号的数量。
具体地,终端设备根据所述PUCCH占用的符号数量和PUCCH的发送波束数量,确定各个发送波束的时域资源配置图样。可选地,各个发送波束的时域资源配置情况,可以是预先定义的配置,也可以是由高层信令配置或物理层信令指示的时域资源。
配置2:第二符号数量为
Figure PCTCN2021072299-appb-000020
Figure PCTCN2021072299-appb-000021
中,M为所述PUCCH占用的符号数量,N为所述多个发送波束的数量。
具体地,第二符号数量为PUCCH的多个发送波束对应的符号的平均值。若该评价值为奇数,则需要对其进行上取整或下取整。
针对PUCCH格式0或格式1,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Figure PCTCN2021072299-appb-000022
其中,
Figure PCTCN2021072299-appb-000023
根据所述第二符号数量确定,
Figure PCTCN2021072299-appb-000024
表示所述PUCCH的参考符号数量,所述PUCCH的格式为PUCCH格式0时,
Figure PCTCN2021072299-appb-000025
所述PUCCH的格式为PUCCH格式1时,
Figure PCTCN2021072299-appb-000026
Δ UCI(i)=10log 10(O UCI(i)),O UCI(i)表示所述PUCCH承载的UCI的比特数。
针对PUCCH格式2或格式3或格式4,且UCI比特数小于等于11,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Δ TF,b,f,b(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
其中,N RE(i)根据所述第二符号数量确定。K 1=6,n HARQ-ACK(i)表示HARQ-ACK比特数,O SR(i)表示SR比特数,O CSI(i)表示CSI比特数。
针对PUCCH格式2或格式3或格式4,且UCI比特数大于11,终端设备根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
Figure PCTCN2021072299-appb-000027
其中,K 2=2.4,
BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)。
S230,根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合,第一符号集合对应第一发送波束,第二符号集合对应第二波束。
应理解,第一符号集合和第二符号集合不重叠,指第一符号集合和第二符号集合占用不同的符号。
应理解,发送所述PUCCH就是发送PUCCH控制信号或信令;或者,发送所述PUCCH就是在所述PUCCH上发送控制信号或信令。
具体地,终端设备可以采用全向波束发送PUCCH,或者,终端设备可以采用模拟波束发送PUCCCH。对于低频场景,通常终端设备可以采用全向波束,此时,第一符号集合和第二符号集合上的发送波束的幅度和相位可能不同。对于高频场景,通常终端设备可以采用定向波束,此时,第一符号集合和第二符号集合上采用的波束移相器设置的移项值 不同,调整发送波束方向。
因此,本申请实施例提供一种发送PUCCH的方法,根据PUCCH资源占用的部分符号数量确定PUCCH发送功率的调整值,从而在时分的多波束传输场景中,提高信道的传输性能。
作为方法200的另一种可选方式,终端设备还可以根据一个PUCCH资源在一个时间单元内占用的全部符号数量确定PUCCH的功率调整值。
示例性地,第一时间单元可以为时隙(slot),或者子时隙(sub-slot)。终端设备可以根据一个PUCCH资源在一个时隙内的全部符号数量确定PUCCH的功率调整值;或者,终端设备可以根据一个PUCCH资源在一个子时隙内的全部符号数量确定PUCCH的功率调整值。
具体地,对于PUCCH格式0或1,根据一个PUCCH资源在一个时间单元内占用的符号数量确定
Figure PCTCN2021072299-appb-000028
则该PUCCH的功率调整值Δ TF,b,f,b(i)为:
Δ TF,b,f,b(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
对于PUCCH格式2或PUCCH格式3或PUCCH格式4,且UCI比特数小于等于11,根据一个PUCCH资源在一个时间单元内占用的RE数量确定N RE(i),则该PUCCH的功率调整值Δ TF,b,f,b(i)为:
Δ TF,b,f,b(i)=10log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
对于PUCCH格式2或PUCCH格式3或PUCCH格式4,且UCI比特数小于等于11,根据一个PUCCH资源在一个时间单元内占用的RE数量确定N RE(i),则该PUCCH的功率调整值Δ TF,b,f,b(i)为:
Figure PCTCN2021072299-appb-000029
根据上述实施方式,网络设备可以根据自身接收机制灵活地配置终端设备确定PUCCH功率调整值的方法。
