WO2022151109A1 - 波束失败的检测方法以及装置 - Google Patents

波束失败的检测方法以及装置 Download PDF

Info

Publication number
WO2022151109A1
WO2022151109A1 PCT/CN2021/071617 CN2021071617W WO2022151109A1 WO 2022151109 A1 WO2022151109 A1 WO 2022151109A1 CN 2021071617 W CN2021071617 W CN 2021071617W WO 2022151109 A1 WO2022151109 A1 WO 2022151109A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
specific
medium access
access control
trp
Prior art date
Application number
PCT/CN2021/071617
Other languages
English (en)
French (fr)
Inventor
贾美艺
王昕�
路杨
易粟
Original Assignee
富士通株式会社
贾美艺
王昕�
路杨
易粟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 王昕�, 路杨, 易粟 filed Critical 富士通株式会社
Priority to KR1020237022443A priority Critical patent/KR20230113385A/ko
Priority to EP21918324.1A priority patent/EP4280659A4/en
Priority to CN202180083538.1A priority patent/CN116746192A/zh
Priority to JP2023541095A priority patent/JP7563609B2/ja
Priority to PCT/CN2021/071617 priority patent/WO2022151109A1/zh
Publication of WO2022151109A1 publication Critical patent/WO2022151109A1/zh
Priority to US18/218,700 priority patent/US20230353223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06954Sidelink beam training with support from third instance, e.g. the third instance being a base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the embodiments of the present application relate to the field of communication technologies.
  • the terminal device can perform a beam failure detection (BFD, Beam Failure Detection) process and a beam failure recovery (BFR, Beam Failure Recovery) process.
  • BFD Beam Failure Detection
  • BFR Beam Failure Recovery
  • the Radio Resource Control can be used to configure the beam failure recovery process for the Media Access Control (MAC, Media Access Control) entity.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • MAC Media Access Control
  • SSB Block
  • CSI-RS Channel State Information Reference Signal
  • a new SSB or CSI-RS is indicated to the serving network device (eg gNB).
  • the terminal equipment When a MAC Protocol Data Unit (PDU, Protocol Data Unit) is sent by the terminal device to the network device, and the MAC PDU includes a BFR MAC Control Element (CE) or a truncated (Truncated) BFR MAC that carries the beam failure information of the secondary cell CE, the terminal equipment shall cancel all BFRs triggered by beam failure recovery for the secondary cell before the MAC PDU is assembled.
  • PDU Protocol Data Unit
  • CE BFR MAC Control Element
  • Tx truncated
  • the MAC entity During beam failure recovery, the MAC entity will perform the following operations:
  • the beam failure recovery process determines that at least one BFR has been triggered, and the BFR has not been canceled, the evaluation of its candidate beams has been completed as required:
  • the uplink resource (UL-SCH resource) is available for a new transmission, and the result of the Logical Channel Prioritization (LCP, Logical Channel Prioritization) is that the uplink resource can accommodate the BFR MAC CE plus its subheader, it indicates that the complex Use (Multiplexing) and assembly (Assembly) process to generate BFR MAC CE;
  • the multiplexing and assembly process is instructed to generate the Truncated BFR MAC CE;
  • SR Scheduling Request
  • the beam failure information of the secondary cell can be carried by the BFR MAC CE or the Truncated BFR MAC CE (hereinafter referred to as (Truncated) BFR MAC CE), and sent by the terminal device to the network device.
  • the BFR MAC CE or the Truncated BFR MAC CE hereinafter referred to as (Truncated) BFR MAC CE
  • TRP Transmit Receive Point
  • embodiments of the present application provide a beam failure detection method and apparatus.
  • an apparatus for detecting beam failure including:
  • a receiving unit which is indicated by a medium access control entity receiving a beam failure instance
  • a counting unit that increments the TRP-specific beam failure indication count by one
  • a processing unit which, when the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, determines that a beam failure occurs at the transmission and reception point or triggers beam failure recovery at the transmission and reception point ( BFR) or trigger the beam failure indication of the transmitting and receiving point.
  • a beam failure detection method including:
  • the medium access control (MAC) entity of the terminal device receives the beam failure instance indication
  • the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, it is determined that a beam failure has occurred at the transmission and reception point, or a beam failure recovery (BFR) of the transmission and reception point is triggered or triggered The beam failure indication of the sending and receiving point.
  • BFR beam failure recovery
  • a communication system including:
  • a terminal device whose medium access control (MAC) entity receives the beam failure instance indication; increments the TRP-specific beam failure indication count by 1; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count
  • MAC medium access control
  • the MAC entity of the terminal device receives the beam failure instance indication; increments the TRP-specific beam failure indication count by 1; and when the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure indication count
  • the maximum count of beam failure instances it is determined that a beam failure occurs at the transmission and reception point, or a beam failure recovery (BFR) of the transmission and reception point is triggered, or a beam failure indication of the transmission and reception point is triggered.
  • BFR beam failure recovery
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the BFR MAC CE or Truncated BFR MAC CE of the first format
  • Fig. 3 is a schematic diagram of the BFR MAC CE or Truncated BFR MAC CE of the second format
  • FIG. 4 is a schematic diagram of a multi-TRP scenario according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a beam failure detection method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a BFD or BFR of an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a beam failure detection method according to an embodiment of the present application.
  • 8A is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • 8B is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • FIG. 10 is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • 11A is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • 11B is another schematic diagram of a method for detecting beam failure according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an apparatus for detecting beam failure according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul) node or IAB-DU or IAB-donor.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node such as femeto, pico, etc.
  • IAB Integrated Access and Backhaul node or IAB-DU or IAB-donor.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used. The terms “cell”
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment may be fixed or mobile, and may also be referred to as Mobile Station (MS, Mobile Station), Terminal, Subscriber Station (SS, Subscriber Station), Access Terminal (AT, Access Terminal), IAB-MT, Station (station), etc.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to the side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • equipment may refer to network equipment or terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates a situation in which a terminal device and a network device are used as an example.
  • a communication system 100 may include a network device 101 and a terminal device 102 .
  • FIG. 1 only takes one terminal device and one network device as an example for description, but the embodiment of the present application is not limited to this, for example, there may be multiple terminal devices.
  • Enhanced Mobile Broadband eMBB, enhanced Mobile Broadband
  • Massive Machine Type Communication mMTC, massive Machine Type Communication
  • Ultra-Reliable and Low Latency Communication URLLC, Ultra-Reliable and Low) -Latency Communication
  • the MAC entity of the medium access control (MAC, Media Access Control) layer of the terminal device provides the beam failure instance ( instance) to detect beam failures.
  • the beam failure detection procedure uses the UE variable BFI_COUNTER, which is the counter indicated by the beam failure instance, which is initially set to 0, one BFI_COUNTER per serving cell.
  • BFI_COUNTER the counter indicated by the beam failure instance, which is initially set to 0, one BFI_COUNTER per serving cell.
  • the MAC entity will perform the following operations:
  • BFI_COUNTER is incremented by 1; in the case that BFI_COUNTER is greater than or equal to the maximum count value of beam failure instances beamFailureInstanceMaxCount: if the serving cell is the secondary cell (SCell), trigger a beam failure recovery (BFR, Beam Failure Recovery) of the serving cell, otherwise, initiate a random access procedure on the special cell (SpCell).
  • SCell secondary cell
  • BFR Beam Failure Recovery
  • the beam failure information of the secondary cell can be carried by the BFR MAC CE or Truncated BFR MAC CE, and sent by the terminal device to the network device.
  • Figure 2 is a schematic diagram of a BFR MAC CE or Truncated BFR MAC CE in a first format (referred to as format 1).
  • 3 is a schematic diagram of a BFR MAC CE or Truncated BFR MAC CE in a second format (referred to as format 2).
  • Truncated BFR MAC CE For Truncated BFR MAC CE, if the MAC entity detects beam failure and the evaluation of candidate beams based on demand has been completed, the highest serving cell index ServCellIndex of the secondary cell is less than 8, or a special cell detects beam failure and this special cell will be included in a In the Truncated BFR MAC CE, and the LCP result is that the UL-SCH resource cannot accommodate the Truncated BFR MAC CE of format 2 in Figure 3 plus its subheader, then format 1 in Figure 2 is used; otherwise, format 2 in Figure 3 is used.
  • format 1 and format 2 are defined as follows:
  • the Ci field indicates the beam failure detection of the secondary cell of ServCellIndex i, whether the evaluation of the candidate beam according to the demand is completed, and there may be a byte consisting of the AC field, which indicates whether there is a candidate ( Candidate) RS ID field, Candidate RS ID field is set as the index of SSB or CSI-RS.
  • Setting the Ci field to 1 indicates that the secondary cell of ServCellIndex i has detected a beam failure, has completed the evaluation of candidate beams according to requirements, and has bytes including the AC field.
  • Setting the Ci field to 0 indicates that the secondary cell of ServCellIndex i does not detect a beam failure, or detects a beam failure but the evaluation of the candidate beam according to the demand has not been completed, and there is no byte including the AC field. If present, the bytes including the AC field are present in ascending order based on the ServCellIndex.
  • the Ci field indicates the beam failure detection of the secondary cell of ServCellIndex i, whether the evaluation of the candidate beam according to the demand is completed, and there may be a byte composed of the AC field, which indicates whether there is a candidate in this byte.
  • (Candidate) RS ID field the Candidate RS ID field is set as the index of the SSB or CSI-RS.
  • the Ci field is set to 1 to indicate that the secondary cell of ServCellIndex i has detected a beam failure, the evaluation of the candidate beam according to the demand has been completed, and there may be bytes including the AC field. Setting the Ci field to 0 indicates that the secondary cell of ServCellIndex i does not detect a beam failure, or detects a beam failure but the evaluation of the candidate beam according to the demand has not been completed, and there is no byte including the AC field. If present, the bytes including the AC field appear in ascending order based on the ServCellIndex. The number of bytes including the AC field MAY be 0, up to the size of the available grant.
  • a beam may be replaced by a reference signal (RS), which may be represented by, for example, SSB or CSI-RS.
  • RS reference signal
  • FIG. 4 is a schematic diagram of a multi-TRP scenario according to an embodiment of the present application.
  • the TRP can be part of a network device (eg gNB) that receives signals from end devices, or part of a network device (gNB) that transmits signals to end devices.
  • TRP can also represent a set of downlink control information (DCI, Downlink Control Information) or a set of reference signals, and so on.
  • DCI Downlink Control Information
  • terminal equipment can have panel 1 (pannel-1) and panel 2 (pannel-2); a serving cell can schedule terminal equipment from 2 TRPs to provide better Physical Downlink Share Channel (PDSCH, Physical Downlink Share Channel) coverage, reliability and/or data rate.
  • PDSCH Physical Downlink Share Channel
  • single DCI For multi-TRP operation, there are 2 different modes of operation: single DCI and multiple DCI. For these two modes, the control of upstream and downstream operations is performed by the physical layer and medium access control (MAC). In single DCI mode, terminal equipment is scheduled by the same DCI by two TRPs; in multi-DCI mode, terminal equipment is scheduled by a separate DCI for each TRP.
  • MAC medium access control
  • the physical layer will not indicate the beam failure instance to the MAC layer, and will not trigger the beam failure detection process of the MAC layer.
  • the beam failure detection at the cell level and the TRP level are not distinguished, resources may be wasted.
  • the physical layer indicates a beam failure instance to the MAC layer; the terminal device and the network device believe that a cell-level beam failure has occurred, and may perform a cell handover process without fully utilizing the cell that does not occur on the cell.
  • Another TRP that fails, resulting in low resource utilization.
  • the terminal device may not trigger BFR, but may trigger random access (RA, Random Access). In this case, the random access is unnecessary, thereby causing waste of random access resources and longer service interruption.
  • RA Random Access
  • the embodiments of the present application will be further described below.
  • the embodiments of this application are described from the MAC layer of the terminal device, which is implemented by the MAC entity; wherein the MAC entity includes a beam failure detection process, a beam failure recovery process, and a multiplexing and assembling entity (hereinafter also referred to as a multiplexing and assembling process), etc.
  • the lower layers of the embodiments of the present application are, for example, a physical layer, an antenna unit, a measurement process, and the like.
  • cell-specific may be understood as cell level or all beams, with cell as granularity; TRP-specific (TRP-specific) may be understood as TRP level or partial beams, with TRP as granularity.
  • the cell-specific MAC CE may be the BFR MAC CE of Rel-15/Rel-16 or the truncated BFR MAC CE of Rel-15/Rel-16, etc.
  • beam failure detected is interchangeable with "beam failure recovery triggered” or "beam failure indication triggered”.
  • This embodiment of the present application provides a beam failure detection method, which is described from a terminal device.
  • FIG. 5 is a schematic diagram of a beam failure detection method according to an embodiment of the present application. As shown in FIG. 5 , the method includes:
  • a medium access control (MAC) entity of a terminal device receives a beam failure instance indication
  • the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, determine to detect that a beam failure occurs at the transmitting and receiving point or trigger a beam failure recovery (BFR) at the transmitting and receiving point Or trigger the beam failure indication of the sending and receiving point.
  • BFR beam failure recovery
  • FIG. 5 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of each operation can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 5 .
  • FIG. 6 is a schematic diagram of beam failure detection (BFD) or beam failure recovery (BFR) according to an embodiment of the present application.
  • the network equipment provides services for the terminal equipment through TRP-1 and TRP-2.
  • the link 1 (link-1) between the TRP-1 and the terminal device works normally, but the link 2 (link-2) between the TRP-2 and the terminal device is blocked.
  • the terminal device may configure TRP-level BFD or trigger TRP-level BFR. In this way, not only the beam failure detection at the TRP level can be triggered when only part of the beam fails, but also the beam failure detection at the cell level or the TRP level can be distinguished, thereby avoiding waste of resources.
  • FIG. 7 is another schematic diagram of a method for detecting a beam failure according to an embodiment of the present application, which schematically shows an operation of a MAC entity of a terminal device for a TRP configured with beam failure detection.
  • the operations of the MAC entity include:
  • Beam Failure Instance Indication Beam Failure Indication
  • a beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP transmit-receive point
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum count of beam failure instances for example, beamFailureInstanceMaxCount-perTRP
  • the TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • the TRP-specific maximum count of beam failure instances for example, beamFailureInstanceMaxCount-perTRP
  • the operations of the MAC entity also include:
  • TRP-specific beam failure detection timer eg beamFailureDetectionTimer-perTRP
  • TRP-specific beam failure indication counts are also reset or set to 0 in one or any combination of the following:
  • TRP-specific beam failure detection timer TRP-specific beam failure instance maximum count
  • BFR beam failure recovery
  • TRP on a cell is reconfigured, including a control resource pool associated with a control resource is reconfigured, or the TRP index is reconfigured.
  • FIG. 7 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 7 .
  • the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE.
  • the content of generating the MAC CE reference may also be made to the embodiments of the third aspect described later.
  • the MAC entity of the terminal device determines whether the evaluation of the candidate beam is completed only when the candidate beam is configured.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if a candidate beam list is configured, And the evaluation of at least one reference signal in the candidate beam list has been completed, and the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate the TRP-specific beam failure recovery MAC CE or TRP-specific beam failure MAC. CE.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, if a candidate beam is configured and the evaluation of the candidate beam has been Finish,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if no candidate beam list is configured.
  • the MAC entity of the terminal device does not judge whether the evaluation of the candidate beam is completed.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the TRP is configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters; Recovery parameters, and/or, for each TRP configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will determine whether to instruct to generate a MAC CE or trigger a scheduling request (SR).
  • SR scheduling request
  • the MAC entity For example, for each TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity performs the following operations:
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and the evaluation of the candidate beam has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the TRP is configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters; Recovery parameters, and/or, for each TRP configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will perform beam failure detection to trigger BFR.
  • the MAC entity receives the beam failure instance indication; starts or restarts the TRP-specific beam failure detection timer; counts the TRP-specific beam failure indications plus 1; and in the case that the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, determine to detect that a beam failure occurs at the transmission and reception point or trigger beam failure recovery at the transmission and reception point ( BFR) or trigger the beam failure indication of the transmitting and receiving point.
  • BFR transmission and reception point
  • the MAC entity of the terminal device triggers at least one beam failure recovery, if no candidate beam is configured, it is determined that the evaluation of the candidate beam has been completed.
  • the physical layer of the terminal device determines that the evaluation of the candidate beam has been completed without configuring the candidate beam when receiving the request from the higher layer.
  • the candidate reference signal is configured. For example, if a reference signal for beam failure detection is configured, a candidate reference signal must be configured.
  • some or all serving cells in the MAC entity of the terminal device are configured with TRP-specific beam failure detection, and/or, special cells in the MAC entity of the terminal device are configured with TRP-specific beam failure detection.
  • cell-level beam failure detection not configured includes: all serving cells configured in this MAC entity are not configured with Rel-15/16 beam failure detection, or, special cells in this MAC entity are not configured with Rel-15/16 Beam failure detection.
  • all serving cells configured in the MAC entity are not configured with beam failure detection, or RadioLinkMonitoringConfig is not configured, or the parameters of beam failure detection are not configured/included in RadioLinkMonitoringConfig.
  • the special cell in the MAC entity is not configured with beam failure detection, or RadioLinkMonitoringConfig is not configured, or the parameters of beam failure detection are not configured/included in RadioLinkMonitoringConfig.
  • Unconfigured cell-level beam failure recovery includes: all serving cells configured in this MAC entity are not configured with Rel-15/16 beam failure recovery, or, special cells in this MAC entity are not configured with Rel-15/16 Beam failure recovery.
  • all serving cells configured in the MAC entity are not configured with beam failure recovery, or BeamFailureRecoverySCellConfig is not configured, or BeamFailureRecoverySCellConfig is not configured/does not include the parameters of the beam failure recovery process of the secondary cell (for example, candidateBeamRSSCellList).
  • the special cell in the MAC entity is not configured with beam failure recovery, or BeamFailureRecoveryConfig is not configured, or BeamFailureRecoveryConfig is not configured/not included in the parameters of the beam failure recovery process of the secondary cell (for example, candidateBeamRSList).
  • the MAC entity of the terminal device determines whether the transmission and reception point belongs to a secondary cell; in the case that the transmission and reception point belongs to a secondary cell, it is determined to detect that a beam failure occurs at the transmission and reception point or to trigger the transmission and reception point. The beam failure of the transmitting and receiving point is recovered or the beam failure indication of the transmitting and receiving point is triggered.
  • the MAC entity of the terminal device determines whether all TRPs configured with TRP-specific beam failure detection are triggered beam failure recovery; all TRPs configured with TRP-specific beam failure detection are triggered beam failure recovery In the case of , the MAC entity of the terminal device initiates the random access procedure in the special cell.
