WO2022151358A1 - 电池存储容量管理方法、电池管理系统及用电装置 - Google Patents

电池存储容量管理方法、电池管理系统及用电装置 Download PDF

Info

Publication number
WO2022151358A1
WO2022151358A1 PCT/CN2021/072185 CN2021072185W WO2022151358A1 WO 2022151358 A1 WO2022151358 A1 WO 2022151358A1 CN 2021072185 W CN2021072185 W CN 2021072185W WO 2022151358 A1 WO2022151358 A1 WO 2022151358A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
storage capacity
power dissipation
resting time
Prior art date
Application number
PCT/CN2021/072185
Other languages
English (en)
French (fr)
Inventor
温世勇
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to PCT/CN2021/072185 priority Critical patent/WO2022151358A1/zh
Publication of WO2022151358A1 publication Critical patent/WO2022151358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular to a battery storage capacity management method, a battery management system, and an electrical device.
  • the present application provides a battery storage capacity management method, a battery management system, and a power consumption device, which can reduce the storage capacity loss of the battery and prolong the battery life by consuming the power of the battery in the storage capacity voltage sensitive interval and the controllable temperature interval. service life.
  • the controllable temperature range is a temperature range in which the battery can work normally.
  • the storage capacity voltage sensitive range is the voltage range where the irreversible capacity loss occurs during the long-term stationary process of the battery. Irreversible capacity loss means that the lost capacity cannot be recovered.
  • the battery storage capacity management method in Embodiment 1 of the present application includes: acquiring a voltage value output by a battery and a temperature value of a power dissipation circuit, where the power dissipation circuit is used for power consumption of the battery; determining that the battery is in a static state The resting time of the resting state, wherein the resting state is that the battery is in a state where the power supply to the load is disconnected; the power dissipation circuit is controlled according to the voltage value, the temperature value and the resting time length
  • the working state is to manage the storage capacity of the battery, and the working state includes an on state or an off state.
  • the battery storage capacity management method of the present application can be implemented based on the battery management system provided by the present application.
  • the battery management system of the second embodiment of the present application includes a power dissipation circuit, a temperature detection circuit, a switch circuit, and a controller; the controller is electrically connected to the temperature detection circuit and one end of the switch circuit, and the switch circuit has an electrical connection.
  • the other end is electrically connected to the power dissipation circuit; the power dissipation circuit is used for power consumption of the battery; the temperature detection circuit is used for obtaining the temperature value of the power dissipation circuit; the controller is used for obtaining The voltage value output by the battery and the resting time of the battery in a resting state, and output a signal to the switch circuit according to the voltage value, the temperature value and the resting time, and the resting state
  • the battery is in a state of disconnecting power supply to the load; the switch circuit is configured to be turned on or off according to the signal to control the working state of the power dissipation circuit, and the working state includes an on state or an off state state.
  • the power dissipation circuit includes at least one of the following: a power resistor, a power diode, and a power triode.
  • the temperature detection circuit includes at least one of the following: a thermocouple, a thermal resistance, and a thermistor.
  • the battery management system of the third embodiment of the present application includes at least a processor, and the processor is electrically connected to a battery and a load; the load is electrically connected to the battery for power consumption of the battery; the processing The controller is used to obtain the voltage value output by the battery and the temperature value of the load, determine the resting time of the battery in a resting state, and control the battery according to the voltage value, the temperature value and the resting time.
  • the working state of the load, the working state is an on state or an off state
  • the resting state is a state in which the battery is disconnected from supplying power to the load.
  • the electrical device of the fourth embodiment of the present application includes a battery pack, a load, and the battery management system according to the second or third embodiment, the battery pack is electrically connected to the load, and the battery management system is electrically connected to the battery management system. the battery pack and the load, and the battery management system is used to manage the storage capacity of the battery pack.
  • the present application obtains the voltage value output by the battery, the temperature value of the power dissipation circuit and the resting time of the battery in the static state.
  • the power dissipation circuit is used to consume the power of the battery, which can effectively manage the storage capacity of the battery, reduce the loss of the storage capacity of the battery, and prolong the service life of the battery.
  • FIG. 1 is a flowchart of a battery storage capacity management method according to the first embodiment.
  • FIG. 2 is a specific flowchart of FIG. 1 .
  • FIG. 3 is a structural block diagram of the battery management system of the second embodiment.
  • FIG. 4 is a specific circuit diagram of FIG. 3 .
  • FIG. 5 is a winter temperature curve diagram of a simulation experiment performed on the battery management system of FIG. 4 .
  • FIG. 6 is a winter battery storage capacity curve diagram of a simulation experiment performed on the battery management system of FIG. 4 .
  • FIG. 7 is a summer temperature curve diagram of a simulation experiment performed on the battery management system of FIG. 4 .
  • FIG. 8 is a summer battery storage capacity curve diagram of a simulation experiment performed on the battery management system of FIG. 4 .
  • FIG. 9 is a structural block diagram of the battery management system of the third embodiment.
  • FIG. 10 is a structural block diagram of the electrical device according to the fourth embodiment.
  • LMO lithium manganate
  • the present application provides a battery storage capacity management method, a battery management system and a power consumption device, which can reduce the storage capacity loss of the battery and prolong the battery life by consuming the power of the battery in the storage capacity voltage sensitive interval and the controllable temperature interval. service life.
  • FIG. 1 is a flowchart of a battery storage capacity management method provided in Embodiment 1. The method includes the following steps:
  • the storage capacity of a single battery can be managed, and the storage capacity of a series-parallel battery module or battery pack can also be managed.
  • the voltage value output by the battery can be measured by any voltage detection circuit, chip, device, instrument or meter.
  • the power dissipation circuit is used for power dissipation of the battery. It can be understood that, in the embodiments of the present application, the specific form of the power dissipation circuit is not limited.
  • the power dissipation circuit is a part of the circuit in the battery management system, including a power resistor, a power diode or a power triode, and the like.
  • the power dissipation circuit is a part of a circuit in a load, and the load includes a resistor, an engine or a light bulb and other components that can consume power.
  • the power dissipation circuit includes a battery management system, and the battery management system consumes power from the battery through its internal active devices.
  • the active device is a component powered by the battery, such as an electronic tube, a transistor, an integrated circuit, and the like.
  • the power dissipation is mainly performed in the form of heat generation. If the heat dissipation performance of the power dissipation circuit is not good, the temperature of the active area of the internal chip and the junction temperature will rise when the power dissipation is performed, so that the reliability of the power dissipation circuit is reduced, and it cannot work safely. . In practical applications, a power dissipation circuit with good heat dissipation performance, such as a series-parallel resistor module, can be selected.
  • the temperature value of the power dissipation circuit may be collected by a thermocouple, thermal resistance, thermistor or resistance thermometer, or the like.
  • the stationary state refers to a state in which the battery is disconnected from supplying power to the load.
  • the voltage value output by the battery is in a certain voltage range.
  • the voltage range is smaller than the output voltage value when the battery is in a normal working state.
  • the resting time of the battery in the resting state may be recorded by a timer.
  • the resting time of the battery in the resting state recorded by the timer can be corrected. Since the error has a certain numerical range, a correction coefficient can be preset, and the error can be reduced by the correction coefficient.
  • the correction coefficient is a fixed value, and an arithmetic operation is performed on the initial standing period of the battery and the correction coefficient to obtain the corrected standing period of the battery.
  • the working state of the power dissipation circuit is controlled according to the voltage value output by the battery, the temperature value of the power dissipation circuit, and the resting time period during which the battery is in a resting state.
  • the working state includes an on state or an off state.
  • the voltage value output by the battery is in a storage capacity voltage sensitive range
  • the temperature value of the power dissipation circuit is controlled to be in the on state.
  • the controllable temperature range is a temperature range in which the battery can work normally.
  • the storage capacity voltage sensitive range is a voltage range where irreversible capacity loss occurs during the long-term stationary process of the battery.
  • the capacity loss caused by the self-discharge of the battery is divided into reversible capacity loss and irreversible capacity loss.
  • Reversible capacity loss means that the lost capacity can be recovered upon charging, while irreversible capacity loss means that the lost capacity cannot be recovered.
  • the voltage value output by the battery is in the storage capacity voltage sensitive range, the capacity balance in the battery is destroyed, resulting in irreversible capacity loss of the battery.