具体地,网络设备根据多基站协作传输过程中当前的信息交互情况,确定是否对接收的软信息进行合并。在信道的信噪比较高的情况下,多个TRP可以分别基于各自的软信息解码,而无需做合并处理。此时,网络设备向终端设备发送配置消息,指示终端设备根据方法200,分别根据第一符号数量和第二符号数量分别计算第一发送波束的功率调整值和第二发送波束的功率调整值。若多个TRP需要对各自的软信息做合并处理时,网络设备向终端设备发送配置信息,指示终端设备根据PUCCH在一个时间单元内的全部符号数量确定PUCCH的功率调整值。
网络设备可以针对不同的PUCCH资源分别发送该配置消息。或者,网络设备也可以针对不同的终端设备发送该配置消息,且一个终端设备仅发送一次配置消息,终端设备只有在不同的时域资源上发送多个波束时,才会采用方法200中的方式确定PUCCH功率调整值。
因此,网络设备通过配置终端设备确定PUCCH功率调整值的方式,可以为终端设备灵活地选择不同的PUCCH发送功率,可以在不降低PUCCH传输性能的情况下,增加传输实现的灵活度。
作为一种可选的应用该场景,PUCCH的多个发送波束可以分别对应的不同的跳频。 在这一场景中,终端设备采用跳频机制,可以在不同的时域资源上发送的波束,同时,对应于不同跳频的发送波束,其占用的频域资源也不相同。例如,通过两个TRP协作接收PUCCH的场景中,在一个时隙内,终端设备向在第一次跳频上,向TRP 1发送第一波束,然后在第二次跳频上向TRP 2发送第二波束。其中,两次跳频上发送的UCI可以相同。对于相干传输,则TRP 1和TRP 2可以分别根据各自获取的DMRS执行信道估计并解调,其中,TRP 1根据第一跳上的DMRS做信道估计并解调UCI,TRP 2根据第二跳上的DMRS做信道估计并解调UCI,获取软信息,通过联合调度器将软信息合并后统一执行解码操作,获取UCI的信息比特。此时,网络设备根据PUCCH在一个时隙内的占用的符号数量确定该PUCCH的功率调整值,从而确定PUCCH的发送功率。若TRP 1和TRP 2分别基于各自的软信息进行解码,而不做合并处理,则TRP 1和TRP 2分别根据第一波束和第二波束的符号数量确定PUCCH的功率调整值。可选地,一次跳频可以对应PUCCH的多个发送波束,或者PUCCH的一个发送波束可以对应多次跳频,以获得更多的分集增益,本申请对此不做限定。
当一个PUCCH的多个发送波束分别占用不重叠的时域资源时,终端设备可以对应的采用不同的发送功率以适配不同的信道。此时,第一发送波束和第二发送波束对应的
Figure PCTCN2021072299-appb-000030
和PL b,f,c(q d)可以独立配置,且动态功率调整g b,f,c(i,l)可以独立指示,从而使得第一发送波束和第二发送波束上PUCCH的发送功率不同。若第一发送波束和第二发送波束上采用相同的功率放大器PA生成发送信号,由于PA功率切换会由于功率滑坡效应产生短暂的信号失真导致传输信号性能下降。因此,在PUCCH的多波束传输过程中,通过在第一发送波束或第二发送波束上预留一个符号的位置,且该符号上既不传输DMRS,也不传输UCI,可以在波束切换时,规避因发送功率调整而导致的信号失真,从而提高PUCCH的传输性能。
下面将针对不同的PUCCH格式,对保留该符号的方法做具体说明。
图3是本申请实施例的发送上行控制信道的方法300的示意性流程图,该方法200由终端设备执行。如图3所示,该方法300包括:
S310,根据PUCCH时域资源确定第三符号,所述第三符号不承载所述PUCCH。
应理解,第三符号不承载PUCCH,可以作为功率切换或者波束切换的保护符号,降低由于功率切换或者波束切换带来的性能影响。
可选地,PUCCH的时域资源配置中包括该第三符号,或者说,第三符号位于PUCCH起始符号和结束符号之间。
根据PUCCH的时域资源确定第三符号,第三符号可以是预留的符号位置,在第三符号位置上,不发送该PUCCH控制信道或控制信令。
在根据第一符号数量确定第一波束的PUCCH功率调整值之前,终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示PUCCH对应的发送波束。
应理解,本申请中所述的PUCCH的发送波束,就是发送PUCCH的波束。相应地,PUCCH的发送波束的数量,就是用于发送所述PUCCH的波束的数量。
可选的,当第一指示信息指示的发送波束的数量为1,终端设备无需确定第三符号;当第一指示信息指示的发送波束的数量大于1,终端设备根据PUCCH的时域资源确定第三符号。具体地,PUCCH占用的符号中包括第一符号集合和第二符号集合,其中,第一 符号集合为PUCCH中前
Figure PCTCN2021072299-appb-000031
个符号,第二符号集合为PUCCH中后
Figure PCTCN2021072299-appb-000032
个符号;或者,第一符号集合为PUCCH中前
Figure PCTCN2021072299-appb-000033
个符号,第二符号集合为PUCCH中后
Figure PCTCN2021072299-appb-000034
个符号。所述第三符号应为第一符号集合的最后一个符号;或者,所述第三符号为第二符号集合的第一个符号。
可选的,第一符号集合对应所述多个发送波束中的第一发送波束,第二符号集合对应所述多个发送波束中的第二发送波束。