  • FIG. 8A is another schematic diagram of a beam failure detection method according to an embodiment of the present application, which schematically shows an operation of a MAC entity of a terminal device for a TRP configured with beam failure detection.
  • the operations of the MAC entity include:
  • Beam Failure Instance Indication Beam Failure Indication
  • a beam failure detection timer eg beamFailureDetectionTimer-perTRP specific to the transmit receive point (TRP);
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum beam failure instance count for example, beamFailureInstanceMaxCount-perTRP
  • BFI_COUNTER-perTRP the TRP-specific beam failure indication count
  • a beam failure of the TRP is detected, or a beam failure recovery (BFR) of the TRP is triggered, or a beam failure indication of the TRP is triggered.
  • BFR beam failure recovery
  • the operations of the MAC entity further include:
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • the operations of the MAC entity further include:
  • FIG. 8A only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of FIG. 8A above.
  • the beam failure indication counter-related TRP-specific/perTRP UE variable eg, BFI_COUNTER-perTRP
  • TRP belongs to a secondary cell, or if the TRP belongs to a special cell and another TRP of this cell has not yet triggered a BFR, then trigger a BFR for this TRP,
  • all serving cells in the MAC entity of the terminal device are not configured with cell-specific beam failure detection, or a special cell in the MAC entity of the terminal device is not configured with cell-specific beam failure detection.
  • the MAC entity of the terminal device initiates a random access procedure in the special cell.
  • the Fallback mechanism includes: when multiple TRPs all detect a TRP-specific beam failure or trigger the TRP-specific beam failure recovery, a random entry process is initiated on the special cell.
  • the multiple TRPs include: all TRPs configured with TRP-specific beam detection in all serving cells configured in one MAC entity, or all TRPs configured with TRP-specific beam detection in special cells in one MAC entity.
  • the multiple TRPs include: all TRPs configured with TRP-specific beam failure detection in all serving cells in one MAC entity, or all TRP-specific TRPs configured with TRP-specific beam failure detection in all special cells in one MAC entity TRP for beam failure detection.
  • FIG. 8B is another schematic diagram of the beam failure detection method according to the embodiment of the present application, which schematically shows the operation of the MAC entity of the terminal device for the TRP configured with beam failure detection.
  • the operations of the MAC entity include:
  • Beam Failure Instance Indication Beam Failure Indication
  • a beam failure detection timer eg beamFailureDetectionTimer-perTRP specific to the transmit and receive point (TRP);
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum beam failure instance count for example, beamFailureInstanceMaxCount-perTRP
  • BFI_COUNTER-perTRP the TRP-specific beam failure indication count
  • the multiple TRPs include: all TRPs configured with TRP-specific beam failure detection in all serving cells in the MAC entity, or all TRPs configured with TRP-specific beam failure detection in special cells in the MAC entity.
  • a beam failure of the TRP is detected, or a beam failure recovery (BFR) of the TRP is triggered, or a beam failure indication of the TRP is triggered.
  • BFR beam failure recovery
  • the operations of the MAC entity further include:
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • the operations of the MAC entity further include:
  • FIG. 8B only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description in the above-mentioned FIG. 8B .
  • the terminal device will trigger BFR; only if beam failure is detected on all TRPs in the special cell (with TRP-specific beam failure detection configured), will random access be triggered.
  • Access Random Access
  • Unnecessary random access can be avoided, thereby avoiding waste of random access resources and longer service interruption.
  • the cell-specific BFD on the special cell must be configured, the cell-specific BFD on the belonging cell must be configured, or the cell-specific BFD on at least one cell must be configured.
  • the fallback mechanism described above is required.
  • the terminal device may perform one or any combination of the following operations:
  • the terminal device sends a MAC PDU, and the MAC PDU includes a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE, the terminal device cancels the MAC PDU assembly, all Beam failure recovery for the TRP trigger;
  • the terminal device sends a MAC PDU, and the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE, and the MAC CE includes beam failure information of a cell
  • the terminal The MAC entity of the device cancels the recovery of all beam failures triggered by all TRPs included in the cell before the MAC PDU is assembled;
  • a PDCCH addressed by the C-RNTI indicates receipt of a newly transmitted uplink grant for a HARQ process including the transmission of a TRP-specific beam failure recovery MAC CE or TRP-specific beam failure MAC CE transmission
  • the terminal equipment The MAC entity cancels all beam failure recovery triggered for the TRP;
  • a PDCCH addressed by the C-RNTI indicates that a newly transmitted uplink grant for a HARQ process for transmission of a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE including beam failure information for a cell has been received.
  • the MAC entity of the terminal device cancels all beam failure recovery triggered by all TRPs included in the cell.
  • the terminal device triggers a scheduling request (SR) for TRP-specific beam failure recovery or TRP-specific beam failure for TRPs that have triggered BFR and have not cancelled.
  • SR scheduling request
  • the scheduling request configures one or a set of SR IDs.
  • SchedulingRequestId (0...7); the present application is not limited thereto.
  • the configuration value of the SR ID of the TRP-specific beam failure recovery (for example, SchedulingRequestId) is the same as the configuration value of the cell-specific beam failure recovery SR ID, or the TRP-specific beam failure recovery SR ID
  • the configuration value is different from the configuration value of the SR ID for cell-specific beam failure recovery.
  • the configuration of the SR may be included in IE MAC-CellGroupConfig or in IE CellGroupConfig.
  • configure a set of SR IDs including in IE MAC-CellGroupConfig. As shown in Tables 3 and 4:
  • Another example configure a group of SR IDs, including in IE CellGroupConfig. As shown in Tables 7 and 8:
  • the configuration values of the TRP-specific beam failure recovery SR ID and the control resource pool index are the same as the cell-specific beam failure recovery SR ID configuration values, or, the The configuration values of the TRP-specific beam failure recovery SR ID and control resource pool index are different from the cell-specific beam failure recovery SR ID configuration values.
  • Another example configure an SR ID, which is included in IE CellGroupConfig. As shown in Tables 12 to 14:
  • the MAC entity of the terminal device when the MAC entity of the terminal device has an SR pending for a TRP-specific BFR, and at the time of SR transmission, the MAC entity has one or more PUCCH resources that overlap with the PUCCH resources of the TRP-specific BFR , the MAC entity determines (consides) that the PUCCH resource of the TRP-specific BFR is valid.
  • the MAC entity of the terminal device when the MAC entity of the terminal device has an SR pending for the secondary cell/TRP-specific BFR, and for the SR transmission time, the MAC entity has one or more SRs related to the secondary cell/TRP-specific BFR.
  • the MAC entity determines (consides) that the PUCCH resources of the BFR specific to the secondary cell/TRP are valid.
  • the MAC entity only considers the PUCCH resource of the BFR specific to the secondary cell/TRP to be valid.
  • the MAC entity has SR pending for the secondary cell BFR and SR pending for the TRP-specific BFR, and for the SR transmission time, the MAC entity has one or more PUCCH resources related to the secondary cell BFR and TRP-specific BFR PUCCH resources When overlapping, which PUCCH resource is available depends on the implementation of the terminal device.
  • a MAC PDU is sent at the terminal device, and the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE, the beam failure recovery MAC CE or a truncated beam failure recovery MAC CE
  • the MAC CE includes beam failure information of a cell
  • the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the cell, and stops the respective prohibition timers; for example, sr-ProhibitTimer.
  • the terminal device when the terminal device sends a MAC PDU, and the MAC PDU includes a MAC CE, and the MAC CE includes beam failure information of a TRP, the MAC entity of the terminal device is canceled as the The pending SR is triggered by the BFR of the TRP and stops the respective prohibit timer; eg sr-ProhibitTimer.
  • the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the secondary cell.
  • the MAC entity of the end device cancels the triggered pending SR if all TRP-specific BFRs that triggered the SR are canceled.
  • the MAC entity of the terminal device cancels the pending SR.
  • an uplink grant other than an uplink grant provided by a random access response (RAR, Random Access Response) or an uplink grant determined according to the transmission of the message A payload (MSGA payload) is used in one MAC PDU.
  • RAR Random Access Response
  • MSGA payload an uplink grant determined according to the transmission of the message A payload
  • the MAC entity of the terminal device receives the beam failure instance indication; adds 1 to the TRP-specific beam failure indication count; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count.
  • a beam failure occurs at the transmitting and receiving point, or a beam failure recovery (BFR) of the transmitting and receiving point is triggered, or a beam failure indication of the transmitting and receiving point is triggered.
  • BFR beam failure recovery
  • This embodiment of the present application provides a beam failure detection method, which is described from a terminal device.
  • the embodiment of the second aspect combines the TRP-specific beam failure detection and the cell-specific beam failure detection, and the same content as the embodiment of the first aspect will not be repeated.
  • the MAC entity of the terminal device determines whether the beam failure instance indication is cell-specific or cell-level; and activates or restarts the transmit-receive point if the beam-failure instance indication is not cell-specific or cell-level (TRP) A specific beam failure detection timer.
  • the MAC entity of the terminal device determines whether the beam failure instance indication is TRP specific or TRP level; and if the beam failure instance indication is TRP specific or TRP level, activates or restarts the transmit-receive point (TRP) A specific beam failure detection timer.
  • FIG. 9 is another schematic diagram of a beam failure detection method according to an embodiment of the present application, which schematically shows the operation of a MAC entity of a terminal device.
  • the operations of the MAC entity include:
  • a beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP transmitting and receiving point
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum count of beam failure instances for example, beamFailureInstanceMaxCount-perTRP
  • the TRP-specific beam failure indication count (for example, BFI_COUNTER-perTRP) is greater than or equal to the TRP-specific maximum count of beam failure instances (for example, beamFailureInstanceMaxCount-perTRP)
  • BFR beam failure recovery
  • the operations of the MAC entity also include:
  • TRP-specific beam failure detection timer eg beamFailureDetectionTimer-perTRP
  • FIG. 9 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 9 .
  • FIG. 10 is another schematic diagram of a beam failure detection method according to an embodiment of the present application, which schematically shows an operation of a MAC entity of a terminal device.
  • the operations of the MAC entity include:
  • a cell-specific beam failure detection timer eg beamFailureDetectionTimer-perCell or beamFailureDetectionTimer
  • Increment the cell-specific beam failure indication count for example, BFI_COUNTER-perCell or BFI_COUNTER
  • the cell-specific beam failure detection timer for example, beamFailureDetectionTimer-perCell or beamFailureDetectionTimer
  • the cell-specific beam failure indication count for example, BFI_COUNTER-perCell or BFI_COUNTER
  • the cell-specific maximum count of beam failure instances for example, beamFailureInstanceMaxCount-perCell or beamFailureInstanceMaxCount
  • the cell-specific beam failure indication count for example, BFI_COUNTER-perCell or BFI_COUNTER
  • the cell-specific maximum count of beam failure instances for example, beamFailureInstanceMaxCount-perCell or beamFailureInstanceMaxCount
  • the operations of the MAC entity also include:
  • a cell-specific beam failure detection timer eg beamFailureDetectionTimer-perCell or beamFailureDetectionTimer
  • reset the cell-specific beam failure indication count for example, BFI_COUNTER-perCell or BFI_COUNTER
  • reset the cell-specific beam failure indication count for example, BFI_COUNTER-perCell or BFI_COUNTER.
  • BFI_COUNTER-perCell or BFI_COUNTER is set to 0.
  • FIG. 10 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 10 .
  • FIG. 11A is another schematic diagram of a beam failure detection method according to an embodiment of the present application, which schematically shows an operation of a MAC entity of a terminal device.
  • the operations of the MAC entity include:
  • Beam Failure Instance Indication Beam Failure Indication
  • a beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP transmit-receive point
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-per TRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum beam failure instance count for example, beamFailureInstanceMaxCount-perTRP
  • BFI_COUNTER-perTRP the TRP-specific beam failure indication count
  • 1106A determine whether the TRP belongs to a secondary cell (SCell); and execute 1107A when the TRP belongs to a secondary cell (SCell), and execute 1110A when the TRP does not belong to a secondary cell (SCell);
  • the operations of the MAC entity also include:
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • the operations of the MAC entity also include:
  • 1110A Determine whether all TRPs configured with TRP-specific beam failure detection are triggered for beam failure recovery; if all TRPs configured with TRP-specific beam failure detection are triggered beam failure recovery, execute 1111A, otherwise execute 1107A;
  • FIG. 11A only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 11A .
  • FIG. 11B is another schematic diagram of a beam failure detection method according to an embodiment of the present application, which schematically shows an operation of a MAC entity of a terminal device.
  • the operations of the MAC entity include:
  • Beam Failure Instance Indication Beam Failure Instance Indication
  • a beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • TRP transmit-receive point
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-per TRP
  • TRP-specific beam failure indication count for example, BFI_COUNTER-perTRP
  • TRP-specific maximum beam failure instance count for example, beamFailureInstanceMaxCount-perTRP
  • BFI_COUNTER-perTRP the TRP-specific beam failure indication count
  • 1106B determine whether multiple TRPs all detect TRP-specific beam failures or trigger TRP-specific BFRs; and if no, perform 1107B, and if yes, perform 1110B;
  • the multiple TRPs include: all TRPs configured with TRP-specific beam failure detection in all serving cells in the MAC entity, or all TRPs configured with TRP-specific beam failure detection in special cells in the MAC entity.
  • the operations of the MAC entity also include:
  • TRP-specific beam failure detection timer for example, beamFailureDetectionTimer-perTRP
  • the operations of the MAC entity also include:
  • FIG. 11B only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 11B .
  • cell-specific BFD on a special cell must be configured, or cell-specific BFD on the owning cell must be configured, or cell-specific BFD on at least one cell must be configured.
  • the MAC entity of the terminal device receives the beam failure instance indication; adds 1 to the TRP-specific beam failure indication count; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count.
  • a beam failure occurs at the transmitting and receiving point, or a beam failure recovery (BFR) of the transmitting and receiving point is triggered, or a beam failure indication of the transmitting and receiving point is triggered.
  • BFR beam failure recovery
  • the embodiments of the third aspect may be implemented independently, or may be combined with the embodiments of the first aspect and the second aspect; in addition, the embodiments of the third aspect may be applied to TRP-specific BFR/BFD or cell-specific BFR/BFD.
  • BFD eg Rel-16BFR/BFD.
  • the medium access control (MAC) entity of the terminal device detects a beam failure at a transmit/receive point or cell or triggers beam failure recovery (BFR) for the transmit/receive point or cell or triggers the transmit/receive point or cell a beam failure indication of the cell; and the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate a beam failure recovery MAC CE or a beam failure MAC CE.
  • BFR beam failure recovery
  • the MAC entity of the terminal device determines whether the evaluation of the candidate beam is completed only when the candidate beam is configured. For example, only when candidate beams are configured and the MAC entity instructs to generate (Truncated) a BFR MAC CE, it will consider whether the subsequent beam evaluation is completed.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, if a candidate beam list is configured and The evaluation of at least one reference signal in the candidate beam list has been completed, and the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate the beam failure recovery MAC CE or beam failure MAC CE.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, if a candidate beam is configured and the evaluation of the candidate beam has been Finish,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if no candidate beam is configured, the The MAC entity of the terminal device does not judge whether the evaluation of the candidate beam is completed.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates the multiplexing and The assembly entity generates a truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity of the terminal device determines that the evaluation of the candidate beam has been completed if the candidate beam is not configured in the case that at least one beam failure recovery is triggered.
  • the physical layer of the terminal device determines that the evaluation of the candidate beam has been completed without configuring the candidate beam when receiving the request from the higher layer.
  • the candidate reference signal is configured. For example, if a reference signal for beam failure detection is configured, a candidate reference signal must be configured.
  • the MAC entity will determine whether to indicate Generate MAC CE or trigger SR.
  • the MAC entity For example: for each cell/TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will:
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and the evaluation of the candidate beam has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity will perform beam failure detection to trigger BFR.
  • the MAC entity For each serving cell configured with beam failure detection (or configured with beam failure detection parameters), and/or configured with beam failure recovery (or configured with beam failure recovery parameters), the MAC entity will:
  • the serving cell is a secondary cell (SCell)
  • SCell secondary cell
  • the MAC entity For each serving cell configured with beam failure detection (or configured with beam failure detection parameters), and/or configured with beam failure recovery (or configured with beam failure recovery parameters), the MAC entity will:
  • TRP belongs to a secondary cell (SCell), or other TRPs in the serving cell configured with TRP-specific beam failure detection have not all triggered BFR, trigger a BFR of the TRP;
  • the operations of the MAC entity are schematically described above, and the embodiments of the present application are not limited thereto.
  • the above beam failure recovery parameters can be replaced with specific parameters, such as one or more of the following parameters:
  • the embodiment of the present application provides an apparatus for detecting beam failure.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured in the terminal device, and the same contents as those of the embodiments in the first to third aspects will not be repeated.
  • FIG. 12 is a schematic diagram of a beam failure detection apparatus according to an embodiment of the present application. As shown in FIG. 12 , the beam failure detection apparatus 1200 includes:
  • a receiving unit 1201 which receives a beam failure instance indication by a medium access control (MAC) entity;
  • MAC medium access control
  • a counting unit 1202 that increments the TRP-specific beam failure indication count by one
  • a processing unit 1203, which, when the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, determines that a beam failure occurs at the transmission and reception point or triggers beam failure recovery at the transmission and reception point (BFR) or trigger the beam failure indication of the transmit/receive point.
  • the beam failure detection apparatus 1200 further includes:
  • a starting unit 1204 which starts or restarts a beam failure detection timer specific to a Transmit Receive Point (TRP) when the medium access control entity receives the beam failure instance indication;
  • TRP Transmit Receive Point
  • the TRP-specific beam failure indication count is reset or the TRP-specific beam failure indication count is set to 0.
  • the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE.
  • the MAC entity of the terminal device determines whether the evaluation of the candidate beam is completed only when the candidate beam is configured.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if a candidate beam list is configured, And the evaluation of at least one reference signal in the candidate beam list has been completed, and the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate the TRP-specific beam failure recovery MAC CE or TRP-specific beam failure MAC. CE.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if a candidate beam is configured and the evaluation of said candidate beam Has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if no candidate beam list is configured.
  • the MAC entity of the terminal device does not judge whether the evaluation of the candidate beam is completed.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity of the terminal device determines that the evaluation of the candidate beam has been completed if the candidate beam is not configured in the case that at least one beam failure recovery is triggered.
  • the physical layer of the terminal device determines that the evaluation of the candidate beam has been completed without configuring the candidate beam when receiving the request from the higher layer.
  • the candidate reference signal is configured.
  • some or all serving cells in the MAC entity of the terminal device are configured with TRP-specific beam failure detection, and/or, special cells in the MAC entity of the terminal device are configured with TRP-specific beam failure detection.