  • the voltage value output by the battery is not within the storage capacity voltage sensitive range, the capacity loss of the battery can be recovered during charging.
  • the power dissipation circuit When the power dissipation circuit starts to work, its temperature will gradually increase. When the temperature value exceeds the controllable temperature range, the power dissipation circuit is controlled to switch to the off state, and the cooling process is performed on the power dissipation circuit. When the temperature value of the power dissipation circuit falls within the controllable temperature range again, the power dissipation circuit is controlled to switch to the on state again.
  • the temperature value exceeding the controllable temperature range means that the temperature value is greater than the upper limit of the controllable temperature range.
  • the cooling method of the power dissipation circuit is not limited.
  • the power dissipation circuit can be cooled naturally or it can be actively cooled.
  • the power dissipation circuit may be actively cooled by means of a fan or liquid cooling.
  • the resting time threshold can be preset according to an actual application scenario.
  • the storage capacity voltage sensitive interval may be any sub-voltage interval in the voltage interval of [2.0, 4.35]V, for example, the storage capacity voltage sensitive interval may be [3.85, 3.91]V.
  • the controllable temperature range can be any sub-temperature range in the temperature range of [-40, 85]°C.
  • step S14 specifically includes the following three situations:
  • the power dissipation circuit is controlled to be in an on state.
  • the voltage value output by the battery is first measured, and when the voltage value is in the storage capacity voltage sensitive range, and the temperature value of the power dissipation circuit is in the controllable temperature range, the power dissipation circuit is controlled to be in an open state, The power dissipation circuit powers the battery. When the voltage value exceeds the storage capacity voltage sensitive range, or the temperature value of the power dissipation circuit exceeds the controllable temperature range, the power dissipation circuit is controlled to switch to an off state. When the standing period of the battery in the resting state does not reach the resting time threshold, the battery continues to remain in the resting state until the resting time exceeds the resting time threshold.
  • the power dissipation circuit When the voltage value output by the battery is in the storage capacity voltage sensitive range, and the temperature value of the power dissipation circuit is less than or equal to the upper limit value of the controllable temperature range, it is determined whether there is an external command. If it is determined that the external command exists, the power dissipation circuit is controlled to switch to the off state. If it is determined that the external command does not exist, the power dissipation circuit maintains the on state. When the voltage value output by the battery is in the storage capacity voltage sensitive range, and the temperature value of the power dissipation circuit exceeds the controllable temperature range, the power dissipation circuit is controlled to switch to the off state .
  • the external instruction includes interrupt or exception.
  • the interrupts are caused by external events, including I/O interrupts, clock interrupts, or hardware failures.
  • the exceptions are caused by internal execution instructions, including system calls, page faults, protective exceptions, breakpoint instructions, or other programmatic exceptions (such as algorithm overflow, etc.).
  • the external command is a battery call command. If the battery calling instruction is received, the battery is controlled to change from a resting state to a working state, and the power dissipation circuit is controlled to switch to the off state.
  • both the upper limit value and the lower limit value of the recovery temperature interval fall within the controllable temperature interval, that is, the recovery temperature interval is a sub-temperature interval of the controllable temperature interval.
  • the upper limit of the controllable temperature interval may be 60°C.
  • the power dissipation circuit When the voltage value output by the battery is in the storage capacity voltage sensitive range, and the temperature value of the power dissipation circuit is in the recovery temperature range, the power dissipation circuit is controlled to switch to the on state, Power consumption is performed on the battery.
  • the temperature value of the power dissipation circuit exceeds the recovery temperature interval, it is determined whether the external command exists. If it is determined that the external command exists, the power dissipation circuit is controlled to switch to the off state. If it is determined that the external command does not exist, the power dissipation circuit maintains the on state.
  • the recording of the resting time of the battery in the resting state is started.
  • the power dissipation circuit is controlled to switch to the off state, and it is not necessary to record the resting time of the battery in the resting state.
  • the voltage value is not in the storage capacity voltage sensitive range, which means that the voltage value is greater than the upper limit of the storage capacity voltage sensitive range, or the voltage value is less than the storage capacity voltage sensitive range. lower limit.
  • FIG. 2 is a specific flowchart of the battery storage capacity management method described in FIG. 1 . It should be noted that, the specific implementation manners in some of the above-mentioned embodiments may also be correspondingly applicable to this embodiment, and in order to save space and avoid repetition, details are not repeated here.
  • the battery storage capacity management method includes the following specific steps:
  • step S202 determine whether the voltage value is in the storage capacity voltage sensitive range; if the voltage value is in the storage capacity voltage sensitive range, execute step S203; if not, execute step S209.
  • step S204 determine whether the standing period exceeds the standing period threshold; if the standing period exceeds the standing period threshold, step S205 is performed; otherwise, step S203 is performed.
  • step S207 determine whether the temperature value exceeds the controllable temperature range; if the temperature value exceeds the controllable temperature range, execute step S209; if not, execute step S208.
  • step S208 determine whether there is an external command; if there is an external command, go to step S209; if not, go to step S202.
  • step S210 determine whether the temperature value is in the recovery temperature interval; if the temperature value is in the recovery temperature interval, step S205 is performed; if not, step S208 is performed.
  • the battery storage capacity management method of Embodiment 1 of the present application can effectively manage the battery storage capacity and reduce the storage capacity loss of the battery by using a power dissipation circuit to consume the power of the battery in the storage capacity voltage-sensitive interval and the controllable temperature interval. Extend battery life. Moreover, by recording the standing time of the battery in the standing state, the battery storage capacity is managed in the time dimension, which can improve the accuracy of the battery storage capacity management.
  • FIG. 3 is a structural block diagram of the battery management system 30 provided in the second embodiment.
  • the battery management system 30 includes a power dissipation circuit 31 , a temperature detection circuit 32 , a switch circuit 33 and a controller 34 .
  • the controller 34 is electrically connected to one end of the temperature detection circuit 32 and the switch circuit 33 , and the other end of the switch circuit 33 is electrically connected to the power dissipation circuit 31 .
  • the power dissipation circuit 31 is used for power dissipation of the battery.
  • the power dissipation circuit 31 includes a power resistor, a power diode or a power triode, and the like.
  • the temperature detection circuit 32 is used to obtain the temperature value of the power dissipation circuit 31 .
  • the temperature detection circuit 32 includes a thermocouple, a thermal resistance or a thermistor and the like.
  • the controller 34 is configured to obtain the voltage value output by the battery and the resting time period during which the battery is in a resting state, and output a signal to the battery according to the voltage value, the temperature value and the resting time period.
  • the switch circuit 33, the rest state is the state in which the battery is disconnected from supplying power to the load.
  • the switch circuit 33 is configured to be turned on or off according to the signal to control the working state of the power dissipation circuit 31 . Specifically, when the switch circuit 33 is turned on, the power dissipation circuit 31 is in an on state. When the switch circuit 33 is turned off, the power dissipation circuit 31 is in an off state.
  • controller 34 provides the main control logic of the battery management system 30 .
  • the controller 34 may comprise a microcontroller or a processor.
  • the controller 34 includes a timer, and the timer is used to record the resting time of the battery in the resting state.
  • the controller 34 When the resting time exceeds the resting time threshold, and the voltage value is in the storage capacity voltage sensitive range, and the temperature value is in the controllable temperature range, the controller 34 outputs a conduction signal to the switch circuit 33.
  • the switch circuit 33 is turned on according to the turn-on signal, so that the power dissipation circuit 31 is in the on state.
  • the controller 34 When the resting time exceeds the resting time threshold, the voltage value is in the storage capacity voltage sensitive range, and the temperature value exceeds the controllable temperature range, the controller 34 outputs a shutdown signal to the The switch circuit 33 is described.
  • the switch circuit 33 is turned off according to the turn-off signal, so that the power dissipation circuit 34 is switched to the off state.
  • the controller 34 When the resting time exceeds the resting time threshold, and the voltage value is in the storage capacity voltage sensitive range, and the temperature value is in the recovery temperature range, the controller 34 outputs a turn-on signal to the switch circuit 33. Wherein, both the upper limit value and the lower limit value of the recovery temperature interval fall within the controllable temperature interval.
  • the switch circuit 33 is turned on according to the turn-on signal, so that the power dissipation circuit 31 is switched to the on state.