进一步地,针对PUCCH格式1,可以有两种确定PUCCH时域资源的方式:
配置1:该第三符号为PUCCH中奇数编号的符号。
具体地,第三符号相邻的两个符号分别对应所述第一发送波束和所述第二发送波束,第一终端设备在编号为
Figure PCTCN2021072299-appb-000035
Figure PCTCN2021072299-appb-000036
的两个符号中,保留奇数编号的符号,作为第三符号。
以PUCCH格式1中,PUCCH的符号数量为7举例:
终端设备在第一符号集合上发送该第一发送波束,其中第一符号集合包括编号0-2的三个符号;终端设备在第二符号集合上发送该第二发送波束,其中第二符号集合包括编号3-6的四个符号。则第三符号应为编号为2或3的符号。终端设备保留编号为奇数的符号,即编号为3的符号,作为第三符号。此时,编号为3的符号上不承载PUCCH。其余符号配置信息不变。
因此,本申请实施例中,通过在波束切换时,直接保留奇数编号的符号,使得DMRS的符号数量保持稳定且位置不变,能够提升信道估计性能。同时,这种确定PUCCH时域资源的方式,可以使得多个终端设备在复用相同的时频资源传输PUCCH时,DMRS的位置是对齐的,保证了DMRS接收性能。
配置2:在配置1确定第三符号的基础上,终端设备根据去掉第三符号后的PUCCH符号数量和位置,确定PUCCH中DMRS占用的符号数量和位置。
以PUCCH格式1中,PUCCH的符号数量为7举例:
终端设备在第一符号集合上发送该第一发送波束,其中第一符号集合包括编号0-2的三个符号;终端设备在第二符号集合上发送该第二发送波束,其中第二符号集合包括编号3-6的四个符号。按照现有技术中对DMRS位置的约定,PUCCH的符号数量为7时,DMRS占用编号为0,2,4,6的符号。
终端设备保留编号为3的符号,作为第三符号。终端设备根据去掉第三符号后的PUCCH符号,重新确定PUCCH中DMRS占用的符号数量。保留编号为3的符号之后,编号为4-6的符号按照PUCCH符号数量减1确定DMRS占用的符号数量,即按照现有技术中PUCCH符号数量为6的情况确定DMRS占用的符号数量。则重新确定的PUCCH中,DMRS占用编号为0,2,5的符号。此时,PUCCH上承载的DMRS数量减少。
因此,本申请实施例中,通过根据PUCCH资源占用的符号数减1确定DMRS的位置,不仅可以在功率调整时,避免信号失真导致的性能下降,同时可以减少DMRS开销。
进一步地,针对PUCCH格式3或PUCCH格式4,可以有两种确定PUCCH时域资源的方式:
配置3:该第三符号的位置为
Figure PCTCN2021072299-appb-000037
其中,M为所述PUCCH占用的符号数量,N为所述多个发送波束的数量。
具体地,终端设备在编号为
Figure PCTCN2021072299-appb-000038
Figure PCTCN2021072299-appb-000039
的两个符号中,保留编号为
Figure PCTCN2021072299-appb-000040
的符号,作为第三符号。
PUCCH格式3或PUCCH格式4中,以发送波束N为2举例:
PUCCH符号数量分别为6-14时,PUCCH的时域资源图样如图4所示。PUCCH的符号数量分别为6-14时,对应的第三符号分别为编号2,3,3,4,4,5,5,6,6。
因此,本申请实施例中,通过空出波束切换时,位置为
Figure PCTCN2021072299-appb-000041
的符号,可以使得空出的符号距离DMRS位置较远,从而保证信道估计性能。
配置4:对于任意两种PUCCH符号数量不同的情况,当DMRS在一个slot内的位置相同时,保留相同的第三符号。
具体地,在根据配置3确定第三符号的基础上,若两种PUCCH符号数量不同情况中,二者DMRS的位置相同的情况,终端设备保留相同的第三符号。
PUCCH格式3或PUCCH格式4中,以发送波束N为2举例:
PUCCH符号数量分别为6-14时,PUCCH的时域资源图样如图5所示。PUCCH符号数量为6和PUCCH数量为7时,DMRS的位置相同,则二者应保留相同的第三符号。类似地,PUCCH符号数量为10和PUCCH数量为11时,DMRS的位置相同,则二者应保留相同的第三符号。则PUCCH的符号数量分别为6-14时,对应的第三符号分别为编号3,3,3,4,5,5,5,6,6。
因此,本申请实施例中,PUCCH符号数量不同时,若两种格式的DMRS位置相同,则保留相同的第三符号,可以保证DMRS位置相同的PUCCH格式可以空出相同的位置。这样可以在多个终端设备复用相同时频资源传输时,每个符号上的干扰水平相同,有利于提升信道估计的性能。
配置5:第三符号的位置在第二次跳频的第一个符号处。
应理解,配置5中,在第一次跳频上发送第一发送波束,在第二次跳频上发送第二发送波束,第三符号的位置在第二次跳频的第一个符号处。
PUCCH格式3或PUCCH格式4中,以发送波束N为2举例:
PUCCH符号数量分别为6-14时,PUCCH的时域资源图样如图6所示。对于不同符号数量的PUCCH,第三符号的位置均为第二次跳频的第一个符号。则PUCCH的符号数量分别为6-14时,对应的第三符号分别为编号3,3,4,4,5,5,6,6,7。
因此,本申请实施例中,使得第三符号位于PUCCH中第二次跳频内,可以保证第一次跳频与其他用户复用时的性能。