  • all serving cells in the MAC entity of the terminal device are not configured with cell-specific beam failure detection, or a special cell in the MAC entity of the terminal device is not configured with cell-specific beam failure detection.
  • the MAC entity of the terminal device initiates a random access procedure in the special cell.
  • the multiple TRPs include: all TRPs configured with TRP-specific beam failure detection in all serving cells in one MAC entity, or all TRPs configured with TRP-specific beam failure detection in special cells in one MAC entity.
  • the MAC entity of the terminal device determines whether the transmission and reception point belongs to the secondary cell
  • the transmission and reception point belongs to a secondary cell, it is determined that a beam failure of the transmission and reception point is detected, or a beam failure recovery of the transmission and reception point is triggered, or a beam failure indication of the transmission and reception point is triggered.
  • the MAC entity of the terminal device determines whether all TRPs configured with TRP-specific beam failure detection are triggered beam failure recovery; all TRPs configured with TRP-specific beam failure detection are triggered beam failure recovery In the case of , the MAC entity of the terminal device initiates the random access procedure in the special cell.
  • the terminal device performs one or any combination of the following operations:
  • the terminal device sends a MAC PDU, and the MAC PDU includes a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE, the terminal device cancels the MAC PDU assembly, all Beam failure recovery for the TRP trigger;
  • the terminal device sends a MAC PDU
  • the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE
  • the MAC CE includes beam failure information of a cell
  • the The MAC entity of the terminal device cancels the recovery of all beam failures triggered by all TRPs included in the cell before the MAC PDU is assembled;
  • a PDCCH addressed by the C-RNTI indicates receipt of a newly transmitted uplink grant for a HARQ process including the transmission of a TRP-specific beam failure recovery MAC CE or TRP-specific beam failure MAC CE transmission
  • the The MAC entity of the terminal device cancels all beam failure recovery triggered for the TRP;
  • the MAC entity of the terminal device cancels all beam failure recovery triggered by all TRPs included in the cell.
  • the terminal device triggers a scheduling request (SR) for TRP-specific beam failure recovery or TRP-specific beam failure for TRPs that have triggered BFR and have not cancelled.
  • SR scheduling request
  • the scheduling request configures one or a set of SR IDs.
  • the configuration value of the SR ID of the TRP-specific beam failure recovery is the same as the configuration value of the SR ID of the cell-specific beam failure recovery, or, the configuration of the TRP-specific beam failure recovery SR ID The value is different from the configured value of the SR ID for cell-specific beam failure recovery.
  • the configuration values of the TRP-specific beam failure recovery SR ID and the control resource pool index are the same as the cell-specific beam failure recovery SR ID configuration values, or the TRP-specific beam failure recovery The configuration values of the SR ID and control resource pool index are different from the configuration values of the SR ID for cell-specific beam failure recovery.
  • the MAC entity of the terminal device when the MAC entity of the terminal device has an SR pending for a TRP-specific BFR, and at the time of SR transmission, the MAC entity has one or more PUCCH resources that overlap with the TRP-specific BFR's PUCCH resources.
  • the MAC entity determines (consides) that the PUCCH resource of the TRP-specific BFR is valid; or
  • the MAC entity of the terminal device When the MAC entity of the terminal device has an SR pending for the secondary cell/TRP-specific BFR, and for the SR transmission time, the MAC entity has one or more PUCCH resources overlapping with the secondary cell/TRP-specific BFR. When the PUCCH resource is used, the MAC entity determines (consides) that the PUCCH resource of the BFR specific to the secondary cell/TRP is valid.
  • the terminal device sends a MAC PDU, and the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE, and the beam failure recovery MAC CE or the truncated beam failure recovery MAC CE includes a In the case of the beam failure information of the cell, the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the cell, and stops the respective prohibit timers;
  • the terminal device when the terminal device sends a MAC PDU, and the MAC PDU includes a MAC CE, and the MAC CE includes beam failure information of a TRP, the MAC entity of the terminal device is cancelled as the TRP's MAC entity.
  • BFR triggers pending SRs and stops their respective disable timers;
  • the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the secondary cell;
  • the MAC entity of the terminal device cancels the triggered pending SR
  • the MAC entity of the terminal device cancels the suspended SR.
  • a MAC PDU is sent using an uplink grant other than an uplink grant provided by a random access response (RAR) or an uplink grant determined from transmission of the message A payload (MSGA payload), And the MAC PDU includes a MAC CE, and when the MAC CE includes beam failure information of a TRP, the MAC entity of the terminal device stops the ongoing random access due to the SR suspended by the BFR of the TRP. process.
  • RAR random access response
  • MSGA payload message A payload
  • the MAC entity of the terminal device determines whether the beam failure instance indication is cell-specific or cell-level; and initiates or restarts the transmission if the beam-failure instance indication is not cell-specific or cell-level Receive point (TRP) specific beam failure detection timer.
  • TRP Receive point
  • the MAC entity of the terminal device determines whether the beam failure instance indication is TRP specific or TRP level; and in the event that the beam failure instance indication is TRP specific or TRP level, initiates or restarts the transmission Receive point (TRP) specific beam failure detection timer.
  • TRP Transmission Receive point
  • the cell-specific beam failure indication count is greater than or equal to the maximum count of cell-specific beam failure instances, it is determined that a cell-specific beam failure occurrence is detected, or the cell's beam failure recovery is triggered, or the cell's beam failure indication is triggered.
  • the cell-specific beam failure indication count is reset or set to 0 in the event that the cell-specific beam failure detection timer expires.
  • the apparatus 1200 for detecting beam failure may further include other components or modules, and for the specific content of these components or modules, reference may be made to the related art.
  • FIG. 12 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the MAC entity of the terminal device receives the beam failure instance indication; adds 1 to the TRP-specific beam failure indication count; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count.
  • a beam failure occurs at the transmitting and receiving point, or a beam failure recovery (BFR) of the transmitting and receiving point is triggered, or a beam failure indication of the transmitting and receiving point is triggered.
  • BFR beam failure recovery
  • An embodiment of the present application further provides a communication system, and reference may be made to FIG. 1 , and the same contents as those of the embodiments of the first aspect to the fourth aspect will not be repeated.
  • the communication system may include:
  • a terminal device whose medium access control (MAC) entity receives the beam failure instance indication; increments the TRP-specific beam failure indication count by 1; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count
  • MAC medium access control
  • a network device that receives beam failure recovery MAC CE or beam failure MAC CE.
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 1300 may include: a processor 1300 (eg, a central processing unit CPU) and a memory 1320 ; the memory 1320 is coupled to the processor 1310 .
  • the memory 1320 can store various data; in addition, the program 1330 for information processing is also stored, and the program 1330 is executed under the control of the processor 1310 .
  • the network device 1300 may further include: a transceiver 1340, an antenna 1350, and the like; wherein, the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the network device 1300 does not necessarily include all the components shown in FIG. 13 ; in addition, the network device 1300 may also include components not shown in FIG. 13 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 14 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1400 may include a processor 1410 and a memory 1420 ; the memory 1420 stores data and programs, and is coupled to the processor 1410 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 1410 may be configured to execute a program to implement the beam failure detection method described in the embodiment of the first aspect.
  • the processor 1410 may be configured to control the following: a medium access control (MAC) entity receives a beam failure instance indication; increments a TRP-specific beam-fail indication count by one; and if the TRP-specific beam-fail indication count is greater than or When equal to the maximum count of beam failure instances specified by the TRP, it is determined that beam failure occurs at the transmitting and receiving point or triggers beam failure recovery (BFR) of the transmitting and receiving point or triggers the beam failure indication of the transmitting and receiving point.
  • MAC medium access control
  • the processor 1410 may be configured to execute a program to implement the beam failure detection method according to the embodiment of the second aspect.
  • the processor 1410 may be configured to control the following: a medium access control (MAC) entity receives a beam failure instance indication; determines whether the beam failure instance indication is TRP specific or TRP level; where the beam fail instance indication is a TRP In the case of a specific or TRP level, increment the TRP-specific beam failure indication count by 1; and in the case where the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, determine that a transmission reception is detected A beam failure occurs at the point or triggers beam failure recovery (BFR) of the transmission and reception point or triggers a beam failure indication of the transmission and reception point.
  • BFR beam failure recovery
  • the processor 1410 may be configured to execute a program to implement the beam failure detection method according to the embodiment of the third aspect.
  • the processor 1410 may be configured to control the following: a medium access control (MAC) entity detects that a beam failure occurs at a transmission and reception point or cell or triggers beam failure recovery (BFR) of the transmission and reception point or cell or triggers the beam failure recovery (BFR) of the transmission and reception point or cell. sending a beam failure indication of the receiving point or cell; and the MAC entity instructing the multiplexing and assembly entity to generate a beam failure recovery MAC CE or a beam failure MAC CE.
  • MAC medium access control
  • the terminal device 1400 may further include: a communication module 1430 , an input unit 1440 , a display 1450 , and a power supply 1460 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 1400 does not necessarily include all the components shown in FIG. 14 , and the above components are not required; in addition, the terminal device 1400 may also include components not shown in FIG. 14 . There is technology.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the beam failure detection method according to the embodiments of the first to third aspects.
  • Embodiments of the present application further provide a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the beam failure detection method described in the embodiments of the first to third aspects.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figures and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a beam failure detection method comprising:
  • the medium access control (MAC) entity of the terminal device receives the beam failure instance indication
  • the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, it is determined that a beam failure has occurred at the transmission and reception point, or a beam failure recovery (BFR) of the transmission and reception point is triggered or triggered The beam failure indication of the sending and receiving point.
  • BFR beam failure recovery
  • the medium access control (MAC) entity receives the beam failure instance indication, starting or restarting the beam failure detection timer specific to the Transmit Receive Point (TRP);
  • the TRP-specific beam failure indication count is reset or the TRP-specific beam failure indication count is set to 0.
  • the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and if a candidate beam is configured and the evaluation of said candidate beam Has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity For each TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will determine whether to instruct the generation of a MAC CE or trigger a scheduling request ( SR).
  • the MAC entity For each TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity performs the following operations:
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and the evaluation of the candidate beam has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity For each TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will perform beam failure detection to trigger BFR.
  • the MAC entity of the terminal device determines that the evaluation of the candidate beam has been completed if the candidate beam is not configured in the case that the recovery of at least one beam failure is triggered.
  • the physical layer of the terminal device When the physical layer of the terminal device receives a request from a higher layer, it determines that the evaluation of the candidate beam has been completed without configuring the candidate beam.
  • the MAC entity of the terminal device initiates a random access procedure in the special cell.
  • the multiple TRPs include: all TRPs configured with TRP-specific beam failure detection of all serving cells in one MAC entity, or, special cells in one MAC entity of all TRPs configured with TRP-specific beam failure detection.
  • the MAC entity of the terminal device determines whether the transmission and reception point belongs to the secondary cell
  • the transmission and reception point belongs to the secondary cell, it is determined that beam failure occurs at the transmission and reception point, or a beam failure recovery of the transmission and reception point is triggered, or a beam failure indication of the transmission and reception point is triggered.
  • the MAC entity of the terminal device determines whether all TRPs configured with TRP-specific beam failure detection have been triggered to recover from beam failures;
  • the MAC entity of the terminal device initiates a random access procedure in the special cell.
  • the terminal device sends a MAC PDU, and the MAC PDU includes a TRP-specific beam failure recovery MAC CE or a TRP-specific beam failure MAC CE, the terminal device cancels the MAC PDU assembly, all Beam failure recovery for the TRP trigger;
  • the terminal device sends a MAC PDU
  • the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE
  • the MAC CE includes beam failure information of a cell
  • the The MAC entity of the terminal device cancels the recovery of all beam failures triggered by all TRPs included in the cell before the MAC PDU is assembled;
  • a PDCCH addressed by the C-RNTI indicates receipt of a newly transmitted uplink grant for a HARQ process including the transmission of a TRP-specific beam failure recovery MAC CE or TRP-specific beam failure MAC CE transmission
  • the The MAC entity of the terminal device cancels all beam failure recovery triggered for the TRP;
  • the MAC entity of the terminal device cancels all beam failure recovery triggered by all TRPs included in the cell.
  • the terminal device triggers a scheduling request (SR) for TRP-specific beam failure recovery or TRP-specific beam failure for a TRP that has triggered BFR and is not canceled.
  • SR scheduling request
  • the MAC entity of the terminal device When the MAC entity of the terminal device has an SR pending for the TRP-specific BFR, and at the time of SR transmission, the MAC entity has one or more PUCCH resources that overlap with the PUCCH resources of the TRP-specific BFR, the The MAC entity determines (consides) that the PUCCH resource of the TRP-specific BFR is valid; or
  • the MAC entity of the terminal device When the MAC entity of the terminal device has an SR pending for the secondary cell/TRP-specific BFR, and for the SR transmission time, the MAC entity has one or more PUCCH resources overlapping with the secondary cell/TRP-specific BFR. When the PUCCH resource is used, the MAC entity determines (consides) that the PUCCH resource of the BFR specific to the secondary cell/TRP is valid.
  • the terminal device sends a MAC PDU, and the MAC PDU includes a beam failure recovery MAC CE or a truncated beam failure recovery MAC CE, and the beam failure recovery MAC CE or the truncated beam failure recovery MAC CE includes a In the case of the beam failure information of the cell, the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the cell, and stops the respective prohibit timers;
  • the terminal device when the terminal device sends a MAC PDU, and the MAC PDU includes a MAC CE, and the MAC CE includes beam failure information of a TRP, the MAC entity of the terminal device is cancelled as the TRP's MAC entity.
  • BFR triggers pending SRs and stops their respective disable timers;
  • the MAC entity of the terminal device cancels the pending SR triggered by the BFR of the TRP included in the secondary cell;
  • the MAC entity of the terminal device cancels the triggered pending SR
  • the MAC entity of the terminal device cancels the suspended SR.
  • a MAC PDU is sent using an uplink grant other than an uplink grant provided by a random access response (RAR) or an uplink grant determined from transmission of the message A payload (MSGA payload), and the MAC PDU includes A MAC CE, in the case that the MAC CE includes beam failure information of a TRP, the MAC entity of the terminal device stops the ongoing random access procedure due to the SR pending in the BFR of the TRP.
  • RAR random access response
  • MSGA payload uplink grant determined from transmission of the message A payload
  • the MAC entity of the terminal device determines whether the beam failure instance indication is cell-specific or cell-level
  • the transmit reception point (TRP) specific beam failure detection timer is started or restarted.
  • the MAC entity of the terminal device determines whether the beam failure instance indication is TRP specific or TRP level.
  • the transmit reception point (TRP) specific beam failure detection timer is started or restarted.
  • the beam failure instance indication is cell-specific or cell-level, or not TRP-specific or TRP-level,
  • the cell-specific beam failure indication count is greater than or equal to the maximum count of cell-specific beam failure instances, it is determined that beam failure occurs in the cell or triggers the cell's beam failure recovery or triggers the cell's beam failure indication.
  • the cell-specific beam failure indication count is reset or the cell-specific beam failure indication count is set to 0.
  • a beam failure detection method comprising:
  • the medium access control (MAC) entity of the terminal device detects that a beam failure occurs at the transmission and reception point or cell, or triggers beam failure recovery (BFR) of the transmission and reception point or cell, or triggers a beam failure indication of the transmission and reception point or cell; as well as
  • BFR beam failure recovery
  • the MAC entity of the terminal device instructs the multiplexing and assembly entity to generate a beam failure recovery MAC CE or a beam failure MAC CE.
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, if a candidate beam is configured and the evaluation of the candidate beam has been Finish,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates the multiplexing and The assembly entity generates a truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity For each cell/TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will determine whether to instruct to generate a MAC CE or trigger scheduling Request (SR).
  • SR trigger scheduling Request
  • the beam failure recovery procedure determines that at least one beam failure recovery has been triggered without cancellation, or a beam failure has been detected, or at least one beam failure indication has been triggered without cancellation, and the evaluation of the candidate beam has been completed,
  • the MAC entity instructs the multiplexing and assembly process to generate the The beam failure recovery MAC CE or beam failure MAC CE;
  • the MAC entity indicates multiplexing if the uplink resource is available for a new transmission and if the result of LCP is that the uplink resource can accommodate a truncated beam failure recovery MAC CE or a beam failure MAC CE plus its subheader and assembly entity to generate truncated beam failure recovery MAC CE or beam failure MAC CE;
  • SR Scheduling Request
  • the MAC entity For each cell/TRP configured with beam failure recovery or configured with beam failure recovery parameters, and/or configured with beam failure detection or configured with beam failure detection parameters, the MAC entity will perform beam failure detection to trigger BFR.
  • the cell-specific beam failure indication count is greater than or equal to the maximum count of cell-specific beam failure instances, it is determined that a cell-specific beam failure has occurred, or a beam failure recovery (BFR) of the cell is triggered, or the cell's beam failure recovery (BFR) is triggered. Beam failure indication.
  • the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count, it is determined that a beam failure has occurred at the transmission and reception point, or a beam failure recovery (BFR) of the transmission and reception point is triggered or triggered The beam failure indication of the sending and receiving point.
  • BFR beam failure recovery
  • the MAC entity of the terminal device determines that the evaluation of the candidate beam has been completed if the candidate beam is not configured in the case that at least one beam failure recovery is triggered.
  • the physical layer of the terminal device When the physical layer of the terminal device receives a request from a higher layer, it determines that the evaluation of the candidate beam has been completed without configuring the candidate beam.
  • a terminal device comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the beam failure according to any one of appendix 1 to 46 Detection method.
  • a communication system comprising:
  • a terminal device whose medium access control (MAC) entity receives the beam failure instance indication; increments the TRP-specific beam failure indication count by 1; and the TRP-specific beam failure indication count is greater than or equal to the TRP-specific beam failure instance maximum count
  • MAC medium access control
  • a network device that receives beam failure recovery MAC CE or beam failure MAC CE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种波束失败的检测方法以及装置。所述方法包括:终端设备的介质访问控制(MAC)实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。