  • the controller 34 can correct the resting time of the battery in the resting state.
  • FIG. 4 is a specific circuit schematic diagram of the battery management system 30 shown in FIG. 3 .
  • the positive pole BAT+ of the battery BAT is electrically connected to the power dissipation circuit 31
  • the negative pole BAT- of the battery BAT is electrically connected to the switch circuit 33 .
  • the power dissipation circuit 31 includes resistors R1-R9.
  • the resistors R1, R4, R7 are connected in parallel with the resistors R2, R5, R8 and the resistors R3, R6, R9.
  • the resistors R1, R4, and R7 are connected in series, the resistors R2, R5, and R8 are connected in series, and the resistors R3, R6, and R9 are connected in series.
  • One end of the power dissipation circuit 31 (such as one end of the resistors R1, R2, R3) is electrically connected to the positive electrode BAT+ of the battery BAT, and the other end of the power dissipation circuit 31 (such as the one end of the resistors R7, R8, R9) is electrically connected to the positive electrode BAT+ of the battery BAT. one end) is electrically connected to the switch circuit 33 .
  • the switch circuit 33 includes a MOS transistor Q1, a diode ZD1 and resistors R10-R11.
  • the drain of the MOS transistor Q1 is electrically connected to the power dissipation circuit 31 (eg, one end of the resistors R7, R8, and R9).
  • the source of the MOS transistor Q1 is electrically connected to the negative electrode BAT- of the battery.
  • the gate of the MOS transistor Q1 is electrically connected to one end of the resistor R10 , one end of the resistor R11 and the cathode of the diode ZD1 .
  • the other end of the resistor R10 and the anode of the diode ZD1 are both electrically connected to the cathode BAT- of the battery BAT and the source of the MOS transistor Q1. Wherein, the resistor R10 is connected in parallel with the diode ZD1. The other end of the resistor R11 is electrically connected to the controller 34 .
  • the temperature detection circuit 32 includes a capacitor C1, a thermistor RT1, and resistors R12-R13.
  • One end of the resistor R12 is electrically connected to a constant voltage source VDD (eg, a 5V voltage source), and the other end of the resistor R12 is electrically connected to one end of the thermistor RT1 and one end of the resistor R13 .
  • the other end of the thermistor RT1 is grounded.
  • the other end of the resistor R13 is electrically connected to one end of the capacitor C1 and the controller 34 .
  • the other end of the capacitor C1 is grounded.
  • the controller 34 at least includes a switch control pin DSG_ON, a temperature detection pin DSG_TEMP and a voltage detection pin DSG_VB.
  • the switch control pin DSG_ON is electrically connected to the switch circuit 33 (eg, one end of the resistor R11 ), and is used to control the on or off of the MOS transistor Q1 .
  • the temperature detection pin DSG_TEMP is electrically connected to the temperature detection circuit 32 (eg, one end of the resistor R13 and one end of the capacitor C1 ), for obtaining the resistance value of the thermistor RT1 .
  • the voltage detection pin DSG_VB is electrically connected to the positive electrode BAT+ of the battery BAT, and is used for acquiring the voltage value output by the battery BAT.
  • the controller 34 can calculate the temperature value of the power dissipation circuit 31 according to the resistance value of the thermistor RT1.
  • the controller 34 further includes a timer, and the timer is used to record the resting duration of the battery BAT in the resting state. If the controller 34 confirms that the voltage value output by the battery BAT is in the storage capacity voltage sensitive range, the resting time of the battery BAT in the resting state exceeds the resting time threshold, and the power dissipation circuit 31 (resistor R1 If the temperature value of -R9) is in the controllable temperature range, a turn-on signal is output to the MOS transistor Q1. The MOS transistor Q1 performs a turn-on action in response to the turn-on signal, and the power dissipation circuit 31 starts to consume power from the battery BAT.
  • the controller 34 confirms that the voltage value output by the battery BAT is in the storage capacity voltage sensitive range, the resting time of the battery BAT in the resting state exceeds the resting time threshold, and the power dissipation circuit 31 (resistor R1 If the temperature value of -R9) is in the controllable temperature
  • the controller 34 can control the MOS transistor Q1 to be turned on or off in a normally-off or pulse width modulation (PWM) manner.
  • PWM pulse width modulation
  • the resistor R11 is used for the current limiting startup of the MOS transistor Q1
  • the resistor R10 is used for the shutdown and discharge of the MOS transistor Q1
  • the diode ZD1 is used to prevent the high voltage string enter.
  • the resistor R13 and the capacitor C1 are connected to form a low-pass filter, and the low-pass filter is used to ensure that the battery storage capacity management system 30 operates at a safe temperature.
  • the battery management system 30 does not limit the types and values of components in the circuit.
  • the power dissipation circuit 31 does not limit the number and value of resistors
  • the switch circuit 33 does not limit the type of switches.
  • the power dissipation circuit 31 is a part of the circuit in the battery management system, and includes at least one of the following: a power resistor, a power diode, and a power triode.
  • the power dissipation circuit 31 includes the battery management system, and the battery management system consumes power from the battery BAT through its internal active devices.
  • the active device is a component powered by the battery BAT, such as an electronic tube, a transistor, an integrated circuit, and the like.
  • a simulation experiment is performed on the battery management system 30 shown in FIG. 4 .
  • the LMO battery with a 3-year life cycle was selected for the simulation experiment, and it was left standing for a long time in winter and summer, respectively, and the ambient temperature data and the storage capacity data of the LMO battery were recorded.
  • the simulation experiment is divided into two groups. In order to ensure the experimental effect, the control variable method is adopted.
  • One group adopts the battery storage capacity management method described in Embodiment 1 for battery storage capacity management, and the other group does not perform storage capacity management on the LMO battery. Referring to FIG. 5 and FIG.
  • the battery storage capacity management method described in Embodiment 1 is used to manage the battery storage capacity.
  • the storage capacity of the LMO battery is increased by 6%.
  • the battery storage capacity management method described in Embodiment 1 is used to manage the battery storage capacity.
  • the storage capacity of the LMO battery is increased by 10%.
  • FIG. 9 is a structural block diagram of a battery management system 30 according to Embodiment 3 of the present application. It should be noted that the difference between the third embodiment and the second embodiment is that the battery management system 30 of the second embodiment consumes the power of the battery BAT through its internal power dissipation circuit 31 . The battery management system 30 of the third embodiment has no power dissipation circuit 31, and consumes power to the battery BAT through an external load 102.
  • the battery management system 30 of the third embodiment includes a processor 91 and a timer 92, the processor 91 is electrically connected to the timer 92, a battery BAT, and a load 102; the load 102 is electrically connected to the
  • the battery BAT is used for power consumption of the battery BAT; the timer 92 is used to record the resting time of the battery BAT in a resting state, and the resting state is that the battery BAT is disconnected to all
  • the state of supplying power to the load 102 is described.
  • the processor 91 is configured to acquire the voltage value output by the battery BAT and the temperature value of the load 102, and control the working state of the load 102 according to the voltage value, the temperature value and the resting time period , the working state includes an open state or a closed state.
  • the processor 91 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the timer 92 may be built in the processor 91 .
  • the processor 91 is further configured to determine a resting time period during which the battery BAT is in a resting state.
  • the processor 91 controls The load 102 is switched to the ON state.
  • the processor 91 controls the load 102 to switch to the off state.
  • the processor 91 controls the The load 102 is switched to the ON state.
  • both the upper limit value and the lower limit value of the recovery temperature interval fall within the controllable temperature interval.
  • the processor 91 is further configured to correct the resting duration of the battery BAT in the resting state recorded by the timer 92 .
  • the battery management system 30 further includes a memory, and the processor 91 can implement the functions of the processor 91 in the above embodiments by invoking a computer program stored in the memory.
  • the memory can be various media that can store computer program codes, such as a U disk, a removable hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • FIG. 10 is a structural block diagram of an electrical device 100 according to Embodiment 4 of the present application.
  • the electrical device 100 includes a battery pack 101 , a load 102 , and the battery management system 30 described in the second or third embodiment.
  • the battery pack 101 is electrically connected to the load 102
  • the battery management system 30 is electrically connected to the battery pack 101 and the load 102 .
  • the battery management system 30 is used to manage the storage capacity of the battery pack 101 .
  • the electrical device 100 may include one of the following: drones, electric vehicles, power tools, and energy storage products.
  • the power tool can be, but is not limited to, an electric screwdriver, an electric drill, an electric wrench, an angle grinder, a steel machine, an electric pick, an electric hammer, a marble machine, a jig saw, and the like.
  • the energy storage product can be, but is not limited to, mobile phone, tablet, e-book reader, computer, workstation, server, personal digital assistant (PDA), portable multimedia player (Portable Multimedia Player, PMP), MPEG-1 audio layer 3 (MP3) players, mobile medical equipment, cameras, wearable devices, photovoltaic inverters, wind power converters, energy storage systems, new energy vehicle drive systems, photovoltaic equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池存储容量管理方法、电池管理系统及用电装置,涉及电池技术领域。本申请的电池存储容量管理方法包括:获取电池输出的电压值和功率耗散电路的温度值,功率耗散电路用于对电池进行功率消耗;确定电池处于静置状态的静置时长;根据电池输出的电压值、功率耗散电路的温度值及电池处于静置状态的静置时长控制功率耗散电路的工作状态,以对电池进行存储容量管理。本申请通过在存储容量电压敏感区间和可控温度区间采用功率耗散电路对电池进行功率消耗,能够有效地管理电池存储容量,减少电池的存储容量损失,延长电池的使用寿命。