S320,根据所述第一发送波束在所述第一符号上发送所述PUCCH;根据所述第二发送波束在所述第二符号上发送所述PUCCH,其中,所述第一符号和所述第二符号不重叠。
具体地,终端设备根据第一功控参数确定,第二符号之前PUCCH的发送功率,第一功控参数为第一发送波束的功控参数;终端设备根据第二功控参数确定,第二符号之后PUCCH的发送功率,第二功控参数为第二发送波束的功控参数。
第一发送波束和第二发送波束对应的功控参数不相同。具体的,第一发送波束和第二发送波束各自对应不同的开环功控参数,包括:
Figure PCTCN2021072299-appb-000042
和PL b,f,c(q d)可以独立配置,且动态功率调整g b,f,c(i,l)可以由网络设备独立地指示,从而使得第一发送波束和第二发送波束上PUCCH的发送功率不同。终端设备根据空出第三符号之后的PUCCH符号数 量分别计算第一发送波束和第二发送波束的发送功率。
因此,本申请实施例中,在PUCCH的多波束传输过程中,通过在第一发送波束或第二发送波束上预留一个符号的位置,且该符号上既不传输DMRS,也不传输UCI,可以在波束切换时,规避因发送功率调整而导致的信号失真,从而提高PUCCH的传输性能。
图7示出了本申请实施例的终端设备的示意性框图。所述中的设备700700用于执行前述终端设备对应的方法或步骤。可选地,所述终端设备700中各个模块可以是通过软件来实现的。如图7所示,所述终端设备700700可以包括:
处理单元710,用于根据第一符号数量确定PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;
还用于根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合。
收发单元720,用于根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;
还用于根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
应理解,根据本申请实施例的终端设备700可对应于前述方法实施例的发送上行控制信道的终端设备,可以用于执行前述方法实施例中涉及终端设备的各个步骤。并且终端设备700中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的确定单元可以由处理器实现,收发单元可以由收发器实现。
图8示出了本申请实施例的网络设备的示意性框图。所述网络设备800用于执行前述终端设备对应的方法或步骤。可选地,所述网络设备800中各个模块可以是通过软件来实现的。如图8所示,所述网络设备800包括:
发送单元810,用于发送第一指示信息,第一指示信息用于指示发送所述PUCCH的发送波束;
还用于发送第二指示信息,第二指示信息用于指示所述PUCCH占用的符号数量。
接收单元820,包括两个接收点,分别用于在第一符号集合上接收PUCCH,在第二符号上接收PUCCH。
应理解,根据本申请实施例的网络设备800可对应于前述方法实施例的传输控制信息的网络设备,并且网络设备800中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的确定单元、译码单元可以由处理器实现,收发单元可以由收发器实现。
图9是根据本申请实施例提供的终端设备900的结构框图。图9所示的终端设备900包括:处理器901、存储器902和收发器903。
处理器901、存储器902和收发器903之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器901、存储器902和收发器903可以通过芯片 实现。该存储器902可以存储程序代码,处理器901调用存储器902存储的程序代码,以实现该终端设备的相应功能。
所述处理器901用于:
根据第一符号数量确定PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;
根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合;
通过所述收发器903发送待发送信息,包括根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;
根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
可以理解的是,尽管并未示出,终端设备900还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器902可以存储用于执行前述方法中终端设备执行的方法的部分或全部指令。处理器901可以执行存储器902中存储的指令结合其他硬件(例如收发器903)完成前述方法中终端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
图10是根据本申请实施例提供的网络设备1000的结构框图。图10所示的网络设备1000包括:处理器1001、存储器1002和收发器1003。
处理器1001、存储器1002和收发器1003之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1001、存储器1002和收发器1003可以通过芯片实现。该存储器1002可以存储程序代码,处理器1001调用存储器1002存储的程序代码,以实现该终端设备的相应功能。