Description

波束失败的检测方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
在新无线(NR,New Radio)系统里,支持波束(Beam)的发送和接收,并且支持多个波束的管理。终端设备可以进行波束失败检测(BFD,Beam Failure Detection)过程和波束失败恢复(BFR,Beam Failure Recovery)过程。
在3GPP Rel-15/16中,对于每个服务小区,可以使用无线资源控制(RRC,Radio Resource Control)为介质访问控制(MAC,Media Access Control)实体配置波束失败恢复过程,当在服务同步信号块(SSB,Synchronization Signal Block)/信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal)上检测到波束失败时,向服务网络设备(例如gNB)指示新的SSB或CSI-RS。
当一个MAC协议数据单元(PDU,Protocol Data Unit)被终端设备向网络设备发送,且这个MAC PDU包括承载辅小区的波束失败信息的BFR MAC控制元素(CE)或截短的(Truncated)BFR MAC CE,则该终端设备应该取消该MAC PDU组装之前、该辅小区所有为波束失败恢复触发的BFRs。
在波束失败恢复过程中,MAC实体将会执行如下操作:
如果波束失败恢复过程确定已经触发了至少一个BFR,且该BFR没有被取消,根据需求其候选波束的评估已经完成:
如果上行资源(UL-SCH资源)可用于一个新的传输、且逻辑信道优先级过程(LCP,Logical Channel Prioritization)的结果是该上行资源能容纳BFR MAC CE加上它的子头,则指示复用(Multiplexing)和组装(Assembly)过程生成BFR MAC CE;
如果该上行资源可用于一个新的传输且LCP的结果是该上行资源能容纳Truncated BFR MAC CE加上它的子头,则指示复用(Multiplexing)和组装(Assembly)过程生成Truncated BFR MAC CE;
否则,为每个触发了BFR且没有取消BFR、根据需求其候选波束的评估已经完成的辅小区触发调度请求(SR,Scheduling Request)。
因此,辅小区的波束失败信息可以由BFR MAC CE或Truncated BFR MAC CE(以 下可简称为(Truncated)BFR MAC CE)携带,由终端设备发送给网络设备。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:在多发送接收点(TRP,Transmit Receive Point)的操作下,如果只有部分波束失败,则终端设备可能无法触发波束失败检测;此外,如果不区分小区级或TRP级的波束失败检测,则可能造成资源浪费。
针对上述问题的至少之一,本申请实施例提供一种波束失败的检测方法以及装置。
根据本申请实施例的一个方面,提供一种波束失败的检测装置,包括:
接收单元,其由介质访问控制实体接收波束失败实例指示;
计数单元,其将TRP特定的波束失败指示计数加1;以及
处理单元,其在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
根据本申请实施例的另一个方面,提供一种波束失败的检测方法,包括:
终端设备的介质访问控制(MAC)实体接收波束失败实例指示;
将TRP特定的波束失败指示计数加1;以及
在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
根据本申请实施例的另一个方面,提供一种通信系统,包括:
终端设备,其介质访问控制(MAC)实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
本申请实施例的有益效果之一在于:终端设备的MAC实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束 失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。由此,不仅在只有部分波束失败的情况下,能够触发TRP级的波束失败检测;而且,能够区分小区级或TRP级的波束失败检测,从而避免造成资源浪费。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是第一格式的BFR MAC CE或Truncated BFR MAC CE的一示意图;
图3是第二格式的BFR MAC CE或Truncated BFR MAC CE的一示意图;
图4是本申请实施例的多TRP场景的一示意图;
图5是本申请实施例的波束失败的检测方法的一示意图;
图6是本申请实施例的BFD或BFR的一示意图;
图7是本申请实施例的波束失败的检测方法的另一示意图;
图8A是本申请实施例的波束失败的检测方法的另一示意图;
图8B是本申请实施例的波束失败的检测方法的另一示意图;
图9是本申请实施例的波束失败的检测方法的另一示意图;
图10是本申请实施例的波束失败的检测方法的另一示意图;
图11A是本申请实施例的波束失败的检测方法的另一示意图;
图11B是本申请实施例的波束失败的检测方法的另一示意图;
图12是本申请实施例的波束失败的检测装置的一示意图;
图13是本申请实施例的网络设备的示意图;
图14是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或 eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、IAB-MT、站(station),等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102。为简单起见,图1仅以一个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此,例如可以有多个终端设备。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication) 和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
在Rel-15/16的波束失败检测(BFD)过程中,终端设备的介质访问控制(MAC,Media Access Control)层的MAC实体通过计算低层(例如物理层)提供给MAC实体的波束失败实例(instance)指示的数量,来检测波束失败。
例如,波束失败检测过程使用UE变量BFI_COUNTER,该变量是波束失败实例指示的计数器,其初始设置为0,每个服务小区有一个BFI_COUNTER。对于每个配置了波束失败检测的服务小区,MAC实体将会执行如下操作:
如果从低层收到了波束失败实例指示:则启动或重启波束失败检测定时器beamFailureDetectionTimer;并且终端设备变量BFI_COUNTER加1;在BFI_COUNTER大于或等于波束失败实例最大计数值beamFailureInstanceMaxCount的情况下:如果服务小区是辅小区(SCell),触发该服务小区的一个波束失败恢复(BFR,Beam Failure Recovery),否则,在特殊小区(SpCell)上发起随机接入过程。如果beamFailureDetectionTimer超时,或如果高层重配置了这个服务小区的beamFailureDetectionTimer、beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号,则设置BFI_COUNTER为0。
在波束失败恢复过程中,辅小区的波束失败信息可以由BFR MAC CE或Truncated BFR MAC CE携带,由终端设备发送给网络设备。
图2是第一格式(称为格式1)的BFR MAC CE或Truncated BFR MAC CE的一示意图。图3是第二格式(称为格式2)的BFR MAC CE或Truncated BFR MAC CE的一示意图。
具体地,例如,对于BFR MAC CE,如果MAC实体检测到波束失败且根据需求候选波束的评估已经完成的辅小区的最高服务小区索引ServCellIndex小于8,那么使用图2的格式1;否则使用图3的格式2。
对于Truncated BFR MAC CE,如果MAC实体检测到波束失败且根据需求候选波束的评估已经完成的辅小区的最高服务小区索引ServCellIndex小于8,或者特殊小区检测到波束失败且这个特殊小区将被包括在一个Truncated BFR MAC CE里、且LCP结果是UL-SCH资源无法容纳图3的格式2的Truncated BFR MAC CE加上它的子头,那么使用图2的格式1;否则使用图3的格式2。
例如,关于格式1和格式2的域定义如下:
对于BFR MAC CE,Ci域指示ServCellIndex i的辅小区的波束失败检测、根据需求候选波束的评估是否完成以及可能存在由AC域组成的一个字节,AC域指示在这个 字节里是否存在候选(Candidate)RS ID域,Candidate RS ID域置为SSB或CSI-RS的索引。
Ci域置为1表示ServCellIndex i的辅小区检测到波束失败、根据需求候选波束的评估已经完成且存在包括AC域的字节。Ci域置为0表示ServCellIndex i的辅小区未检测到波束失败、或检测到波束失败但根据需求候选波束的评估尚未完成,且不存在包括AC域的字节。如果存在,包括AC域的字节是基于ServCellIndex的升序而存在。
对于Truncated BFR MAC CE,Ci域指示ServCellIndex i的辅小区的波束失败检测、根据需求候选波束的评估是否完成以及可能存在由AC域组成的一个字节,AC域指示在这个字节里是否存在候选(Candidate)RS ID域,Candidate RS ID域置为SSB或CSI-RS的索引。
Ci域置为1表示ServCellIndex i的辅小区检测到波束失败、根据需求候选波束的评估已经完成且可能存在包括AC域的字节。Ci域置为0表示ServCellIndex i的辅小区未检测到波束失败、或者检测到波束失败但根据需求候选波束的评估尚未完成,且不存在包括AC域的字节。如果存在,包括AC域的字节是基于ServCellIndex的升序而出现的。包括AC域的字节的数量可以是0,不超过可用的授权的大小。
以上对于(Truncated)BFR MAC CE进行了示意性说明,以下再对本申请实施例的相关场景进行说明。本申请实施例中,波束(beam)可以替换为参考信号(RS),例如可以用SSB或CSI-RS表示。
图4是本申请实施例的多TRP场景的一示意图。TRP可以是从终端设备接收信号的网络设备(例如gNB)的一部分,也可以是向终端设备发送信号的网络设备(gNB)的一部分。此外,TRP也可以表示一组下行控制信息(DCI,Downlink Control Information)或一组参考信号,等等。
如图4所示,在多TRP操作的场景中,终端设备可以具有面板1(pannel-1)和面板2(pannel-2);一个服务小区可以从2个TRPs调度终端设备,提供更好的物理下行共享信道(PDSCH,Physical Downlink Share Channel)覆盖、可靠性和/或数据速率。
对于多TRP操作,可以有2种不同的操作模式:单DCI和多DCI。对于这2种模式,上行和下行操作的控制由物理层和介质访问控制(MAC)进行。在单DCI模式下,终端设备由两个TRPs通过相同DCI调度;在多DCI模式下,终端设备由每个TRP的单独的DCI调度。
在多TRP操作下,根据Rel-15/16波束失败检测和波束失败恢复的机制,当单一TRP 与终端设备之间的波束被阻塞、而另外一个TRP与终端设备之间的波束工作的情况下,物理层不会向MAC层指示波束失败实例,不会触发MAC层的波束失败检测过程。此外,如果不区分小区级和TRP级的波束失败检测,则可能造成资源浪费。
例如,如果小区中仅一个TRP上发生失败,物理层向MAC层指示波束失败实例;终端设备和网络设备认为发生了小区级的波束失败,可能会进行小区切换过程,没有充分利用小区上未发生失败的另一个TRP,从而资源利用率低。
再例如,如果在特殊小区的一个TRP上检测到波束失败,则终端设备可能不会触发BFR,而是会触发随机接入(RA,Random Access)。这种情况下,该随机接入是不必要的,从而造成随机接入资源的浪费和更长的业务中断。
针对上述问题,以下对本申请实施例进行进一步说明。本申请实施例从终端设备的MAC层进行说明,由MAC实体进行实施;其中MAC实体包括波束失败检测过程、波束失败恢复过程和复用和组装实体(以下也称为复用和组装过程)等,本申请实施例的低层例如为物理层、天线单元、测量过程等。关于各个层和各个实体的具体概念和定义等可以参考相关技术,本申请实施例不再赘述。
在本申请实施例中,小区特定(cell-specific)可以理解为小区级或所有波束,以小区为粒度;TRP特定(TRP-specific)可以理解为TRP级或部分波束,以TRP为粒度。小区特定的MAC CE可以是Rel-15/Rel-16的BFR MAC CE或者Rel-15/Rel-16的truncated BFR MAC CE等。术语“检测到波束失败”可以与“触发了波束失败恢复”或“触发了波束失败指示”相互替换。
第一方面的实施例
本申请实施例提供一种波束失败的检测方法,从终端设备进行说明。
图5是本申请实施例的波束失败的检测方法的一示意图,如图5所示,该方法包括:
501,终端设备的介质访问控制(MAC)实体接收波束失败实例指示;
502,将TRP特定的波束失败指示计数加1;以及
503,在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
值得注意的是,以上附图5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或 者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
图6是本申请实施例的波束失败检测(BFD)或波束失败恢复(BFR)的一示意图。如图6所示,网络设备通过TRP-1和TRP-2为终端设备提供服务。其中,TRP-1与终端设备之间的链路1(link-1)正常工作,但是TRP-2与终端设备之间的链路2(link-2)受到阻塞。
在本申请实施例中,与小区级的BFD过程独立地,终端设备可以配置TRP级的BFD或者触发TRP级的BFR。由此,不仅在只有部分波束失败的情况下,能够触发TRP级的波束失败检测;而且能够区分小区级或TRP级的波束失败检测,从而避免造成资源浪费。
图7是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了对于配置了波束失败检测的TRP,终端设备的MAC实体的操作。如图7所示,MAC实体的操作包括:
701,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
702,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
703,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
704,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);以及
705,在该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图7所示,MAC实体的操作还包括:
706,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及
707,在所述TRP特定的波束失败检测定时器超时的情况下,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指 示计数(例如BFI_COUNTER-perTRP)设置为0。
在一些实施例中,在以下之一或任意组合的情况下,TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)也重置或置为0:
-辅小区去激活;
-TRP特定的波束失败检测定时器、TRP特定的波束失败实例最大计数、用于检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示的参考信号,被上层重配置;
-MAC重置(reset);
-一个小区上的TRP被重配置,包括一个控制资源关联的控制资源池被重配置,或者TRP索引被重配置。
值得注意的是,以上附图7仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7的记载。
在一些实施例中,终端设备的MAC实体指示复用和组装实体生成TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。关于生成该MAC CE的内容,还可以参考后述的第三方面的实施例。
在一些实施例中,所述终端设备的MAC实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果配置有候选波束列表,且对所述候选波束列表里至少一个参考信号的评估已经完成,所述终端设备的MAC实体指示所述复用和组装实体生成所述TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,如果配置有候选波束且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组 装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束列表,所述终端设备的MAC实体不判断候选波束的评估是否完成。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果配置有候选波束且对所述候选波束的评估已经完成,或者没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,所述TRP配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数;对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体将会判断是否指示生成MAC CE或触发调度请求(SR)。
例如,对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体进行如下操作:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
在一些实施例中,所述TRP配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数;对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体将会进行波束失败检测,以触发BFR。
例如,针对一个配置了波束失败恢复或波束失败恢复参数的TRP,MAC实体接收波束失败实例指示;启动或重启发送接收点(TRP)特定的波束失败检测定时器;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
在一些实施例中,终端设备的MAC实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估。
在一些实施例中,终端设备的物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
在一些实施例中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。例如,如果配置了波束失败检测的参考信号,那么必须配置候选参考信号。
以上示意性说明了TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE,以下再对本申请实施例的Fallback机制进行说明。
在一些实施例中,终端设备的MAC实体中的部分或所有服务小区配置TRP特定的波束失败检测,和/或,所述终端设备的MAC实体中的特殊小区配置TRP特定的波束失败检测。
例如,对于一个MAC实体,如果配置了TRP级的波束失败检测但未配置小区级的波束失败检测,支持Fallback机制。这里“未配置小区级的波束失败检测”包括:这个 MAC实体里配置的所有服务小区都未配置Rel-15/16波束失败检测,或者,这个MAC实体里的特殊小区未配置Rel-15/16波束失败检测。
具体地,例如,MAC实体里配置的所有服务小区都未配置波束失败检测,或未配置RadioLinkMonitoringConfig,或RadioLinkMonitoringConfig里未配置/未包括波束失败检测的参数。或者,MAC实体里的特殊小区未配置波束失败检测,或未配置RadioLinkMonitoringConfig,或RadioLinkMonitoringConfig里未配置/未包括波束失败检测的参数。
再例如,对于一个MAC实体,如果配置了TRP级的波束失败恢复但未配置小区级的波束失败恢复,支持Fallback机制。这里“未配置小区级的波束失败恢复”包括:这个MAC实体里配置的所有服务小区都未配置Rel-15/16波束失败恢复,或者,这个MAC实体里的特殊小区未配置Rel-15/16波束失败恢复。