Description

电池存储容量管理方法、电池管理系统及用电装置 技术领域
本申请涉及电池技术领域,具体涉及一种电池存储容量管理方法、电池管理系统及用电装置。
背景技术
在电池的生产、销售及使用过程中,经常出现长时间存放搁置的现象。电池在长期静置过程中,特别是在高、低温环境交替变化下,电池的存储容量容易出现永久性损失,从而导致电池的使用寿命缩短。
发明内容
鉴于此,本申请提供一种电池存储容量管理方法、电池管理系统及用电装置,通过在存储容量电压敏感区间和可控温度区间对电池进行功率消耗,能够减少电池的存储容量损失,延长电池的使用寿命。其中,可控温度区间为电池可正常工作的温度区间。存储容量电压敏感区间为电池在长期静置过程中发生不可逆容量损失的电压区间。不可逆容量损失是指损失的容量不可恢复。
本申请实施例一的电池存储容量管理方法包括:获取电池输出的电压值和功率耗散电路的温度值,所述功率耗散电路用于对所述电池进行功率消耗;确定所述电池处于静置状态的静置时长,其中,所述静置状态为所述电池处于断开向负载供电的状态;根据所述电压值、所述温度值及所述静置时长控制所述功率耗散电路的工作状态,以对电池进行存储容量管理,所述工作状态包括开启状态或关闭状态。
本申请的电池存储容量管理方法可以基于本申请提供的电池管理系统来实现。
本申请实施例二的电池管理系统包括功率耗散电路、温度检测电路、开关电路及控制器;所述控制器电连接至所述温度检测电路与所述开关电路的一端,所述开关电路的另一端电连接至所述功率耗散电路;所述功率耗散电路用于对电池进行功率消耗;所述温度检测电路用于获取所述功率耗散电路的温度值;所述控制器用于获取所述电池输出的电压值和所述电池处于静置状态的静置时长,并根据所述电压值、所述温度值及所述静置时长输出信号至所述开关电路,所述静置状态为所述电池处于断开向负载供电的状态;所述开关电路用于根据所述信号导通或关断,以控制所述功率耗散电路的工作状态,所述工作状态包括开启状态或关闭状态。
可选地,所述功率耗散电路包括以下至少之一:功率电阻、功率二极管、功率三极管。所述温度检测电路包括以下至少之一:热电偶、热电阻、热敏电阻。
本申请实施例三的电池管理系统至少包括处理器,所述处理器电连接至一电池与一负载;所述负载电连接至所述电池,用于对所述电池进行功率消耗;所述处理器用于获取所述电池输出的电压值和所述负载的温度值,确定所述电池处于静置状态的静置时长,并根据所述电压值、所述温度值及所述静置时长控制所述负载的工作状态,所述工作状态为开启状态或关闭状态,所述静置状态为所述电池处于断开向所述负载供电的状态。
本申请实施例四的用电装置包括电池包、负载及如实施例二或实施例三所述的电池管理 系统,所述电池包电连接至所述负载,所述电池管理系统电连接至所述电池包和所述负载,所述电池管理系统用于对所述电池包进行存储容量管理。
本申请通过获取电池输出的电压值、功率耗散电路的温度值及电池处于静置状态的静置时长,当电池处于静置状态的静置时长超过静置时间阈值,在存储容量电压敏感区间和可控温度区间采用功率耗散电路对电池进行功率消耗,能够有效地管理电池存储容量,减少电池的存储容量损失,延长电池的使用寿命。
附图说明
图1是实施例一的电池存储容量管理方法的流程图。
图2是图1的具体流程图。
图3是实施例二的电池管理系统的结构框图。
图4是图3的具体电路图。
图5是对图4的电池管理系统进行仿真实验的冬季温度曲线图。
图6是对图4的电池管理系统进行仿真实验的冬季电池存储容量曲线图。
图7是对图4的电池管理系统进行仿真实验的夏季温度曲线图。
图8是对图4的电池管理系统进行仿真实验的夏季电池存储容量曲线图。
图9是实施例三的电池管理系统的结构框图。
图10是实施例四的用电装置的结构框图。
主要元件符号说明
30                      电池管理系统
31                      功率耗散电路
32                      温度检测电路
33                      开关电路
34                      控制器
BAT                     电池
BAT+                    电池BAT的正极
BAT-                    电池BAT的负极
R1-R13                  电阻
Q1                      MOS管
ZD1                     二极管
C1                      电容
RT1                     热敏电阻
VDD                     恒压源
DSG_ON                  开关控制引脚
DSG_TEMP                温度检测引脚
DSG_VB                  电压检测引脚
91                      处理器
92                      定时器
100                     用电装置
101                     电池包
102                     负载
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施例对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。在下面的描述中阐述了很多具体细节以便于充分理解本申请,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。本申请实施例中公开的方法包括用于实现方法的一个或多个步骤或动作。方法步骤和/或动作可以在不脱离权利要求的范围的情况下彼此互换。换句话说,除非指定步骤或动作的特定顺序,否则特定步骤和/或动作的顺序和/或使用可以在不脱离权利要求范围的情况下被修改。
在电池的生产、销售及使用过程中,经常出现长时间存放搁置的现象。电池在长期静置过程中,特别是在高、低温环境交替变化下,电池的存储容量容易出现永久性损失,从而导致电池的使用寿命缩短。目前,锰酸锂(LMO)电池以成本低、安全性和低温性能好而具备广泛应用的前景,但其经过长时间静置后,循环寿命衰减较快,容易发生鼓胀。由于LMO电池高温性能较差、寿命相对短,从而影响了LMO体系的商业化应用。
基于此,本申请提供一种电池存储容量管理方法、电池管理系统及用电装置,通过在存储容量电压敏感区间和可控温度区间对电池进行功率消耗,能够减少电池的存储容量损失,延长电池的使用寿命。
实施例一
参照图1,图1为实施例一提供的电池存储容量管理方法的流程图。所述方法包括如下步骤:
S11,获取电池输出的电压值。
可以理解,在本申请实施例中,可对单节电池进行存储容量的管理,也可以对串并联的电池模块或电池包进行存储容量的管理。
在一些实施例中,可通过任一电压检测电路、芯片、装置、仪器或仪表来测量电池输出的电压值。
S12,采集功率耗散电路的温度值。
所述功率耗散电路用于对所述电池进行功率消耗。可以理解,在本申请实施例中,并不限定所述功率耗散电路的具体形式。例如,所述功率耗散电路为电池管理系统中的部分电路,包括功率电阻、功率二极管或功率三极管等。又例如,所述功率耗散电路是负载中的部分电路,所述负载包括电阻、引擎或灯泡等可消耗功率的元件。
在其中一实施例中,所述功率耗散电路包括电池管理系统,所述电池管理系统通过其内部的有源器件对所述电池进行功率消耗。所述有源器件为利用所述电池进行供电的元器件,例如电子管、晶体管、集成电路等。
当所述功率耗散电路正常工作时,主要通过发热的形式进行功率耗散。若所述功率耗散 电路的散热性能不佳,则其进行功率耗散时会造成内部芯片有源区温度上升及结温升高,使得所述功率耗散电路的可靠性降低,无法安全工作。在实际应用中,可选取散热性能良好的功率耗散电路,比如串并联的电阻模块。
在一些实施例中,可通过热电偶、热电阻、热敏电阻或电阻温度计等来采集所述功率耗散电路的温度值。
S13,确定电池处于静置状态的静置时长。
可以理解,在本申请实施例中,所述静置状态是指所述电池处于断开向负载供电的状态。当所述电池处于静置状态时,所述电池输出的电压值处于一定的电压范围。所述电压范围小于所述电池处于正常工作状态时输出的电压值。
当确定所述电池处于静置状态时,开始记录所述电池的静置时长。可通过定时器记录所述电池处于静置状态的静置时长。
可以理解,若所述定时器的精度较低,则可能导致所述定时器记录的所述电池处于静置状态的静置时长存在误差。
在其中一实施例中,可对所述定时器记录的所述电池处于静置状态的静置时长进行校正。由于所述误差具有一定的数值范围,因此可预设校正系数,通过所述校正系数减小所述误差。所述校正系数为一固定数值,可通过对所述电池的初始静置时长和所述校正系数进行算术运算,以得到校正后的所述电池的静置时长。通过校正电池处于静置状态的静置时长,能够获取精确度更高的电池静置时间数据,从而提高电池存储容量管理的准确性。
S14,根据电池输出的电压值、功率耗散电路的温度值及电池处于静置状态的静置时长控制功率耗散电路的工作状态。