所述处理器1001用于:
用于确定第一指示信息,内容包含发送PUCCH的发送波束;还用于确定第二指示信息,内容包括PUCCH占用的符号数量;
通过所述收发器1003可以包括两个接收点,分别用于在第一符号集合上接收PUCCH,在第二符号上接收PUCCH。
可以理解的是,尽管并未示出,网络设备1000还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器1002可以存储用于执行前述方法中终端设备执行的方法的部分或全部指令。处理器1001可以执行存储器1002中存储的指令结合其他硬件(例如收发器1003)完成前述方法中终端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP),专用集成电路(application specific  integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件,分立门或者晶体管逻辑器件,分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解的是,当本申请的实施例应用于终端设备芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片向终端设备中的其它模块(如射频模块或天线)接收信息。
当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)发送上述信息。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中使用的术语“部件”、“模块”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种发送上行控制信道PUCCH的方法,其特征在于,包括:
    根据第一符号数量确定所述PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;
    根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合;
    根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;
    根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
  2. 如权利要求1所述的方法,其特征在于,在所述根据第一符号数量确定PUCCH的第一功率调整值之前,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述PUCCH的发送波束,所述PUCCH的发送波束包括所述第一发送波束和所述第二发送波束。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述第一符号数量等于所述第一符号集合的符号的数量;
    所述第二符号数量等于所述第二符号集合的符号的数量。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一指示信息确定所述第一符号集合的符号的数量和所述第二符号集合的符号的数量。
  5. 如权利要求1或2所述的方法,其特征在于,
    所述第一符号数量与所述第二符号数量相等,且等于
    Figure PCTCN2021072299-appb-100001
    Figure PCTCN2021072299-appb-100002
    其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述PUCCH占用的符号数量;
    根据所述PUCCH占用的符号数量和所述PUCCH的发送波束,确定所述第一符号数量和所述第二符号数量。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述根据第一符号数量确定PUCCH的功率调整值,包括,根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
    Figure PCTCN2021072299-appb-100003
    其中,
    Figure PCTCN2021072299-appb-100004
    为所述第一符号数量或所述第二符号数量,
    Figure PCTCN2021072299-appb-100005
    表示所述PUCCH的参考符号数量,所述PUCCH的格式为PUCCH格式0时,
    Figure PCTCN2021072299-appb-100006
    所述PUCCH的格式为PUCCH格式1时,
    Figure PCTCN2021072299-appb-100007
    Δ UCI(i)=10 log 10(O UCI(i)),O UCI(i)表示所述PUCCH承载的UCI的比特数。
  8. 如权利要求1至6中任一项所述的方法,其特征在于,所述根据第一符号数量确 定PUCCH的功率调整值,包括,根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