具体地,例如,MAC实体里配置的所有服务小区都未配置波束失败恢复,或未配置BeamFailureRecoverySCellConfig,或BeamFailureRecoverySCellConfig里未配置/未包括辅小区波束失败恢复过程的参数(例如,candidateBeamRSSCellList)。或者,MAC实体里的特殊小区未配置波束失败恢复,或未配置BeamFailureRecoveryConfig,或BeamFailureRecoveryConfig里未配置/未包括辅小区波束失败恢复过程的参数(例如,candidateBeamRSList)。
在一些实施例中,终端设备的MAC实体确定所述发送接收点是否属于辅小区;在所述发送接收点属于辅小区的情况下,确定检测到所述发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
在一些实施例中,终端设备的MAC实体确定所有配置了TRP特定的波束失败检测的TRP是否都被触发波束失败恢复;在所有配置了TRP特定的波束失败检测的TRP都被触发了波束失败恢复的情况下,所述终端设备的MAC实体在特殊小区发起随机接入过程。
图8A是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了对于配置了波束失败检测的TRP,终端设备的MAC实体的操作。如图8A所示,MAC实体的操作包括:
801A,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
802A,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
803A,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-per TRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
804A,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);在该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下执行805A;
805A,判断该TRP是否属于辅小区(SCell);以及在该TRP属于辅小区(SCell)的情况下执行806A,在该TRP不属于辅小区(SCell)的情况下执行809A;
806A,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图8A所示,MAC实体的操作还包括:
807A,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及在所述TRP特定的波束失败检测定时器超时的情况下执行808A;
808A,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)设置为0。
如图8A所示,MAC实体的操作还包括:
809A,判断所有配置了TRP特定的波束失败检测的TRP是否都被触发波束失败恢复(或者判断服务小区的配置了TRP特定的波束失败检测的其他TRP是否都被触发波束失败恢复);在所有配置了TRP特定的波束失败检测的TRP都被触发了波束失败恢复(或者服务小区的配置了TRP特定的波束失败检测的其他TRP都被触发波束失败恢复)的情况下,执行810A,否则执行806A;
810A,在特殊小区(SpCell)发起随机接入过程。
值得注意的是,以上附图8A仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图8A的记载。
如图8A所示,例如对于某个TRP,如果波束失败指示计数器相关的TRP特定/perTRP的UE变量(例如BFI_COUNTER-perTRP)大于或等于波束失败实例最大计数值,
如果该TRP属于一个辅小区,或者如果该TRP属于一个特殊小区且这个小区的另 一个TRP尚未触发BFR,那么为这个TRP触发一个BFR,
否则,在这个特殊小区上发起随即进入过程。
在一些实施例中,终端设备的MAC实体中的所有服务小区没有配置小区特定的波束失败检测,或者,所述终端设备的MAC实体中的特殊小区没有配置小区特定的波束失败检测。在多个TRP被检测到TRP特定的波束失败或者被触发TRP特定的波束失败恢复的情况下,所述终端设备的MAC实体在所述特殊小区发起随机接入过程。
再例如,Fallback机制包括:多个TRP都检测到TRP特定的波束失败或都触发了TRP特定的波束失败恢复时,在特殊小区上发起随即进入过程。这里,多个TRP包括:一个MAC实体里配置的所有服务小区的所有配置了TRP特定的波束检测的TRP,或者,一个MAC实体里特殊小区的所有配置了TRP特定的波束检测的TRP。
在一些实施例中,所述多个TRP包括:一个MAC实体中的所有服务小区的所有配置了TRP特定的波束失败检测的TRP,或者,一个MAC实体中的特殊小区的所有配置了TRP特定的波束失败检测的TRP。
图8B是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了对于配置了波束失败检测的TRP,终端设备的MAC实体的操作。如图8B所示,MAC实体的操作包括:
801B,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
802B,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
803B,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
804B,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);在该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下执行805B;
805B,判断多个TRP是否都检测到TRP特定的波束失败或都触发了TRP特定的BFR;以及在否的情况下执行806B,在是的情况下执行809B;
该多个TRP包括:MAC实体中的所有服务小区的所有配置了TRP特定的波束失败检测的TRP,或者,MAC实体中的特殊小区的所有配置了TRP特定的波束失败检测的 TRP。
806B,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图8B所示,MAC实体的操作还包括:
807B,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及在所述TRP特定的波束失败检测定时器超时的情况下执行808B;
808B,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)设置为0。
如图8B所示,MAC实体的操作还包括:
809B,在特殊小区(SpCell)发起随机接入过程。
值得注意的是,以上附图8B仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图8B的记载。由此,在特殊小区的一个TRP上检测到波束失败,则终端设备会触发BFR;只有在特殊小区的所有TRP(配置了TRP特定的波束失败检测)上检测到波束失败,才会触发随机接入(RA,Random Access)。可以避免不必要的随机接入,从而避免造成随机接入资源的浪费和更长的业务中断。
再例如,只要配置了TRP特定的BFR,就必须配置特殊小区上的小区特定的BFD,或必须配置所属小区上的小区特定的BFD或必须配置至少一个小区上的小区特定的BFD,这样可以不需要上面所述的fallback机制。
在一些实施例中,终端设备可以进行如下操作之一或任意组合:
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE的情况下,所述终端设备取消所述MAC PDU组装前、所有为所述TRP触发的波束失败恢复;
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消所述MAC PDU组装前、所有为所述小区包括的所有TRP触发的波束失败恢复;
如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个TRP特定的波束失败恢 复MAC CE或TRP特定的波束失败MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述TRP触发的波束失败恢复;
如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个小区的波束失败信息的波束失败恢复MAC CE或截短的波束失败恢复MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述小区包括的所有TRP触发的波束失败恢复。
以上示意性说明了Fallback机制和BFR的取消,以下再对SR进行说明。
在一些实施例中,终端设备为触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,所述调度请求配置一个或一组SR ID。
例如,SchedulingRequestId=(0...7);本申请不限于此。
在一些实施例中,TRP特定的波束失败恢复的SR ID(例如SchedulingRequestId)的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,该TRP特定的波束失败恢复的SR ID的配置值与小区特定的波束失败恢复的SR ID的配置值不同。
SR的配置可以包括在IE MAC-CellGroupConfig里或包括在IE CellGroupConfig里。
例如,配置一个SR ID,包括在IE MAC-CellGroupConfig里。如下表1和表2所示:
表1
Figure PCTCN2021071617-appb-000001
表2
Figure PCTCN2021071617-appb-000002
再例如,配置一组SR IDs,包括在IE MAC-CellGroupConfig里。如表3和4所示:
表3
Figure PCTCN2021071617-appb-000003
表4
Figure PCTCN2021071617-appb-000004
又例如,配置一个SR ID,包括在IE CellGroupConfig里。如表5和6所示:
表5
Figure PCTCN2021071617-appb-000005
Figure PCTCN2021071617-appb-000006
Figure PCTCN2021071617-appb-000007
表6
Figure PCTCN2021071617-appb-000008
Figure PCTCN2021071617-appb-000009
又例如:配置一组SR IDs,包括在IE CellGroupConfig里。如表7和8所示:
表7
Figure PCTCN2021071617-appb-000010
Figure PCTCN2021071617-appb-000011
Figure PCTCN2021071617-appb-000012
表8
Figure PCTCN2021071617-appb-000013
Figure PCTCN2021071617-appb-000014
在一些实施例中,TRP特定的波束失败恢复的SR ID和控制资源池索引(例如SchedulingRequestId+coresetPoolIndex-r16)的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,所述TRP特定的波束失败恢复的SR ID和控制资源池索引的配置值与小区特定的波束失败恢复的SR ID的配置值不同。
例如,控制资源池索引:coresetPoolIndex-r16=0/1;本申请不限于此。
例如,配置一个SR ID,包括在IE MAC-CellGroupConfig里。如表9至11所示:
表9
Figure PCTCN2021071617-appb-000015
表10
Figure PCTCN2021071617-appb-000016
表11
Figure PCTCN2021071617-appb-000017
又例如:配置一个SR ID,包括在IE CellGroupConfig里。如表12至14所示:
表12
Figure PCTCN2021071617-appb-000018
Figure PCTCN2021071617-appb-000019
Figure PCTCN2021071617-appb-000020
表13
Figure PCTCN2021071617-appb-000021
Figure PCTCN2021071617-appb-000022
表14
Figure PCTCN2021071617-appb-000023
在一些实施例中,当终端设备的MAC实体有为TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)TRP特定的BFR的PUCCH资源有效。
在一些实施例中,当终端设备的MAC实体有为辅小区/TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与辅小区/TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)辅小区/TRP特定的BFR的PUCCH资源有效。
例如,MAC实体仅认为该辅小区/TRP特定的BFR的PUCCH资源有效。当MAC实体有为辅小区BFR挂起的SR和为TRP特定BFR挂起的SR,且对于SR传输时刻,MAC实体有一个或多个与辅小区BFR的PUCCH资源与TRP特定的BFR的PUCCH资源重叠时,哪一个PUCCH资源有效取决于终端设备的实现。
在一些实施例中,在终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述波束失败恢复MAC CE或截短的波束失败恢复MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消为所述小区包括的TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;例如sr-ProhibitTimer。
在一些实施例中,在终端设备发送一个MAC PDU,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,所述终端设备的MAC实体取消为所述TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;例如sr-ProhibitTimer。
在一些实施例中,一旦一个辅小区去激活,终端设备的MAC实体取消为所述辅小区包括的TRP的BFR触发的挂起的SR。
在一些实施例中,如果触发SR的所有TRP特定的BFR都被取消,终端设备的MAC实体取消触发的挂起的SR。
在一些实施例中,SR资源重配置时,终端设备的MAC实体取消挂起的SR。
在一些实施例中,在一个MAC PDU使用除了随机接入响应(RAR,Random Access Response)提供的一个上行授权或根据消息A有效载荷(MSGA payload)的传输确定的一个上行授权之外的一个上行授权进行发送,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,终端设备的MAC实体停止由 于所述TRP的BFR挂起的SR而正在进行的随机接入过程。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备的MAC实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。由此,不仅在只有部分波束失败的情况下,能够触发TRP级的波束失败检测;而且,能够区分小区级或TRP级的波束失败检测,从而避免造成资源浪费。
第二方面的实施例
本申请实施例提供一种波束失败的检测方法,从终端设备进行说明。第二方面的实施例将TRP特定的波束失败检测和小区特定的波束失败检测结合起来,与第一方面的实施例相同的内容不再赘述。
在一些实施例中,终端设备的MAC实体确定波束失败实例指示是否是小区特定或小区级;以及在所述波束失败实例指示不是小区特定或小区级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
在一些实施例中,终端设备的MAC实体确定波束失败实例指示是否是TRP特定或TRP级;以及在所述波束失败实例指示是TRP特定或TRP级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
图9是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了终端设备的MAC实体的操作。如图9所示,MAC实体的操作包括:
901,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
902,判断波束失败实例指示是否是小区特定或小区级;以及在所述波束失败实例指示不是小区特定或小区级的情况下执行903,否则跳转到A,执行图10的操作。
903,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
904,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
905,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);以及
906,在该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图9所示,MAC实体的操作还包括:
907,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及
908,在所述TRP特定的波束失败检测定时器超时的情况下,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)设置为0。
值得注意的是,以上附图9仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图9的记载。
图10是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了终端设备的MAC实体的操作。如图10所示,MAC实体的操作包括:
1001,启动或重启小区特定的波束失败检测定时器(例如beamFailureDetectionTimer-perCell或者beamFailureDetectionTimer);
1002,将与该小区特定的波束失败检测定时器(例如beamFailureDetectionTimer-perCell或者beamFailureDetectionTimer)相关的小区特定的波束失败指示计数(例如BFI_COUNTER-perCell或者BFI_COUNTER)加1;
1003,判断该小区特定的波束失败指示计数(例如BFI_COUNTER-perCell或者BFI_COUNTER)是否大于或等于小区特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perCell或者beamFailureInstanceMaxCount);以及
1004,在该小区特定的波束失败指示计数(例如BFI_COUNTER-perCell或者BFI_COUNTER)大于或等于小区特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perCell或者beamFailureInstanceMaxCount)的情况下,确定检测到该 小区发生波束失败或者触发该小区的波束失败恢复(BFR)或者触发该小区的波束失败指示。
如图10所示,MAC实体的操作还包括:
1005,判断小区特定的波束失败检测定时器(例如beamFailureDetectionTimer-perCell或者beamFailureDetectionTimer)是否超时;以及
1006,在所述小区特定的波束失败检测定时器超时的情况下,重置所述小区特定的波束失败指示计数(例如BFI_COUNTER-perCell或者BFI_COUNTER)或者将所述小区特定的波束失败指示计数(例如BFI_COUNTER-perCell或者BFI_COUNTER)设置为0。
值得注意的是,以上附图10仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图10的记载。
图11A是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了终端设备的MAC实体的操作。如图11A所示,MAC实体的操作包括:
1101A,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
1102A,判断波束失败实例指示是否是小区特定或小区级;以及在所述波束失败实例指示不是小区特定或小区级的情况下执行1103A,否则跳转到A,执行图10的操作。
1103A,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
1104A,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-per TRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
1105A,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);在该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下执行1106;