其中,所述工作状态包括开启状态或关闭状态。
在其中一个实施例中,当所述电池处于静置状态的静置时长超过静置时间阈值,且所述电池输出的电压值处于存储容量电压敏感区间,且所述功率耗散电路的温度值处于可控温度区间,则控制所述功率耗散电路处于所述开启状态。其中,所述可控温度区间为所述电池可正常工作的温度区间。所述存储容量电压敏感区间为所述电池在长期静置过程中发生不可逆容量损失的电压区间。
可以理解,在电池长期静置的过程中,电池自放电导致的容量损失分为可逆容量损失和不可逆容量损失。可逆容量损失是指损失的容量能够在充电时恢复,而不可逆容量损失是指损失的容量不可恢复。当所述电池输出的电压值处于所述存储容量电压敏感区间时,所述电池内的容量平衡被破坏,导致所述电池发生不可逆容量损失。当所述电池输出的电压值不处于所述存储容量电压敏感区间时,所述电池发生的容量损失能够在充电时恢复。
当所述功率耗散电路开始工作后,其温度会逐渐上升。当所述温度值超出所述可控温度区间,则控制所述功率耗散电路切换至所述关闭状态,对所述功率耗散电路进行降温处理。当所述功率耗散电路的温度值重新降至所述可控温度区间内,则控制所述功率耗散电路重新切换至所述开启状态。
可以理解,所述温度值超出所述可控温度区间,是指所述温度值大于所述可控温度区间的上限值。
可以理解,在本申请实施例中,并不限定所述功率耗散电路的降温方式。例如,可使功率耗散电路自然降温,也可以对其主动降温。例如,可采用风扇或液冷降温的方式对所述功 率耗散电路进行主动降温。
可以理解,所述静置时间阈值可根据实际应用场景进行预设。
在本申请实施例中,所述存储容量电压敏感区间可取[2.0,4.35]V的电压区间中任一子电压区间,例如,所述存储容量电压敏感区间可为[3.85,3.91]V。所述可控温度区间可取[-40,85]℃的温度区间中任一子温度区间。
在一些实施例中,步骤S14具体包括如下三种情况:
(1)若电池处于静置状态的静置时长超过静置时间阈值,且所述电池输出的电压值处于存储容量电压敏感区间,且所述功率耗散电路的温度值处于可控温度区间,则控制所述功率耗散电路处于开启状态。
可以理解,首先测量电池输出的电压值,当所述电压值处于存储容量电压敏感区间,且功率耗散电路的温度值处于可控温度区间时,则控制所述功率耗散电路处于开启状态,所述功率耗散电路对所述电池进行功率消耗。当所述电压值超出所述存储容量电压敏感区间,或所述功率耗散电路的温度值超出所述可控温度区间时,则控制所述功率耗散电路切换至关闭状态。当所述电池处于静置状态的静置时长未达到静置时间阈值时,则所述电池继续保持静置状态,直至所述静置时长超过所述静置时间阈值。
(2)若电池处于静置状态的静置时长超过静置时间阈值,且所述电池输出的电压值处于存储容量电压敏感区间,且所述电池的功率耗散电路的温度值超出可控温度区间,则根据外部指令控制所述功率耗散电路的工作状态。
当所述电池输出的电压值处于所述存储容量电压敏感区间,且所述功率耗散电路的温度值小于或等于所述可控温度区间的上限值时,则判断是否存在外部指令。若判断存在所述外部指令,则控制所述功率耗散电路切换至所述关闭状态。若判断不存在所述外部指令,则所述功率耗散电路保持所述开启状态。当所述电池输出的电压值处于所述存储容量电压敏感区间,且所述功率耗散电路的温度值超出所述可控温度区间时,则控制所述功率耗散电路切换至所述关闭状态。
其中,所述外部指令包括中断或异常。所述中断由外部事件引起,包括I/O中断、时钟中断或硬件故障。所述异常由内部执行指令引起,包括系统调用、页故障、保护性异常、断点指令或其它程序性异常(如算法溢出等)。例如,所述外部指令为电池调用指令。若接收到所述电池调用指令,则控制所述电池从静置状态转变成工作状态,并控制所述功率耗散电路切换至所述关闭状态。
(3)若电池处于静置状态的静置时长超过静置时间阈值,且所述电池输出的电压值处于存储容量电压敏感区间,且所述电池的功率耗散电路的温度值处于恢复温度区间,则控制所述功率耗散电路处于所述开启状态。
可以理解,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内,即所述恢复温度区间为所述可控温度区间的一子温度区间。例如,当设定所述可控温度区间的上限值为70℃,所述恢复温度区间的上限值可取60℃。
当所述电池输出的电压值处于所述存储容量电压敏感区间,且所述功率耗散电路的温度值处于所述恢复温度区间时,则控制所述功率耗散电路切换至所述开启状态,对所述电池进行功率消耗。当所述功率耗散电路的温度值超出所述恢复温度区间时,则判断是否存在所述外部指令。若判断存在所述外部指令,则控制所述功率耗散电路切换至所述关闭状态。若判 断不存在所述外部指令,则所述功率耗散电路保持所述开启状态。
可以理解,所述温度值超出所述恢复温度区间,是指所述温度值大于所述恢复温度区间的上限值。
在其中一实施例中,当所述电池输出的电压值处于所述存储容量电压敏感区间时,则开始记录所述电池处于静置状态的静置时长。当所述电池输出的电压值不处于所述存储容量电压敏感区间时,则控制所述功率耗散电路切换至所述关闭状态,不必记录所述电池处于静置状态的静置时长。
可以理解,所述电压值不处于所述存储容量电压敏感区间,是指所述电压值大于所述存储容量电压敏感区间的上限值,或者所述电压值小于所述存储容量电压敏感区间的下限值。
参照图2,图2为图1所述电池存储容量管理方法的具体流程图。需要说明的是,上述一些实施例中的具体实施方式也可以相应地适用于本实施例,为节省篇幅及避免重复,在此不再赘述。在本实施例中,所述电池存储容量管理方法包括如下具体步骤:
S201,获取电池输出的电压值。
S202,判断电压值是否处于存储容量电压敏感区间;若电压值处于存储容量电压敏感区间,则执行步骤S203;若否,则执行步骤S209。
S203,确定电池处于静置状态的静置时长。
S204,判断静置时长是否超过静置时间阈值;若静置时长超过静置时间阈值,则执行步骤S205;若否,则执行步骤S203。
S205,控制功率耗散电路处于开启状态。
S206,采集功率耗散电路的温度值。
S207,判断温度值是否超出可控温度区间;若温度值超出可控温度区间,则执行步骤S209;若否,则执行步骤S208。
S208,判断是否存在外部指令;若存在外部指令,则执行步骤S209;若否,则执行步骤S202。
S209,控制功率耗散电路处于关闭状态。
S210,判断温度值是否处于恢复温度区间;若温度值处于恢复温度区间,则执行步骤S205;若否,则执行步骤S208。
本申请实施例一的电池存储容量管理方法,通过在存储容量电压敏感区间和可控温度区间采用功率耗散电路对电池进行功率消耗,能够有效地管理电池存储容量,减少电池的存储容量损失,延长电池的使用寿命。而且,通过记录电池处于静置状态的静置时长,在时间维度上对电池存储容量进行管理,能够提高电池存储容量管理的准确性。
实施例二
参照图3,图3为实施例二提供的电池管理系统30的结构框图。所述电池管理系统30包括功率耗散电路31、温度检测电路32、开关电路33及控制器34。所述控制器34电连接至所述温度检测电路32与所述开关电路33的一端,所述开关电路33的另一端电连接至所述功率耗散电路31。
其中,所述功率耗散电路31用于对电池进行功率消耗。所述功率耗散电路31包括功率电阻、功率二极管或功率三极管等。
所述温度检测电路32用于获取所述功率耗散电路31的温度值。所述温度检测电路32包 括热电偶、热电阻或热敏电阻等。
所述控制器34用于获取所述电池输出的电压值和所述电池处于静置状态的静置时长,并根据所述电压值、所述温度值及所述静置时长输出信号至所述开关电路33,所述静置状态为所述电池处于断开向负载供电的状态。
所述开关电路33用于根据所述信号导通或关断,以控制所述功率耗散电路31的工作状态。具体地,当所述开关电路33导通时,所述功率耗散电路31处于开启状态。当所述开关电路33关断时,所述功率耗散电路31处于关闭状态。
可以理解,所述控制器34提供所述电池管理系统30的主控逻辑。所述控制器34可包括微控制器或处理器。
在其中一实施例中,所述控制器34包括定时器,所述定时器用于记录所述电池处于静置状态的静置时长。
当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于可控温度区间时,则所述控制器34输出导通信号至所述开关电路33。所述开关电路33根据所述导通信号导通,使得所述功率耗散电路31处于所述开启状态。
当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值超出所述可控温度区间时,则所述控制器34输出关断信号至所述开关电路33。所述开关电路33根据所述关断信号关断,使得所述功率耗散电路34切换至所述关闭状态。
当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于恢复温度区间时,则所述控制器34输出导通信号至所述开关电路33。其中,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内。所述开关电路33根据所述导通信号导通,使得所述功率耗散电路31切换至所述开启状态。