    Δ TF,b,f,b(i)=10 log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
    其中,N RE(i)是根据所述第一符号数量或所述第二符号数量确定的,
    K 1=6,
    n HARQ-ACK(i)表示HARQ-ACK比特数,
    O SR(i)表示SR比特数,
    O CSI(i)表示CSI比特数;
    或者,
    Figure PCTCN2021072299-appb-100008
    其中,K 2=2.4,
    BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,
    所述第一发送波束和所述第二发送波束对应的PUCCH占用不同的频域资源。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    根据PUCCH占用的时域资源确定第三符号,所述PUCCH占用的时域资源包含多个符号,所述第三符号为所述PUCCH在所述时域资源中的起始符号和结束符号之间的至少一个符号,所述第三符号不承载所述PUCCH;
    所述第三符号为所述PUCCH中奇数编号的符号,与所述第三符号相邻的两个符号分别对应所述第一发送波束和所述第二发送波束,所述PUCCH为PUCCH格式1;或者,
    所述第三符号在所述PUCCH中的编号为
    Figure PCTCN2021072299-appb-100009
    所述PUCCH对应PUCCH格式3或者PUCCH格式4。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    根据第一功控参数确定所述第三符号之前所述PUCCH的发送功率,所述第一功控参数为所述第一发送波束对应的功控参数;
    根据第二功控参数确定所述第三符号之后所述PUCCH的发送功率,所述第二功控参数为所述第二发送波束对应的功控参数。
  12. 一种发送上行控制信道PUCCH的装置,其特征在于,所述装置包括:
    处理单元,用于根据第一符号数量确定所述PUCCH的第一功率调整值,所述第一符号数量小于所述PUCCH占用的符号数量;
    处理单元,还用于根据第二符号数量确定所述PUCCH的第二功率调整值,所述第二符号数量小于所述PUCCH占用的符号数量,其中,所述PUCCH占用的符号包括不重叠的第一符号集合和第二符号集合;
    收发单元,与所述处理单元通信耦合,用于根据所述第一功率调整值,通过第一发送波束在所述第一符号集合上发送所述PUCCH;
    收发单元,用于根据所述第二功率调整值,通过第二发送波束在所述第二符号集合上发送所述PUCCH。
  13. 如权利要求12所述的装置,其特征在于,所述收发单元还用于:
    接收第一指示信息,所述第一指示信息用于指示所述PUCCH的发送波束,所述 PUCCH的发送波束包括所述第一发送波束和所述第二发送波束。
  14. 如权利要求12或13所述的装置,其特征在于,
    所述第一符号数量等于所述第一符号集合的符号的数量;
    所述第二符号数量等于所述第二符号集合的符号的数量。
  15. 如权利要求14所述的装置,所述处理单元还用于:
    根据所述第一指示信息确定所述第一符号集合的符号的数量和所述第二符号集合的符号的数量。
  16. 如权利要求12或13所述的装置,其特征在于,
    所述第一符号数量与所述第二符号数量相等,且等于
    Figure PCTCN2021072299-appb-100010
    Figure PCTCN2021072299-appb-100011
    其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量。
  17. 如权利要求12至16中任一项所述的装置,其特征在于,所述收发单元和所述处理单元还用于:
    所述收发单元,还用于接收第二指示信息,所述第二指示信息用于指示所述PUCCH占用的符号数量;
    所述处理单元,还用于根据所述PUCCH占用的符号数量和所述PUCCH的发送波束,确定所述第一符号数量和所述第二符号数量。
  18. 如权利要求12至17中任一项所述的装置,其特征在于,所述处理单元还用于根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
    Figure PCTCN2021072299-appb-100012
    其中,
    Figure PCTCN2021072299-appb-100013
    为所述第一符号数量或所述第二符号数量,
    Figure PCTCN2021072299-appb-100014
    表示所述PUCCH的参考符号数量,所述PUCCH的格式为PUCCH格式0时,
    Figure PCTCN2021072299-appb-100015
    所述PUCCH的格式为PUCCH格式1时,
    Figure PCTCN2021072299-appb-100016
    Δ UCI(i)=10 log 10(O UCI(i)),O UCI(i)表示所述PUCCH承载的UCI的比特数。