1106A,判断该TRP是否属于辅小区(SCell);以及在该TRP属于辅小区(SCell)的情况下执行1107A,在该TRP不属于辅小区(SCell)的情况下执行1110A;
1107A,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图11A所示,MAC实体的操作还包括:
1108A,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及在所述TRP特定的波束失败检测定时器超时的情况下执行808;
1109A,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)设置为0。
如图11A所示,MAC实体的操作还包括:
1110A,判断所有配置了TRP特定的波束失败检测的TRP是否都被触发波束失败恢复;在所有配置了TRP特定的波束失败检测的TRP都被触发了波束失败恢复的情况下,执行1111A,否则执行1107A;
1111A,在特殊小区(SpCell)发起随机接入过程。
值得注意的是,以上附图11A仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11A的记载。
图11B是本申请实施例的波束失败的检测方法的另一示意图,示意性示出了终端设备的MAC实体的操作。如图11B所示,MAC实体的操作包括:
1101B,接收来自低层的波束失败实例指示(Beam Failure Instance Indication);
1102B,判断波束失败实例指示是否是小区特定或小区级;以及在所述波束失败实例指示不是小区特定或小区级的情况下执行1103B,否则跳转到A,执行图10的操作。
1103B,启动或重启发送接收点(TRP)特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP);
1104B,将与该TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-per TRP)相关的TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)加1;
1105B,判断该TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)是否大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP);在该TRP特定的波束失败指示计数(例如 BFI_COUNTER-perTRP)大于或等于TRP特定的波束失败实例最大计数(例如beamFailureInstanceMaxCount-perTRP)的情况下执行1106B;
1106B,判断多个TRP是否都检测到TRP特定的波束失败或都触发了TRP特定的BFR;以及在否的情况下执行1107B,在是的情况下执行1110B;
该多个TRP包括:MAC实体中的所有服务小区的所有配置了TRP特定的波束失败检测的TRP,或者,MAC实体中的特殊小区的所有配置了TRP特定的波束失败检测的TRP。
1107B,确定检测到该TRP发生波束失败或者触发该TRP的波束失败恢复(BFR)或者触发该TRP的波束失败指示。
如图11B所示,MAC实体的操作还包括:
1108B,判断TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer-perTRP)是否超时;以及在所述TRP特定的波束失败检测定时器超时的情况下执行808;
1109B,重置所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)或者将所述TRP特定的波束失败指示计数(例如BFI_COUNTER-perTRP)设置为0。
如图11B所示,MAC实体的操作还包括:
1110B,在特殊小区(SpCell)发起随机接入过程。
值得注意的是,以上附图11B仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11B的记载。
在一些实施例中,只要配置了TRP特定的BFR,就必须配置特殊小区上的小区特定的BFD,或必须配置所属小区上的小区特定的BFD或必须配置至少一个小区上的小区特定的BFD。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备的MAC实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所 述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。由此,不仅在只有部分波束失败的情况下,能够触发TRP级的波束失败检测;而且,能够区分小区级或TRP级的波束失败检测,从而避免造成资源浪费。
第三方面的实施例
以下在第一、二方面的实施例的基础上再进行说明,与第一、二方面的实施例相同的内容不再赘述。第三方面的实施例可以单独执行,也可以与第一方面的实施例和第二方面的实施例结合起来;此外,可以适用于TRP特定的BFR/BFD,也可以适用于小区特定的BFR/BFD,例如Rel-16BFR/BFD。
在一些实施例中,终端设备的介质访问控制(MAC)实体检测到发送接收点或小区发生波束失败或者触发所述发送接收点或小区的波束失败恢复(BFR)或者触发所述发送接收点或小区的波束失败指示;以及所述终端设备的MAC实体指示复用和组装实体生成波束失败恢复MAC CE或波束失败MAC CE。
在一些实施例中,终端设备的MAC实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。例如,只有配置了候选波束,MAC实体指示生成(Truncated)BFR MAC CE时才会考虑后续波束评估是否完成。
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,如果配置有候选波束列表且对候选波束列表中至少一个参考信号的评估已经完成,所述终端设备的MAC实体指示所述复用和组装实体生成所述波束失败恢复MAC CE或波束失败MAC CE。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,如果配置有候选波束且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体 指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消、如果配置有候选波束且对所述候选波束的评估已经完成的小区或者TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
例如,如下表15所述:
表15
Figure PCTCN2021071617-appb-000024
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束,所述终端设备的MAC实体不判断候选波束的评估是否完成。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果配置有候选波束且对所述候选波束的评估已经完成,或者没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组 装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的小区或TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
例如,如下表16所述:
表16
Figure PCTCN2021071617-appb-000025
在一些实施例中,终端设备的MAC实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估。
例如,如下表17所述:
表17
Figure PCTCN2021071617-appb-000026
在一些实施例中,终端设备的物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
例如,如下表18所述:
表18
Figure PCTCN2021071617-appb-000027
在一些实施例中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。例如,如果配置了波束失败检测的参考信号,那么必须配置候选参考信号。
例如,如下表19至21所述:
表19
Figure PCTCN2021071617-appb-000028
表20
Figure PCTCN2021071617-appb-000029
表21
Figure PCTCN2021071617-appb-000030
在一些实施例中,对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个小区/TRP,MAC实体将会判断是否指示生成MAC CE或触发SR。
例如:对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个小区/TRP,MAC实体将会:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的小区或者TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
在一些实施例中,对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个小区/TRP,MAC实体将会进行波束失败检测,以触发BFR。
例如,以小区特定的波束失败检测为例:
对于每个配置了波束失败检测(或者配置了波束失败检测参数),和/或,配置了波束失败恢复(或者配置了波束失败恢复参数)的服务小区,MAC实体将会:
如果从低层收到了波束失败实例指示:
启动或重启波束失败检测定时器beamFailureDetectionTimer;
UE变量BFI_COUNTER加1;
如果BFI_COUNTER大于或等于波束失败实例最大计数值beamFailureInstanceMaxCount:
如果服务小区是辅小区(SCell),触发这个服务小区的一个BFR;
否则,在这个特殊小区(SpCell)上发起随机接入过程。
再例如,以小区特定的波束失败检测为例:
对于每个配置了波束失败检测(或者配置了波束失败检测参数),和/或,配置了波束失败恢复(或者配置了波束失败恢复参数)的服务小区,MAC实体将会:
如果从低层收到了波束失败实例指示:
启动或重启波束失败检测定时器beamFailureDetectionTimer_perTRP;
UE变量BFI_COUNTER_perTRP加1;
如果BFI_COUNTER_perTRP大于或等于波束失败实例最大计数值beamFailureInstanceMaxCount_perTRP:
如果该TRP属于辅小区(SCell),或者,服务小区的配置了TRP特定的波束失败检测的其他TRP没有都被触发BFR,触发该TRP的一个BFR;
否则,在这个特殊小区(SpCell)上发起随机接入过程。
以上示意性说明了MAC实体的操作,本申请实施例不限于此。此外,上述的波束失败恢复参数可以替换为具体参数,例如以下参数中的一个或多个:
BeamFailureRecoveryConfig,
BeamFailureRecoverySCellConfig,
BeamFailureRecoveryConfig-TRP,
candidateBeamRSList,
candidateBeamRSSCellList,
candidateBeamRSList-TRP。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
第四方面的实施例
本申请实施例提供一种波束失败的检测装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一至三方面的实施例相同的内容不再赘述。
图12是本申请实施例的波束失败的检测装置的一示意图,如图12所示,波束失败的检测装置1200包括:
接收单元1201,其由介质访问控制(MAC)实体接收波束失败实例指示;
计数单元1202,其将TRP特定的波束失败指示计数加1;以及
处理单元1203,其在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
在一些实施例中,如图12所示,波束失败的检测装置1200还包括:
启动单元1204,其在所述介质访问控制实体接收波束失败实例指示的情况下,启动或重启发送接收点(TRP)特定的波束失败检测定时器;
在所述TRP特定的波束失败检测定时器超时的情况下,重置所述TRP特定的波束失败指示计数或者将所述TRP特定的波束失败指示计数设置为0。
在一些实施例中,终端设备的MAC实体指示复用和组装实体生成TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。
在一些实施例中,所述终端设备的MAC实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如 果配置有候选波束列表,且对所述候选波束列表里至少一个参考信号的评估已经完成,所述终端设备的MAC实体指示所述复用和组装实体生成所述TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,并且如果配置有候选波束且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束列表,所述终端设备的MAC实体不判断候选波束的评估是否完成。
例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果配置有候选波束且对所述候选波束的评估已经完成,或者如果没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或 TRP特定的波束失败的调度请求(SR)。
再例如:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果没有配置有候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,终端设备的MAC实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估。
在一些实施例中,终端设备的物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
在一些实施例中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。
在一些实施例中,终端设备的MAC实体中的部分或所有服务小区配置TRP特定的波束失败检测,和/或,所述终端设备的MAC实体中的特殊小区配置TRP特定的波束失败检测。
在一些实施例中,所述终端设备的MAC实体中的所有服务小区没有配置小区特定的波束失败检测,或者,所述终端设备的MAC实体中的特殊小区没有配置小区特定的波束失败检测。在多个TRP被检测到TRP特定的波束失败或者被触发TRP特定的波束失败恢复的情况下,所述终端设备的MAC实体在所述特殊小区发起随机接入过程。
所述多个TRP包括:一个MAC实体中的所有服务小区的所有配置了TRP特定的波束失败检测的TRP,或者,一个MAC实体中的特殊小区的所有配置了TRP特定的波束失败检测的TRP。
在一些实施例中,终端设备的MAC实体确定所述发送接收点是否属于辅小区;
在所述发送接收点属于辅小区的情况下,确定检测到所述发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
在一些实施例中,终端设备的MAC实体确定所有配置了TRP特定的波束失败检测的TRP是否都被触发波束失败恢复;在所有配置了TRP特定的波束失败检测的TRP都被触发了波束失败恢复的情况下,所述终端设备的MAC实体在特殊小区发起随机接入过程。
在一些实施例中,终端设备进行如下操作之一或任意组合:
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE的情况下,所述终端设备取消所述MAC PDU组装前、所有为所述TRP触发的波束失败恢复;
或者,在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消所述MAC PDU组装前、所有为所述小区包括的所有TRP触发的波束失败恢复;
或者,如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述TRP触发的波束失败恢复;
或者,如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个小区的波束失败信息的波束失败恢复MAC CE或截短的波束失败恢复MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述小区包括的所有TRP触发的波束失败恢复。
在一些实施例中,终端设备为触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
在一些实施例中,所述调度请求配置一个或一组SR ID。
在一些实施例中,所述TRP特定的波束失败恢复的SR ID的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,所述TRP特定的波束失败恢复的SR ID的配置值与小区特定的波束失败恢复的SR ID的配置值不同。
在一些实施例中,所述TRP特定的波束失败恢复的SR ID和控制资源池索引的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,所述TRP特定的波束失败恢复的SR ID和控制资源池索引的配置值与小区特定的波束失败恢复的SR ID的配 置值不同。
在一些实施例中,当所述终端设备的MAC实体有为TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)TRP特定的BFR的PUCCH资源有效;或者
当所述终端设备的MAC实体有为辅小区/TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与辅小区/TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)辅小区/TRP特定的BFR的PUCCH资源有效。
在一些实施例中,
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述波束失败恢复MAC CE或截短的波束失败恢复MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消为所述小区包括的TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;
或者,在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,所述终端设备的MAC实体取消为所述TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;
或者,一旦一个辅小区去激活,所述终端设备的MAC实体取消为所述辅小区包括的TRP的BFR触发的挂起的SR;
或者,如果触发SR的所有TRP特定的BFR都被取消,所述终端设备的MAC实体取消触发的挂起的SR;
或者,SR资源重配置时,所述终端设备的MAC实体取消挂起的SR。
在一些实施例中,在一个MAC PDU使用除了随机接入响应(RAR)提供的一个上行授权或根据消息A有效载荷(MSGA payload)的传输确定的一个上行授权之外的一个上行授权进行发送,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,所述终端设备的MAC实体停止由于所述TRP的BFR挂起的SR而正在进行的随机接入过程。
在一些实施例中,终端设备的MAC实体确定所述波束失败实例指示是否是小区特定或小区级;以及在所述波束失败实例指示不是小区特定或小区级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
在一些实施例中,终端设备的MAC实体确定所述波束失败实例指示是否是TRP特定或TRP级;以及在所述波束失败实例指示是TRP特定或TRP级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
在一些实施例中,在所述波束失败实例指示是小区特定或小区级、或者不是TRP特定或TRP级的情况下,启动或重启小区特定的波束失败检测定时器;、
将小区特定的波束失败指示计数加1;以及
在所述小区特定的波束失败指示计数大于或等于小区特定的波束失败实例最大计数的情况下,确定检测到小区发生波束失败或者触发小区的波束失败恢复或者触发小区的波束失败指示。
在一些实施例中,在所述小区特定的波束失败检测定时器超时的情况下,重置所述小区特定的波束失败指示计数或者将所述小区特定的波束失败指示计数设置为0。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。波束失败的检测装置1200还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图12中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备的MAC实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。由此,不仅在只有部分波束失败的情况下,能够触发TRP级的波束失败检测;而且,能够区分小区级或TRP级的波束失败检测,从而避免造成资源浪费。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施 例相同的内容不再赘述。