在另一实施例中,所述控制器34可对所述电池处于静置状态的静置时长进行校正。
参照图4,图4为图3所述电池管理系统30的具体电路原理图。在本实施例中,所述电池BAT的正极BAT+电连接至所述功率耗散电路31,所述电池BAT的负极BAT-电连接至所述开关电路33。所述功率耗散电路31包括电阻R1-R9。所述电阻R1、R4、R7并联连接于所述电阻R2、R5、R8和所述电阻R3、R6、R9。其中,所述电阻R1、R4、R7串联连接,所述电阻R2、R5、R8串联连接,所述电阻R3、R6、R9串联连接。所述功率耗散电路31的一端(例如电阻R1、R2、R3的一端)电连接至所述电池BAT的正极BAT+,所述功率耗散电路31的另一端(例如电阻R7、R8、R9的一端)电连接至所述开关电路33。
所述开关电路33包括MOS管Q1、二极管ZD1及电阻R10-R11。所述MOS管Q1的漏极电连接至所述功率耗散电路31(例如电阻R7、R8、R9的一端)。所述MOS管Q1的源极电连接至所述电池的负极BAT-。所述MOS管Q1的栅极电连接至所述电阻R10的一端、所述电阻R11的一端及所述二极管ZD1的负极。所述电阻R10的另一端和所述二极管ZD1的正极均电连接至所述电池BAT的负极BAT-及所述MOS管Q1的源极。其中,所述电阻R10与所述二极管ZD1并联连接。所述电阻R11的另一端电连接至所述控制器34。
所述温度检测电路32包括电容C1、热敏电阻RT1、电阻R12-R13。所述电阻R12的一端电连接至恒压源VDD(例如5V电压源),所述电阻R12的另一端电连接至所述热敏电阻RT1的一端和所述电阻R13的一端。所述热敏电阻RT1的另一端接地。所述电阻R13的另一端电连接至所述电容C1的一端和所述控制器34。所述电容C1的另一端接地。
所述控制器34至少包括开关控制引脚DSG_ON、温度检测引脚DSG_TEMP及电压检测引脚DSG_VB。所述开关控制引脚DSG_ON电连接至所述开关电路33(例如电阻R11的一端),用于控制所述MOS管Q1的导通或者关断。所述温度检测引脚DSG_TEMP电连接至所述温度检测电路32(例如电阻R13的一端和电容C1的一端),用于获取所述热敏电阻RT1的阻值。所述电压检测引脚DSG_VB电连接至所述电池BAT的正极BAT+,用于获取所述电池BAT输出的电压值。所述控制器34可根据所述热敏电阻RT1的阻值计算得到所述功率耗散电路31的温度值。
在本实施例中,所述控制器34还包括定时器,所述定时器用于记录所述电池BAT处于静置状态的静置时长。若所述控制器34确认所述电池BAT输出的电压值处于存储容量电压敏感区间、所述电池BAT处于静置状态的静置时长超过静置时间阈值及所述功率耗散电路31(电阻R1-R9)的温度值处于可控温度区间,则输出导通信号至所述MOS管Q1。所述MOS管Q1响应于所述导通信号并执行导通动作,所述功率耗散电路31开始对所述电池BAT进行功率消耗。
在其中一实施例中,所述控制器34可使用常闭或脉宽调制(PWM)的方式控制所述MOS管Q1导通或者关断。在所述开关电路33中,所述电阻R11用于所述MOS管Q1的限流启动,所述电阻R10用于所述MOS管Q1的关断泄放,所述二极管ZD1用于预防高压串入。在所述温度检测电路32中,所述电阻R13和所述电容C1连接构成一低通滤波器,所述低通滤波器用于保证所述电池存储容量管理系统30在安全温度下工作。
可以理解,在本申请实施例中,所述电池管理系统30并不限制电路中各元器件的类型和取值。例如,所述功率耗散电路31并不限制电阻的数量和阻值,所述开关电路33并不限制开关类型。
在其中一实施例中,所述功率耗散电路31为电池管理系统中的部分电路,包括以下至少之一:功率电阻、功率二极管、功率三极管。
在另一实施例中,所述功率耗散电路31包括所述电池管理系统,所述电池管理系统通过其内部的有源器件对所述电池BAT进行功率消耗。所述有源器件为利用所述电池BAT进行供电的元器件,例如电子管、晶体管、集成电路等。
进一步地,对图4所示的电池管理系统30进行仿真实验。仿真实验选用3年生命周期的LMO电池,分别在冬季和夏季进行长期静置,记录环境温度数据和所述LMO电池的存储容量数据。仿真实验分成两组,为保证实验效果,采用控制变量法,一组采用实施例一所述的电池存储容量管理方法进行电池存储容量管理,另一组未对所述LMO电池进行存储容量管理。参照图5和图6,在冬季长期静置所述LMO电池的应用场景下,在静置时长达到270天之后,采用实施例一所述的电池存储容量管理方法进行电池存储容量管理,所述LMO电池的存储容量提升6%。参照图7和图8,在夏季长期静置所述LMO电池的应用场景下,在静置时长达到270天之后,采用实施例一所述的电池存储容量管理方法进行电池存储容量管理,所述LMO电池的存储容量提升10%。
实施例三
参照图9,图9为本申请实施例三提供的电池管理系统30的结构框图。需要说明的是,实施例三与实施例二的区别在于,实施例二的电池管理系统30通过其内部的功率耗散电路31对电池BAT进行功率消耗。实施例三的电池管理系统30内部无功率耗散电路31,通过外 部的负载102对电池BAT进行功率消耗。
实施例三的所述电池管理系统30包括处理器91和定时器92,所述处理器91电连接至所述定时器92、一电池BAT及一负载102;所述负载102电连接至所述电池BAT,用于对所述电池BAT进行功率消耗;所述定时器92用于记录所述电池BAT处于静置状态的静置时长,所述静置状态为所述电池BAT处于断开向所述负载102供电的状态。所述处理器91用于获取所述电池BAT输出的电压值和所述负载102的温度值,并根据所述电压值、所述温度值及所述静置时长控制所述负载102的工作状态,所述工作状态包括开启状态或关闭状态。
所述处理器91可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成模块(Application Specific Integrated Circuit,ASIC)、现场可程序设计门阵列(Field-Programmable Gate Array,FPGA)或者其它可程序设计逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
可以理解,所述定时器92可以内置于所述处理器91。当所述处理器91包括所述定时器92时,所述处理器91还用于确定所述电池BAT处于静置状态的静置时长。
在其中一实施例中,当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于可控温度区间时,则所述处理器91控制所述负载102切换至所述开启状态。
在另一实施例中,当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值超出所述可控温度区间时,则所述处理器91控制所述负载102切换至所述关闭状态。
在另一实施例中,当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于恢复温度区间时,则所述处理器91控制所述负载102切换至所述开启状态。其中,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内。
在一些实施例中,所述处理器91还用于对所述定时器92记录的所述电池BAT处于静置状态的静置时长进行校正。
在其它实施例中,所述电池管理系统30还包括存储器,所述处理器91可通过调用存储在所述存储器中的计算机程序,以实现上述实施方式中所述处理器91的功能。
所述存储器可以是U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储计算机程序代码的介质。
实施例四
参照图10,图10为本申请实施例四提供的用电装置100的结构框图。所述用电装置100包括电池包101、负载102及如实施例二或实施例三所述的电池管理系统30。所述电池包101电连接至所述负载102,所述电池管理系统30电连接至所述电池包101和所述负载102。所述电池管理系统30用于对所述电池包101进行存储容量管理。
在一些实施例中,所述用电装置100可以包括以下之一:无人机、电动车、电动工具、储能产品。
所述电动工具可以是但不限于电动螺丝刀、电钻、电动扳手、角磨机、钢材机、电镐、电锤、云石机、曲线锯等。所述储能产品可以是但不限于手机、平板、电子书阅读器、计算机、工作站、服务器、个人数字助理(PDA)、便携式多媒体播放器(Portable Multimedia Player, PMP)、MPEG-1音频层3(MP3)播放器、移动医疗设备、相机、可穿戴设备、光伏逆变器、风电变流器、储能系统、新能源汽车驱动系统、光伏设备等。
需要说明的是,实施例一中的具体实施方式也可以适用于实施例二至实施例四。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下做出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (19)