  19. 如权利要求12至17中任一项所述的装置,其特征在于,所述处理单元还用于根据下述公式确定所述PUCCH的功率调整值Δ TF,b,f,b(i):
    Δ TF,b,f,b(i)=10 log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i))
    其中,N RE(i)是根据所述第一符号数量或所述第二符号数量确定的,
    K 1=6,
    n HARQ-ACK(i)表示HARQ-ACK比特数,
    O SR(i)表示SR比特数,
    O CSI(i)表示CSI比特数;
    或者,
    Figure PCTCN2021072299-appb-100017
    其中,K 2=2.4,
    BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)。
  20. 如权利要求12至19中任一项所述的装置,其特征在于,
    所述第一发送波束和所述第二发送波束对应的PUCCH占用不同的频域资源。
  21. 如权利要求12至20中任一项所述的装置,其特征在于,所述处理单元还用于:
    根据PUCCH时域资源确定第三符号,所述第三符号为所述PUCCH的起始符号和结束符号之间的至少一个符号,所述第三符号不承载所述PUCCH;
    所述第三符号为所述PUCCH中奇数编号的符号,与所述第三符号相邻的两个符号分别对应所述第一发送波束和所述第二发送波束,所述PUCCH为PUCCH格式1;或者,
    所述第三符号在所述PUCCH中的编号为
    Figure PCTCN2021072299-appb-100018
    其中,M为所述PUCCH占用的符号数量,N为所述PUCCH的发送波束的数量,所述PUCCH对应PUCCH格式3或者PUCCH格式4。
  22. 如权利要求12至21中任一项所述的装置,其特征在于,所述收发单元还用于:
    根据第一功控参数确定,所述第三符号之前所述PUCCH的发送功率,所述第一功控参数为所述第一发送波束对应的功控参数;
    根据第二功控参数确定,所述第三符号之后所述PUCCH的发送功率,所述第二功控参数为所述第二发送波束对应的功控参数。
  23. 如权利要求12至22中任一项所述的装置,其特征在于,所述处理单元为处理器,所述收发单元为收发器。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端设备执行权利要求1至11中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被网络设备运行时,使得所述网络设备执行权利要求1至11中任一项所述的发送参考信号的方法。
PCT/CN2021/072299 2021-01-15 2021-01-15 一种发送上行控制信道的方法和装置 WO2022151415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072299 WO2022151415A1 (zh) 2021-01-15 2021-01-15 一种发送上行控制信道的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072299 WO2022151415A1 (zh) 2021-01-15 2021-01-15 一种发送上行控制信道的方法和装置

Publications (1)

Publication Number Publication Date
WO2022151415A1 true WO2022151415A1 (zh) 2022-07-21

Family

ID=82446905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072299 WO2022151415A1 (zh) 2021-01-15 2021-01-15 一种发送上行控制信道的方法和装置

Country Status (1)

Country Link
WO (1) WO2022151415A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056758A1 (en) * 2018-09-21 2020-03-26 Qualcomm Incorporated Physical uplink control channel scheduling for ack-nack feedback in multi-transmission/reception point non-coherent joint transmissions
CN111278114A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 功率控制方法、终端设备及网络侧设备
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission
CN111901875A (zh) * 2020-04-21 2020-11-06 中兴通讯股份有限公司 指示方法、上行传输方法、装置、服务节点、终端及介质