在一些实施例中,该通信系统可以包括:
终端设备,其介质访问控制(MAC)实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示;以及
网络设备,其接收波束失败恢复MAC CE或波束失败MAC CE。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图13是本申请实施例的网络设备的构成示意图。如图13所示,网络设备1300可以包括:处理器1300(例如中央处理器CPU)和存储器1320;存储器1320耦合到处理器1310。其中该存储器1320可存储各种数据;此外还存储信息处理的程序1330,并且在处理器1310的控制下执行该程序1330。
此外,如图13所示,网络设备1300还可以包括:收发机1340和天线1350等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1300也并不是必须要包括图13中所示的所有部件;此外,网络设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图14是本申请实施例的终端设备的示意图。如图14所示,该终端设备1400可以包括处理器1410和存储器1420;存储器1420存储有数据和程序,并耦合到处理器1410。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1410可以被配置为执行程序而实现如第一方面的实施例所述的波束失败的检测方法。例如处理器1410可以被配置为进行如下的控制:介质访问控制(MAC)实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
再例如,处理器1410可以被配置为执行程序而实现如第二方面的实施例所述的波束失败的检测方法。例如处理器1410可以被配置为进行如下的控制:介质访问控制 (MAC)实体接收波束失败实例指示;确定所述波束失败实例指示是否是TRP特定或TRP级;在所述波束失败实例指示是TRP特定或TRP级的情况下,将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
例如,处理器1410可以被配置为执行程序而实现如第三方面的实施例所述的波束失败的检测方法。例如处理器1410可以被配置为进行如下的控制:介质访问控制(MAC)实体检测到发送接收点或小区发生波束失败或者触发所述发送接收点或小区的波束失败恢复(BFR)或者触发所述发送接收点或小区的波束失败指示;以及MAC实体指示复用和组装实体生成波束失败恢复MAC CE或波束失败MAC CE。
如图14所示,该终端设备1400还可以包括:通信模块1430、输入单元1440、显示器1450、电源1460。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1400也并不是必须要包括图14中所示的所有部件,上述部件并不是必需的;此外,终端设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一至三方面的实施例所述的波束失败的检测方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一至三方面的实施例所述的波束失败的检测方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM 存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种波束失败的检测方法,包括:
终端设备的介质访问控制(MAC)实体接收波束失败实例指示;
将TRP特定的波束失败指示计数加1;以及
在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
2.根据附记1所述的方法,其中,所述方法还包括:
在所述介质访问控制(MAC)实体接收波束失败实例指示的情况下,启动或重启发送接收点(TRP)特定的波束失败检测定时器;
在所述TRP特定的波束失败检测定时器超时的情况下,重置所述TRP特定的波束失败指示计数或者将所述TRP特定的波束失败指示计数设置为0。
3.根据附记1或2所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体指示复用和组装实体生成TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。
4.根据附记3所述的方法,其中,所述终端设备的MAC实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。
5.根据附记3或4所述的方法,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果配置有候选波束列表,且对所述候选波束列表里至少一个参考信号的评估已经完成,所述终端设备的MAC实体指示所述复用和组装实体生成所述TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE。
6.根据附记3或4所述的方法,其中,
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,并且如果配置有候选波束且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
7.根据附记3或4所述的方法,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束列表,所述终端设备的MAC实体不判断候选波束的评估是否完成。
8.根据附记3或4所述的方法,其中,
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果配置有候选波束且对所述候选波束的评估已经完成,或者如果没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
9.根据附记3或4所述的方法,其中,
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
并且,如果没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
10.根据附记1至3任一项所述的方法,其中,所述TRP配置了波束失败恢复或者配置了波束失败恢复参数,和/或,所述TRP配置了波束失败检测或者配置了波束失败检测参数;
对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体将会判断是否指示生成MAC CE或触发调度请求(SR)。
11.根据附记1至3任一项所述的方法,其中,
对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体进行如下操作:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检 测到波束失败,或者触发了至少一个波束失败指示且没有取消,且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
12.根据附记1至3任一项所述的方法,其中,所述TRP配置了波束失败恢复或者配置了波束失败恢复参数,和/或,所述TRP配置了波束失败检测或者配置了波束失败检测参数;
对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个TRP,MAC实体将会进行波束失败检测,以触发BFR。
13.根据附记1至12任一项所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估。
14.根据附记1至12任一项所述的方法,其中,所述方法还包括:
所述终端设备的物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
15.根据附记1至12任一项所述的方法,其中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。
16.根据附记1至15任一项所述的方法,其中,所述终端设备的MAC实体中的部分或所有服务小区配置TRP特定的波束失败检测,和/或,所述终端设备的MAC实体中的特殊小区配置TRP特定的波束失败检测。
17.根据附记16所述的方法,其中,所述终端设备的MAC实体中的所有服务小区没有配置小区特定的波束失败检测,或者,所述终端设备的MAC实体中的特殊小区没有配置小区特定的波束失败检测;所述方法还包括:
在多个TRP被检测到TRP特定的波束失败或者被触发TRP特定的波束失败恢复的情况下,所述终端设备的MAC实体在所述特殊小区发起随机接入过程。
18.根据附记17所述的方法,其中,所述多个TRP包括:一个MAC实体中的所有服务小区的所有配置了TRP特定的波束失败检测的TRP,或者,一个MAC实体中的特殊小区的所有配置了TRP特定的波束失败检测的TRP。
19.根据附记1至18任一项所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体确定所述发送接收点是否属于辅小区;
在所述发送接收点属于辅小区的情况下,确定检测到所述发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
20.根据附记19所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体确定所有配置了TRP特定的波束失败检测的TRP是否都被触发波束失败恢复;
在所有配置了TRP特定的波束失败检测的TRP都被触发了波束失败恢复的情况下,所述终端设备的MAC实体在特殊小区发起随机接入过程。
21.根据附记1至20任一项所述的方法,其中,所述方法还包括如下操作之一或任意组合:
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE的情况下,所述终端设备取消所述MAC PDU组装前、所有为所述TRP触发的波束失败恢复;
或者,在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消所述MAC PDU组装前、所有为所述小区包括的所有TRP触发的波束失败恢复;
或者,如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个TRP特定的波束失败恢复MAC CE或TRP特定的波束失败MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述TRP触发的波束失败恢复;
或者,如果C-RNTI寻址的一个PDCCH指示收到了用于包括一个小区的波束失败信息的波束失败恢复MAC CE或截短的波束失败恢复MAC CE的传输的一个HARQ进程的一个新传的上行授权,所述终端设备的MAC实体取消所有为所述小区包括的所有TRP触发的波束失败恢复。
22.根据附记1至21任一项所述的方法,其中,所述方法还包括:
所述终端设备为触发了BFR且没有取消的TRP触发用于TRP特定的波束失败恢复或TRP特定的波束失败的调度请求(SR)。
23.根据附记22所述的方法,其中,所述调度请求配置一个或一组SR ID。
24.根据附记23所述的方法,其中,所述TRP特定的波束失败恢复的SR ID的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,所述TRP特定的波束失败恢复的SR ID的配置值与小区特定的波束失败恢复的SR ID的配置值不同。
25.根据附记23所述的方法,其中,所述TRP特定的波束失败恢复的SR ID和控制资源池索引的配置值与小区特定的波束失败恢复的SR ID的配置值相同,或者,所述TRP特定的波束失败恢复的SR ID和控制资源池索引的配置值与小区特定的波束失败恢复的SR ID的配置值不同。
26.根据附记22所述的方法,其中,所述方法还包括:
当所述终端设备的MAC实体有为TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)TRP特定的BFR的PUCCH资源有效;或者
当所述终端设备的MAC实体有为辅小区/TRP特定的BFR挂起的SR,且对于SR传输时刻、所述MAC实体有一个或多个与辅小区/TRP特定的BFR的PUCCH资源重叠的PUCCH资源时,所述MAC实体确定(认为)辅小区/TRP特定的BFR的PUCCH资源有效。
27.根据附记22所述的方法,其中,所述方法还包括:
在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个波束失败恢复MAC CE或截短的波束失败恢复MAC CE,所述波束失败恢复MAC CE或截短的波束失败恢复MAC CE包括一个小区的波束失败信息的情况下,所述终端设备的MAC实体取消为所述小区包括的TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;
或者,在所述终端设备发送一个MAC PDU,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,所述终端设备的MAC实体取消为所述TRP的BFR触发的挂起的SR,并停止各自的禁止定时器;
或者,一旦一个辅小区去激活,所述终端设备的MAC实体取消为所述辅小区包括的TRP的BFR触发的挂起的SR;
或者,如果触发SR的所有TRP特定的BFR都被取消,所述终端设备的MAC实体 取消触发的挂起的SR;
或者,SR资源重配置时,所述终端设备的MAC实体取消挂起的SR。
28.根据附记22所述的方法,其中,所述方法还包括:
在一个MAC PDU使用除了随机接入响应(RAR)提供的一个上行授权或根据消息A有效载荷(MSGA payload)的传输确定的一个上行授权之外的一个上行授权进行发送,且所述MAC PDU包括一个MAC CE,所述MAC CE包括一个TRP的波束失败信息的情况下,所述终端设备的MAC实体停止由于所述TRP的BFR挂起的SR而正在进行的随机接入过程。
29.根据附记1至28任一项所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体确定所述波束失败实例指示是否是小区特定或小区级;以及
在所述波束失败实例指示不是小区特定或小区级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
30.根据附记1至28任一项所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体确定所述波束失败实例指示是否是TRP特定或TRP级;以及
在所述波束失败实例指示是TRP特定或TRP级的情况下,启动或重启所述发送接收点(TRP)特定的波束失败检测定时器。
31.根据附记29或30所述的方法,其中,所述方法还包括:
在所述波束失败实例指示是小区特定或小区级、或者不是TRP特定或TRP级的情况下,
将小区特定的波束失败指示计数加1;以及
在所述小区特定的波束失败指示计数大于或等于小区特定的波束失败实例最大计数的情况下,确定检测到小区发生波束失败或者触发小区的波束失败恢复或者触发小区的波束失败指示。
32.根据附记31所述的方法,其中,所述方法还包括:
在所述MAC实体接收波束失败实例指示的情况下,启动或重启小区特定的波束失败检测定时器;
在所述小区特定的波束失败检测定时器超时的情况下,重置所述小区特定的波束失败指示计数或者将所述小区特定的波束失败指示计数设置为0。
33.一种波束失败的检测方法,包括:
终端设备的介质访问控制(MAC)实体检测到发送接收点或小区发生波束失败或者触发所述发送接收点或小区的波束失败恢复(BFR)或者触发所述发送接收点或小区的波束失败指示;以及
所述终端设备的MAC实体指示复用和组装实体生成波束失败恢复MAC CE或波束失败MAC CE。
34.根据附记33所述的方法,其中,所述终端设备的MAC实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。
35.根据附记33或34所述的方法,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,如果配置有候选波束列表且对候选波束列表中至少一个参考信号的评估已经完成,所述终端设备的MAC实体指示所述复用和组装实体生成所述波束失败恢复MAC CE或波束失败MAC CE。
36.根据附记33或34所述的方法,其中,
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,如果配置有候选波束且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的小区或者TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
37.根据附记33或34所述的方法,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束,所述终端设备的MAC实体不判断候选波束的评估是否完成。
38.根据附记33或34所述的方法,其中,
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,
如果配置有候选波束且对所述候选波束的评估已经完成,或者没有配置候选波束,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的小区或TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
39.根据附记33所述的方法,其中,所述小区或TRP配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数;
对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个小区/TRP,MAC实体将会判断是否指示生成MAC CE或触发调度请求(SR)。
40.根据附记33所述的方法,其中,对于配置了波束失败恢复的每个小区/TRP,或者对于配置了波束失败恢复参数的每个小区/TRP,MAC实体进行如下操作:
如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且对所述候选波束的评估已经完成,
如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装过程生成所述波束失败恢复MAC CE或波束失败MAC CE;
否则,如果上行资源可用于一个新传输且如果LCP的结果是所述上行资源能容纳截短的波束失败恢复MAC CE或波束失败MAC CE加上它的子头,则所述MAC实体指示复用和组装实体生成截短的波束失败恢复MAC CE或波束失败MAC CE;
否则,为每个触发了BFR且没有取消的小区或者TRP触发用于波束失败恢复或波束失败的调度请求(SR)。
41.根据附记33所述的方法,其中,所述小区或TRP配置了波束失败恢复或者配 置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数;
对于配置了波束失败恢复或者配置了波束失败恢复参数,和/或,配置了波束失败检测或者配置了波束失败检测参数的每个小区/TRP,MAC实体将会进行波束失败检测,以触发BFR。
42.根据附记41所述的方法,其中,所述方法还包括:
所述MAC实体接收波束失败实例指示;
启动或重启发送小区特定的波束失败检测定时器;
将小区特定的波束失败指示计数加1;以及
在所述小区特定的波束失败指示计数大于或等于小区特定的波束失败实例最大计数的情况下,确定检测到小区发生波束失败或者触发所述小区的波束失败恢复(BFR)或者触发所述小区的波束失败指示。
43.根据附记41所述的方法,其中,所述方法还包括:
所述MAC实体接收波束失败实例指示;
启动或重启发送TRP特定的波束失败检测定时器;
将TRP特定的波束失败指示计数加1;以及
在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示。
44.根据附记33至43任一项所述的方法,其中,所述方法还包括:
所述终端设备的MAC实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估。
45.根据附记33至43任一项所述的方法,其中,所述方法还包括:
所述终端设备的物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
46.根据附记33至43任一项所述的方法,其中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。
47.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至46任一项所述的波束失败的检测方法。
48.一种通信系统,包括:
终端设备,其介质访问控制(MAC)实体接收波束失败实例指示;将TRP特定的波束失败指示计数加1;以及在所述TRP特定的波束失败指示计数大于或等于TRP特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复(BFR)或者触发所述发送接收点的波束失败指示;以及
网络设备,其接收波束失败恢复MAC CE或波束失败MAC CE。