  1. 一种电池存储容量管理方法,其特征在于,所述方法包括:
    获取电池输出的电压值和功率耗散电路的温度值,所述功率耗散电路用于对所述电池进行功率消耗;
    确定所述电池处于静置状态的静置时长,其中,所述静置状态为所述电池处于断开向负载供电的状态;
    根据所述电压值、所述温度值及所述静置时长控制所述功率耗散电路的工作状态,以对所述电池进行存储容量管理,所述工作状态包括开启状态或关闭状态。
  2. 如权利要求1所述的电池存储容量管理方法,其特征在于,所述根据所述电压值、所述温度值及所述静置时长控制所述功率耗散电路的工作状态,包括:
    若所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于可控温度区间,则控制所述功率耗散电路处于所述开启状态。
  3. 如权利要求2所述的电池存储容量管理方法,其特征在于,所述根据所述电压值、所述温度值及所述静置时长控制所述功率耗散电路的工作状态,包括:
    若所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值超出所述可控温度区间,则控制所述功率耗散电路处于所述关闭状态。
  4. 如权利要求3所述的电池存储容量管理方法,其特征在于,所述根据所述电压值、所述温度值及所述静置时长控制所述功率耗散电路的工作状态,包括:
    若所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于恢复温度区间,则控制所述功率耗散电路切换为所述开启状态;其中,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内。
  5. 如权利要求1至4任一项所述的电池存储容量管理方法,其特征在于,所述方法在所述记录所述电池处于静置状态的静置时长之后,还包括:
    对所述静置时长进行校正。
  6. 一种电池管理系统,其特征在于,所述电池管理系统包括功率耗散电路、温度检测电路、开关电路及控制器;所述控制器电连接至所述温度检测电路与所述开关电路的一端,所述开关电路的另一端电连接至所述功率耗散电路;
    所述功率耗散电路用于对电池进行功率消耗;
    所述温度检测电路用于获取所述功率耗散电路的温度值;
    所述控制器用于获取所述电池输出的电压值和所述电池处于静置状态的静置时长,并根据所述电压值、所述温度值及所述静置时长输出信号至所述开关电路,所述静置状态为所述电池处于断开向负载供电的状态;
    所述开关电路用于根据所述信号导通或关断,以控制所述功率耗散电路的工作状态,所述工作状态包括开启状态或关闭状态。
  7. 如权利要求6所述的电池管理系统,其特征在于,所述功率耗散电路包括以下至少之一:功率电阻、功率二极管、功率三极管。
  8. 如权利要求6所述的电池管理系统,其特征在于,所述温度检测电路包括以下至少之一:热电偶、热电阻、热敏电阻。
  9. 如权利要求6至8任一项所述的电池管理系统,其特征在于,所述控制器用于:
    对所述静置时长进行校正。
  10. 如权利要求6至8任一项所述的电池管理系统,其特征在于,所述控制器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于可控温度区间时,则输出导通信号至所述开关电路,使得所述开关电路导通,以控制所述功率耗散电路处于所述开启状态。
  11. 如权利要求10所述的电池管理系统,其特征在于,所述控制器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值超出所述可控温度区间时,则输出关断信号至所述开关电路,使得所述开关电路关断,以控制所述功率耗散电路处于所述关闭状态。
  12. 如权利要求11所述的电池管理系统,其特征在于,所述控制器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于恢复温度区间时,则输出导通信号至所述开关电路,使得所述开关电路导通,以控制所述功率耗散电路切换为所述开启状态;其中,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内。
  13. 一种电池管理系统,其特征在于,所述电池管理系统至少包括处理器,所述处理器电连接至一电池与一负载;所述负载电连接至所述电池,用于对所述电池进行功率消耗;
    所述处理器用于获取所述电池输出的电压值和所述负载的温度值,确定所述电池处于静置状态的静置时长,并根据所述电压值、所述温度值及所述静置时长控制所述负载的工作状态,所述工作状态为开启状态或关闭状态,所述静置状态为所述电池处于断开向所述负载供电的状态。
  14. 如权利要求13所述的电池管理系统,其特征在于,所述处理器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于可控温度区间时,则控制所述负载处于所述开启状态。
  15. 如权利要求14所述的电池管理系统,其特征在于,所述处理器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值超出所述可控温度区间时,则控制所述负载处于所述关闭状态。
  16. 如权利要求15所述的电池管理系统,其特征在于,所述处理器用于:
    当所述静置时长超过静置时间阈值,且所述电压值处于存储容量电压敏感区间,且所述温度值处于恢复温度区间时,则控制所述负载切换为所述开启状态;其中,所述恢复温度区间的上限值和下限值均落入所述可控温度区间内。
  17. 如权利要求13至16任一项所述的电池管理系统,其特征在于,所述处理器用于:
    对所述静置时长进行校正。
  18. 一种用电装置,其特征在于,所述用电装置包括电池包、负载及如权利要求6至17任一项所述的电池管理系统,所述电池包电连接至所述负载,所述电池管理系统电连接至所述电池包和所述负载,所述电池管理系统用于对所述电池包进行存储容量管理。
  19. 如权利要求18所述的用电装置,其特征在于,所述用电装置包括以下之一:无人机、电动车、电动工具、储能产品。
PCT/CN2021/072185 2021-01-15 2021-01-15 电池存储容量管理方法、电池管理系统及用电装置 WO2022151358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072185 WO2022151358A1 (zh) 2021-01-15 2021-01-15 电池存储容量管理方法、电池管理系统及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072185 WO2022151358A1 (zh) 2021-01-15 2021-01-15 电池存储容量管理方法、电池管理系统及用电装置