CN111901870A (zh) * 2020-03-25 2020-11-06 中兴通讯股份有限公司 一种传输方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056758A1 (en) * 2018-09-21 2020-03-26 Qualcomm Incorporated Physical uplink control channel scheduling for ack-nack feedback in multi-transmission/reception point non-coherent joint transmissions
CN111278114A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 功率控制方法、终端设备及网络侧设备
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission
CN111901870A (zh) * 2020-03-25 2020-11-06 中兴通讯股份有限公司 一种传输方法、装置、设备及存储介质
CN111901875A (zh) * 2020-04-21 2020-11-06 中兴通讯股份有限公司 指示方法、上行传输方法、装置、服务节点、终端及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TCL COMMUNICATION: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2007793, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945294 *

Similar Documents

Publication Publication Date Title
US11089590B2 (en) Beam configuration method and apparatus
JP7354302B2 (ja) データを伝送するための方法及び端末装置
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
US11445531B2 (en) Communication method, communications apparatus, and readable storage medium
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
KR102190627B1 (ko) 무선 네트워크 노드, 무선 디바이스 및 수행 방법
US11218999B2 (en) Method and apparatus for sending uplink control channel
EP3553986B1 (en) Transmission method, network equipment, and terminal equipment
CN112039643A (zh) 传输反馈信息的方法和装置
JP2014512743A (ja) フィードバック情報のタイミングを決定する方法及び装置
US10778388B2 (en) Method and apparatus for resource management in wireless communication systems
JP2020508016A (ja) 通信方法、ネットワーク装置及び端末
US20180167126A1 (en) Method for indicating a transmission time offset of a feedback message
US11968047B2 (en) Method and apparatus for sending feedback information, and method and apparatus for receiving feedback information
EP3755100A1 (en) Communication method and communication set
CN115804042A (zh) 上行控制信息的发送方法、装置和系统
CN114070476A (zh) 通信的方法和装置
US20220022238A1 (en) Data transmission method, apparatus, device, and storage medium
US10925073B2 (en) Radio communication method, terminal device, and network device
WO2022151415A1 (zh) 一种发送上行控制信道的方法和装置
US11108597B2 (en) Data transmission method and apparatus
WO2022170516A1 (zh) 一种传输信息的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918619

Country of ref document: EP

Kind code of ref document: A1