Claims (20)

  1. 一种波束失败的检测装置,包括:
    接收单元,其由介质访问控制实体接收波束失败实例指示;
    计数单元,其将发送接收点特定的波束失败指示计数加1;以及
    处理单元,其在所述发送接收点特定的波束失败指示计数大于或等于发送接收点特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
  2. 根据权利要求1所述的装置,其中,所述装置还包括:
    启动单元,其在所述介质访问控制实体接收波束失败实例指示的情况下,启动或重启发送接收点特定的波束失败检测定时器;以及
    在所述发送接收点特定的波束失败检测定时器超时的情况下,重置所述发送接收点特定的波束失败指示计数或者将所述发送接收点特定的波束失败指示计数设置为0。
  3. 根据权利要求1所述的装置,其中,所述介质访问控制实体指示复用和组装实体生成发送接收点特定的波束失败恢复介质访问控制控制元素或发送接收点特定的波束失败介质访问控制控制元素。
  4. 根据权利要求3所述的装置,其中,所述介质访问控制实体在配置有候选波束的情况下,才判断候选波束的评估是否完成。
  5. 根据权利要求3所述的装置,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果配置有候选波束列表,且对所述候选波束列表里至少一个参考信号的评估已经完成,所述介质访问控制实体指示所述复用和组装实体生成所述发送接收点特定的波束失败恢复介质访问控制控制元素或发送接收点特定的波束失败介质访问控制控制元素。
  6. 根据权利要求3所述的装置,其中,如果波束失败恢复过程确定已经触发了至少一个波束失败恢复且没有取消,或者检测到波束失败,或者触发了至少一个波束失败指示且没有取消,且如果没有配置候选波束列表,所述介质访问控制实体不判断候选波束的评估是否完成。
  7. 根据权利要求1所述的装置,其中,所述介质访问控制实体在触发了至少一个波束失败恢复的情况下,如果没有配置候选波束则确定已经完成候选波束的评估,和/ 或,物理层在接收到高层请求时,在没有配置候选波束的情况下确定已经完成候选波束的评估。
  8. 根据权利要求1所述的装置,其中,在配置了波束失败检测的参考信号的情况下,候选参考信号被配置。
  9. 根据权利要求1所述的装置,其中,所述介质访问控制实体中的所有服务小区没有配置小区特定的波束失败检测,或者,所述介质访问控制实体中的特殊小区没有配置小区特定的波束失败检测;
    在多个发送接收点被检测到发送接收点特定的波束失败或者被触发发送接收点特定的波束失败恢复的情况下,所述介质访问控制实体在所述特殊小区发起随机接入过程。
  10. 根据权利要求9所述的装置,其中,所述多个发送接收点包括:一个介质访问控制实体中的所有服务小区的所有配置了发送接收点特定的波束失败检测的发送接收点,或者,一个介质访问控制实体中的特殊小区的所有配置了发送接收点特定的波束失败检测的发送接收点。
  11. 根据权利要求1所述的装置,其中,所述介质访问控制实体确定所述发送接收点是否属于辅小区;在所述发送接收点属于辅小区的情况下,确定检测到所述发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
  12. 根据权利要求11所述的装置,其中,所述介质访问控制实体确定所有配置了发送接收点特定的波束失败检测的发送接收点是否都被触发波束失败恢复;在所有配置了发送接收点特定的波束失败检测的发送接收点都被触发了波束失败恢复的情况下,所述介质访问控制实体在特殊小区发起随机接入过程。
  13. 根据权利要求1所述的装置,其中,所述介质访问控制实体进行如下操作之一或任意组合:
    在发送一个介质访问控制协议数据单元,且所述介质访问控制协议数据单元包括一个发送接收点特定的波束失败恢复介质访问控制控制元素或发送接收点特定的波束失败介质访问控制控制元素的情况下,取消所述介质访问控制协议数据单元组装前、所有为所述发送接收点触发的波束失败恢复;
    或者,在发送一个介质访问控制协议数据单元,且所述介质访问控制协议数据单元包括一个波束失败恢复介质访问控制控制元素或截短的波束失败恢复介质访问控制控制元素,所述介质访问控制控制元素包括一个小区的波束失败信息的情况下,取消所述 介质访问控制协议数据单元组装前、所有为所述小区包括的所有发送接收点触发的波束失败恢复;
    或者,如果C-RNTI寻址的一个物理下行控制信道指示收到了用于包括一个发送接收点特定的波束失败恢复介质访问控制控制元素或发送接收点特定的波束失败介质访问控制控制元素的传输的一个HARQ进程的一个新传的上行授权,取消所有为所述发送接收点触发的波束失败恢复;
    或者,如果C-RNTI寻址的一个物理下行控制信道指示收到了用于包括一个小区的波束失败信息的波束失败恢复介质访问控制控制元素或截短的波束失败恢复介质访问控制控制元素的传输的一个HARQ进程的一个新传的上行授权,取消所有为所述小区包括的所有发送接收点触发的波束失败恢复。
  14. 根据权利要求1所述的装置,其中,所述介质访问控制实体为触发了波束失败恢复且没有取消的发送接收点触发用于发送接收点特定的波束失败恢复或发送接收点特定的波束失败的调度请求;
    其中,所述调度请求配置一个或一组调度请求ID。
  15. 根据权利要求14所述的装置,其中,所述发送接收点特定的波束失败恢复的调度请求ID的配置值与小区特定的波束失败恢复的调度请求ID的配置值相同,或者,所述发送接收点特定的波束失败恢复的调度请求ID的配置值与小区特定的波束失败恢复的调度请求ID的配置值不同;
    或者,
    所述发送接收点特定的波束失败恢复的调度请求ID和控制资源池索引的配置值与小区特定的波束失败恢复的调度请求ID的配置值相同,或者,所述发送接收点特定的波束失败恢复的调度请求ID和控制资源池索引的配置值与小区特定的波束失败恢复的调度请求ID的配置值不同。
  16. 根据权利要求14所述的装置,其中,
    当所述介质访问控制实体有为发送接收点特定的波束失败恢复挂起的调度请求,且对于调度请求传输时刻、所述介质访问控制实体有一个或多个与发送接收点特定的波束失败恢复的物理上行控制信道资源重叠的物理上行控制信道资源时,所述介质访问控制实体确定发送接收点特定的波束失败恢复的物理上行控制信道资源有效;或者
    当所述介质访问控制实体有为辅小区/发送接收点特定的波束失败恢复挂起的调度请求,且对于调度请求传输时刻、所述介质访问控制实体有一个或多个与辅小区/发送接 收点特定的波束失败恢复的物理上行控制信道资源重叠的物理上行控制信道资源时,所述介质访问控制实体确定辅小区/发送接收点特定的波束失败恢复的物理上行控制信道资源有效。
  17. 根据权利要求14所述的装置,其中,
    在发送一个介质访问控制协议数据单元,且所述介质访问控制协议数据单元包括一个波束失败恢复介质访问控制控制元素或截短的波束失败恢复介质访问控制控制元素,所述波束失败恢复介质访问控制控制元素或截短的波束失败恢复介质访问控制控制元素包括一个小区的波束失败信息的情况下,所述介质访问控制实体取消为所述小区包括的发送接收点的波束失败恢复触发的挂起的调度请求,并停止各自的禁止定时器;
    或者,在发送一个介质访问控制协议数据单元,且所述介质访问控制协议数据单元包括一个介质访问控制控制元素,所述介质访问控制控制元素包括一个发送接收点的波束失败信息的情况下,所述介质访问控制实体取消为所述发送接收点的波束失败恢复触发的挂起的调度请求,并停止各自的禁止定时器;
    或者,一旦一个辅小区去激活,所述介质访问控制实体取消为所述辅小区包括的发送接收点的波束失败恢复触发的挂起的调度请求;
    或者,如果触发调度请求的所有发送接收点特定的波束失败恢复都被取消,所述介质访问控制实体取消触发的挂起的SR;
    或者,调度请求资源重配置时,所述介质访问控制实体取消挂起的调度请求。
  18. 根据权利要求14所述的装置,其中,
    在一个介质访问控制协议数据单元使用除了随机接入响应提供的一个上行授权或根据消息A有效载荷的传输确定的一个上行授权之外的一个上行授权进行发送,且所述介质访问控制协议数据单元包括一个介质访问控制控制元素,所述介质访问控制控制元素包括一个发送接收点的波束失败信息的情况下,所述介质访问控制实体停止由于所述发送接收点的波束失败恢复挂起的SR而正在进行的随机接入过程。
  19. 一种波束失败的检测方法,包括:
    终端设备的介质访问控制实体接收波束失败实例指示;
    将发送接收点特定的波束失败指示计数加1;以及
    在所述发送接收点特定的波束失败指示计数大于或等于发送接收点特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
  20. 一种通信系统,包括:
    终端设备,其介质访问控制实体接收波束失败实例指示;将发送接收点特定的波束失败指示计数加1;以及在所述发送接收点特定的波束失败指示计数大于或等于发送接收点特定的波束失败实例最大计数的情况下,确定检测到发送接收点发生波束失败或者触发所述发送接收点的波束失败恢复或者触发所述发送接收点的波束失败指示。
PCT/CN2021/071617 2021-01-13 2021-01-13 波束失败的检测方法以及装置 WO2022151109A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237022443A KR20230113385A (ko) 2021-01-13 2021-01-13 빔 장애를 검출하기 위한 방법 및 장치
EP21918324.1A EP4280659A4 (en) 2021-01-13 2021-01-13 METHOD AND DEVICE FOR DETECTING BEAM DEFECTS
CN202180083538.1A CN116746192A (zh) 2021-01-13 2021-01-13 波束失败的检测方法以及装置
JP2023541095A JP7563609B2 (ja) 2021-01-13 2021-01-13 ビーム障害の検出方法及び装置
PCT/CN2021/071617 WO2022151109A1 (zh) 2021-01-13 2021-01-13 波束失败的检测方法以及装置
US18/218,700 US20230353223A1 (en) 2021-01-13 2023-07-06 Method and apparatus for detecting beam failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071617 WO2022151109A1 (zh) 2021-01-13 2021-01-13 波束失败的检测方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/218,700 Continuation US20230353223A1 (en) 2021-01-13 2023-07-06 Method and apparatus for detecting beam failure

Publications (1)

Publication Number Publication Date
WO2022151109A1 true WO2022151109A1 (zh) 2022-07-21

Family

ID=82446643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071617 WO2022151109A1 (zh) 2021-01-13 2021-01-13 波束失败的检测方法以及装置

Country Status (6)

Country Link
US (1) US20230353223A1 (zh)
EP (1) EP4280659A4 (zh)
JP (1) JP7563609B2 (zh)
KR (1) KR20230113385A (zh)
CN (1) CN116746192A (zh)
WO (1) WO2022151109A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162671A1 (ko) * 2023-01-31 2024-08-08 엘지전자 주식회사 빔 실패를 고려한 lcp 동작 방법 및 장치
WO2024162670A1 (ko) * 2023-01-31 2024-08-08 엘지전자 주식회사 빔 실패를 고려한 그랜트 생성 동작 방법 및 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390705B (zh) * 2019-08-15 2023-08-08 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
US20230118940A1 (en) * 2021-10-19 2023-04-20 Qualcomm Incorporated Beam failure detection per beam for multi-beam communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708714A (zh) * 2018-07-10 2020-01-17 维沃移动通信有限公司 波束失败检测方法、终端和网络设备
CN110896546A (zh) * 2018-09-13 2020-03-20 展讯通信(上海)有限公司 波束失败恢复方法及装置、存储介质、用户设备
CN111278122A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708714A (zh) * 2018-07-10 2020-01-17 维沃移动通信有限公司 波束失败检测方法、终端和网络设备
CN110896546A (zh) * 2018-09-13 2020-03-20 展讯通信(上海)有限公司 波束失败恢复方法及装置、存储介质、用户设备
CN111278122A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements on beam management for multi-TRP", 3GPP DRAFT; R1-2009253, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting ;20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946916 *
See also references of EP4280659A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162671A1 (ko) * 2023-01-31 2024-08-08 엘지전자 주식회사 빔 실패를 고려한 lcp 동작 방법 및 장치
WO2024162670A1 (ko) * 2023-01-31 2024-08-08 엘지전자 주식회사 빔 실패를 고려한 그랜트 생성 동작 방법 및 장치

Also Published As

Publication number Publication date
KR20230113385A (ko) 2023-07-28
US20230353223A1 (en) 2023-11-02
JP2024502137A (ja) 2024-01-17
JP7563609B2 (ja) 2024-10-08
EP4280659A4 (en) 2024-03-20
EP4280659A1 (en) 2023-11-22
CN116746192A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7455820B2 (ja) Nr-u lbt mac手順
WO2022151109A1 (zh) 波束失败的检测方法以及装置
WO2018196520A1 (zh) 一种波束管理方法及终端设备、网络设备
WO2018166331A1 (zh) 一种资源分配方法和装置以及终端设备
US11564255B2 (en) Method and apparatus for processing LBT monitoring failures and system
US11937324B2 (en) Data transmitting/receiving apparatuses and methods and communication system
KR102594392B1 (ko) 다운링크 신호 모니터링 및 전송 방법, 및 파라미터 구성 방법 및 장치
US11785661B2 (en) Configuration method and apparatus for beam failure recovery and communication system
JP2021525487A (ja) パワーの確定方法及び装置
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
JP2023502936A (ja) マルチsim ue接続モード動作のための方法
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
US20210136833A1 (en) Random access method and data reception method, apparatuses thereof and communication system
WO2022077321A1 (zh) 无线通信方法、装置和系统
WO2022082686A1 (zh) 波束失败信息的上报方法以及装置
WO2023010490A1 (zh) 波束失败的处理方法、信息发送方法以及装置
WO2023130478A1 (zh) 波束失败恢复信息发送装置、接收装置及通信系统
WO2022151110A1 (zh) 波束失败信息的生成和上报方法以及装置
WO2023205975A1 (zh) 辅小区波束失败恢复的方法和装置
WO2023193209A1 (zh) 波束失败检测参考信号的配置方法和装置
WO2021232384A1 (zh) 计数器维护方法,调度请求接收方法以及装置
WO2020061869A1 (zh) 一种链路恢复方法及装置、通信设备
CN118765520A (zh) 用于l1/l2移动性的小区的配置和管理

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083538.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237022443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202337044930

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023541095

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021918324

Country of ref document: EP

Effective date: 20230814