Publications (1)

Publication Number Publication Date
WO2022151358A1 true WO2022151358A1 (zh) 2022-07-21

Family

ID=82446764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072185 WO2022151358A1 (zh) 2021-01-15 2021-01-15 电池存储容量管理方法、电池管理系统及用电装置

Country Status (1)

Country Link
WO (1) WO2022151358A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600375A (zh) * 2023-07-18 2023-08-15 荣耀终端有限公司 电子器件供电电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098727A (zh) * 2015-08-18 2015-11-25 珠海市一微半导体有限公司 电池保护电路及方法
CN205141783U (zh) * 2015-10-21 2016-04-06 金磊 一种新型车载蓄电池用数字化电源
CN205646948U (zh) * 2016-05-31 2016-10-12 深圳市泰迅数码有限公司 一种给无人机电池保护性放电的装置
CN111987776A (zh) * 2020-08-31 2020-11-24 安徽江淮汽车集团股份有限公司 蓄电池的补电控制方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098727A (zh) * 2015-08-18 2015-11-25 珠海市一微半导体有限公司 电池保护电路及方法
CN205141783U (zh) * 2015-10-21 2016-04-06 金磊 一种新型车载蓄电池用数字化电源
CN205646948U (zh) * 2016-05-31 2016-10-12 深圳市泰迅数码有限公司 一种给无人机电池保护性放电的装置
CN111987776A (zh) * 2020-08-31 2020-11-24 安徽江淮汽车集团股份有限公司 蓄电池的补电控制方法、装置、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600375A (zh) * 2023-07-18 2023-08-15 荣耀终端有限公司 电子器件供电电路及电子设备
CN116600375B (zh) * 2023-07-18 2023-10-20 荣耀终端有限公司 电子器件供电电路及电子设备

Similar Documents

Publication Publication Date Title
Yao et al. Modeling of lithium-ion battery using MATLAB/simulink
TWI419390B (zh) 電池裝置之剩餘容量與剩餘使用時間的估算方法
TWI467887B (zh) 電池管理系統、方法及其非瞬態電腦可讀媒體
US9583959B2 (en) Charging apparatus
CN110994734B (zh) 电池充电方法、装置及电子辅助设备
WO2018082288A1 (zh) 一种修复电池的方法及装置
WO2022151358A1 (zh) 电池存储容量管理方法、电池管理系统及用电装置
WO2016188070A1 (zh) 温度控制方法、装置、终端及存储介质
CN103825251A (zh) 光伏逆变器过温输出功率降额的软件控制方法
TW201715816A (zh) 電池管理系統和方法
TWI423557B (zh) 使用可充電電池之電子產品與其電池狀態控制方法
JP2015077028A (ja) 異常判定装置、充放電情報提示装置、二次電池モジュール、異常判定方法、及びプログラム
JP2015056354A (ja) 二次電池システム、制御装置、制御方法及びプログラム
WO2022061517A1 (zh) 电池的保护电路、方法、电池及介质
CN215498296U (zh) 电池管理系统及用电装置
CN209948661U (zh) 大功率芯片的温度检测保护装置
US20180083455A1 (en) Battery performance monitoring
US20230170720A1 (en) Charging Apparatus, Charging Method, and Computer-Readable Storage Medium
CN108306076B (zh) 数据中心电池室空调联动控制方法及系统
TWI740404B (zh) 電池保護充電方法及其系統
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池
JP2023510322A (ja) 二次電池の安全管理装置及び方法
WO2021018233A1 (zh) 充电方法、装置、电子设备和存储介质
CN103683394A (zh) 一种用于蓄电池的充电保护电路
CN107851858A (zh) 电池组以及二次电池的放电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918564

Country of ref document: EP

Kind code of ref document: A1